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SUMMARY
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As
many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity,
research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting
or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard
to discern general principles. Here, we review what is known about the ecosystem impacts of large her-
bivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are
generalizable across ecosystems: large herbivores consistently exert top-down control of plant demog-
raphy, species composition, and biomass, thereby suppressing fires and the abundance of smaller ani-
mals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation
risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and
nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the great-
est relevance for conservation and management are among the least certain, including effects on carbon
storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroduc-
tions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot
fully substitute for large ones, and large-herbivore species are not functionally redundant — losing any,
especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for
wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how
large-herbivore traits and environmental context interactively govern the ecological impacts of these
animals.
Introduction

‘‘Big things such as elephants, jaguars, and tapirs tend to

be neglected by ecologists, for the very reason that by be-

ing big, they lack amenability to study.I suspect that for

this reason the key functions provided by the big things

are underappreciated.’’ - John Terborgh1

‘‘We live in a world analogous to an herbivore exclusion

experiment, with most of the large herbivores removed.’’

Juli Pausas and William Bond2

The quotation above from Terborgh’s 1988 essay The big things

that run the world1 captures an irony. Despite millennia of human
R584 Current Biology 33, R584–R610, June 5, 2023 ª 2023 Elsevier
fascination with ‘big game,’ megafauna long occupied the mar-

gins of ecological research. Population and community ecology

developed around the study of plants, invertebrates, birds, ro-

dents, and fish; ecosystem ecology developed largely without

reference to animals at all3. The comparative neglect of big ani-

mals was not for lack of reasons to study them. It was never a se-

cret that large herbivores (plant-eating animals weighing over

2 kg)4 have unique traits and can play distinctive roles in terres-

trial ecosystems5–12 (Figure 1). Early authors also recognized the

role of large herbivores in the evolution and global expansion of

hominins13,14 and the role of humans in driving large herbivores

extinct15. The problem was rather that large herbivores are

inconvenient study subjects — difficult to manipulate and often
Inc.
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Figure 1. Size-based functional thresholds in terrestrial large herbivores.
Top: Species representing body-size thresholds used to categorize herbivores as ‘large’. While inherently arbitrary61, many thresholds correspond to biologically
meaningful distinctions (bottom, based on references cited in caption). 2 kg (chevrotain, hare): adult size of smallest extant ungulate. 3 kg (hyrax, Phillipine
porcupine): size above which correlates of extinction risk becomemore pronounced (A)56. 5 kg (rock wallaby, howler monkey): adult size of the smallest ungulates
in African savanna assemblages46. 20 kg (Speke’s gazelle, roe deer): size of the smallest migratory mammalian herbivore (B)63. 30 kg (saiga, peccary): size above
which intrinsic rate of increase (rm) drops below the level (0.45) considered necessary for intrinsic mechanisms of population regulation to evolve (C)12. 45 kg
(pronghorn, red kangaroo): size above which Pleistocene extinction was much more likely (D)15 and a common threshold for defining ‘megafauna’31,43. 60 kg
(chital, capybara): size above whichR69% of ecologists agree that an animal is ‘megafauna’ (E)61. 100 kg (ibex, spurred tortoise): threshold used to delineate the
‘world’s largest’ herbivores57. 150 kg (hartebeest, mountain tapir): size above which population regulation switches from primarily top-down (predation) to
bottom-up (food limitation) in Serengeti (F) 65. 1000 kg (giraffe, black rhinoceros): size above which adults are essentially invulnerable to predation (F)65 and a
threshold used to delineate ‘megaherbivores’18. We do not embrace any threshold in this review, instead emphasizing the diverse and frequently nonlinear ways
in which body size differentiates the ecological impacts of herbivores across the spectrum shown here67,116,123. Figure created using BioRender.com.
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even to observe, intractable for testing theory, ‘‘not the stuff of

NSF grants’’1. Moreover, the diminished abundance of large her-

bivores across much of the world by the mid-20th century2

diluted and dispersed their ecological impacts, making them

easier to ignore.

By 1988, that oversight was already starting to fade. A series of

syntheses over the following decade placed large-herbivore

ecology in a broad conceptual framework and identified com-

mon patterns across ecosystems and continents16–23. Attention
to the ecological importance of body size18,24,25 and accumu-

lating evidence that large herbivores could be keystone spe-

cies26–28 reinforced the value of studying wild large herbivores,

and an ever-expanding methodological toolkit has made it ever

easier to do so. Most recently, interest in ‘rewilding’ to recover

the lost functional roles of extinct large herbivores29–34 has fu-

eled attempts to pinpoint what those roles actually are, and to

what extent modern herbivore assemblages approximate

ancient ones35–39. The mainstreaming of megafauna in ecology
Current Biology 33, R584–R610, June 5, 2023 R585
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has produced many exciting discoveries and spawned a wealth

of reviews, meta-analyses, and models40–55. Still, many ques-

tions remain unanswered. Recent reviews imply a consensus

that wild large herbivores are pivotal in regulating ecosystem

functioning but do not always clearly distinguish isolated case

studies from repeatable general rules.

The rapid growth of this literature has been motivated in

part by the goal of understanding, predicting, and mitigating

anthropogenic global change. Large herbivores are dispropor-

tionately prone to extinction fromhuman activity56,57. Quaternary

extinctions have been so size-selective that large herbivores are

smaller now than at any time in the last 30million years58. 60% of

the 75 mammalian large-herbivore species weighing R100 kg

are threatened with extinction57, as are all 12 species of mega-

herbivore (R1000 kg) and 83% of all tortoise species59. A fifth

of these species are listed as critically endangered, with

numbers ranging from a few tens to a few thousands globally,

and may thus be functionally extinct. Meanwhile, domesticated

large herbivores continue to increase in density and distribution,

often displacing wild counterparts from their remaining strong-

holds57. How will the decline and replacement of wild large her-

bivores affect ecosystems? What constraints limit ecologists’

ability to answer that question? And what are the implications

for conservation, restoration, and management?

This review has three main aims. First, we identify a set of gen-

eral rules that have solidified over the last decade — inferences

about the ecosystem impacts of large herbivores that have

repeatedly and rigorously been tested in nature and that apply

with few exceptions worldwide (Table 1). Second, we survey

important but intractable problems and emerging research fron-

tiers. Third, we highlight the need for process-based and spe-

cies-specific knowledge to break down longstanding barriers

to generalization, prediction, and applied relevance. We argue

that mechanistic understanding of large-herbivore impacts is

generally weak, even in most experimental studies, and that

this contributes to a disconnect between the current state of

the field and its aspirations. We are cautiously optimistic that

this gap can be closed, and we conclude by outlining some

promising strategies.

Generalizations about the roles and impacts of large
herbivores
Body size governs impact, and small herbivores do not

compensate for large herbivores

A premise of focusing on impacts of large herbivores is that big-

bodied herbivores are a category apart from smaller vertebrate

and invertebrate herbivores. This premise holds despite the

lack of any universal criterion for defining where ‘small’ ends

and ‘large’ begins60,61. Dramatic changes in functionally relevant

traits occur at different body sizes (Figure 1). For example, spe-

cies >3 kg are markedly more at risk of extinction56; species

>7 kg are disproportionately targeted by human hunters62;

migratory behavior is confined to species >20 kg63, which also

have much larger home ranges64; species >30 kg are unlikely

to evolve intrinsic behavioral or physiological mechanisms of

population regulation12; populations of species >150 kg are far

more likely to be limited by food than by predators65; and species

>1000 kg are essentially invulnerable to nonhuman predators65.

Large herbivores are often simply defined taxonomically, which
R586 Current Biology 33, R584–R610, June 5, 2023
is also justifiable. Ungulates (Artiodactyla, Perissodactyla) ac-

count for 50% of wild terrestrial mammal biomass, elephants

(Proboscidea) add 8%, and kangaroos and other marsupial her-

bivores (Diprotodontia) add another 7%66. In sum, the variety of

size-based functional thresholds and the global dominance of

four taxonomic orders of indisputably big mammalian herbivores

suggest that ‘large herbivore’ is an ecologically meaningful heu-

ristic category — but that it is even more useful to consider body

size as a continuous variable.

Indeed, an overarching generalization that we revisit in various

specific contexts throughout this review is that body size regu-

lates the form, strength, and direction of herbivore impacts in

ways that quantitatively and qualitatively distinguish large herbi-

vores from smaller herbivores (and from each other). These differ-

ences arise from the allometric scaling of food requirements41,

behavior64,67, and morphophysiological constraints68,69, along

with assorted traits and capabilities that are unique to very large

herbivores70–77. Such size-based differentiation in ‘requirement’

and ‘impact’ niches78 is key for understanding the origin and

functional importance of large-herbivore diversity. Sympatric

large-herbivore species differ in size (which almost certainly re-

flects competitive constraints on coexistence), and large species

account for the greatest share of biomass and energetic demand

in intact communities (Figure 2). This in turn suggests that bigger

herbivores should exert stronger per capita and net impacts, and

that smaller herbivores should not be able to fully compensate for

the loss of larger ones79.

Support for these propositions comes from exclosure experi-

ments that remove large herbivores but are permeable to small

species — the primary method for causal inference about

large-herbivore impacts (Figures 3–5). Hundreds of exclosure

studies worldwide have revealed countless direct and indirect

effects of large herbivores80–93, and we know of no long-term

study that has failed to detect any effect. These results, and

similar ones from defaunated landscapes, such as forests where

hunters have eliminated peccaries and monkeys but spared the

rodents94–96, show that small consumers undercompensate for

the loss of large herbivores. Densities of small mammals and in-

sects increase in exclosures and overhunted forests, but not to

the point of matching the biomass and energetic demand of

large herbivores97–100, and there are only a few reported cases

of full compensation for even one response variable101. Similarly,

small ungulates are more abundant in size-selective exclo-

sures102 andmegaherbivore-free landscapes79 but do not repro-

duce the impacts of larger species103–108 (Figure 5).

Different large herbivores have different diets, implying

functional complementarity

Plant biomass varies in accessibility, digestibility, nutrient con-

tent, and toxicity. Large herbivorous mammals vary along a con-

tinuum from grazers that eat monocots (mainly grasses) to

browsers that do not; ‘mixed feeders’ eat substantial amounts

of both109–111 (Figure 2E). This grazer–browser spectrum is

rooted in traits of both herbivores (e.g., dentition, anatomy112)

and plants (e.g., grasses with high tensile strength and abrasive

phytoliths that non-grasses lack113,114). The modality of this

spectrum varies, and species’ positions along it can differ in

time and space, but the general pattern is universal both across

large-herbivore lineages and within local assemblages, suggest-

ing its importance in maintaining large-herbivore diversity111,115.



Table 1. Generalizations about the impacts of large herbivores in terrestrial ecosystems.

Generality Mechanisms Manifestations Citations

Body size regulates

herbivore requirements

and impacts

– Allometric scaling of energetic requirements, life history,

behaviors, predation vulnerability.

– Bigger herbivores reach higher biomass, eat more phytomass.

– Traits unique to extremely large herbivores.

– Functional thresholds occur at different body sizes (Figure 1).

– Small herbivores under-compensate for large ones (Figure 5).

– Elephants are uniquely able to kill adult trees but less selective

for shoots, seedlings.

18,64,67–69,73,77,100

Dietary differentiation – Herbivore and plant traits constrain plant taxa and tissues

eaten.

– Competition prevents coexistence of species with identical

diets and promotes adaptive differentiation of traits that

constrain diet.

– Grazer–browser spectrum (Figure 2E,F).

– Herbivore species eat different plant species (Figure 2D,E).

– Species differ in selectivity for nutrient-rich tissues.

– Differences scale with body size (Figure 2); big species need

more food, cannot be as selective.

– Species are not functionally equivalent.

18,54,69,114,123,124,

128,129,135

Top-down control of plants – Lethal, nonlethal consumption.

– Mutualist suppression.

– Offsetting benefits (dispersal, enemy suppression,

nutrient inputs).

– Lower plant performance, biomass, density.

– Reduced tree cover.

– Depression of aboveground net primary production

(with localized exceptions).

10,19,47,54,85,96,105,

139,147,158,162

Alteration of plant species

composition

– Differences in palatability, resistance, tolerance leads to

‘increaser’ or ‘decreaser’ species.

– Modified plant–plant interactions.

– Large herbivores filter plant communities, leading to

species replacement but limited net change in richness.

– Positive effects on richness occur mainly in productive

grasslands.

47,48,172,184,185,

190,194–196

Modulation of fire and its

impacts

– Reduced fuel load, continuity, composition.

– Altered plant architecture.

– Feedbacks from effects on food quantity, quality.

– Large herbivores reduce fire frequency, intensity, and/or extent.

– Functionally diverse herbivore guilds best suppress fuel loads.

– Fire and browsers synergistically suppress trees.

154,182,199,203–205,

207,213

Transport and nutrient

cycling

– Dung, urine, and death lead to long-distance transport of matter.

– Diet affects content of inputs.

– Traits that lower palatability also slow decomposition.

– Herbivore-vectored transport differs from abiotic drivers.

– Content, distance, and spatiotemporal pattern of inputs scale

with body size.

– Simple rules about effects on nutrient recycling rates are not

general.

219,226,227,229,230,

233,357,362

Indirect suppression

of small animals

– Plant depletion limits food and structure available for other

consumers.

– Effect size scales with regrowth rate.

– Suppression of small herbivores propagates through food webs.

– Stronger effects at low primary production.

– Exceptions: specialized herbivore symbionts, some habitat-

modification effects.

97,236–238,242,247,248

Risk alters behavior,

cascades are variable

– Large herbivores perceive correlates of predation risk.

– Response hinges on herbivore vulnerability (size), predictability

of risk, strength of tradeoffs.

– Sustained avoidance of risky areas releases plants.

– Unpredictable risk, invulnerable herbivores, strong fitness

tradeoffs, and avoidance in time dampen trophic cascades.

77,254–257,259–261,

263–266,268,269

Increased ecosystem

heterogeneity

– Herbivore activity is non-uniform in space and time.

– Feedbacks amplify heterogeneity arising from variation in

density, activity.

– Geology, water proximity, etc. alter herbivore densities

and their impacts.

– Game trails, foraging hotspots, etc. ingrain impacts

atop underlying gradients through repeated use.

73,272,275,276,278,

279,281,282

Livestock are poor proxies

for wild large herbivores

– Domestic species differ from even close wild relatives in

traits.

– Livestock attain high density.

– Livestock assemblages have less trait diversity than wild ones.

– Trait differences and protection of animals from enemies and

resource limitation results in different foraging, densities, impacts.

– Many wild large herbivores have no domestic analogue.

– Management can relax these differences.

90,142,176,284,293–295,

297,298,302 ll
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Figure 2. Body size structures large-
herbivore assemblages and diets.
(A,B) Co-occurring large herbivores differ in body
size. Histograms show distribution of body-mass
differences between pairs of ruminant (A) and
nonruminant (B) large herbivores (species R2 kg
that eat R80% plants445) that co-occur in any
location in Africa446. Species of very similar size
rarely co-occur (modal differences of �100 kg in
ruminants and �10, �100, and �1000 kg in non-
ruminants), suggesting that size differentiation
fosters coexistence. (C) Intact large-herbivore
assemblages are dominated by large-bodied
species. Estimates of species’ biomass density
from 60 protected areas in 17 African countries447

are plotted as a function of species’ body mass
(BM)448. Colors indicate locations; thin lines show
trend within locations, black line shows overall
trend (r2 = 0.33). Scaling densities by metabolic
rate (4.213BM0.77) to reflect energetic re-
quirements does not change the pattern (r2 =
0.22). (D) Co-occurring large-herbivore species
differ in diet composition (relative abundance of
plant taxa, from DNA metabarcoding123), and dif-
ference in body size (DBM) predicts the strength of
this differentiation. Each point corresponds to a
pair of sympatric herbivore species from a given
location in Africa (sized byDBM, colored by season
and location as per inset map); solid points are
pairs with similar digestion (ruminant or nonrumi-
nant), open points are ruminant–nonruminant
pairs. X-axis shows relative strength of
differentiation predicted by a regression model
with DBM, % grass consumption, and rainfall as
fixed effects and random intercepts for
location123; y-axis shows observed strength of
differentiation (r2 = 0.52). DBM alone explains 5%
of variance (p < 0.0001). (E) Ternary plot
extending the grazer–browser spectrum of
dietary variation. Points show diets of different
populations of 30 African herbivore species123

(colors indicate species). Left axis shows
consumption of grasses (Poaceae), with some
species eating almost 100% grasses (grazers)
and others eating almost none (browsers).
Nongrass forage is divided among legumes
(Fabaceae, bottom) and all other plant families

(right), showing how taxonomic resolution reveals additional dimensions of dietary variation. (F) Body size affects species’ position on the grazer–browser
spectrum, with grass consumption being significantly higher on average in larger-bodied species. Points are 164 large-herbivore species in a global synthesis128.
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Sympatric large herbivores also consistently differ in the taxo-

nomic composition of their diets116–123 (Figure 2E). This form of

dietary differentiation also arises from the interplay of plant and

herbivore traits114 and is nested within the grazer–browser spec-

trum. The latter is the dominant axis of resource partitioning,

reflecting the ancient split betweenmonocots and other plant lin-

eages; along that axis, different large herbivores eat different

mixes of species. Further nested within taxonomy, large herbi-

vores differentially select plant tissues based on phenology,

nutritional quality, and height124–126. These multiple axes of sep-

aration minimize dietary redundancy among co-occurring large

herbivores, despite species’ broad fundamental niches, shared

use of plant species, and often parallel food preferences123,127

(Figure 5C).

Body size mediates separation along all of these axes, being

positively correlated with grass consumption (Figure 2F),

foraging height, and degree of differentiation in dietary species

composition (Figure 2D) and negatively correlated with average

diet quality18,67,69,112,114,123,128. Negative scaling of diet quality
R588 Current Biology 33, R584–R610, June 5, 2023
with body size (the Jarman-Bell effect124,129) arises from herbi-

vores’ selection of both plant taxa and plant tissues and is a

strong generality, although its classic physiological explana-

tions130 — long considered axiomatic — have recently been

challenged69,131–133. Contrary to theory134, however, recent

work has found no link between body size and dietary taxonomic

or phylogenetic diversity; niche breadth on these axes appears

to be remarkably constrained119,122,123,135,136.

Lack of dietary redundancy implies a lack of functional redun-

dancy, suggesting that species loss or addition should alter the

net impact of the entire assemblage, that diverse assemblages

should directly affect more plant species, and that the range of

impacts on vegetation should increase with the size range of

the herbivore assemblage. The available data support these hy-

potheses. Grazers and browsers have predictably different im-

pacts on herbaceous and woody plants54. Big herbivores eat

more stem, bark, and other fibrousmaterial18,114, which removes

support for photosynthetic tissue and produces strong effects

on vegetation structure72,73.
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Figure 3. How ecologists study the impacts
of large herbivores.
Advances in understanding large-herbivore im-
pacts have been catalyzed by a mixture of time-
tested field methods and new technical tools.
Exclosures (C) remove herbivores above a certain
size from experimental plots, enabling cause–
effect inference about how herbivores affect their
environments. Exclosure results are clarified and
deepened by field observations (E) and data on
factors such as herbivore density (A,D), diet
(F,I,J), and behavior (I,K,L). Camera traps (L) are
used both for monitoring and as automated
behavioral response systems (ABRS) for
experiments involving playbacks of audio cues.
Unoccupied aerial vehicles (UAVs) carrying light-
detection and ranging (LiDAR) and other sensors
(G) can compensate for the limited size of
exclosures by enabling comparative analysis at
much larger scales. Syntheses of field data
(H) enable researchers to test the generality of
local findings across biomes and continents
(stripe distinguishes an African landscape, left,
from a high-latitude one, right). Translocations
(M) create unique opportunities for quasi-
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dynamics. DNA and other compounds sampled
from the environment (N), feces (F), and bodies
(J) can be analyzed in laboratories (B), offering
unprecedented insights into large-herbivore
ecology. Figure created using BioRender.com.
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Large herbivores reduce the vital rates, density, cover,

and biomass of plants

Classic theory suggested that herbivores might have weak ef-

fects on plants in three-level food chains, such as those involving

large herbivores and carnivores137,138. Not so. A global meta-

analysis of exclosure studies found negative effects of wild

herbivores on plant survival, reproduction, abundance, and

biomass47. Syntheses of exclosure data from temperate forests

and tropical savannas likewise show strong negative effects of

large herbivores on plant cover, density, growth, survival, and

reproduction46,54,139–141. Within and across these experiments,

large-herbivore biomass predicts the strength of the plant re-

sponses54,139,140,142. At larger scales, mass die-offs of large her-

bivores increase ecosystem tree cover143,144, and woody

encroachment in Africa is weaker in areas with abundant large

herbivores145, mirroring results from exclosures. Although

grazers are expected to benefit trees in savannas by releasing

them from competition with grass, negative net effects of large

herbivores on trees are common even in grazer-dominated sys-

temsanddespite suppression of grass biomass104,105,139,145–148.

This suggests that indirect facilitation of treesby grazers is gener-

ally weak and outweighed by even modest browsing; it probably

also reflects the fact that there are few pure grazers (Figure 2E,F)

and that food-limited grazers at high densities both eat and

trample young trees123,149–152.

These net effects of entire large-herbivore assemblages are

products of component interactions that differ in strength and di-

rection among herbivore species. For example, regulation of

savanna tree cover by browsers arises from leaf consumption

and reduced capacity for growth and reproduction, from flower

consumption and indirect suppression of pollinators, and
from recruitment bottlenecks and mortality at different life

stages85,92,103,104,147,153–155. These negative effects are only

partially offset by benefits of seed dispersal, grass removal by

grazers, and indirect suppression of smaller leaf- and seed-

eating consumers85,103,154,156.

Large-scale effects of large herbivores on aboveground net

primary production are generally negative, but can be neutral

or positive under limited conditions, notably in grasslands with

moderate intensities and long histories of grazing17,142,157–160.

By contrast, localized large-herbivore-induced increases in pri-

mary production are common. Grazing lawns of palatable, defo-

liation-tolerant short-grass species emerge in response to

intense grazing worldwide. These hotspots of forage and high

visibility attract large herbivores, which deposit urine and feces,

further enhancing primary productivity in a positive-feedback

loop that can be sustained indefinitely10,27,72,75,161–168. Although

less studied, chronic browsing can induce effects similar to graz-

ing lawns in woody plants and forbs169–171.

Large herbivores alter plant communities but haveweak

effects on species richness

Large herbivores suppress some plant species (‘decreasers’)

to the benefit of others (‘increasers’), and effects of large

herbivores on plant community composition are essentially

universal17,46,93,140,172–179. A plant’s response to large herbivores

reflects the interplay of its palatability (i.e., herbivore preference)

and its robustness to herbivory as conferred by avoidance

(escaping consumption), resistance (reducing consumption),

and tolerance (withstanding consumption) mechanisms180–182.

Palatable plants with low robustness tend to be decreasers; un-

palatable or robust plants tend to be increasers. Palatable plants

that are tolerant (as in grazing lawns) enable positive feedbacks
Current Biology 33, R584–R610, June 5, 2023 R589
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Figure 4. Distribution of research on large-herbivore impacts in relation to their diversity.
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between large herbivores and primary productivity22. Palatability

and robustness both arise frommany traits and physiological pro-

cesses, notably photosynthetic capacity, growth rate and form,

leaf nitrogen, fiber, spines, and phenolic compounds. Selective

foraging in relation to these attributes filters plant species compo-

sition at local to biogeographic scales182–186 and alters trait mani-

festation at within-individual to macroevolutionary scales via

phenotypic plasticity and natural selection186–189.

Large herbivores also modify plant–plant interactions, result-

ing in indirect (non-consumptive) effects. Many traits that

make plants unpalatable or robust to large herbivores are

competitively disadvantageous (e.g., short stature, high defen-

sive investment). Accordingly, plants that are rarely eaten

may nonetheless respond strongly to large herbivores due

to the suppression of their competitors. Some facilitative

interactions that occur in the presence of large herbivores

(e.g., associational resistance) become neutral or competitive

in their absence190–192, while other facilitative interactions

become stronger when large herbivores are scarce (e.g., release

of shrubs provides structural support for vines)106.

This trait-based variability in the sign of direct and indirect im-

pacts helps to explain the weak net effect of large herbivores on

plant richness: large herbivores tend to shift the identity and

abundance, rather than the number, of plant species. The most

comprehensive global meta-analysis to date47 found no effects

of herbivory on richness across biomes. Diversity-enhancing ef-

fects occur mainly in grasslands and only under certain condi-

tions. This contingency is unusually well understood and de-

pends on primary productivity and grazing history. In places
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with low productivity and short grazing histories, large herbi-

vores have little effect on diversity; under the opposite condi-

tions, large herbivores increase diversity by suppressing tall,

competitively dominant plant species and releasing subordi-

nates from competition for light16,48,107,193–196.

Large herbivores moderate fire regimes, and herbivore–

fire feedbacks regulate vegetation dynamics

Large herbivores and fire are both generalist consumers of plant

biomass that differ in ‘food preference’ but nonetheless

compete182,197. With limited exceptions198, large herbivores

reduce fire frequency, intensity, or extent by reducing quantity,

flammability, composition, or continuity of fuel198–201. A global

review found that while large herbivores sometimes had no effect

on fire, they very rarely had positive effects (and those were by

livestock) 201. In Africa, fire decreases with large-herbivore

biomass at local to continental scales, especially in drier land-

scapes145,202. Herbivore species and assemblages that eat

both trees and grasses control fuel most effectively54,201. These

modern data are consistent with evidence that fire increased

globally after the Pleistocene megafaunal extinctions203–205.

Large herbivores alter the impacts of fires on plants and vice

versa206. While fire depletes absolute forage quantity, nutritious

postfire regrowth attracts grazers and browsers alike207–211,

intensifying local herbivore–fire interactions and feedbacks148.

Browsing elevates trees’ vulnerability to fire by stunting

growth212. Elephants in particular interact synergistically (su-

per-additively) with fire to increase tree mortality213–216. By

contrast, heavy grazing creates stubble and bare soil, which

limits fire and alleviates tree-grass competition217. As a result,
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Figure 5. Probing exclosures with
complementary data streams for
mechanistic insight.
The UHURU experiment in Kenya450,451 uses size-
selective fencing to exclude nested subsets of
large herbivores: +all plots are unfenced, -mega
excludes only species R1000 kg (elephant and
giraffe), -meso excludes all species R10 kg, and
-all excludes all species >2 kg. (A,B) LiDAR
imagery (A) shows effect of each treatment on
vegetation structure and density (B) after 12
years (lateral views and density distributions
correspond to white rectangles in overview).
Divergent effects of each treatment show that
small large herbivores do not fully compensate
for bigger ones. (C) Elephant and giraffe, the
megaherbivores, eat significantly different diets
at this site but share preference for many plant
taxa. Points are 50 plant taxa (colored by growth
form) in the diet of at least one species;
herbivore selectivity (Jacob’s D; positive values
indicate selection, negative values avoidance)
was calculated by combining diet data135,285 with
data on the relative availability of each plant451.
(D) A multiple-regression model with 6 predictors
(elephant selectivity, plant spinescence, and
plant energy, Mg, Na, and Zn contents)
explained 59% of variation in plant response to
megaherbivores, suggesting that herbivore
impacts can be predicted by a combination of
herbivore preference and plant traits. Response
to megaherbivore exclusion was calculated
for each plant population (points) as ln(N-mega/
N+all), where <0 indicates lower abundance in
exclosures and vice versa; x-axis shows
responses predicted by the model, y-axis shows
observed responses. Elephant selectivity alone
was a stronger predictor of plant response (r2 =
0.36, p < 0.0001) than was giraffe selectivity
alone (r2 = 0.17, p = 0.003).
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savanna tree cover can sometimes covary positively with grazer

abundance, despite the generally negative net effects of large

herbivores on trees as a whole218.

Large herbivores redistribute large quantities of organic

matter, altering nutrient cycling

Transport of carbon, nutrients, and seeds by large herbi-

vores42,52,53,219–222 differs from abiotic mechanisms such as

gravity, wind, and flooding in quantity, spatiotemporal pattern,

and composition223,224. To list just a few salient examples, hip-

pos defecate >3,000 tons of organic matter into Kenya’s Mara

River each year76, and white rhino redistribute >25 kg N ha-1

year-1 into dung middens225. Large herbivores move assimilated

nutrients in their bodies that die and decompose226. Giant tor-

toises and elephants deposit hundreds of seeds per dung pile

over distances up to 4 and 67 km, respectively227,228.

Body size distinguishes large herbivores from other animal

vectors and large-herbivore species from one another. The allo-

metric scaling of space use64,67 and diet quality (and hence fecal

composition229) suggests that smaller large herbivores should

distribute more concentrated nutrients more evenly over smaller

areas. Multiple studies support this idea77,230,231. The biggest

large herbivores have few natural predators (Figure 1) and thus

carry nutrients across areas of high predation risk77. Body size

also has implications for relative nutrient supply232. Larger herbi-

vores require greater amounts of phosphorus to support bone
mass, which affects fecal and carcass stoichiometry and the ra-

tio of nitrogen vs. phosphorus inputs226,230,233,234.

Selective foraging and subsequent excretion, defecation, and

death alter nutrient cycling, but effect size and direction vary.

Several general principles influence these effects: large herbi-

vores select nutritious foliage, dung and urine nutrient content

scales with diet composition, and plant traits that reduce palat-

ability also slow decomposition22,45,188,235. Yet, simple rules

extrapolated from these premises — that grazers accelerate

and browsers decelerate cycling, and that large herbivores has-

ten cycling in fertile systems but slow it in infertile ones— appear

less general than once thought in light of current data233. A

recent framework of context-dependent mechanisms by which

large herbivores modulate nutrient recycling rates has proposed

more nuanced generalizations that require further testing233.

Large herbivores indirectly suppress smaller animals

Large herbivores generally reduce density and diversity of

smaller animals99,236–239, including other large herbivores102,240.

These effects can be direct (e.g., ingestion of insects on fo-

liage98,237,241) but most are indirect and essentially competitive.

Plant biomass eaten or modified by large herbivores becomes

unavailable to other primary consumers, which then propagates

up food chains. For example, large herbivores suppress pollina-

tors by reducing flower abundance and diversity92 and rodents

by reducing plant density and seed set97,242,243, which in turn
Current Biology 33, R584–R610, June 5, 2023 R591
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limits predators of these species84,244. Exceptions to this rule

include obligate associates of large herbivores (e.g., parasites,

dung beetles245–247) along with various idiosyncratic and often

localized facilitative interactions (e.g., species benefitting from

ecosystem engineering by megaherbivores) 248,249. The strength

of negative indirect effects scales negatively with aboveground

net primary production, dampened by the greater regenerative

ability of plants in more productive systems84,238.

Large herbivores respond to predation risk, which often

alters their impacts

Predation risk alters large-herbivore behavior, which can impact

plants and ecosystem functions (behaviorally mediated trophic

cascades) 250, but the strength of these cascades varies and is

sometimes negligible251–255. That large herbivores are respon-

sive to real and perceived predation risk, even after decades of

predator absence256, is indisputable. A more useful emerging

generalization is that the strength and form of herbivore

response — and hence trophic cascades — depends on the

spatiotemporal predictability of risk and the ability of large herbi-

vores to adjust their behavior in ways that mitigate vulnerability

without diminishing impact165,254,257–263. Experimental or

quasi-experimental evidence of trophic cascades involving

large herbivores and carnivores exists from multiple conti-

nents77,264–266, as do studies finding no evidence of trophic cas-

cades despite strong predator-induced changes in herbivore

behavior or density261,267–269. As ever, body size matters: very

large herbivores are less vulnerable to non-human predators

(Figure 1F) and thus less behaviorally sensitive to risk77,165.

Large herbivores increase spatiotemporal

heterogeneity of ecosystems

While large herbivores homogenize some variables over some

(typically small) scales270,271, herbivore space use is spatiotem-

porally nonuniform272,273 and impacts are thus heterogeneously

distributed55,73,274–276. Gradients in geology, distance to

water, tree cover, and other variables structure this varia-

tion153,264,275. Routinized feeding and movement patterns

entrain nutrient cycling and substrate compaction74,277,278. Cen-

tral-place behaviors create lasting nutrient hotspots75,163,225,279.

Carcass decomposition causes local nutrient pulses226,280,281.

Herbivory variegates fire extent and intensity182,198,282 and also

reduces plant species dominance and spatial aggregation47,95.

Together, these spatiotemporally patchy impacts enhance

many facets of heterogeneity at large scales relative to defau-

nated areas73,274,276,279.

Livestock do not functionally substitute for wild large-

herbivore assemblages

A dozen or so domesticated ungulates, mostly ruminants — and

especially cattle, sheep and goats — displace wild large herbi-

vores worldwide. Even multi-species livestock assemblages are

functionallydifferentand lessdiverse thannativeones283,284. Live-

stock differ from their closest wild relatives in behavior, diet, and

microbiome and parasite composition116,285,286. These differ-

ences are products of phylogeny, artificial selection, reduced

ecological constraints (resource provision, protection from en-

emies), and management (herding, corralling) 287. Livestock can

thus attain exceptional densities288, a key predictor of impact54.

Divergent effects of livestock and wild large herbivores

have been documented in studies of plant and invertebrate

communities289–293, primary productivity142, biotic invasions294,
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fire regimes201,284, soil chemistry90, nutrient transport284, and

methane emissions295. Functional discrepancies are greatest

when native large-herbivore assemblages include influential spe-

cies with no domestic analogue (e.g., elephants, hippos, marsu-

pials, tortoises, arboreal primates)284,296–298.

Although livestock are not surrogates for wild large herbivores,

the two can coexist and even harmonize299,300. Livestock can

also provide closer or weaker approximations of native herbivory

regimes. Long-term experiments that have independently

manipulated wild and domesticated large herbivores affirm their

differential impacts291,296,301 but also emphasize that stocking

rate and management practices determine the degree of dif-

ference176,302.

Knowledge gaps and frontiers
The ability to articulate a list of qualitatively reliable global gener-

alizations about the ecological impacts of large herbivores is a

significant advance, even relative to the previous decade. Still,

one could ask why the list is not longer or the generalizations

more quantitatively precise. The intractability of large herbivores

remains problematic, as it was 35 years ago1. But unlike then,

there is no deficit of attention to large herbivores or of data for in-

vestigators to work with; today’s challenges relate more to which

types of data are being collected in which places, and limits on

the depth of inferences that can be squeezed out of them. We

briefly review several major impediments and important unre-

solved questions where they loom large.

Context dependence complicates the study of large herbi-

vores at least as much as it does other areas of ecology303.

But contingency has causes, and ecologists are increasingly

able to evaluate them. In fact, several relationships underlying

context-dependent variation in large-herbivore impacts have

been known for years. At continental283 to global4 scales,

large-herbivore biomass and diversity vary predictably with

moisture (unimodal) and soil fertility (linear), which jointly regulate

net primary production. In turn, productivity predicts the amount

of plant biomass consumed by herbivores across terrestrial bi-

omes19. These relationships, and the residual variance around

them, highlight one major source of contingency in how large

herbivores influence different environments. Although many

grasslands and forests are similarly productive, forest biomass

is far less available to large herbivores owing to its indigestibility

(e.g., wood) and its height; thus, total herbivore consumption is

roughly an order of magnitude higher in grasslands than in for-

ests with equivalent primary productivity19,304. Proportional off-

take is best predicted by plant turnover (ratio of production to

biomass)304, which is low in forests and high in grasslands,

such that a much greater fraction of primary production passes

through herbivore guts in grasslands (e.g., 65% in the Seren-

geti23 vs. 6.7% in tropical forests305). Furthermore, both turnover

and plant–herbivore size ratio (which is also higher in grasslands)

are theoretically predicted to increase the strength of top-down

control306. However, the upshot of this logical chain — that her-

bivore impacts should be stronger in grasslands than in forests

— is only partially supported by the available data. A cross-

biome meta-analysis found stronger effects of herbivores on

plant reproduction, abundance, biomass and diversity in grass-

lands (especially tropical ones), but statistical support for these

differences was equivocal. Similarly, while many studies have



ll
Review
shown that climate, soil properties, landscape history and other

factors mediate various large-herbivore impacts at local to

global scales153,194–196,238,307,308, there is no unified framework

for interpreting this variation. Unpacking environmental contin-

gency is essential for forecasting responses to global change,

but it will require experimentation in addition to macroecological

and metabolic reasoning.

The difficulty of bridging scales of space, time, and biological

organization is another challenge that is common to ecology

but manifests in ways that are specific to large herbivores. Ex-

closure studies are indispensable for causal inference but are

limited in size and duration (e.g., median of 48 m2 in one

meta-analysis47, 400 m2 and 6 years in another49), making

them prone to mischaracterize processes that occur over larger

scales309–312. Use of exclosures for inferences about the ef-

fects of defaunation is problematic given both their scale and

the fact that, especially in forests, fences exclude terrestrial fo-

livores but not arboreal frugivores95,313. Conversely, observa-

tional, macroecological, and paleontological studies can reveal

large-scale patterns but not their causes. We thus have rich but

limited data at meters-to-hectare scales over 0–20 years, and

at continental-to-global scales over >10,000 years; intermedi-

ate scales are less understood but are crucial for linking pro-

cess to pattern303, as are the micro-scale molecular and

biochemical mechanisms that ultimately underpin plant–

herbivore interactions.

These rich datasets are also skewed both geographically

and taxonomically. Research on large herbivores is concen-

trated in grassy ecosystems of a few countries in a few re-

gions47,48, most of which have low large-herbivore diversity

(Figure 4). In Africa, large-herbivore assemblages are diverse,

but most studies occur in southern and eastern savannas

with moderate rainfall53,54,314. Taxonomic bias towards ungu-

lates (mainly ruminants) limits the ability to understand how

large-herbivore impacts are regulated by body size vs. traits

that are shared by ruminants but absent in other large herbi-

vores — giant rodents315,316, macropods105, bears317, tor-

toises318, and birds319. These biases obstruct efforts to explain

contingencies and bridge scales, and they foster the

misleading perception that what occurs in intensively studied

systems is ‘normal’, when in fact those systems may not be

especially representative at higher levels (e.g., grazers in South

Africa may mainly browse in Namibia or Mozambique)123,150.

Geographic and taxonomic bias may also constrain scientific

curiosity by imprinting junior researchers with preformed views

on what research questions are interesting enough to pursue in

the context of a given location or taxon. With that last risk in

mind, we outline a set of still-unanswered questions that we

find particularly interesting.

What structures large-herbivore assemblages?

Abundant indirect evidence indicates that large herbivores

compete for food41,123,320–324, but direct evidence of competi-

tion is hard to obtain325,326 (but see 327). Facilitation among

grazers is also widely hypothesized but equally hard to

test41,299,328. Measuring the net effects of species interactions

on population dynamics is even harder. Which traits confer

competitive advantage under which conditions? If small-bodied

species are competitively superior41, then why do large ones

dominate communities (Figure 2) and global mammal
biomass66? How much niche differentiation along which axes

is sufficient for stable coexistence67,123? Understanding and

forecasting the impacts of large herbivores requires understand-

ing what regulates their relative abundance and functional di-

versity.

The role of traits beyond size and diet type in shaping large-

herbivore assemblages and impacts is unclear. Even for those

traits, key gaps remain. Body size affects, and is thus difficult

to isolate from, local biomass and diet composition (Figure 2). Di-

ets have been characterized coarsely, often categorically, in

ways that predict correspondingly coarse-grained responses54

but eclipse nuance that is surely important for predicting other

impacts. Traits such as water requirements, thermoregulatory

strategy, and social behavior, which are ecologically central in

the context of anthropogenic global change, have received

comparatively little attention329.

How do large herbivores affect carbon, water, and

nutrient cycles?

There is great interest and great uncertainty about the role of

large herbivores in carbon cycling and climate regula-

tion3,44,49,330–337. Despite hope that large herbivores can be

part of nature-based solutions for enhancing carbon uptake

and storage338–340, their effects on net ecosystem exchange

can be positive, negative, or neutral49,341–343. Case studies

neatly illustrate this point: increased wildebeest abundance

flipped one savanna from a source to a sink of woody biomass

carbon214, whereas increased elephant abundance flipped

another savanna in the opposite direction344. Accounting is

difficult because large herbivores affect net carbon fluxes

through many pathways that can offset each other: biomass

removal; shifts in productivity and plant allocation to roots

vs. shoots; and alteration of vegetation type, fire regime, al-

bedo, litter inputs, soil C fractions, microbial biomass and

respiration, substrate compaction, subsurface temperatures,

and methane production214,295,319,344–350. Modern remote

sensing facilitates large-scale measurement of large-herbivore

effects on aboveground carbon276, but large herbivores also

affect belowground stocks in variable ways. The latter are

harder to quantify at scale but crucial to understand, because

they comprise the majority of carbon stored in many systems

where large herbivores are dominant consumers, such as

grasslands90,91,351–353.

Although water regulates the distribution and abundance of

large herbivores and vice versa, hydrology remains poorly incor-

porated in the study of large herbivores273,354–357. A standard-

ized global survey found strong but intricately context-depen-

dent effects of grazing intensity on soil water-holding capacity

and porosity55. Transport of terrestrial carbon into aquatic sys-

tems by large herbivores and subsequent decomposition under

anaerobic conditions can elevate CO2 and methane emissions

from surface waters, thereby altering ecosystem carbon bal-

ance358. Changing precipitation and surface-water regimes,

along with artificial water supply by managers, may transform

large-herbivore assemblages, because species vary widely in

their water requirements273,354,359. These uncertainties under-

score the need for further integration of earth science and

large-herbivore ecology3.

The role of large herbivores in nutrient cycling has received

relatively more attention but remains clouded by uncertainty.
Current Biology 33, R584–R610, June 5, 2023 R593
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Notably, while it is clear large herbivores are long-distance vec-

tors of organic and inorganic nutrients, and the composition and

distribution of those inputs are quantified in a growing number of

studies, evidence on the net impacts of that transport is weak.

Which ecosystem functions are impaired, by how much, when

lateral nutrient flow is truncated by defaunation42? Do long-

ranging large herbivores stabilize communities by coupling

distinct energy channels, as theoretically predicted360? How

does body size regulate the role of large herbivores in nutrient

cycling361? Body size affects ratios of nitrogen, phosphorus,

and minerals to an extent that can alter plant productivity and

community composition, but the exact form and determinants

of this relationship are unclear230,231,362,363. Research in this

area has focusedmainly on nitrogen and feces, and less on other

elements, urine, and carcasses364.

Similarly, the impacts of seed dispersal by large herbivores

are heavily studied, long debated, and extremely difficult to

measure365,366. Simulation models suggest that dispersal of

large-seeded, dense-wooded trees by large herbivores en-

hances carbon storage341,342,367–369, but these models rely on

strong, unverified assumptions about how strictly trees depend

on animal dispersal. Notably, putatively megafauna-dependent

plants in Neotropical forests have persisted for millennia

without the megaherbivores extinguished during the Pleisto-

cene, in part by developing novel adaptations and mutual-

isms370–372. Experiments often detect little effect of large herbi-

vores on forests373–376. Observational studies of intact and

defaunated forests more reliably detect effects but struggle

with causal attribution313. Seed dispersal is largely ignored

in grassy biomes377,378, yet savanna herbivore dung

germinates many seedlings, and savanna grasses have traits

suggestive of alternative megafaunal and abiotic dispersal

syndromes379,380.

Does herbivore-associatedmicrobiota affect ecosystem

processes?

The study of how microbes mediate herbivore–environment in-

teractions is nascent. Herbivore microbiomes are seeded and

shaped by the environment; in turn, large herbivores can alter

environmental microbiomes via direct (egestion of microbes)

and indirect (habitat modification) pathways381,382. Egestion of

gut microbes has lately been recognized as relevant to

ecosystem functioning and may be influential in dense herbivore

assemblages. Gut microbiomes differ from ambient ones given

the differences between guts and external environments, but

when those differences are relaxed (e.g., in water), some mi-

crobes can function outside the host and affect biogeochem-

istry. Hippos can push freshwater systems to anoxia by import-

ing terrestrial matter in feces, turning pools into extensions of the

gut where some bacteria continue biodegradation and produc-

tion of CH4, N2O, and H2S
358,383. Dead herbivores also export

microbes to the environment, including some of those that

decompose carcasses384–386. Different herbivores host distinct

microbiomes, which covary with phylogeny and diet, suggesting

non-redundancy of species’ effects on microbially mediated

functions285. The ‘metamicrobiome’382,383 is a frontier that may

be key to understanding herbivore impacts, just as gut micro-

biomes are key to understanding herbivore physiology387,388.

But fully incorporating microbial dynamics exacerbates the

already-daunting hurdles of complexity and scale and requires
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attention tomolecular mechanisms that lie beyond the traditional

remit of ecology.

Do large herbivores affect ecosystem distribution at

large scales?

Herbivore exclusion increases tree cover, and late-Pleistocene

extinctions preceded shifts in fire regimes and plant commu-

nities, both of which suggest that large herbivores help to main-

tain the distribution of ecosystems and ecotones within abiotic

constraints213,389,390. The extent to which large herbivores

trigger shifts in ecosystem distribution and alternative stable

states (e.g., forest to grassland, steppe to tundra) is un-

clear391–394. In the Serengeti, elephants maintained grasslands

but could not cause woodland to grassland transition without

fire213, while rising wildebeest abundance reduced fire and

increased tree density but did not cause forestation214. Tram-

pling of vegetation by forest elephants at forest–savanna bound-

aries created natural fire breaks that stabilized the ecotone395.

While large herbivores alone therefore seemmore likely to stabi-

lize than transform ecosystems, interactions between large her-

bivores and fire or climate—which can be decoupled by human

activity — are potent and difficult to predict.

Evolutionary and eco-evolutionary dynamics

Amazingly few studies have quantified selection or evolutionary

response in large herbivore–plant interactions396–399, in sharp

contrast to the study of insect–plant interactions400. Current

knowledge is based on inference from modern ecological inter-

actions, comparative floristic analysis, and sparse macroevolu-

tionary data. For example, spines deter browsers401, plants pro-

tected frombrowsers have shorter spines82,192, plants on islands

without large herbivores have fewer spines402, and phylogenies

show that spines evolved repeatedly in concert with the diversi-

fication of bovids186. Spinescence undoubtedly evolves in

response to selection by large herbivores. Yet, definitive evi-

dence is hard to pin down. Plant response to herbivory depends

on tolerance mechanisms and plant–plant interactions in addi-

tion to resistance mechanisms such as spines, meaning deter-

ring browsers does not necessarily increase fitness. Spines are

phenotypically plastic82, meaning that observed associations

between herbivory regime and spine phenotype do not neces-

sarily indicate heritable variation. Persistence of ‘Pleistocene

anachronisms’, such as spiny Neotropical trees in forests with

few or no browsers11, highlights that modern associations are

unreliable indicators of past or future evolutionary processes403.

And while the co-diversification of spiny plants and bovids in Af-

rica186 is compelling, it is not immediately obvious why Miocene

bovids would select more strongly for spines than Oligocene

browsers404. The point is that even this exceptionally convincing

evolutionary inference is potentially fallible; other evolutionary

hypotheses have far less support.

The approaches of modern microevolutionary biology can be

applied to large herbivore–plant interactions: common-garden

experiments to establish heritability405, quantitative measure-

ments of selection, and elucidation of genes and gene-expres-

sion patterns underlying traits under selection by large herbi-

vores. Development of large herbivore–plant model systems

with advanced genomic resources would deepen the under-

standing of modern interactions and eco-evolutionary feed-

backs, along with the ability to forecast rapidly evolving dy-

namics in the Anthropocene371,406–408.
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How do predators regulate large-herbivore impacts?

Different predation regimes are often associated with different

vegetation, but it is hard to establish that this is the result of a

trophic cascade — and, if so, whether the cascade is mediated

by herbivore behavior, density, or both252,255. Most research

in this area rests on correlative data, but manipulative experi-

ments provide the strongest evidence both for77,264–266 and

against252,268,269 trophic cascades. The gold standard409 re-

quires showing that predation or risk affects herbivores, that

herbivores affect plants, and that predators indirectly affect

plants. Yet, few studies independently manipulate predation

and herbivory264,266. To this end, cheap devices for experimen-

tally simulating risk260,263,410 can be combined with exclosures,

and data on animal movement and diet can help to constrain

other uncertainties266.

How well does herbivore diet predict impacts?

The cumulative biomass of grazers and browsers predicts the

strength of their effects on grasses and trees54 — but herbi-

vore diets also differ at finer grains123,411,412. What explains

those subtler distinctions, and to what extent do they predict

impacts of large herbivores on plant biodiversity? Variation in

herbivore diets is correlated with both herbivore and plant

traits112,114, but more work is needed to understand how those

associations emerge. In particular, effects of chemical de-

fenses on large-herbivore diets are little known but surely

important127,413,414. Phenolic compounds are known to influ-

ence large herbivores’ food choices and nutrition415–418, but

a vast array of other metabolites remains unstudied. Advances

in metabolomics419 and genomics400 can unblock research on

how plant toxins mediate diet and how gut microbiomes

mediate toxicity387.

Will a deeper understanding of diet in turn facilitate predictions

about herbivore impacts on plants? Herbivore preference alone

predicts a limited amount of variance in plant response to large-

herbivore exclusion (Figure 5D). Differences in plant tolerance

and effects of large herbivores on plant–plant interactions

contribute to this unexplained variance190,192. Preliminary data

from one system show that herbivore food preference and plant

traits related to tolerance or competitive ability can together pre-

dict plant species’ responses to herbivore exclusion better than

models based on herbivore consumption alone (Figure 5D).

Because body size and diet type generally differentiate herbi-

vore species’ ecological impacts, and because sympatric spe-

cies universally differ in size and diet (Figures 2 and 5), species

are not functionally redundant in a strict sense. Yet, redundancy

is theorized to bewidespread and important in governing robust-

ness to species loss420, and it is a matter of degree. While no two

large herbivores are ecologically equivalent, the realized extent

of functional redundancy (or its inverse, complementarity) is un-

certain. Small large herbivores cannot compensate for big ones,

nor can grazers replace browsers. But can plains zebra (300 kg)

compensate for the extinction of endangered Grevy’s zebra

(400 kg)— sympatric species that both eat >95%grass but differ

in dietary species composition, water dependence, and space

use116,421? Any difference in net impact might be undetectable

and practically irrelevant. Similarly, niche complementarity is

thought to explain positive biodiversity–ecosystem function rela-

tionships. How do the impacts of large-herbivore assemblages

depend on their species richness?
These questions are relevant both to forecasting conse-

quences of extinction and to understanding the extent to which

species can serve as proxies for one another. This concept of

surrogacy is invoked not just in relation to the substitutability of

wildlife and livestock, but also increasingly in the context of re-

wilding scenarios that propose to reproduce prehistoric herbivo-

ry regimes using extant species in lieu of extinct ones30,38,422.

Studies that have tried to address the last question by recon-

structing multidimensional functional-trait spaces suggest that

introduced ungulates recover a substantial fraction of Pleisto-

cene ecosystem functions38, but it is unclear how closely trait

spaces map onto realized impacts.

Synthesis
‘‘The key to prediction and understanding lies in the elucidation of

mechanisms underlying observed patterns.’’ – Simon Levin423

Recent work on the ecological impacts of large herbivores has

built on longstanding conceptual foundations to solidify and

refine a set of robust generalities while simultaneously advancing

on multiple new fronts. The catalyst for these advances has not

been the birth of new paradigms or formal theory, but rather

enhanced power to discern empirical patterns and the scales

at which they hold. The increasing scale and resolution of remote

sensing424, use of camera traps425, innovation and miniaturiza-

tion of telemetry devices426, fusion of field and laboratory

methods285 and development of big data repositories have all

synergized with time-tested observational and experimental

methods to enable progress (Figure 3). Despite this progress,

the challenges of complexity, scale and contingency prevent an-

swers to many classic questions303,423. The scope of unsolved

problems reveals a mismatch between the state of knowledge

and ecologists’ aspiration to predict and mitigate global

change29,32,40,427,428. We identify two problems that underlie

many of the specific uncertainties reviewed in the preceding

section.

Weak inference about process

Mechanistic insight is not required for generalization, but it is for

understanding and predictive power423. Ecological phenomena

have layers of mechanisms at different levels of organization.

Observational and macro-data are invaluable but cannot estab-

lish cause–effect relationships. Exclosures and other experi-

ments can link cause to effect, but most are mechanistic only

to the first order: they reveal the cause of an outcome, but not

the processes that produced it, nor how and why the outcome

depends on environmental conditions and experimental scale.

Piercing deeper layers of mechanism — e.g., whether direct ef-

fects resulted from consumption or trampling, which indirect

pathways also contributed — requires additional experiments

and data.

One view is that mechanistic generalization is hopeless in the

face of contingency, and that ecologists should focus on large-

scale patterns and ignore ‘‘messy details’’303. Another view is

that multi-method research across scales is synergistically clar-

ifying429. Some work reviewed here affirms the latter take. For

example, early intuition that large herbivores might enhance

grassland plant diversity at high (but not low) primary productiv-

ity by alleviating competition for light430 was conceptually

formalized and bolstered by site-specific work16,193. Syntheses

of exclosure data over ever-larger scales later confirmed the
Current Biology 33, R584–R610, June 5, 2023 R595
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generality of that context-dependent effect and implicated light

competition as the cause107,194,431. Targeted experiments even-

tually confirmed that mechanism195. In this case, the dynamic

interplay of natural history, theory, and empiricism at multiple

scales resolved ‘messy’ contingency into mechanistic rules.

Weak understanding of species-specific impacts

One type of mechanistic uncertainty particularly thwarts under-

standing and prediction of Anthropocene dynamics.Most exper-

imental and macro-scale research measures effects of large-

herbivore assemblages or guilds— often quantifying differences

between an intact fauna and no large fauna at all. In contrast, de-

faunation and restoration are typically piecemeal, with popula-

tions declining at uneven rates or being reintroduced one at a

time. Prevailing study designs are incongruent with those sce-

narios. It is usually impossible to manipulate just one large-her-

bivore species, or to exclude small species without excluding

large ones; selective exclosures remove nested subsets of spe-

cies. Also, exclosures are designed to remove all individuals, not

to simulate population decline.

Inability to isolate the effects of individual species prevents a

process-based accounting of net assemblage-level impacts,

which emerge from species-specific effects that differ in magni-

tude or even direction. It also limits ecologists’ ability to answer

practical questions that arise in real-worldmanagement settings.

Conservation and restoration emphasize the survival of iconic

species but increasingly aim to incorporate ecological pro-

cesses. How are those two goals linked? How well or poorly

does species conservation align with total biodiversity, carbon

sequestration, and other ecosystem services? When should a

species be considered functionally extinct371,432 or overabun-

dant389? Does the order of species reintroductions matter in

restoration, for example by impeding or aiding reestablishment

of other species? Can managers harness large-herbivore func-

tional ecology to predict and mitigate human–wildlife con-

flict433,434?

Outlook
Ecology is not unique among sciences in confronting

complexity, contingency, problems of scale, emergent proper-

ties, and an urgency to translate basic research into applications.

For some reason, physics is the standard measuring stick for

ecology’s insecurities303,435,436. Comparison to other branches

of biology seems more apt, but there is a cultural difference be-

tween fields—namely that ecology has been far less patient with

bottom-up (‘reductionist’) empirical progress than molecular,

cell, or developmental biology. Whatever its limitations, reduc-

tionism has propelled the greatest advances in biology over

the last century. With technology releasing ecologists from old

empirical constraints, it is getting easier to envision bridging

scales via a renewed commitment to process-based inquiry.

We offer some suggestions.

Developing and sustaining model systems

Model systems (e.g., yeast, Drosophila, Arabidopsis) are

amenable to research, which attracts investigators, which further

unlocks the system and often yields generalizable discoveries.

Research on the effects of large herbivores has model systems:

deer, Yellowstone, Serengeti, Kruger, a few multi-decadal ex-

periments (Figure 4). Continued investment in these systems

will pay dividends and need not undermine the goal of reducing
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geographic and taxonomic bias in research effort: insights from

existing model systems facilitate the establishment of new ones.

Relying less on categories

To categorize is human. However, as discussed above in relation

to defining ‘large herbivores’ and feeding guilds, discretizing

continuous variables for analysis discards and obscures infor-

mation, sometimes to the point of misrepresentation. Ecologists

can embrace the heuristic value of categories for conceptualiza-

tion and efficient communication while also estimating and

analyzing real quantities (body mass, proportional grass con-

sumption) whenever possible.

Relentlessly pursuing mechanisms

Process-based understanding requires multiple strategies: con-

ducting follow-up experiments and experiments-within-experi-

ments to isolate candidate mechanisms and distinguish direct

vs. indirect effects, collecting data on organismal and environ-

mental covariates and building rigorously parameterized

models. This entails a shift in focus away from testing null hy-

potheses of ‘no effect’ towards explaining how effects emerge.

Similarly, attacking contingency entails a shift from showing

that effects vary (they do!) towards explicitly testing factors

that regulate effect size and direction. Climate change is altering

many sources of contingency, which creates opportunities to

evaluate those factors and also helps justify the effort required

to do so.

Devising next-generation field experiments

Beyond maintaining existing long-term exclosures, which

continue to yield new insights after decades, the conventional

model can be expanded with innovations to address the limita-

tions discussed above. Concerns about replication lead re-

searchers to build many little, individually fenced plots, but one

mega-exclosure (e.g., Kruger’s >250-ha Hlangwine and Nwas-

witshumbe sites141) could address questions of scalability

without sacrificing rigor. Intermittently opening and closing fen-

ces, or building them as herbivore deterrents rather than re-

movals, could test effects of density reduction. Enclosing one

or two individual large herbivores in hectare-scale enclosures

could test species-specific effects at realistic total biomass

densities, similar to the controlled cattle grazing in a Kenyan

experiment176. Planned obsolescence — systematic removal

of replicated exclosures at intervals — could be used to test hy-

potheses about resilience and alternative stable states104,106.

Gathering contextual data in experimental studies

Basic data such as herbivore densities are needed to interpret ex-

closure results but are often not collected47,54. Combiningmanip-

ulation with modern monitoring techniques can be especially

potent. These include measurement of plant traits and soil chem-

istry437, hyperspectral imaging and LiDAR276, subsurface imag-

ing351, GPS telemetry438, DNA metabarcoding266, metabolomics

and transcriptomics439, flux towers, and machine-learning algo-

rithms to mine these and a growing array of other data that can

be continuously logged in the field (Figures 3 and 5). Long-term

monitoring of individual plants across ontogeny using this slate

of tools would be informative.

Capitalizing on fortuitous large-scale events

Environmental interventions are often revelatory440. Conserva-

tion translocations of large herbivores are increasingly

frequent29,428,441 and represent species-specific experiments

at otherwise impossible scales, as do population crashes and
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culls327. Wildlife ranching is a business442 that enables planned

experiments with non-domestic large-herbivore species that

would be unthinkable in protected areas. The scientific interest

in these opportunities may often align with the interests of other

stakeholders (e.g., shared interest in why translocations suc-

ceed or fail441).

Bottom-up mechanistic modeling

While the aforementioned set of approaches will deepen basic

understanding and crystallize new insights, they are not a

recipe for predictive power. Yet, they might be essential ingre-

dients. We do not foresee extremely accurate and precise

forecasts of the impacts of perturbations to large-herbivore

communities. But we can envision a common quantitative

framework based on species’ traits and interactions that pro-

vides actionable guidance to those attempting to manage

and conserve large herbivores and their habitats in the Anthro-

pocene51,283,443,444.
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310. Pugliese, A., and Rosá, R. (2008). Effect of host populations on the inten-
sity of ticks and the prevalence of tick-borne pathogens: how to interpret
the results of deer exclosure experiments. Parasitology 135, 1531–1544.
https://doi.org/10.1017/s003118200800036x.

311. Dobson, A.D.M. (2014). History and complexity in tick-host dynamics:
discrepancies between ‘real’ and ‘visible’ tick populations.
Parasites Vectors 7, 231. https://doi.org/10.1186/1756-3305-7-231.

312. Buck, J.C., and Perkins, S.E. (2018). Study scale determines whether
wildlife loss protects against or promotes tick-borne disease. Proc.
Biol. Sci. 285, 20180218. https://doi.org/10.1098/rspb.2018.0218.

313. Gardner, C.J., Bicknell, J.E., Baldwin-Cantello, W., Struebig, M.J., and
Davies, Z.G. (2019). Quantifying the impacts of defaunation on natural
forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590.
https://doi.org/10.1038/s41467-019-12539-1.

314. Daskin, J.H., and Pringle, R.M. (2022). Ecological effects of warfare on
wildlife. In Animals in the International Law of Armed Conflict, A. Peters,
J. de Hemptinne, and R. Kolb, eds. (Cambridge: Cambridge University
Press), pp. 41–53. https://doi.org/10.1017/9781009057301.004.

315. Yeaton, R.I. (1988). Porcupines, fires and the dynamics of the tree layer of
the Burkea africana savanna. J. Ecol. 76, 1017–1029. https://doi.org/10.
2307/2260630.

316. Wright, J.P., Jones, C.G., and Flecker, A.S. (2002). An ecosystem engi-
neer, the beaver, increases species richness at the landscape scale. Oe-
cologia 132, 96–101. https://doi.org/10.1007/s00442-002-0929-1.

317. Hull, V., Shortridge, A., Liu, B., Bearer, S., Zhou, X., Huang, J., Zhou, S.,
Zhang, H., Ouyang, Z., and Liu, J. (2011). The impact of giant panda
foraging on bamboo dynamics in an isolated environment. Plant Ecol.
212, 43–54. https://doi.org/10.1007/s11258-010-9800-3.

318. Froyd, C.A., Coffey, E.E.D., Knaap,W.O., Leeuwen, J.F.N., Tye, A., Willis,
K.J., and Sax, D. (2014). The ecological consequences of megafaunal
loss: giant tortoises and wetland biodiversity. Ecol. Lett. 17, 144–154.
https://doi.org/10.1111/ele.12203.

319. Bon, M.P., Hansen, B.B., Loonen, M.J.J.E., Petraglia, A., Bråthen, K.A.,
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