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ABSTRACT: Toxicological information as needed for risk assessments
of chemical compounds is often sparse. Unfortunately, gathering new
toxicological information experimentally often involves animal testing.
Simulated alternatives, e.g., quantitative structure−activity relationship
(QSAR) models, are preferred to infer the toxicity of new compounds.
Aquatic toxicity data collections consist of many related tasks�each
predicting the toxicity of new compounds on a given species. Since many
of these tasks are inherently low-resource, i.e., involve few associated
compounds, this is challenging. Meta-learning is a subfield of artificial
intelligence that can lead to more accurate models by enabling the
utilization of information across tasks. In our work, we benchmark
various state-of-the-art meta-learning techniques for building QSAR
models, focusing on knowledge sharing between species. Specifically, we
employ and compare transformational machine learning, model-agnostic meta-learning, fine-tuning, and multi-task models. Our
experiments show that established knowledge-sharing techniques outperform single-task approaches. We recommend the use of
multi-task random forest models for aquatic toxicity modeling, which matched or exceeded the performance of other approaches and
robustly produced good results in the low-resource settings we studied. This model functions on a species level, predicting toxicity
for multiple species across various phyla, with flexible exposure duration and on a large chemical applicability domain.
KEYWORDS: QSAR, ecotoxicology, aquatic ecosystem, meta-learning, multi-task learning, learning curves

■ INTRODUCTION
With the advent of machine learning, the field of Chem-
informatics has flourished by using data science techniques on
physical−chemical problems. One such problem is themodeling
of the bioactivity related to molecular compounds. Known as
quantitative structure−activity relationship (QSAR) modeling,
the field aims to reduce the need for in vivo�in organism�and
in vitro�in test tube�experiments via cost-effective in silico
simulated approaches. The research in this field has been
motivated for decades by the aim of reducing experiments that
are expensive in terms of life, cost, and time (see, e.g., Cherkasov
et al.1).
QSAR models relate chemical structures to their biological

activity in a given target domain, from full organisms to specific
proteins and even to specific genes. The biological activities that
QSAR models aim to predict, are manifold and domain-specific.
Toxicity can be measured by the impact a compound has on for
instance the mortality, reproduction, mobility, or growth of
certain species. Our work specifically addresses the toxicity
causing mortality in aquatic species. The prediction of aquatic
toxicity as a biological activity has its prevalent use in risk
assessment for environmental protection. With the increasing
amount of industrial chemicals being used and developed, the

European Union Regulation for the Registration, Evaluation,
Authorisation and Restriction of Chemical Substances
(REACH) requires an investigation into the aquatic toxicity of
a chemical released into the environment, for instance through
QSARmodels.2 Due to this regulation, there is a strong need for
better-performing aquatic toxicity QSAR models that predict
the toxicity of chemicals on various aquatic species such as water
flees (so-called Daphnia), algae, and fish.
One of the simplest aquatic toxicity models is ECOSAR,

proposed by the United States Environmental Protection
Agency (USEPA)�a regulatory model that uses a linear
relationship between chemicals and their toxicity based on the
octanol−water coefficient of the chemical. Based on building
different linear regressions on groups of chemicals, ECOSAR is a
nonspecies-specific tool for aquatic toxicity. Unfortunately, large
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safety factors need to be added to the predictions for their use in
risk assessment.3 With the rise of machine learning, aquatic
toxicity models, like other branches of QSAR modeling, have
started using machine learning models built for singular tasks,
such as USEPA’s Toxicity Estimation Software Tool (T.E.S.T.)
developed for three species representing fish, daphnia, and
algae,4 and the more enhanced Vega5 toolboxes. For an
extensive comparison, we refer the reader to the following
overview paper by Zhou et al.6

Various extensions to regulatory QSAR models have been
proposed. Wu and Wei7 applied multi-task learning to a toxicity
context by using four toxicity tasks. Alternatively, Lunghini et
al.8 proposed to build a model for toxicity prediction of fish,
daphnids, and algae, respectively, associating all assays only with
the high-level category, such that the species of an assay cannot
be determined anymore. Their model was shown to outperform
ECOSAR, T.E.S.T., and Vega on a previously unseen industrial
set of toxicity data. In contrast to these high-level models, Singh
et al.3 propose a model that is trained on a single given species
but can extrapolate to a different species in different classes.
Recent research has also evaluated the use of graphical features
for compounds.9,10

Further, Gajewicz-Skretna et al.11 reported in a study for
classifying aquatic toxicity that models built on a local chemical
compound space performed better than ones for large chemical
spaces, although they agree with the added value of largemodels.
As such, Sheffield and Judson12 built an ensemble learner on a
species level, that also aims of building a generally applicable
model by restricting their input data as little as possible. Their
original work, however, only predicts the toxicity of fish, whereas
we expand their approach in our work by predicting across
different fish, daphnia, and algae. Recognizing the importance of
modeling aquatic toxicity across chemicals and species, other
work has looked into modeling across species.13−18 The
challenge of building generally applicable models across species
lies in the extreme sparsity of tests between chemicals and
species. This suggests that knowledge-sharing techniques may
be useful.
To enable knowledge sharing across data sets, the scientific

community has developed methods commonly referred to as
meta-learning.19 Whereas traditional machine learning models
typically require an abundance of labeled data, meta-learning
attempts to address this issue by asking how to learn to learn
tasks? For this, meta-learning borrows intuition from how
humans learn and solve problems. Instead of learning each task
independently and anew, humans approach each challenge with
prior knowledge.19,20 With the success of transfer learning
techniques in natural language processing or image analysis, its
potential use in QSAR modeling has been recognized.21,22 We
believe the use of these techniques could be beneficial in utilizing
and predicting the many low-resource tasks inherent to aquatic
toxicity. Therefore, we investigate several state-of-the-art
knowledge-sharing approaches to QSAR modeling and apply
these methods to a species-level aquatic toxicity model for
multiple species across different phyla with flexible exposure
duration. Specifically, we employ multi-task models, fine-tuning,
model-agnostic meta-learning, and transformational machine-
learning models. Additionally, for purposes of comparison, we
consider several baseline methods.
The first approach is multi-task learning, where multiple tasks

are learnt jointly using a single predictive model, enabling that
model to utilize knowledge across tasks. Erhan et al.23 first used a
multi-task neural network in their work on collaborative filtering.

Dahl et al.24 utilized multi-task learning to predict both
biochemical (in test tubes) and cell type (in cell cultures)
assays. Ramsundar et al.25 predicted binary biological activity
using “massively” multi-task neural networks built on over 200
tasks with over 40 million experimental values and varying end
points. Sadawi et al.26 used multi-task learning via random forest
models previously shown to be effective in single-task cases27 on
a subset of the ChEMBL data set collection.28 Following this
literature, we utilize a multi-task random forest, a neural network
(two architectures), as well as a stacked ensemble.
We further use fine-tuning models, which, in order to learn an

internal representation across tasks, use all tasks to train a model.
Then, finally, the model is fine-tuned on a specific test task. By
considering all single tasks, model-agnostic meta-learning
captures the knowledge across tasks by learning a good initial
model representation. This is done in such a way that a model
can be efficiently optimized for each task. Nguyen et al.10 applied
both approaches with graph neural networks to a subset of the
ChEMBL data set collection.28 Additionally, model-agnostic
meta-learning (MAML) is a technique where good initialization
weights for a neural network are learned based on which weights
can be easily optimized on related tasks.29 We use both fine-
tuning as well as MAML in our benchmark.
More recently, Olier et al.30 proposed a transformational

machine learning approach, which takes inspiration from multi-
task learning, transfer learning and ensemble learning. The
approach aims to learn multi-task-specific compound represen-
tations. This representation shares knowledge between all tasks,
by encapsulating the general consensus on biological activity.
We utilize two proposed versions of this method in our study.
In this article, we aim to model the toxicity of many aquatic

species individually in a generally applicablemodel, whichmakes
no restrictive assumptions on its chemical input. Considering
recent research on meta-learning in QSAR modeling, 10 models
(consisting of state-of-the-art methods from the previous
categories and baseline methods) representing recent develop-
ments are adapted and applied for aquatic toxicity prediction.
Via a data set collection gathered from ECOTOX, consisting of
24 816 assays, 351 separate species, and 2674 chemicals, we
carry out a general comparison of the QSAR models with
internal and external validation. We also simulate low-resource
situations by artificially down-sampling the data sets to few
assays per species or few species to share knowledge between.
We compare single-species models and multi-species models
and assess the benefit of using meta-learning techniques. Finally,
we provide useful knowledge to future QSAR developers by
investigating the impact of low-resourced situations on the
modeling techniques, and we recommend QSAR models to use
for aquatic toxicity. All our results are made publicly available via
a Git repository.31

■ PROBLEM STATEMENT
This section elaborates on the problem of predicting aquatic
toxicity tackled in our work and addresses the domain-specific
OECD test guidelines that are used to generate the toxicity data
used in ecotoxicological risk assessment, and that therefore
guide the QSAR model development.

Aquatic Toxicity Problem. With the aim of reducing
animal testing, in silico tools should be able to predict the toxicity
of a compound after a specific exposure duration and for the
species that it is tested on. Representing the aquatic ecosystem,
regulatory tools may as a minimum provide toxicity levels for
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three representative groups: “acute fish toxicity”, “acute daphnid
toxicity”, and “alga toxicity”.3,32

We aim to build generally applicable QSAR models that
predict the toxicity of chemicals across phyla on a species level
using training data of all species. Any meta-learning approach
should therefore determine which data from related species
should be used in modeling the toxicity of compounds on a
target species. Our QSAR models are aimed at having a large
applicability domain for compounds; they should be able to
produce reasonably accurate predictions across a large variety of
chemicals. Many QSAR problems are simplified into binary
classification tasks, predicting whether a specific compound is
toxic or not via manually chosen thresholds. In contrast, our
work builds regression models, which directly predict the real-
valued concentration of a chemical at which 50% of a given
species dies�the LC50 (Lethal Concentration 50)
Furthermore, we predict toxicities across variable exposure

durations. Our model thus predicts acute and chronic toxicities
for species across phyla, leveraging more data across different
exposure duration while training the models. Moreover, a model
with adaptable exposure duration on the species level could in
theory also be used for modeling species sensitivity distributions,
which relate the concentration of a compound to the percentage
of aquatic species (in a given ecosystem) that will be affected by
that concentration.33

To build our aquatic toxicity models, we make use of the fact
that QSAR tasks have very similar structures. The issue of
aquatic toxicity prediction is split into many (often sparse) tasks:
each task refers to a unique target species for which the effect is
to be measured (see Figure 1). For each species, several toxicity
responses have been measured; these data provide the basis for
our machine-learning approach.
While we aim to learn across tasks, the problem setup is

defined in such a way that the unlabeled test instances
(chemicals) for which we want to predict the LC50 values
have not been observed for any of the other species before. This
poses a more challenging learning problem, where the learning

algorithm has to generalize across structural properties of the
molecule. This problem setup has the practical implication that
we can predict the LC50 values for newly identified chemicals
that have never before been tested on a given target species.
In summary, the proposed models are formally solving the

following problem: given a set of chemicals C = Ctrain ∪ Ctest,
whereCtrain∩Ctest =Ø, a compound c∈Ctrain, a durationd +

and a target species s ∈ S, predict the lethal concentration of a
new compound cnew ∈Ctest for 50% of s∈ S after time duration d.
Each compound is represented by a molecular embedding and
physical-chemical features, whereas for each target species,
taxonomical information on its phylum and class group is
available.

OECD Validation Principles.With the increased relevance
of QSAR models in the REACH legislation, the need for
validated QSAR models of high quality has grown. Addressing
this, the OECD principles32 present requirements that QSAR
models fit for regulatory applications should adhere to. Although
our work does not aim to present a model for regulatory
purposes but rather aims to inform future development, we
address these principles here.
First, to ensure that researchers can assess the potential use of

a validated QSAR model, a well-defined end point should be
specified. In our work, we address end points in the category of
ecological effects, which are included in the end points needed
for regulatory assessment.32 Specifically, we address the LC50
for most species, as well as the EC50 solely for immobilization of
daphnids (as this is generally assumed to be a proxy for death).
These end points are addressed in a ‘general (Q)SAR model(s)
based upon a common toxic effect’32 of aquatic species, where
the toxic effect refers to death.
To define when a QSAR model may validly be employed, any

QSAR model should include a description of the domain of
applicability defined in the chemical structure space. This
domain should be determined systematically to ensure that a
model is not forced to extrapolate into unintended domains and
is ideally defined prior to building a training set. Our work,

Figure 1.Aquatic toxicity QSAR tasks: The setup of the individual aquatic species tasks. The image shows how the tasks can be used for meta-learning:
using the data in the training tasks to utilize additional data for the test task. Meta-learning methods can differ in the way these utilize the training task
data. Different colored beakers refer to different chemicals, whereas Y represents the measured toxicity effect the chemical has on the species.
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however, addresses the issue that QSARmodels are used outside
of their applicability domain for low-resource data sets, for which
there are insufficient resources for building a single-task model.
Hence, we deliberately aim to develop a generally applicable
model on given data sets by including different experimental
durations and all applicable chemicals. Thereby, we accept the
higher uncertainty of the predictions that are possibly out of the
domain of applicability.
It is important to note that the training set of a QSAR model

always induces a domain of applicability.32 Although measuring
the domain of applicability is left as future work, it is interesting
to note that toxicological data sets have natural biases. Under the
REACH program, for instance, chemicals of over 1-ton of
production volume need to be registered with toxicological
information.34 Hence, data sets include biased information on
chemicals that are produced at higher volumes, whereas
chemicals under the threshold avoid testing, although their
acute toxicity may be more concerning.34

Further, validated QSAR models need to be reproducible and
transparent. To address this, we describe all employed
algorithms, data sets, and chemical descriptors and make these
publicly available via a Git repository.31 In our work, black box
models, specifically neural network models, are employed that
are not transparent but are permitted via the OECD guidance
document. While there are clear benefits in having transparent
and explainable models for some tasks, for other tasks, achieving
the highest possible accuracy is more important, which justifies
these black box models.
Finally, the performance of a QSAR model must be measured

and validated soundly, paying special attention to robustness
and predictive capacity. To assess the stability of predictions, we
build partial models via cross-validation.32 The predictive
capacity of our model is seen by its performance when
extrapolating to an external held-out test set. All models are
exclusively evaluated on the real-world challenge of predicting
the toxicity of previously unseen chemicals, i.e., chemicals not
used for training.

■ DATA
This section presents the data set used to develop our QSAR
aquatic toxicity models, of which the preprocessed version is
available in our Git repository.31 The ECOTOXicology
Knowledgebase is a source for locating single chemical toxicity
data for aquatic life, terrestrial plants, and wildlife, which is
maintained by the USEPA.35

Using the ECOTOX data as integrated in the OECD QSAR
toolbox,36 a subselection of the entire database was created for
modeling purposes. The final data set used for modeling
contained 24 816 aquatic toxicity values (LC50) altogether, for
351 different aquatic species and 2 674 chemicals. Species are
described only by their taxonomic position in classes and phyla,
whereas chemicals have more descriptive features. The data is
sparse, as many species have few chemicals tested on them (see
Figure 2).
For our purpose, we have selected all experimental data that

was represented as LC50 in the database, i.e., those
concentrations giving 50% mortality at the end of the
(indicated) test duration.
We kept LC50 read-outs for all test durations. Experiments

performed under the same experimental conditions (same
chemical, same species, same test duration) multiple times are
averaged into one result using the geometric mean, as suggested
by the REACH guidance document.32 Therefore, in the end,

only one LC50 value was generated for any specific combination
of chemical, species and test duration. This was considered
necessary, as otherwise, some chemicals/species/duration
combinations would be overrepresented and thus bias model
training. We do note that, by combining multiple toxicity targets
for the same experiment, the intertest variability is no longer
fully captured and noise is reduced.37 Further, as aquatic toxicity
values have been gathered over decades in various laboratories,
causing variation among experimental values, Lunghini et al.8

reported that the ecotoxicological data set qualities heavily
impact model performance�a concern also found in other
work.38,39

End Point. The toxicity end point�the target variable�to
be predicted by our models is the concentration of a chemical
needed to trigger a certain toxic effect; here, we have selected
50% mortality (LC50, lethal concentration 50%), on one
specific aquatic species and after a specific test duration.
The LC50 values are standardized to mg

L
units where possible

and dropped wherever not. Due to the spread of the LC50
target, we predict the real-valued log10(LC50). End points that
indicate bounds (more than, less than, and in between) are
disregarded. Higher bounds are due to detection limits of the
toxicity experiments when no more of the substance can be
dissolved into the water or when it is not practically useful to test
with higher concentrations. The data with bounded LC50 values
could serve as a very useful validation set for toxicity models.

Preprocessing. Each database entry contains the concen-
tration of a specific toxicity end point (in our case LC50), which
corresponds to a unique combination of species, chemical, and
duration. Each of the 351 species is grouped into taxonomies via
20 classes and 9 phyla. With the large majority of species
belonging to either the Chordata or Arthropoda phylum, this
data set is well-suited for predicting the end points needed for
chemical regulation.32 As the toxicity is to be predicted on a
species level, any subspecies of a species were combined into one
species via their empirical mean.
It was ensured that the chemicals are uniquely identified via

their SMILES (Simplified Molecular-Input Entry-System)

Figure 2. Number of assays and drugs per species. Both axes are on a
log-scale.
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representation. The SMILES were examined to ensure that
chemicals not suited for modeling were removed. In this process,
SMILES referring to inorganic chemicals (metals or metal salts)
and metallo-organic chemicals were excluded. The presence of
metals or metal salts is often responsible for the majority of the
observed toxicity. Other chemicals that could not be represented
by a single SMILES (e.g., mixtures or natural extracts) were also
omitted. To ensure that the SMILES representation is consistent
for all chemicals, Kekule ́ SMILES are used, as produced by the
Open-source QSAR-ready chemical structure standardization
workflow.40 The consistent SMILES representation ensures that
all chemical descriptors and fingerprints are derived in the same
fashion�regardless of how the original SMILES was created
(e.g., the SMILES produced by the OECD QSAR Toolbox).
Although it is common to specify one experiment type (and

one exposure duration) to use for modeling, our work aims to
build a large applicability domain model, enabling the methods
to learn across various duration times. Thus, similar to the work
of Sheffield and Judson,12 all experimental setups are included in
the data set and are defined by their duration. With this, short-
term (acute) and long-term (chronic) toxicity can be modeled
together. As acute and chronic periods vary for each species, the
duration is a real-valued feature. Duration values are converted
into days wherever possible and disregarded wherever a duration
is not specified. In light of building a generally applicable model
with few restrictions, no outlier removal was performed.

Chemical Descriptors. The chemicals are described via
chemical fingerprints and relevant physical−chemical proper-
ties. Fingerprints are embeddings that aim to capture two-
dimensional chemical structures. Our work uses circular
fingerprints called extended connectivity fingerprints (ECFP),
which were specifically designed for QSAR modeling.41 Our
work uses the original 1024-bit binary ECFP4 fingerprints,
which aim to capture precise atom environment substructural
features with a radius of 2.41 The fingerprints are calculated from
their SMILES representation using the open-source RdKit.42

As certain physical−chemical attributes may also yield
important information on a molecule, relevant physical−
chemical attributes were gathered from PaDEL.43 The attributes
gathered were suggested by a domain expert and include
constitutional and hydrophobic attributes. We performed
simple feature selection, as well as added missing value
indicators, in case PaDEL did not have the values for a given
chemical.

Finally, the structural properties included are counts of atom
types, rings, hydrogen bond donors, acceptors, as well as the
molar refractivity, polarizability, ionization energy, and topo-
logical polar surface area of the molecule.
Attributes that are expected to be specifically related to

aquatic toxicity are the logarithm of the octanol−water partition
coefficient, log KOW or log P, the octanol/air partition
coefficient KOA, and the pH-dependent octanol−water distri-
bution coefficient, logD95.5 and logD7.4, in addition to the
vapor pressure and the water solubility of a molecule.

■ METHODOLOGY
In this section, theQSAR solutions we considered are elaborated
further. We put additional care into optimizing the hyper-
parameters of each method, which is detailed in the Supporting
Information.44 The solutions were implemented using Scikit-
learn,45 Pytorch,46 and deepChem.47

Single-TaskModels.The single-task models approach each
data set individually without using any knowledge of other data
sets. As such, they cannot make use of data on other species or
their taxonomies.

Single-Task Mean. The single-task mean model predicts the
mean of training set toxicity values for a given species in training.
This is considered a simple baseline: Any model that utilizes
additional information should be able to outperform this
prediction.

Single-Task Random Forest. Random forest models are
ensemble models that predict the consensus value across
multiple decision trees.48,49 Other toxicology studies have
found them the best-performing single-task model.27 Independ-
ent random forest models are fitted for each species using the
molecular descriptors and the exposure duration as features, as
illustrated in Figure 3a.

Multi-Task Learning Models. The multi-task learning
models learn the separate tasks jointly to share knowledge
between them during training. These models can utilize data
from different species and make use of features capturing
taxonomic information, i.e., species, phyla, and class as
categorical variables.

Multi-Task Mean. The multi-task mean predicts the mean
toxicity value of all species seen in training.

Multi-Task Random Forest. In the multi-task random forest
model, a single random forest is trained on data from all species,
with additional taxonomic informationmaking it possible to give
different predictions for different aquatic species (see Figure

Figure 3. Schematic overview of random forest models. The end point value is represented as ‘Y’; different beakers represent different chemicals.
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3b). The higher-order taxonomy levels may improve themodel’s
performance if similar species respond similarly (Sadawi et al.).
Multi-Task Stacked Ensemble Learner. Sheffield and Judson

proposed the stacked ensemble learner, which creates an
ensemble from different models by learning how to best
combine their predictions. As shown in Figure 4, they used linear
regression to combine three base models: support vector
regression, gradient boosted trees, and a random forest. All base
learners use the molecular descriptors, taxonomic information,
and exposure duration.

Multi-Task Neural Networks. We consider two distinct
neural network architectures.
One Output Node.The neural network is trained on all of the

tasks, but uses only one node in the output layer (see Figure 5a).
In addition to chemical descriptors and exposure duration
features, including the taxonomic information allows for
predicting a different toxicity value for different species. We
refer to this model as neural network with one output node,NN -
1 output.

Multiple Output Nodes. The multitarget neural network,
multitarget NN, predicts the toxicities of all n tasks using n output
nodes (see Figure 5b). This allows the neural network to share
the internal feature extraction and representation part
embedded in the hidden layers of the neural network, whereas
the task-specific dependencies can be captured in the weights
toward the task-specific output nodes.

Transformational Machine Learning. Transformational
machine learning (TML)30 combines aspects of ensemble-,
multi-task-, and transfer learning. It can be split into two parts:

1. Create a shared representation of the compound: A
single-task random forest is fitted for each target species.
Once all single-task models have been built, they predict
the toxicity of a specific compound for all species, as
shown in Figure 6a. These predictions are then placed in a
vector, which will be our representation for the
compound.

2. Build final single-task models: A single-task random forest
model is fitted for all target species, respectively, but the

Figure 4. Stacked ensemble learning: base learners are combined into one consensus value. The end point value is represented as ‘Y’.

Figure 5. Multi-task neural networks: The end point value is represented as ‘Y’.

Figure 6. Transformational machine learning.30 The end point value is represented as ‘Y’; different beakers represent different chemicals.
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input features are now the representations from Step 1
(see Figure 6b). By training a single-task random forest for
a given species, the model can learn to use the general
consensus over similar species in the vector.

We use two variations of this model: the one described above
(TML) and one aggregating this prediction with the single-task
random forest model trained in the first step (TML Stacked).

Fine-Tuning. Fine-tuning techniques are a simple way to
perform transfer learning with neural networks.50 First, a neural
network is trained on all tasks to extract knowledge from the
input features and build an internal representation; then, (a
selection of) the weights are adapted to the final task. As
suggested in the literature, a neural network is trained on all
species, before the weights of all layers except for the head are
frozen, and the head of the network is trained on the given
aquatic species. To emphasize that we follow the literature, we
refer to this method as f inetuning top.

Model Agnostic Meta-Learning. Model agnostic meta-
learning (MAML)29 is a model-agnostic transfer learning
technique. We use it with a neural network. The initialization
weights of a standard neural network are random values and
require a substantial amount of training data to adapt for a given
task. MAML aims to encapsulate knowledge from related tasks
into good initialization parameters. It observes which weights
worked well for related tasks to suggest initial weights that can be
quickly adapted to a new task. In contrast to fine-tuning, which
adapts weights found optimal for all tasks to a single-task,
MAML aims to find initialization weights that allow for quick
adapting to all tasks,51 as illustrated in Figure 7.

■ EXPERIMENTS
In the following, we examine the prediction quality of QSAR
algorithms on new chemical compounds for which no
observations (assays) were used during training. For our
experiments, we therefore partition the ECOTOX data set
uniformly at random into training chemicals, which are used for
training our models, and test chemicals, which are used for

assessing their quality. This scheme is illustrated in Figure 8,
with test assays shown in dark blue; duration times are omitted
for simplicity.

We address the following research questions:
R1 What is the average prediction performance of the

previously discussed (hyperparameter optimized) QSAR
algorithms on previously unseen chemicals?
R2How does the performance of themodels (both single-task

and multi-task) increase when exposed to more data from the
target species?
R3 How does the performance of the models increase when

more data from other species (to learn across data sets) is
available?
Prediction performance is measured in terms of the root mean

squared error (RMSE)

y y
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i i
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where yi is the predicted and yi is the true label for the i-th out of
the n test assays over which the metric is being computed. The
performance error is calculated per species/chemical/fold and
averaged over all species/chemicals/folds.
In addition, a Friedman test52 is used according to the

suggestion by Demsǎr53 to determine the statistical significance
of performance differences among multiple algorithms. We test
whether and to what extent any pair of algorithms statistically
differ in performance; we refer to our Supporting Information
for details.

Average Prediction Performance of QSAR Algorithms.
To properly assess the prediction performance of the QSAR
algorithms, we proceeded as follows. According to the
previously described splitting scheme, we allocated 80% of the
chemicals for training and 20% for testing; we call the respective
portions of the ECOTOX data set the internal and external folds.
Then, two types of experiments were conducted. The first
assesses the predictive capacity of each hyperparameter-
optimized QSAR algorithm trained on the internal fold when
extrapolating to the external fold.
The second experiment assesses the stability of each QSAR

algorithm via cross-validation. To this end, the chemicals
contained in the internal fold were partitioned into five disjoint
and equally sized subfolds (each one containing 20% of the
chemicals). We built five hyperparameter-optimized partial

Figure 7. Intuition behind MAML:29 Let the model used have
initialization parameter vector . The blue points show the optimal
configuration of initialization parameters , , ,(1) (2) (3) (4) for
specific species tasks 1−4. MAML aims to find *, such that the
optimal configuration for each task can be reached equally fast.51

Figure 8. Training vs testing data: The rows represent chemicals,
whereas the columns represent the study species. Our training and
testing data consist of disjoint subsets of chemicals.
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models that exclude a subfold from the training set to
subsequently predict.
This process was repeated three times with different

partitions, yielding 15 estimates for each QSAR algorithm.
Results. Figure 9 shows the performances of the QSAR

algorithms, with the results aggregated across species as well as
chemicals. The plots in Figure 9a,b show the RMSE of the
hyperparameter-optimized algorithms on the external test fold,
once aggregated across species and once across (test) chemicals.
Note that these are the results of the same experiment, but the
way of grouping the predictions (either according to species or
according to chemicals) affects the weight of the individual
predictions, therefore also resulting in different performance
estimates. These numbers, therefore, give an unbiased estimate
of the out-of-sample prediction performance of the models.
The best-performing methods are the multi-task random

forest and the stacked ensembling method. Aggregating over
chemicals, their mean test RMSEs are 1.07 and 1.08,
respectively. The differences between the techniques are mostly
statistically significant; we refer to the supplement for details.
Predictions with an RMSE of less than 1 are within a factor 10

of the original LC50 value (before applying the log-scale), which
makes such models useful for various applications when certain
error margins are applied, including risk assessments of
regulators; we refer to the supplement for a derivation.
The results in plot 9b show that the median RMSE of several

methods is indeed below 1, so at least for a significant portion of
chemicals, the methods can be considered to work acceptably or
even very well: The two previously mentioned techniques are
the only ones with a 25% quantile below 0.5.
Plot 9c summarizes, for each of the algorithms, the 15

validation results of the internal hyperparameter optimization
procedure; it hence reflects the stability of the performances
(narrow boxplots indicate high stability of the procedure and

thus that the results in plots 9a and 9b are close to the true
average results). Plot 9c underlines that these results can be
considered largely stable. For most methods, the performance
only changes marginally with the chemicals selected for training.
The only exception is MAML, which is too unstable for use but
does not perform competitively under any observed condition
anyway.

Prediction Performance as a Function of Number of
Assays. Experiment Setup. Addressing research question R2,
we now study the effect of more data on the target species. For
this, we utilize learning curves for each of the algorithms.54 First,
the union of internal and external data was split uniformly at
random, using 90% of the chemicals for training and 10% for
testing. We then identified all species for which at least 128
training assays were available (with the goal to form reasonably
long useful learning curves). Specifically, a species is then
included if it has 128 training assays or data points that involve
the species, a number of chemicals from the training chemicals,
and one or more exposure durations. The 35 species that
satisfied this criterion are called the study species. For the
remaining species (with few assays), training assays were moved
into an auxiliary data set, and test assays were removed entirely
from the data set. Finally, learning curves in the form of RMSE as
a function of the number of training assays (per species) were
computed.
We built the learning curves as follows: For each anchor

(training set size) s n2 2, ..., 14n{ | { }}, all of the
QSAR algorithmswere trained using the training assays and then
the RMSE was computed on the test assays. The number of
assays used at s was s for each model in a single-task learner and
35 · s (with s samples from each of the 35 study species) for
multi-task learners. The assays used at previous anchors were
included in the following anchors, e.g., the assays used at the

Figure 9. Comparison of prediction performances (RMSE) of different algorithms. The labeled green marker indicates the mean of the observed
performance values, whereas the line represents the median.
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anchor utilizing five assays were also used for training at the
following anchors utilizing 8, 11, and 16 assays and so on. To
reduce the effect of selecting the assays in a certain order, we
built not only one but three such curves with different assays
order and then averaged.
With this, we now elaborate on how the models performwhen

more data is being presented in two different settings. In the first
case, only assays from the 35 study species were used for
training. In the second case, all the (10 200) assays from the
auxiliary data set (remaining species) were used in addition
during training at each anchor. Figure 10 shows a schematic
overview of both setups.

Results. The plots in Figure 11 show learning curves without
(left) and with (right) auxiliary data available for training. In the
top row, the RMSE is computed for each species, and the curves
aggregate the species-wise errors, whereas the bottom row
aggregates over chemicals.
Lines showmean values and shaded areas the 90% confidence

bands computed from 1000 bootstrap samples.
Looking at the left plots, it can be seen that the advantage of

the two multi-task methods�i.e., the multi-task random forest
and ensemble stacking�are rather independent of the number
of assays used for training. The curves are constantly below the
others, so these two algorithms are constantly the best choices,
no matter how many training examples are being used.

Figure 10. Schematic view of the experimental setup. Using 35 study species in our train and test set, a harsh low-resource situation is simulated, with
the training set containing only the down-sampled species, whereas the second scenario adds the remaining assays from other species to the training set
too.

Figure 11. Learning curves showing the effect of downsampling the study species without (left) and with (right) auxiliary species available for training.
Once grouped over species (top row) and once over chemicals (bottom row).
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An even more important observation is that all curves are
significantly dropping throughout the entire interval under
study, including the 128 anchor. A first implication is that all the
QSAR algorithms indeed exhibit an ability to learn to predict
LC50 from the ECOTOX data (otherwise curves would plateau
immediately). Second, the fact that curves keep dropping
significantly at anchor 128 suggests that it might be fairly
possible to predict LC50 even with a satisfactory RMSE below
1.0 if more assays were available.
The right plots suggest that auxiliary assays are advantageous

if and only if very few species-specific assays are available. The
general observation across all multi-task learning algorithms is
that the learning curves start off better but decrease less steeply.
The first implication is that, if less than roughly 20 training assays
are available for a species, it is likely that the random forest or
stacking ensemble can benefit from the auxiliary assays. In those
common, low-resource cases, using a neural network (with or
without finetuning) will do better than learning only with the
assays from the study species alone. However, the second
implication is that, if more assays are available for the study
species, it seems better to ignore auxiliary assays, since they seem
to slow down the learning process. This holds at least for random
forests and stacking ensembles, both of which show better
performance at the 128 anchor when no auxiliary species are
being used. Additionally, TML is dependent on all of its single-
task models’ performances, as well as the length of its
representation here. If so many assays are available and if a
neural network is used, the auxiliary species should be used, and
the network should not be fine-tuned on the study species.
However, given the slope of the learning curves, with 128 assays
or more, it seems best to just use a random forest or stacking
ensemble without auxiliary assays.

Prediction Performance as a Function of Number of
Species. In this learning curve experiment, we investigate
research question R3: to what extent does the number of species

included in the training sets affect the performance of multi-task
models?
First, the union of internal and external data was split as

outlined previously, using 75% of the chemicals for training and
25% for testing. Second, we identified all the species for which
there are at least three chemicals among the test assays.
The resulting 180 species are the study species; this set

happened to be disjoint from the 35 previous study species.
Third, to ensure a reasonable number of training instances,
among the remaining species, we identified the ones with at least
64 training assays. The resulting 64 species (coincidentally, there
were 64 species as well) are called the auxiliary species. The
assays for all the other species were discarded.
To determine the learning curves, we proceeded as follows.

First, the number of assays per auxiliary species was down-
sampled to 64. This was done, because the number of samples
per auxiliary species varied from 64 to over 1 000, so a change in
a performance curve could have been attributed to the fact that
many data samples were added to the training set and not
primarily to the addition of additional species to infer knowledge
from. Second, a random permutation of the auxiliary species was
created. Third, for each study species, the RMSE for each QSAR
algorithm was computed on the test assays when using the
respective training assays and the 64 training assays from each of
the 2n first auxiliary species, where n ∈ {1, 2, ..., 12}, for
training. The experiments were repeated over three different
pseudorandom number seeds, inducing different down-sampled
auxiliary data sets and different permutations of the auxiliary
species. The general experimental setup is schematically shown
in Figure 12.

Results. Figure 13 shows the performances, with the left plot
aggregating over species and the right over chemicals. Note that
single-taskmodels have been omitted, as they do notmake use of
additional data.

Figure 12. Study setup: Iterating over 180 study species, a study species with its training and test set, is selected. Sampling 0, 2, 4···, 64 auxiliary species
into the training set, a new QSAR model is built. With this, the impact of adding more species to aid in learning a study species is shown.

Figure 13. Learning curves showing the effect of adding more auxiliary species to the training set of a study species. Results averaged over species (left)
and chemicals (right).
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To answer the research question R2, we observe that the
benefit of additional training assays from other species is only
significantly beneficial for NN with one output unit and for
Finetuning-Top. The curves of the other algorithms have a
shallow improvement or even partially deteriorate (e.g., multi-
task RFs when averaging over species). For these two
algorithms, the additional data though does have a rather
interesting effect. At the highest anchor (64 additional species),
Finetuning-Top achieves the best results when averaging over
species, and the NN with one output is not outperformed when
averaging over chemicals.
More importantly, both algorithms still show significant

learning progress at that point on the curve. In other words, one
might conjecture that adding assays from additional species
would lead to overall results superior to those of other learners
and possibly lead to results below the 1.0 RMSE threshold.
However, these assessments must be viewed with caution.

The test matrix for the defined over the test chemicals and the
180 study species is extremely sparse, which has several side
effects. First, TML is now working consistently better than on
the 35 study species of the previous learning curve even though it
only marginally improves with increasing additional training
assays from other species. Hence, TML behaves very differently
on the species/chemical combinations analyzed in this experi-
ment than in the previous one.
Second, the two previous best models (multi-task random

forest and stacking ensemble) also perform very well in this
setup when averaging over chemicals but not when averaging
over species. This is caused by a single chemical for which
prediction qualities are low for most species, and due to the
sparsity of test data, this has a high influence when averaging
over species but a low influence when averaging over
chemicals�in other words, the results are very sensitive to the
species/chemical combinations used for training and testing
respectively (details can be found in the Supporting
Information).
A further hypothesis addressing these differences may be

different instance weightings between single- and multi-task
models. To achieve a generally good performance, a multi-task
model aims to predict the majority of assays well. Due to the
large differences in the number of assays with a certain chemical
or species, the multi-task model may aim to predict the largest
groups of chemicals or species better. A single-task model,
however, could concentrate on each species more equally, as a
separate model is built for each task. The single-task models
optimize for good performance over species, whereas when the
models are averaged over chemicals the single-task models are
not as good as the multi-task model. Future work should
investigate how the choice of evaluation affects the relative
order, and further, it may be interesting to experiment with
instance weighting explicitly by weighting training instances
while building a model.
Overall, the results motivate future work in which the

selection of species and chemicals is studied further. Learning
across certain more related tasks (species or chemicals), that
were more carefully selected, may further benefit model
performance. An alternative could be adding more detailed,
scaled-task-relatedness measures to replace the categorical
species taxonomies.
In the sense of meta-learning, this could motivate a context-

based approach, in which the learning algorithm itself is chosen
based on the properties of the species and/or the chemicals for

which training instances are available or predictions need to be
made, as is done in the work of Olier et al.27

■ DISCUSSION
Our work has addressed modeling LC50 values (mortality rate
in 50% of the experiments) of different aquatic species,
specifically using a collection of well-known sparse ecotoxico-
logical data sets. Tomake predictions for species with few assays,
we explore the use of different machine-learning techniques to
leverage additional data from other species. We pay special
attention to addressing domain-specific requirements via the
OECD principles, and we evaluate the models in a setting where
wemake predictions for the toxicity of species for a chemical that
has not been seen before for any of the other species. This is
motivated by the fact that this is the most common use-case of
toxicological predictions, which can be readily applied when a
new chemical needs to be evaluated.
Based on our experiments, for this problem setting, we advise

the use of themulti-task random forest model. Its performance is
stable, as seen in the internal validations, and the performance is
good on external validations, both averaged over chemicals and
species. Furthermore, the multi-task model also performs well in
simulated low-resource situations. When looking at the general
data sets consisting of all assays, there is no statistical evidence
that the multi-task random forest performs better than the
single-task random forest. The multi-task random forest model
has a lower performance error than its single task version in 54%
of unseen chemicals. However, when examining cases, in which
there were less than five seen compounds for a species, the multi-
task random forest outperforms the single task random forest in
80% of unseen chemicals. Extrapolating onward from the
learning curve experiments, the neural network with one output
unit seems promising with more assays available.
As we believe that the inclusion of class and phyla information

aids the multi-task models, we hypothesize that a continuous
distance measure between the species could further enhance
these models. Therefore, in future work, different, potentially
more easily obtainable measures of target relatedness following
the tree-of-life notion could be investigated. Furthermore, our
investigation into low-resource situations via learning curves has
given more insight into individual approaches. A future
investigation could evaluate the effect of selecting chemicals
and species with more care.
Further work in QSAR modeling should therefore investigate

the use of knowledge-sharing techniques. Specifically, future
work should also anticipate the need for explainable models,
which would add the ability to trace back predictions. These
explainable models could lead to more insight into aquatic
toxicity, especially when these models can utilize knowledge
across species.
To conclude, we successfully present multi-task models on a

species level that predict toxicity on flexible exposure duration
and a large chemical applicability domain, showing promising
results for models with general chemical applicability as well as
applicability across phyla. With this research, we hope to not
only take a step toward mitigating the need for in vivo
experiments but also hope to inspire the use of knowledge-
sharing approaches for other low-resource QSAR problems.
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