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Abstract: How head patterning is regulated in vertebrates is yet to be understood. In this study, we
show that frog embryos injected with Noggin at different blastula and gastrula stages had their head
development sequentially arrested at different positions. When timed BMP inhibition was applied
to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland,
which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and
mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker)
were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to
posterior in a progressive fashion and may involve timed actions of the BMP signaling.

Keywords: BMP signaling; head patterning; extreme anterior domain (EAD); Xenopus

1. Introduction

During early development, the vertebrate embryo is patterned from anterior to pos-
terior in a temporally progressive manner [1–5]: anterior tissues are specified early, and
more posterior tissues are determined progressively later. Whereas coordination between
temporal and spatial control of anterior-posterior (A–P) patterning is evident, a thorough
understanding of the underlying mechanisms is still lacking in vertebrates.

In frogs, a BMP/anti-BMP dependent time-space translation mechanism has been
proposed for trunk-tail patterning by Hox genes [6,7]. In this mechanism, Hox genes are
sequentially activated in a high BMP region of the mesoderm (non-organizer mesoderm) [8],
where their expression is dynamic and unstable. As the mesoderm involutes during
gastrulation, Hox expressing cells are successively exposed to signals from the Spemann
organizer, resulting in the Hox sequence being fixed at different points along the forming
axis. In this way, the timing information encoded by Hox genes is translated into a spatial
pattern. The putative organizer signals that stabilize Hox codes are BMP antagonists,
e.g., Noggin [9] and Chordin [10], because these mimic the function of the organizer in
dorsalizing the embryo [11,12], inducing a secondary axis [10,13,14], and rescuing A–P axes
in ventralized embryos [7,10]. Notably, timed Noggin treatments in ventralized embryos
not only rescue the A–P axis, but also the spatial pattern of Hox gene expression [7]. This
conclusion is further supported by a recent study in chicks, which reported the fixation of
Hox codes in the explanted posterior primitive streak (containing high BMP mesoderm) by
Noggin treatments [15]. Together, these findings suggest that BMP signaling is involved
in patterning the trunk-tail part of the axis by (directly or indirectly) regulating Hox
gene expression.

In the rescue experiments mentioned above [7,10], Noggin and Chordin treatments
can also rescue the head part of the axis, suggesting that BMP signaling may also be in-
volved in patterning the head. Using heat-shock inducible chordin transgenic lines (Tg
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(hsp70:chd)), Hashiguchi et al. have shown in zebrafish that the expression of six3 (a
forebrain marker) [16], otx2 (a forebrain and mid-brain marker) [17,18], gbx1 (the counter-
part of Xenopus gbx2; a rostral hindbrain marker) [19], and hoxb1b (a caudal hindbrain
marker) [20], are sequentially expanded by timed anti-BMP treatments from mid-blastula
to early gastrula stages [21]. This is consistent with the observations that timed Noggin
injections in ventralized embryos rescued different portions of the A–P axis in frog [7], and
that progressively later anti-BMP treatments resulted in progressively more posterior axis
defects in zebrafish [22]. These findings raise an interesting question: is BMP signaling
involved in progressively patterning the head (brain)?

In the deuterostome embryo, the front-most portion of the A–P axis is not the head,
but the extreme anterior domain (EAD), a region wherein ectoderm and endoderm directly
juxtapose [23]. In frogs, this region gives rise to three organs, the cement gland (CG),
the primary mouth, and the anterior pituitary [24]. Among them, the cement gland is an
ectodermal organ that lies anterior to any neural tissue [25]. The formation of CG can
be affected by perturbations of the development of the dorsal mesoderm (the Spemann
organizer) [26,27], suggesting a requirement for organizer signals in the formation of this
anterior-most structure. It would therefore be interesting to see if CG formation is also
regulated by BMP signaling.

To test the role of BMP signaling in head patterning, we performed timed anti-BMP
treatments in both wild-type (WT) and ventralized frog embryos. This resulted in sequential
arrest (in WT embryos) or rescue (in ventralized embryos) of head patterning at different
values, suggesting that a timing mechanism, which is BMP dependent and can be converted
into spatial patterns by anti-BMP signals, may be involved in patterning the vertebrate head.

2. Materials and Methods
2.1. Microinjection

Frog embryos were harvested from naturally mated females and staged according to
Nieuwkoop and Faber [28]. For timed anti-BMP treatment in wild-type embryos, 200 nL of
0.1 µg/µL human noggin protein (Sigma-Aldrich, H6416, Zwijndrecht, The Netherlands)
was injected into the blastocoel of embryos at stage 8, 9,10, 10.5 and 11, respectively. The
embryos were then cultured to stage 28 for taking pictures. A similar approach has been
used by others [7,29]. These experiments were repeated at least three times and more
than 80 embryos were used for each time point. mRNA for injection was transcribed
with mMessage mMachine Kit (Ambion, Life technologies, AM1340, Carlsbad, CA, USA)
from the following plasmids after linearization at the appropriate restriction sites: pSP64T-
BMP4 (for BMP4 RNA) [30], and pCS2-hSmad6GR (for smad6GR RNA) [31]. To induce full
ventralization, about 2 ng of BMP4 RNA was injected to each embryo at 2-cell or 4-cell
stage and cultured to stage 26. Timed anti-BMP treatment in BMP-ventralized embryos
was achieved by using a combined injection of 2ng BMP4 RNA and 2ng smad6GR RNA
at the 2-cell or 4-cell stage. The embryos were then treated with 10 µM dexamethasone
for 2 h at the desired stages and cultured to stage 26. For induction of dosalization, 2 ng
of smad6GR RNA was injected at the 2-cell or 4-cell stage and the injected embryos were
treated with 10 µM dexamethasone for 2 h at stage 7. These experiments were repeated at
least three times and >40 embryos were used for each condition.

2.2. Whole Mount In Situ Hybridization

When the desired stages were reached, embryos were fixed overnight in MEMFA at
4 ◦C. After dehydration in 100% methanol, they were stored in methanol at −20 ◦C until
use. Whole mount in situ hybridization (WISH) was performed as previously described [7].
The probes for in situ hybridization were synthesized from the following plasmids after
linearization: pVZ1-xcg1 (for xcg-1 probe) [32], pBSSK-Six3 (for six3 probe) [33], pBluescript-
KS-xotx2 (for otx2 probe) [34], pXgbx-2 (for gbx-2 probe) [35], and pBluescript SK-xHoxLab1
(for hoxd1 probe) [36].
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3. Results
3.1. Timed Anti-BMP Treatment Arrests Head Patterning at Different Positions

To examine the role of BMP signaling in head formation, we injected Noggin protein,
an antagonist of BMP [9,37], to the blastocoel of the embryo at stage 8, 9, 10, 10.5 and 11
(from blastula to gastrula stage) and cultured them to stage 26 (Figure 1). From stage 8 to
10, the injected Noggin protein mainly affects the ectoderm and the future neurectoderm.
At stage 10.5 and 11, the anterior tip of the involuting mesoderm will also be affected.
Embryos injected with Noggin at stage 8 formed a ball of tissue with a large cement gland.
Embryos injected at stage 9 also showed a blob of tissue, but the cement gland was much
smaller. When Noggin was injected at st.10, a visible, short head (half head) was formed in
the embryo. Morphologically, injection of Noggin at st.10.5 and 11 resulted in progressive
formation of more posterior structures.
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Figure 1. Timed Noggin-injection in wild-type embryos resulted in progressive arrest of head
patterning: 200 nL of 1 ng/µL Noggin was injected into the blastocoel of the embryo at different
stages. Anterior is to the left and dorsal is up. Black arrows point to the position of the cement gland.
These experiments were repeated at least three times and more than 80 embryos were used for each
time point.

3.2. Timed Anti-BMP Treatment in Ventralized Embryos Rescued Different Portions of the Head

The above observations are supported by gene expression analysis. In zebrafish, timed
Chordin treatments from mid-blastula to mid-gastrula stages sequentially expanded the
expression domains of six3, otx2, gbx1, and hoxb1b [21], suggesting that timing is involved
in head patterning and is likely to do with BMP signaling. We therefore postulate that the
“head timer” is BMP-dependent and can be sequentially fixed by BMP inhibition, resulting
in positional values being sequentially specified. To test this hypothesis, we conducted
timed anti-BMP treatments in ventralized frog embryos (high BMP) (Figure 2).

In Xenopus, ventralization can be achieved by BMP overexpression [38–41], while
dorsalization can be achieved by BMP inhibition [11,42]. In our experiments, injection of
the frog embryo with 2ng bmp4 resulted in complete ventralization, showing a blob of
tissue that had no axis (Figure S1). When the embryo was injected with the same amount
of smad6, an inhibitory Smad that can interfere with BMP pathway [43–45], however, it
displayed a dorsalized phenotype (Figure S1). We then did anti-BMP treatments in BMP4-
ventralized embryos at different stages using a Smad6GR construct [31], which is inducible
by dexamethasone. Timed Smad6 inductions fixed five anterior markers sequentially: it
strongly fixed xcg-1 at stage 8, six3 at stage 8 and 9, otx2 at stage 9 and 10, gbx2 at stage 10
and 10.5, and hoxd1 at stage 10.5 (Figure 3).
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Figure 2. Timed anti-BMP treatments in ventralized embryos led to sequential fixation of anterior
genes. The expression of xcg-1, six3, otx2, gbx2, and hoxd1 in bmp4-injected embryos that were
subjected to Smad6 treatment at different stages. These experiments were repeated at least three
times and >40 embryos were used for each condition. Black arrows indicate the anterior borders of
the expression domains.

3.3. The Timing of A–P Markers Is Disrupted in smad6-Injected Embryos

During trunk patterning, collinearity causes Hox genes to be expressed in a 3′ to
5′ order, and that more 3′ genes are expressed earlier and more anteriorly than/to more
5′ ones [46–48]. The temporally collinear expression of Hox genes has been proposed to
serve as a timer, which can be interpreted and translated into spatial patterns [7]. Since
the anterior genes are sequentially fixed earlier than Hox genes by anti-BMP treatment
(Figure 2), it is thus interesting to see if these genes are also expressed in a temporal
sequence which can complement the Hox sequence to constitute an integrative timer.
Therefore, we next examined the endogenous expression of these anterior genes at different
stages in wild-type embryos (Figure 3). Although these genes showed a spatial sequence of
expression along the A–P axis (Figure S2), their activation did not strictly follow this spatial
arrangement. For example, six-3 demarcates the most anterior border of the developing
neural plate [49], but it was expressed at the end of gastrulation, much later than the other
genes. The expression domain of gbx2 is directly anterior to that of hoxd1 but they were
expressed at similar times. Moreover, unlike Hox genes, which are expressed in ventral
and lateral mesoderm during gastrulation, the earliest expression of six3 and otx2 was
located on the dorsal side of the embryo. The expression kinetics of these genes make some
of them less likely to be “timer genes” themselves. Even so, however, the timing of their
expression was disrupted by smad6 injection (Figure 3). For example, the expression of six3
in smad6-injected embryos was advanced to stage 11.5 from stage 12. Expression of gbx2
and hoxd1 was significantly reduced and only detectable from stage 11.5, whereas their
expression in WT embryos was observed earlier (at stage 10.5). Although the time of otx2
expression was not affected, its expression domain was slightly expanded at stage 10.
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injected embryos. Embryos are vegetal views with dorsal to the top. These experiments were repeated
at least three times and >40 embryos were used for each condition.

4. Discussion

During animal development, the patterning of the trunk-tail part of the axis has
been known to be regulated by Hox genes [48,50,51]. The regulation is likely to involve
timed interactions between BMP and anti-BMP during gastrulation [6,7]. In this study, we
show that BMP and anti-BMP may also be involved in regulating head patterning in the
developing frog embryo.

When the inhibitor of the BMP pathway, Noggin protein, was applied to the frog
embryo from the mid-blastula to mid-gastrula stage, the patterning of the head was arrested
at different positional values, i.e., cement gland, forebrain, mid-brain, hindbrain, and neck
(Figure 1). Sequentially, later Noggin treatments arrested head formation at more and more
posterior positions, suggesting that the EAD and head are patterned gradually in a timed
fashion. Similar effects of BMP intervention have also been observed during trunk-tail
patterning. In zebrafish, sequential BMP inhibition at later stages results in axial defects
at progressively posterior positions, i.e., in the trunk and tail [22]. Together, these results
imply that the process involved in head-tail patterning can be stopped sequentially by
timed BMP inhibition.

The timing observed In Figure 1 fits well with a recent finding in zebrafish, Ich showed
sequential expansion of head markers (six3, otx2, gbx2, and hoxb1b) by timed Chordin
treatments [21]. We extended this study by performing timed anti-BMP treatments in bmp4-
overexpressing embryos (Figure 2). This sequentially rescued the expression of xcg-1, six3,
otx2, gbx2 and hoxd1, suggesting that the patterning of the EAD and head involves timed
BMP/anti-BMP interactions. Alternatively, the gradual rescue of these anterior marker
genes could possibly be explained by the distance of different head structures to the source
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of BMP or anti-BMP signals. However, since there is no evidence so far showing a BMP
gradient running from anterior to posterior in the head, it is more likely that a temporal
component is involved.

It is worth noting that, Ioth in Hashiguchi’s study and in this study, the last and most
posterior component of the head gene sequence is hox1:hoxb1 and hoxd1, respectively. Since
hox1 is the most anterior component of a previously elucidated Hox time-space sequence,
the spatial arrangement of these early induced head genes is clearly complementary to and
continuous with the later, more posterior Hox gene sequence. There is also evidence that
timed Noggin treatments in ventralized embryos at different gastrula stages sequentially
fixes Hox gene expression [7], suggesting that similar mechanisms may be involved in
patterning the expression of Hox genes and genes expressed more anteriorly. However,
unlike Hox genes, only a subset of these anterior head genes was expressed sequentially,
i.e., otx2, gbx2 and hoxd1 (Figure 3). Though, a finer time scale may be needed to separate
the expression of gbx2 and hoxd1. Other gene like Six3 are less likely to regulate timing
by itself. It is more likely to be regulated by an upstream BMP-dependent timer gene.
Nevertheless, the expression of all the examined genes was disrupted in BMP-inhibited
embryos (Figure 3), suggesting that they can respond to BMP interventions. Moreover, the
time at which some of these genes are expressed is also of crucial importance to embryo
development. For example, Gbx2 shows a significant effect on head development when
ectopically expressed at stage 9 and 10. The effect gets less drastic when it is expressed
at later stages, e.g., stage 12 and 13 [52]. Together, these results further emphasize the
importance of BMP signaling in regulating head patterning.

Although the mechanism by which head patterning is regulated by BMP signaling still
needs to be elucidated, the results in this study suggest two aspects of head patterning. First,
the vertebrate head is patterned in a temporally progressive manner: the EAD is patterned
first, followed by patterning of the forebrain, midbrain, hindbrain, and the neck. Second,
BMP signaling is involved in patterning the head in time and space, which can be seen from
the progressive arrest of head formation by timed anti-BMP treatments (Figure 1) and from
sequential fixation of anterior marker genes (xcg-1, six3, otx2, gbx2, and hoxd1) by anti-BMP
(Smad6 induction) in BMP-injected embryos (Figure 2). Based on these results, here we
hypothesize that a similar mechanism to that patterns the trunk-tail part of the axis may also
operate during head patterning [6,7] (Figure 4). A key component of this mechanism is a
BMP dependent timer, which is a temporal gene sequence. The expression of the (putative)
“timer genes” occurs in a high BMP environment in a transient, come-and-go manner. Once
the cells are exposed to anti-BMP signals during morphological cell movement, the “timer
genes” will be fixed, meaning that the cells will keep the “timer genes” expressed at that
moment and prevent the expression of later “timer genes”. Therefore, in BMP-injected
embryos, timed BMP inhibition (by Smad6) only stabilizes a subset of positional markers
that correspond to specific head regions. For example, induction of Smad6 at stage 8
mainly stabilized xcg-1 (EAD), and six3 (forebrain), and slightly otx2 (midbrain); induction
at stage 9 stabilized six3 (forebrain) and otx2 (midbrain), but not xcg-1; and induction at
stage 10 stabilized otx2 (midbrain) and gbx2 (hindbrain), but not xcg-1 and six3 (Figure 2).
This suggests that “the timer” still runs in BMP-embryos, but due to lack of stabilization by
anti-BMP signals, the “timer genes” are only expressed in a transient manner. Timed anti-
BMP treatments stabilize/fix genes expressed at the corresponding time points and stop
the timer from running further, leading to the formation of specific regions, manifested by
the expression of specific marker genes. In WT, however, both the timer (BMP dependent)
and the stabilizer (anti-BMP signals) are present in the embryo. The ticking of the timer
and the stabilization occur concomitantly. Therefore, BMP inhibition will fix the timer
and lead to the formation of structures up to the fixation point rather than structures only
at the fixation point. The essence of the timer that regulates head patterning is yet to be
elucidated but may involve a subset of genes examined in this study, i.e., otx2, gbx2 and
hoxd1. Further studies are needed to test our hypothesis further and to uncover how the
head patterning process is regulated by BMP signaling. This study, as the basis and first
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step of our hypothesis, argues that the vertebrate head is progressively patterned, and the
patterning process is likely to be regulated by BMP signaling.
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