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BSTRACT 

ukaryotic DNA is organized and compacted in a 

tring of nucleosomes, DNA-wrapped protein cylin- 
ers. The positions of nucleosomes along DNA are 

ot random but show well-known base pair se- 
uence preferences that result from the sequence- 
ependent elastic and geometric properties of the 

NA double helix. Here, we focus on DNA around 

ranscription start sites, which are known to typi- 
ally attract nucleosomes in multicellular life forms 

hrough their high GC content. We aim to understand 

ow these GC signals, as observed in genome-wide 

verages, are produced and encoded through differ- 
nt genomic regions (mainly 5 

′ 
UTRs, coding exons, 

nd introns). Our study uses a bioinformatics ap- 
roach to decompose the genome-wide GC signal 

nto between-region and within-region signals. We 

nd large differences in GC signal contributions be- 
ween vertebrates and plants and, remarkably, even 

etween closely related species. Introns contribute 

ost to the GC signal in vertebrates, while in plants 

he exons dominate . Fur ther, we find signal strengths 

tronger on DNA than on mRNA, suggesting a bio- 
ogical function of GC signals along the DNA itself, 
s is the case for nucleosome positioning. Finally, we 

ake the surprising discovery that both the choice 

f synonymous codons and amino acids contribute 

o the nucleosome positioning signal. 

NTRODUCTION 

NA in eukaryotic cells is compacted with the help of pro- 
eins into a DNA-protein complex called chromatin ( 1 ). The 
asic unit of chromatin is the nucleosome, consisting of 147 

ase pairs (bp) of DN A wra pped around an octamer of hi-
tone proteins and a stretch of linker DNA that connects to 

he next nucleosome. The positions of nucleosomes along 
 To whom correspondence should be addressed. Email: manish.yadav@tu-dresd
orrespondence may also be addressed to Helmut Schiessel. Email: helmut.schi
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ermits unrestricted reuse, distribution, and reproduction in any medium, provided th
NA are not random. This is e v en the case in vitro , where
ucleosomes have been reconstituted from DNA and his- 
one proteins and where nucleosomes have been observed 

o show sequence pr efer ences ( 2–4 ). These have been cat- 
gorized into rotational and translational nucleosome po- 
itioning ( 5 ). Rotational nucleosome positioning refers to 

ositional pr efer ences within 10 bp, the DNA’s helical re- 
eat. It reflects the fact that DNA is typically curved rather 
han straight, due to the sequence dependent geometry of 
ts bp steps. Since the DNA is bound at locations where its 

inor groove faces inward to the histone octamer, there is 
 pr eferr ed position for the nucleosome e v ery 10 bp along
he DNA. The precise rules of rotational positioning (GC 

p steps at locations where the major groove faces the hi- 
tone octamer, and TT, AA, and TA bp steps where the 
inor groove faces the octamer ( 6 , 7 )) are not straightfor- 
ard to understand but result from the sequence dependent 
N A geometry to gether with the r equir ement of sequence 

ontinuity ( 8 ). 
The other type of positioning, translational positioning, 

s the subject of the current study. It can be seen most clearly 

hen focusing on genome-wide averages of functional sites 
n genomes, e.g. transcription start sites (TSS’s) ( 3 , 9–12 ), 
ranscription termination sites ( 9 ) and intron-exon bound- 
ries ( 13 ). Also around nucleosome depleted regions ( 14 , 15 )
based on data in Refs. ( 4 , 16 )) translational positioning of 
ucleosomes occurs. Translational positioning can act in 

wo ways: sequence elements either repel nucleosomes or 
hey attract nucleosomes. For instance, in unicellular organ- 
sms, nucleosomes are depleted from the r egions befor e the 
SS’s ( 2 , 17–20 ), e v en in vitro where nucleosomes hav e been

econstituted on genomic DNA ( 2 , 20 ). This has been inter- 
reted to keep promoter regions accessible ( 3 ). The oppo- 
ite is seen in multicellular life forms where nucleosomes are 
ypically attracted to TSS’s ( 21 ). Howe v er, whereas this is 
learly seen in vitro , in vivo nucleosomes might be depleted 

rom such positions due to the competition with other pro- 
eins or due to action of chromatin remodelers, motor pro- 
eins that can shift the position of nucleosomes. The at- 
raction of nucleosomes to positions around TSS has been 
en.de 
essel@tu-dresden.de 

omics and Bioinformatics. 
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interpreted to play a role in the retention of nucleosomes
in sperm cells ( 22 ). In spermatogenesis most of the nucleo-
somes are replaced by protamines which allows the produc-
tion of large numbers of small, highly mobile cells. Sperm
cells retain only a small fraction of the nucleosomes (about
4% ( 23 )) which might allow the transmission of epigenetic
marks from father to offspring. 

The main rule for translational positioning is sim-
ple: nucleosomes prefer DNA with a high GC content,
i.e. DNA stretches that carry a large fraction of G’s and
C’s ( 11 , 12 , 14 , 18 , 24–26 ). Overall, GC-rich DNA is softer
than DNA with a lower GC content ( 12 ). Since DN A m ust
bend strongly to wrap about 150 bp’s, the DNA persistence
length, almost twice around the histone octamer, the nucle-
osomes’ pr efer ence for the softer GC-rich DNA seems to
simply reflect an ener getic advantage. Ho we v er, a recent de-
tailed study ( 12 ) shows that the translational sequence pref-
erences of nucleosomes do not reflect elastic bending ener-
gies but are instead entropic in origin. To quantitati v ely pre-
dict nucleosome positioning in vitro one needs to account
for the entropy of free and wrapped DNA. Moreover, since
coarse-grained models such as the rigid basepair model only
linearly account for the sequence-dependent DNA elastic-
ity, dif ferent parametriza tions might be necessary to de-
scribe the elasticity of the DNA double helix in the free
and in the strongly deformed bound states. Finally, evidence
suggests that reconstituted chromatin may not be fully equi-
librated, due to the slow ra te a t which nucleosomes reposi-
tion themselves. This manifests itself as a constant nucleo-
some line density at large length scales. According to ( 12 ),
all these factors have to be considered in order to quanti-
tati v ely predict translational in vitro positioning of nucleo-
somes in a consistent physical model. 

That the nucleosome positions on reconstituted chro-
matin are not fully equilibrated reflects the fact that there
are no fast in vitro mechanisms for the redistribution of nu-
cleosomes along the DNA molecules. Mechanisms for ther-
mally induced nucleosome sliding exist but are slow ( 27 ).
They are based on defects that can spontaneously form at
the ends of the wra pped DN A and, if they happen to exit
at the other end, cause a corresponding step of the nu-
cleosome along the DN A. Specificall y, ther e ar e twist de-
fects that carry one extra or one missing bp and loop de-
fects that contain about 10 bp. Both have been predicted in
theoretical approaches ( 28–32 ) and were observed in com-
puter simulations ( 33–36 ). Recent experiments suggest both
types of defects as w ell ( 37 ). How e v er, since these mecha-
nisms are energeticall y costl y, in vitro nucleosome reposi-
tioning is very slow ( 27 ) as it has to rely on thermal fluctua-
tions. On the other hand, in vivo nucleosome repositioning
is typically based on ATP-dependent chromatin remodel-
ing ( 20 , 38 , 39 ). Some of these chromatin remodelers bind
to nucleosomes and use the energy from the hydrolysis of
ATP to inject undertwist / overtwist pairs into the nucleo-
somal DNA. Only this way the high nucleosome densities
observed in vivo can be achieved ( 40 ), but these acti v e pro-
cesses might dri v e the nucleosome positions away from the
intrinsic bp pr efer ences mentioned above. 

In the current study, we focus on the translational se-
quence pr efer ences of nucleosomes around TSS’s, as ob-
served in in vitro nucleosome maps. We ask the question how
these intrinsic pr efer ences ar e encoded in the bp sequence.
Upstream of TSS’s, the bp sequences can be chosen freely to
encode nucleosomal sequence pr efer ences, but downstr eam
one has to consider that DNA also encodes proteins. This
leads to the question whether there is any room for ad-
justing the GC content downstream of TSS’s. It has been
sho wn, ho we v er, that genetic and nucleosome positioning
signals can be multiplexed ( 41 ) and that there is e v en room
f or additional la yers of inf ormation ( 42 ). This reflects the
fact that the genetic code is degenerate: 64 codons have to
encode for only 20 amino acids. Indeed, this can be used to
e.g. rotationally position nucleosomes on DNA with single
bp precision, as shown computationally for fiv e positions on
the yeast genome in ( 41 ) and finally for the whole genome
in ( 43 ). This set of simulation studies ( 12 , 41–43 ) suggested
that the sequence dependent elastic and geometric proper-
ties of the DNA double helix strongly affect nucleosome
positioning and that these properties can be changed freely
through synonymous mutations. On the experimental side,
a recent experimental high-throughput study based on the
cyclizability of DNA fragments ( 44 ) (see also the predictive
tool based on this ( 45 )) came to similar conclusions, includ-
ing the strong role of DNA mechanics for nucleosome posi-
tioning and how it is influenced by synonymous mutations.

In these studies, only stretches of bp sequences were con-
sider ed that wer e encoding for proteins. Howe v er, in the cur-
rent study arises an additional complexity: regions down-
stream of the TSS’s do not only contain coding sequences
but also non-coding ones, especially the 5’ non-translated
region (5’UTR) at the start and various introns that inter-
rupt the coding exons (CDS). Moreover, we define addi-
tional regions, namely the 5’ end (located 1000 bp upstream
of the TSS) and the 3’ end (comprising the region between
the 3’ untranslated region and 1000 bp downstream of the
TSS). 

The purpose of the current study is to analyse the var-
ious contributions to the GC peak around TSS’s. We call
this peak a GC signal, assuming that it is a signal meant to
attract nucleosomes. We compare the various types of GC
signals multicellular organisms produce, and e v en how sim-
ilar signals are the result of different mechanisms. We do
not ask here why nucleosomes prefer GC-rich DNA, a ques-
tion we addressed previously ( 12 ). Instead we take a purely
bioinformatics approach and ask how exactly a GC-rich sig-
nal in the sequence of a gi v en organism is encoded for via
the various transcript regions. Finally, we also investigate
whether the GC signals simply reflect the biased choice of
synonymous codons or whether there is e v en a biased choice
of amino acids. 

MATERIALS AND METHODS 

Data 

We downloaded the unspliced transcripts with a flank-
ing region of +1 kb and −1 kb from http://www.ensembl.
org for vertebrates and from http://plants.ensembl.org for
plants using the Biomart RESTful access. The version of
the biomart database was Ensembl Genes 106 and En-
sembl Plants Gene 53 respectively. We also downloaded
the Refseq IDs for each of the transcripts from Biomart
server to identify the curation level of the sequences done

http://www.ensembl.org
http://plants.ensembl.org
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y the RefSeq database. The transcripts were further la- 
eled with the cura tion sta tus from RefSeq database ( https: 

/www.ncbi.nlm.nih.gov/refseq/ ). Supplementary Table S1 

ncludes the distribution of transcripts in different curation 

tates and the counts of transcripts that have a length of 
t least 1 kb downstream of TSS. Each transcript is de- 
ned into regions: 5’end (1000 bp upstream of TSS), 5’UTR 

5’ Untranslated region), Intron, Coding exon, 3’UTR (3’ 
ntranslated region) and 3’end (bp’s between the end of 

’UTR and 1000 bp downstream of TSS) 

ata cleaning and formatting 

n vertebrates and plants, organisms are classified as ‘se- 
ected’ based on their transcripts’ cura tion sta tus. For ver- 
ebrates, this label is applied if over 5 % of their transcripts 
re marked as PROVISIONAL, REVIEWED or VALI- 
ATED. Meanwhile, for plants, the threshold is raised to 

0 % . The analysis was conducted only on transcripts with 

hese aforementioned curation le v els for the selected organ- 
sms. Howe v er, for all other organisms , all transcripts , re-
ardless of curation level, were taken into account. Supple- 
entary Table S1 provides a list of the selected organisms 

long with the percentage of high-quality transcripts. 

C signal profile 

he transcripts were centered at TSS for each organism and 

he average GC content per base pair position is calculated 

or positions −1 kb to +1 kb around TSS as follows: 

% GC ( p) = 

∑ T 
t= 1 n t,p 

T 

(1) 

here 

n t,p = 

{
1 n t,p = G or C nucleotide 
0 otherwise 

nd p is the base pair position with respect to TSS and t is
 specific sequence out of a total of T sequences. Equation 

 1 ) is called full GC signal. The signal was smoothed using 

 3-bp moving average before plotting, and this smoothing 

as also applied to all subsequent signal plots. The between- 
egion GC content b ( p ) for a base pair position p is calcu-
ated by m ultipl ying the average GC content a ( r ) of a re-
ion r ∈ R , where R ∈ { 5 

′ 
UTR, CDS, 3 

′ 
UTR, Intron, 5 

′ 
end,

 

′ 
end } to the density of region r at a position p . The formula

s as follows: 

b( p) = 

∑ 

r∈ R 

T ∑ 

t= 1 
a( r ) r t,p 

T 

(2) 

here 

a( r ) = 

T ∑ 

t= 1 

1000 ∑ 

p=−1000 
n t,p r t,p 

T ∑ 

t= 1 

1000 ∑ 

p=−1000 
r t,p 

(3) 
nd 

r t,p = 

{
1 if position p in sequence t belongs to r 
0 otherwise. 

The within-region signal w ( p ) at base pair position p is 
efined as follows: 

w ( p ) = 

∑ 

r∈ R 

T ∑ 

t= 1 
n t,p r t,p − a( r ) r t,p 

T 

. (4) 

The full signal at position p is the sum of b ( p ) and w ( p ).
e define the normalised within-region signal ˆ w ( p) for a re- 

ion r ∈ R , where R ∈ { 5 

′ 
UTR, CDS, 3 

′ 
UTR, Intron, 5 

′ 
end,

 

′ 
end } at a base pair position p as follows: 

ˆ w ( p, r ) = 

T ∑ 

t= 1 
n t,p r t,p 

T ∑ 

t= 1 
r t,p 

. (5) 

DS within-region signal profile 

he coding-exon within-region signal is broken down into 

he contributions from the amino acid choice and from the 
hoice of the synonymous codons. The amino acid choice 
ignal c ( p ) at a base pair position p is calculated by multi-
lying the average GC content a 

′ 
( x ) of an amino acid x ∈

 , where X is the set of 20 amino acids, with the density of
mino acid x at position p : 

c( p) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ 

x∈ X 

T ∑ 

t= 1 
a 

′ ( x) x t,p 

T 

⎞ 

⎟ ⎟ ⎟ ⎠ 

−

⎛ 

⎜ ⎜ ⎜ ⎝ 

T ∑ 

t= 1 
a( r ) r t,p 

T 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(6) 

ith r = CDS. Here, 

a 

′ ( x) = 

T ∑ 

t= 1 

1000 ∑ 

p= 0 
n t,p x t,p 

T ∑ 

t= 1 

1000 ∑ 

p= 0 
x t,p 

(7) 

nd 

x t,p = 

{ 1 if nucleotide at p in t is contained 

in any of the triplets encoding x 
0 otherwise. 

he triplets comprising each transcript are deri v ed from the 
nnota ted transla tion initia tion site position, as provided by 

he Biomart database. 
The synonymous codon signal s ( p ) at base pair position 

 is defined as follows: 

s( p) = 

∑ 

x∈ X 

T ∑ 

t= 1 
( n t,p x t,p ) − ( a 

′ ( x) x t,p ) 

T 

. (8) 

he coding-exon within-region signal at position p , one of 
he terms in Eq. ( 4 ), is the sum of c ( p ) and s ( p ). 

https://www.ncbi.nlm.nih.gov/refseq/
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Figure 1. Illustration of the classification of a hypothetical GC signal. This 
example r epr esents the genome-wide average of the GC signal in a window 

of 2000 bp centered at TSS. For simplicity, for the hypothetical genome in 
( A ) it is assumed that the bp in the non-shaded area belongs to the 5’end 
flanking region, in the red area only to exons and in the yellow only to 
introns. The (hypothetical) GC signal from this genome is r epr esented as 
solid line in ( B ). The dashed line in (B) shows the between-region signal. 
The between-region signal exists due to differences in the average GC con- 
tent of introns and exons. ( C ) Within-region signal corresponding to the 
deviation of the full signal from the between-region signal. It accounts 
for the non-constant GC profiles within regions. The summation of the 
between-region signal and within-region signal forms the full GC signal. 
*Note that the GC content is centered around the between-region GC con- 
tent and r eferr ed to simply as GC content in the further analysis. 
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Signal size 

Let S = s 1 , s 2 , s 3 , . . . s p be any GC signal, where s p is the GC
content at base pair position p with respect to TSS, and p ∈
[1, 1000]. Then the signal size �S for GC signal S is defined
as 

σS = 

1000 ∑ 

p= 1 

∣∣s p − μS 
∣∣

1000 

(9)

where 

μS = mean of the GC signal S. 

Equa tion ( 9 ) of fers equal considera tion to signals irrespec-
ti v e of their distance from the mean. Unlike, for other quan-
tities, e.g. the standard deviation which amplifies the impact
of values further from the mean. 

Clustering 

We used the hierarchical clustering method based on Ward’s
criterion ( 46 ), which aims to minimize the within-cluster
sum of squares by merging the two clusters that result in
the smallest increase in the total sum of squares at each it-
era tion. The fea tures used to define the clusters were the
signal sizes of between-region and constituents of within-
region signals. The number of clusters was decided based
on the Calinski-Harabasz (CH) ( 47 ) Index and silhouette
score ( 48 ). To investigate the importance of the features in
each cluster, we utilized the Random Forest Classifier, a ma-
chine learning algorithm that builds an ensemble of decision
trees and makes predictions based on the average predic-
tion of each tree ( 49 ). For each cluster, we first converted
the cluster labels into One-vs-All binary labels, where each
class is binary and r epr esents whether a data point belongs
to the gi v en cluster or not. We then trained a Random For-
est Classifier on the data and extracted the feature impor-
tance scores using inf ormation gain. Inf ormation gain mea-
sures the reduction in entropy achie v ed by adding a partic-
ular feature to the decision tree and is used to rank the im-
portance of each feature in each cluster. 

Regression analysis 

We determined the signal size for CDS within-region sig-
nal, amino acid choice signal, and synonymous codon sig-
nal across all vertebrate and plant species. The signal size
of the CDS within the region served as our dependent vari-
able, while the latter two as independent variables. We car-
ried out a linear r egr ession analysis for different classes
of vertebrates, and exclusively for the Magnoliopsida class
in plants. Supplementary Table S2 contains the variable
weights. The r egr ession analysis was ex ecuted using the
scikit-learn python package ( 50 ). We also conducted a two-
tailed t -test to evaluate the significance of the variable
weights. 

RESULTS 

Genome-wide GC content characterization around TSS’s 

Here we study genome-wide averages of the GC content
centered around the TSS’s in a 2000 bp window, see e.g. the
b lack curv e in the upper left plot of Figure 2 for the hu-
man genome. We systematically break down such signals
into their individual components, which we call between-
r egion and within-r egion signals. The between-r egion sig-
nal is caused by the fact tha t dif fer ent r egions ha ve on a v-
erage different GC contents. E.g., alternating exons and in-
trons can lead to a non-uniform average GC profile in the
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Figure 2. GC signal around TSS for human, zebrafish, A. thaliana and C. reinhardtii . The plots on the leftmost column show the contributions of both 
between-region signals (BR) and within-region signals (WR) to the overall GC signals (FS). The plots in the middle column depict the transcript constituents 
of the between-region signal. The dots represent the GC content per base pair for differ ent r egions (as described in Eq. 2 , Materials and Methods) and 
mostl y a ppear as continuous curves. The dashed horizontal lines r epr esent the average GC content v alues of the v arious regions (Eq. 3 , Materials and 
Methods). The plots in the right column display the transcript constituents of the within-region signals. Both the middle and rightmost plots only show 

signals downstream of TSS. The negligible contributions of 3’UTR and 3’end flanking regions to the signal are not shown here and can be found in 
Supplementary Figure S2. 
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enome-wide av erage, e v en in a hypothetical case where the 
C content would be perfectly constant within all exons 

nd all introns. The fact that the GC content of any gi v en
ype of region is ne v er constant as a function of the distance
rom the TSS (e v en in the genome-wide average) gives rise 
o the within-region signal. This signal is especially interest- 
ng on coding exons, as this is the fraction of the total signal 
hat shows multiplexing of protein coding and mechanical 
nf ormation f or nucleosome positioning. 

Figure 1 illustrates the genome-wide average GC content 
er bp and its breakdown into between-region and within- 
egion signals for a hypothetical genome, centered at the 
SS. For simplicity, we assume three types of regions of 
qual lengths in all transcripts, see Figure 1 A. The dashed 

orizontal lines in b r epr esent the between-r egion compo- 
ent, which arises from the differences in average GC con- 
ent between regions. In addition, individual regions con- 
ribute via the within-region signal. This signal, which is 
he deviation of the full signal from the between-region 
omponent, accounts for non-constant GC profiles within 

egions, as seen in Figure 1 C. It reflects the freedom of 
ach region to itself incorporate mechanical information. 
s the within-region signal is centered around the between- 

egion signal, it contains also stretches with negati v e values. 
dding within-region and the between-region components 
roduces the full GC signal. 
In the following, we analyze the GC content profile 

round the TSS’s for vertebrates , plants , yeast, Drosophila 

elanogaster and Caenorhabditis elegans . While we focus on 

he GC signal profile for selected organisms in the next sub- 
ections, the supplementary S0 contains the profiles for all 
he organisms considered in this study. 

er tebr ates . Her e we pr esent the genome-wide GC sig- 
al around TSS’s for two vertebrates, human and zebrafish. 
tudies show that nucleosome positioning in human and 

ebrafish genomes correlates with intrinsic sequence prop- 
rties, where high GC rich sequences tend to have higher 
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nucleosome occupancy ( 4 , 11 , 51–53 ). The top two rows in
Figure 2 present the GC signals of these two vertebrates
and the breakdown of these signals into their various contri-
butions. The leftmost panels show the signal breakdown of
the full GC signal into the between-region and the within-
region components. The between-region signal before TSS
is constant as one averages only over the 5 

′ 
end flanking se-

quence. Downstream of the TSS, the between-region signal
f or zebrafish f ollows quite closely the full signal whereas for
humans the two curves differ substantially with the full sig-
nal being concave and the between-signal being convex. The
dif ference in curva ture is caused by the within-region signal
tha t fea tur es a broad peak center ed around 250 bp down-
stream of TSS. In zebrafish, on the other hand, the within-
signal is flat overall but shows a wave pa ttern tha t decays
with distance to the TSS. 

An important observation for both species is that both
the between-region and the within-region signal show
jumps in GC content around the TSS, but the full signal is
almost continuous. This suggests that the full GC content
might constitute a biolo gicall y meaningful signal, possibl y
for controlling the positions and stabilities of nucleosomes.

The middle panels of Figure 2 show the between-region
components broken down into their transcript region con-
stituents. These plots only show the relevant bp region,
namely the 1000 bp downstream of the TSS. The curves
(each actually a collection of points that appear continuous
at the resolution shown) depict the actual contributions of
the various transcript regions to the GC profile, while the
dashed horizontal lines gi v e their average GC values. Each
curve has been calculated by m ultipl ying the density distri-
bution of the corr esponding r egion with the region’s average
GC content; the densities alone can be inspected in Supple-
mentary Figure S1. If there were only one type of transcript
region at a gi v en bp position, the curve of that region would
touch the corresponding dashed line. As can be seen for hu-
mans, this is almost the case directly downstream of TSS
wher e the 5’UTR r egions dominate. Moving downstr eam,
CDS’s and introns become increasingly important, but fur-
ther downstream the density of the CDS’s decreases and in-
trons dominate. Because for humans the average GC con-
tent of introns is smaller than the average GC content of
5’UTR’s, the overall GC profile of the between-region sig-
nal decreases. A similar picture holds for the between-region
component of zebrafish, but here the CDS’s play a more im-
portant role already directly downstream of TSS. 

Finally, the right panels of Figure 2 present the within-
region signals in human and zebrafish. Here we observe a
drama tic dif ference betw een the human and the ze brafish
genome. Humans show a broad peak which is mainly
caused by the introns together with a very minor contribu-
tion from the CDS’s. Zebrafish, on the other hand, shows
a wave pattern to which several within-region signals con-
tribute: the first peak is caused e xclusi v ely by the 5’UTR’s,
the second peak mostly by introns (but ther e ar e also minor
contributions from 5’UTR and CDS) and the third peak
e xclusi v ely by introns. 

Note that the between-region and within-region compo-
nents have a rather different origin. The between-region
component results from an interplay between different av-
erage GC values of the various regions and the nonuniform
densities of these regions downstream of TSS. On the other
hand, the within-region signals feature one or se v eral peaks
positioned at well-defined distances from TSS, to which
various transcript regions individually contribute. The lat-
ter profile with its peaks emerging on top of a smoother
between-region GC profile has thus more of a signal char-
acter. But also the between-region component, which re-
sults from an interplay of se v er al tr anscript regions, con-
tributes strongly to the overall GC profile and thus influ-
ences positional pr efer ences and the associated stability of
nucleosomes. 

The GC profiles of other selected vertebrate organisms
(chicken, cow, macaque, mouse, pig, rat, orangutan and a
species of frog) show similar signaling patterns as the hu-
man GC signal, see Supplementary Figure S2. Most no-
tab ly, all these v ertebra te organisms also fea ture the broad
peak around 250 bp downstream of TSS, and the main con-
tribution to this peak always comes from the within-region
intron signal. Remar kab ly, also the largest peak contributed
by the introns in zebrafish is at that location (see Figure 2 ).

The curves of the various contributions to the full GC
signal presented in Figure 2 present the combined effect of
density and GC content of the corr esponding r egions. To
learn about the various contributions per bp, we introduce
in Figure 3 the normalised within-region signals, which we
obtain by dividing the within-region signals from Figure 2
by their densities (see Materials and Methods). For humans,
the effect of introns per bp is still large compared to other
r egions, Figur e 3 . On the other hand, in zebrafish the nor-
malized intron effect is only slightly more pronounced than
the CDS and 5 

′ 
UTR signals, Figure 3 . The wave pattern

is still clearly visible, including a contribution from the in-
trons to the first peak which was not visible in Figure 2 due
to the low density of introns at that position. Supplemen-
tary Figure S3 presents curves of normalised within-region
signals of other selected organisms. We observe that in all
the selected organisms the introns have the highest per bp
contribution of all the regions. 

Plants. For the examples presented so far, we found only
very small contributions of the CDS within-region signals
to the full signals. This means that there is not much evi-
dence that multiplexing between protein-coding and nucle-
osome positioning is important in these genomes, at least
on the genome-wide average around TSS. Remar kab ly, the
situation is different for plants, as shown in the following. 

The plots in the lower two rows of Figure 2 present the
GC signals and their components for the model organism
Arabidopsis thaliana , a small flowering plant, and Chlamy-
domonas reinhardtii , a unicellular green alga. The GC con-
tent for A. thaliana shows a peak downstream of TSS fol-
lowing a dip upstream of TSS, whereas C. reinhardtii shows
quite strong undulations in GC content with se v eral peaks
and dips. In A. thaliana , the position of the GC signal peak
downstream of TSS coincides with the nucleosome occu-
pancy peak mentioned in ( 54 ). Also, the GC content in
A. thaliana is enriched within the core of well-positioned
nucleosomes ( 54 ). Remar kab l y, w hen breaking down the
signals into their components in both the between-region
and the within-region signals, the contributions from CDS
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Figure 3. Normalised within-region signal of different regions for human, zebrafish, A. thaliana and C. reinhardtii . After removing the density effect from 

the within-region signal, the contributions from introns still dominate in human and zebrafish but also coding exons show substantial contributions. A. 
thaliana and C. reinhardtii are less affected by the normalization. 
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. reinhardtii , see Figures 2 and 3 , demonstrating the im- 
ortance of protein coding regions for GC signals in these 
lants. Additionally, for C. reinhardtii the phases of the sig- 
al contributions from CDS, 5 

′ 
UTR and introns are syn- 

hronised with each other, see Figure 2 , right. 
Also for other selected plants, the contributions of CDS 

o the GC signal are always important and typically higher 
han the contributions from other regions for both the 
etween-region and within-region signal (Supplementary 

igures S2 and S3). 

ther model or ganisms . It is established tha t G / C nu-
leotide enrichment correlates with nucleosome positioning 

n fly ( 52 , 55 ), worm ( 11 , 56 , 57 ) and yeast ( 3 , 7 , 11 ). Figure 4
hows the GC signal analysis for D. melanogaster (fly), C. el- 
gans (worm) and S. cerevisiae (yeast). For all three organ- 
sms we find a significant drop in the full GC signal imme- 
iately upstream of TSS caused by the within-region sig- 
al. Genome-wide studies in these organisms have shown 

hat the upstr eam r egion in the vicinity of TSS is associ- 
ted with nucleosome fr ee r egions (NFR) ( 3 , 17 , 52 , 56 ). In
he case of D. melanogaster the GC signal has a Z-shaped 

orm in the close vicinity of TSS, Figure 4 (left): The signal 
rst drops at −200 bp and then peaks at TSS and then drops 
gain at +100 bp. The dips in the GC signal downstream 

nd upstream of the TSS are associated with the NFR. As 
 result, the center of the +1 nucleosome is found 135 bp 

ownstream of TSS ( 52 ). For C. elegans the nucleosome oc- 
upancy maps in vitro ( 57 ) and in vivo ( 58 ) align well with
he GC signal profile in Figure 4 (middle). Also in yeast, Fig- 
re 4 (right), the upstream region is a NFR and the peak in 

he GC signal downstream of the TSS is associated with the 
1 nucleosome ( 59 ). 
We also studied the constituents of the between-region 

nd within-region signals for fly, worm and yeast (Supple- 
entary Figure S2). For the fly genome, the between-region 

ontribution to the GC profile downstream of TSS is rather 
at, as the strong variations in the various transcriptional 
egions almost cancel each other. The presence of a peak im- 
ediately followed by a dip in this region is mainly caused 

y the within-region 5’UTR signal. In worm, the GC signal 
hows a prominent peak downstream of TSS which reflects 
 peak in the CDS density, the transcriptional element with 

he highest average GC content. This is also consistent with 

he observation in ( 57 ) that exons are intrinsically more sus- 
eptible to nucleosome formation compared to introns. The 
ithin-region signal is rather flat. In the case of y east, tr an- 

cripts lack the 5’UTR and introns play a minor role. Due 
o the short lengths of many genes, the CDS contribution is 
artially taken over by the 3’ end within the 1000 bp window 

onsider ed her e. As their r especti v e av erage GC contents are
imilar, the resulting between-region profile is rather flat. 

lustering of organisms by GC signal 

n the previous section, we found large differences between 

he GC signals around TSS of different organisms, espe- 
ially in the way these signals came about through the com- 
ination of the various between-region and within-region 

omponents. Based on this observation we compare here 
he signals for a large number of organisms, namely 211 

ertebrates. To make this comparison feasible, we project 
he full signal and its contributing elements onto scalars. 
pecifically, we introduce the concept of signal size, defined 

s the deviation of the signal from its mean signal. The de- 
ails of this definition are explained in Methods. Note that 
his approach has a cost in that we loose information about 
he specific shape of the signals, but it allows us to compare 
arge numbers of organisms in one diagram. 

We use a clustering method called hierarchical clustering 

o group together vertebrates whose full GC signal results 
rom similar combinations of sub-signals. The clustering al- 
orithm takes into account six parameters, namely the sig- 
al sizes of the between-region signal and the constituents 
f the within-region signal for each organism. We exclude 
ignal contributions from the 5’ end flanking region for clus- 
ering because we focus here on the r egion downstr eam of 
SS. The Calinski-Harabasz score ( 47 ) and the silhouette 

core ( 48 ) indica te tha t the optimal number of clusters for
he 211 vertebrate organisms is two, as both scores maxi- 
ize this number of clusters (Supplementary Figure S4). 
Figure 5 A shows the two clusters with dissimilarity dis- 

ances. Cluster 1 mainly contains the Actinopterygii class, 
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Figure 4. GC signal profiles of D. melanogaster , C. elegans and S. cerevisiae . Each figure shows the full GC signal (FS) around TSS broken down into the 
between-region (BR) and the within-region components (WR). 
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but interestingly it has some mammalia species as well.
Cluster 2 contains mostly the mammalia class. Contrary to
expectation, the species belonging to the same classes are
not always grouped closely. For instance, duck and mal-
lard both belong to the Aves taxonomic class and are ge-
neticall y closel y related but fall into different clusters. Duck
her e r efers to the domestic duck, which is a descendant
of the mallard when the mallard has been domesticated in
China some 3000 years ago ( 60 ). Similarly, chimpanzee and
bonobo, the living species closest to humans, are not closely
grouped with humans. 

To gain a better understanding of these observations, we
investigated the contributions of the various signal sizes to
the formation of the clusters. Figure 5 B shows that the ma-
jority of the cluster segmentation depends on the signal size
fr om the intr on within-region signals ( 63% ), followed by sig-
nal size of the coding exon within-region signal ( 18% ). The
between-region signal has only about ( 4% ) contribution in
the formation of the clusters. This also explains why mal-
lard and duck are not grouped closely as they differ in their
intron within-region signals (see Supplementary S0). A sim-
ilar difference is also observed for humans , chimpanzees ,
and bonobos, with humans having different intron within-
region signals than chimpanzees and bonobos. 

If instead we take only two parameters, the total between-
r egion and within-r egion signals, to define the clustering,
we observe a different grouping of the species (see Supple-
mentary Figure S5). Duck and mallard are now grouped to-
gether but human is still not grouped with chimpanzee and
bonobo. The grouping is dominated by the within-region
signal, which contributes 92% to the clustering. In fact,
chimpanzees and bonobos have similar total within-region
signals tha t dif fer from the corresponding signal in humans.
Also duck and mallard have similar total within-region sig-
nals but the individual components differ, explaining why
they are far in the diagram in Figure 5 A but close in the
diagram in Supplementary Figure S5. 

We also conducted a similar analysis for plant species
and identified two distinct clusters (Supplementary Fig-
ure S5). Similar to the findings in vertebrates, genetically
related plant species are not always grouped together, in-
dica ting tha t the clustering is not solely based on genetic
r elatedness. Inter estingly, we found that in plants, the dif-
ference in between-region signal contributed significantly
(about 45% ) to the grouping of species. This is in contrast to
verte brates, where the betw een-region signal contribution is
very small due to its similarity across species. For exam-
ple, Galdieria sulphuraria , despite being closely related to
C. reinhardtii , is clustered with A. thaliana due to the differ-
ence in their between-region signals, which is also reflected
in their GC signal (see Supplementary S2). This highlights
the importance of considering the between-region signal in
plant species for accurate clustering. 

Overall, our results pro vide no vel insights into the diver-
sity of GC signal profiles in vertebrates and plants. Even
when they are evolutionary closely related, species create
different total GC signals around TSS and, e v en similar
total signals are obtained by prioritizing different tran-
script elements. Further investigations are necessary to un-
derstand the mechanisms underlying these similarities and
differences. 

Intron effects on GC signals 

So far we have considered the GC signal as a signal on
the DNA. Howe v er, it could be that the signals are not in-
tended for the DNA but for the mRNA instead. Of particu-
lar interest is here our finding, reported above, that introns
are the main contributors to the GC signal in vertebrates
but fall behind CDS and 5’UTR regions in plants. Do the
GC signals get stronger or weaker when the introns are re-
moved from the pre-mRNA transcripts? And is the behav-
ior of vertebrates and plants the same or opposite in this
regard? Should it be the case that signals increase with in-
tron removal, one could speculate that the GC signal on the
DNA is just a side effect of a signal on the mRN A w here
it might serve some other function, e.g. regulating trans-
lation speed in ribosomes, which would affect cotransla-
tional protein folding ( 42 ). For the following analysis, we
only consider the region downstream of the TSS, since the
upstr eam r egion does not contribute to the mRNA GC
signal. 
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A

B

Figure 5. Two clusters of vertebrate organisms. ( A ) The diagram shows the clusters formed by the hierarchical clustering algorithm based on Ward’s crite- 
rion using the signal size of the between-region signal and the within-region constituent signals. The values gi v e the le v el of dissimilarity (distance) between 
the organisms / clusters. The color of the lines r epr esents the cluster and the color of the boxes the taxonomic class. Ascidiacea, Amphibia, Chondrichthyes, 
Actinopteri, Myxini and Hyperoartia are grouped as ‘Others’ due to the low number of species in each of these classes. The height of the branches indicates 
the dissimilarity between clusters. ( B ) Stacked histogram illustrating the relati v e importance of the different signals for the formation of the clusters. The 
shaded area indicates the constituents of the within-region signal and emphasizes their importance over the between-region (BR) signal (white). 
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Ver tebr ates . Figure 6 A shows the comparison between the
signal profiles of pre-mRNA and mRNA sequences for
human and zebrafish. In humans, the full GC signal de-
ca ys faster f or the mRNA than f or the pre-mRNA. At the
same time, the between-region signal shape does not change
m uch, w hile the within-region signal loses its peak around
250 bp downstream of TSS. In contrast, the genome of ze-
brafish shows the opposite effect on the signal profile when
going from pre-mRNA to mRNA as the full signal flattens
and shows a higher GC content. This is closely mirrored by
the between-region signal. Finally, removing the introns for
the within-region signal leads to a loss of the characteristic
wave pattern. Supplementary Figure S6 provides compar-
isons for other selected vertebrates w hich typicall y exhibit
similar behavior as for the human genome. 

In Figure 6 B, we compare pre-mRNA and mRNA sig-
nal sizes for human, zebrafish and eight other vertebrates.
For the full signal, the signal strength is reduced in the
mRNA sequences compared to the pre-mRNA sequences.
This observation typically applies to other vertebrates as
well, see Supplementary Figure S7. The between-region sig-
nal size is also weaker for mRNA compared to pre-mRNA
for the selected organisms, except for chicken, macaque
and orangutan. Also in other vertebrate organisms, the
between-region signal is typically weaker in the mRNA se-
quence (Supplementary Figure S7). Within-region signal
sizes show the same trend, with the mRNA signal being
weaker than the pre-mRNA signal in almost all of the or-
ganisms, cf. Figure 6 B and Supplementary Figure S7. 

To get a more general ov ervie w, Figure 6 D shows the dis-
tributions of the full, the between-region and the within-
region signal sizes for various vertebrate taxonomic classes,
comparing pre-mRNA and mRNA sequences. These distri-
butions are consistent with the behavior we observed for in-
dividual organisms, namely that the full, the between-region
and the within-region signal sizes are smaller on average for
mRNA sequences than for pre-mRNA sequences. Note that
in general, Mammalia and Aves classes have higher signal
sizes for both sequences compared to other classes. 

Although introns contribute most significantly to the GC
signals downstream of TSS in most vertebrates (see Fig-
ures 2 and 5 ), removal of the introns, going from pre-mRNA
to mRNA, weakens the GC signal. This suggests that in
vertebrates the GC signal on mRNA is an a ttenua ted and
scramb led v ersion of the original signal present on the DNA
sequence, where it might serve to influence nucleosome po-
sitioning and stability around TSS. 

Plants. The right two columns in Figure 6 A show a com-
parison between pre-mRNA and mRNA sequences cen-
tered on TSS for A. thaliana and C. reinhardtii . For both or-
ganisms, the within-region signal remains almost the same
while there is a change in the full signal caused by a change
of the between-region signal. Since CDS and 5’UTR re-
gions contribute most to the full signal in pre-mRNA and
both regions are also present in the mRNA sequence, the
changes in the signals are not significant. 

Figure 6 C provides a comparison between 30 selected
species (including A. thaliana and C. reinhardtii ). In most
cases, the full signal sizes and the between-region signal
sizes are higher in pre-mRNA sequences than in mRNA se-
quences. On the other hand, the within-region signal size is
typicall y slightl y higher in the mRNA sequences compared
to pre-mRNA. Howe v er, this tendency is al ways strongly
compensated by the between-region signals. These observa-
tions can also be made in Supplementary Figure S7, which
provides a comparison of all the plants considered here. Un-
like verte brates, w e have not grouped plants into taxonomic
classes because the plants species mostly belong to the Mag-
noliopsida class, see Supplementary Table S2 for the exact
distribution of the species by taxonomic classes. Ne v erthe-
less, the Magnoliopsida class shows a significant difference
between DNA sequence and mRNA sequence for the full
signal, between-r egion and within-r egion signal [Wilco x on
ranked sign test, P < 0.0001]. 

Ov erall, as in v ertebrates and plants, GC signals are
stronger on the DNA and removal of introns weakens the
signal, suggesting that GC signals might be biolo gicall y rel-
evant on the DNA. This is also consistent with the obser-
va tion tha t the DNA GC signal has for some genomes ad-
ditional features, e.g. the characteristic undulations for the
zebrafish GC signal that disappear when going to mRNA,
see Figure 6 A. In addition, the fact that GC le v els just up-
stream of TSS match with GC content just downstream of
TSS, see Figure 2 , supports this notion. 

Amino acid effect on GC signals 

In this section we focus on the within-region signal of
CDS’s. This is of particular interest because coding exons
code for proteins and the question arises how they can also
carry a GC signal. As mentioned in the introduction, this
is possible in principle because the genetic code is degen-
erate. For the 18 out of 20 amino acids that have more
than one synonymous codon, there is always the possibil-
ity to change the GC content by switching between syn-
onymous codons. Howe v er, there is an alternati v e possi-
bility to generate a within-region CDS signal: exchanging
amino acids. It is known that many amino acids can be ex-
changed without affecting protein folding ( 61–63 ). For the
sake of the argument assume that each codon in a set of
synonymous codons is used equally likely. Then a change
in GC content at a gi v en codon position can be achie v ed
by changing from one amino acid to another amino acid
that has a different average GC content and similar phys-
iochemical properties. We define this average for a given
amino acid as the fraction of G’s and C’s of its set of syn-
onymous codons. This study focuses on the contribution of
amino acid choice as a whole to the formation of the GC
signal, without breaking the signal down into the individual
amino acid contributions. In the future we plan to investi-
gate whether an exchange between amino acids of similar
physiochemical properties has occurred in the evolution of
genomes. 

To determine the two possible contributions to the CDS
within-region GC signal, we use a similar scheme as be-
fore, namely we split the signal into its contributions. One
contribution is the amino acid choice, where we assign to
each amino acid the average GC content of its set of syn-
onymous codons, and the other contribution accounts for
the bias within the set of synonymous codons (see Materials
and Methods for details). 
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A

B C

D

Figure 6. Signal size comparison between pre-mRNA and mRNA sequences for vertebrates and plants. ( A ) GC signal comparison between pre-mRNA 

and mRNA sequences downstream of TSS for human, zebrafish, A. thaliana and C. r einhardtii . ( B ) Hea tmap of full, between-region and within-region 
signal size between pre-mRNA and mRNA for selected vertebrates. FS: full signal, BR: between-region signal and WR: within-region signal. ( C ) Same as 
(B) but for selected plant species. ( D ) Signal size comparison between pre-mRNA and mRNA sequences across vertebrate tax onomic classes. Wilco x on 
ranked sign test was used to compute the P -values between the groups. * P < 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001. 
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A

B

C

Figure 7. Contributions to the CDS within-region signal. ( A ) Synony- 
mous codon bias (red) and amino acid choice (blue) both contribute to the 
full CDS within-region signal (black) in humans but synonymous codon 
choice dominates in A. thaliana . ( B and C ) Signal size correlation between 
the amino acid choice and synonymous codon bias for all vertebrates and 
plants respecti v ely. r : Pearson coefficient, P : P -value. 
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Ver tebr ates . The plot on the left of Figure 7 A shows the
human CDS within-region signal (black) and the contribu-
tions from amino acid choice (blue) and from synonymous
codon bias (red). Remar kab ly, both sub-signals contribute
a pproximatel y equall y to the CDS within-region signal. The
profiles for other vertebrates are presented in Supplemen-
tary Figure S8. 

We investigated the correlation between amino acid
choice and synonymous codons signal size for all verte-
bra tes tha t we considered in this stud y. Figur e 7 B pr esents
the signal strength of the amino acid choice versus the
signal strength of the synonymous codon bias. These two
quantities are positi v ely correlated ( r = 0.58, P < 0.001).
We find that the relationship between amino acid choice
and synonymous codon signal size varies taxonomically.
While the synonymous codon bias largely influences the
CDS within-region signal in Mammalia, exceptions like Al-
paca and Megabat show a dominant amino acid choice. In
Aves, the amino acid choice mostly shapes the CDS within-
region signal. Howe v er, the synonymous codon bias is more
prominent in Actinopterygii, Reptilia, and ‘Others’ groups.
Supplementary Table S2 further solidifies these conclusions
with weights of amino acid choice and synonymous codon
contributions deri v ed from r egr ession analysis. 

Plants. The plot on the right of Figure 7 A shows the con-
tributions for the CDS within-region signal for A. thaliana .
In contrast to human, the synonymous codon bias is mainly
responsible for the CDS within-region signal. Looking at
all available plant species in Figure 7 C, we find, as in ver-
tebrates, a positi v e correlation of the signal sizes between
amino acid choice and synonymous codon bias with r =
0.81 and P < 0.001. Mor eover, the CDS within-r egion sig-
nal is primarily formed by either a pproximatel y equal con-
tributions from the amino acid choice and synonymous
codons, or mostly by synonymous codons with a minor
contribution from the amino acid choice. The contribu-
tion of the amino acid choice is generally not dominant in
plants, which is in contrast to vertebrates (Supplementary
Table S2). 

In summary, GC signals on coding exons have two differ-
ent ways of encoding GC content. The first possibility con-
sists of exploiting the degeneracy of the genetic code and
influencing the GC content by choosing between synony-
mous codons. This is an example of multiplexing between
protein sequence information and nucleosome positioning,
as previously discussed ( 41–43 ). The second option makes
use of the fact that some amino acids can be exchanged
without affecting protein folding and adjusts the GC con-
tent by choosing amino acids that have synonymous codons
with an appropriate GC content on av erage. Remar kab ly,
depending on the vertebrate class, either the first or the sec-
ond option dominates the within-region CDS signal. On the
other hand, plants either use both contributions equally or
mostly use synonymous codon bias to create GC signals. 

DISCUSSION 

In this study, we analyzed the various contributions from
transcriptional elements (mainly 5’ UTR’s, coding exons
and introns) to the peaks in GC content observed around
transcription start sites (TSS) in genome-wide averages of
multicellular organisms. The motivation behind this study
is that nucleosomes exhibit pr efer ences for certain base pair
sequences, including a pr efer ence for GC-rich DNA. Note,
howe v er, that indi vidual nucleosomes near a TSS can only
‘see’ the specific base pair sequence around that particu-
lar TSS and do not care about genome-wide averages. This
leads to the question whether genome-wide averages are
useful quantities to look at. 
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To learn more about this problem, we developed a classi- 
cation scheme by decomposing the genome-wide GC sig- 
al into two types of contributions from transcriptional ele- 
ents: between-region and within-region signals. Between- 

 egion signals r eflect the fact that different transcriptional 
lement may have different average GC content, while 
ithin-region signals account for possible inhomogeneities 

n the average GC content within gi v en elements as a func-
ion of distance from TSS. We found that both types of sig- 
als ar e pr esent in the various genomes considered here. 
his is important as it shows that GC peaks are not only a 

onsequence of the densities of the different transcriptional 
lements but that ther e ar e systematic within-r egion contri- 
utions as seen in Figure 3 , which shows normalized within- 
egion signals. This suggests that genome-wide averaging is 
ndeed a useful approach to learn about nucleosome posi- 
ioning effects around TSS. 

More specifically, in this study we first performed an anal- 
sis for two vertebrates and two plants and found large dif- 
erences in the various contributions to the signals between 

ertebrates and plants. We found also large differences be- 
ween the two vertebrates and between the two plants, but 
her e wer e also similarities. W ha t both vertebra tes have in
ommon is that the contributions from the introns domi- 
ate, while for the plants the contributions from the coding 

xons are most important. 
Next, we presented an overview of the GC signal 

trengths for all available vertebrates by performing a clus- 
er analysis, finding two clusters for the vertebrates. The 
mportant factors distinguishing the clusters are between- 
egion and within-region signals from introns. We observed 

n our analysis that some vertebrate classes stand out, espe- 
iall y Actinopterygii, w hich mostl y belong to one cluster. In 

eneral, howe v er, e volutionary closely related species show 

ften large variations in their signal contributions. As a re- 
ult, these species e v en belong to different clusters. 

We also addressed the question of whether the GC sig- 
al is meant for the original DNA base pair sequence or 
as a potentially more important function downstream in 

he production of the proteins. To do this, we compared sig- 
al strengths on sequences with and without introns, i.e. on 

re-mRN A and on mRN A. This anal ysis indica ted tha t sig-
al str engths ar e stronger on pr e-RNA, suggesting that the 
SS GC-peaks have more likely a biological function along 

he DN A, possibl y to control nucleosome positioning and 

tability. 
Finally, we focused on one particular contribution, 

amely the within-region signal in coding exons. This is of 
articular interest since coding exons encode for proteins 
ut also show a non-vanishing within-region signal that 
ontributes to the GC signal. This type of multiplexing is 
ossible because of the degeneracy of the genetic code. Re- 
ar kab ly, howe v er, we f ound f or the human genome that

nly about half of the signal stems from the biased choice 
f synonymous codons. An equally important contribution 

omes from the choice of amino acids which is especially 

trong closer to the TSS. For many mammals the amino acid 

hoice is e v en the dominant contribution whereas in plants 
he opposite is typically the case. 

The observa tion tha t the amino acid choice contributes 
o the CDS within-region signal raises the possibility that 
odon usage bias and amino acid sequence ma y pla y a role 
n nucleosome positioning in these organisms. Further in- 
estigation is needed to determine the biological signifi- 
ance of these findings and their potential implications for 
ucleosome positioning in eukaryotes. In this context it will 
e useful to study this signal for different classes of genes 

n various organisms. One can also a ppl y our classification 

cheme to other genomic landmarks, e.g. to intron-exon 

oundaries. 
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