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ABSTRACT
WeproposeDoE2Vec, a variational autoencoder (VAE)-basedmethod-
ology to learn optimization landscape characteristics for down-
stream meta-learning tasks, e.g., automated selection of optimiza-
tion algorithms. Principally, using large training data sets generated
with a random function generator, DoE2Vec self-learns an infor-
mative latent representation for any design of experiments (DoE).
Unlike the classical exploratory landscape analysis (ELA) method,
our approach does not require any feature engineering and is easily
applicable to high-dimensional search spaces. For validation, the
proposed approach is used for three downstream classification tasks.
We show that the latent representations can significantly boost per-
formances when being used complementary to the classical ELA
features.

CCS CONCEPTS
• Computing methodologies → Continuous space search;
Feature selection.
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1 INTRODUCTION
Solving real-world black-box optimization problems can be ex-
tremely complicated, particularly if they are strongly nonlinear and
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require expensive function evaluations. As suggested by the no free
lunch theorem, there is no such things as a single-best optimization
algorithm, that is capable of optimally solving all kind of problems.
The task in identifying the most time- and resource-efficient opti-
mization algorithms for each specific problem, also known as the
algorithm selection problem (ASP) (see [16]), is tedious and chal-
lenging, even with domain knowledge and experience. In recent
years, landscape-aware algorithm selection has gained increasing
attention from the research community, where the fitness land-
scape characteristics are exploited to explain the effectiveness of
an algorithm across different problem instances (see [19, 21]). Be-
yond that, it has been shown that landscape characteristics are
sufficiently informative in reliably predicting the performance of
optimization algorithms, e.g., using machine learning approaches
(see [1, 3, 5]). In other words, the expected performance of an opti-
mization algorithm on an unseen problem can be estimated, once
the corresponding landscape characteristics have been identified.
Interested readers are referred to [6, 12].

Exploratory landscape analysis (ELA), for instance, considers six
classes of expertly designed features, including 𝑦-distribution, level
set, meta-model, local search, curvature and convexity, to numeri-
cally quantify the landscape complexity of an optimization problem,
such as multimodality, global structure, separability, plateaus, etc.
(see [10]). Each feature class consists of a set of features, which can
be relatively cheaply computed. Other than typical ASP tasks, ELA
has shown great potential in a wide variety of applications, such
as understanding the underlying landscape of neural architecture
search problems in [23] and classifying the black-box optimiza-
tion benchmarking (BBOB) problems in [15]. Recently, ELA has
been applied not only to analyze the landscape characteristics of
crash-worthiness optimization problems from automotive industry,
but also to identify appropriate cheap-to-evaluate functions as rep-
resentative of the expensive real-world problems (see [9]). While
ELA is well established in capturing the optimization landscape
characteristics, we would like to raise our concerns regarding the
following aspects.

(1) Many of the ELA features are highly correlated and redun-
dant, particularly those within the same feature class (see
[24]).

(2) Since ELA features are manually engineered by experts, their
feature computation might be biased in capturing certain
landscape characteristics (see [17]).

515

https://orcid.org/0000-0002-0013-7969
https://orcid.org/0000-0003-4550-5777
https://orcid.org/0000-0002-4025-8773
https://orcid.org/0000-0001-8302-0100
https://orcid.org/0000-0001-8760-1682
https://orcid.org/0000-0001-6768-1478
https://doi.org/10.1145/3583133.3590609
https://doi.org/10.1145/3583133.3590609
https://doi.org/10.1145/3583133.3590609
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3590609&domain=pdf&date_stamp=2023-07-24


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Bas van Stein, Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, and Thomas Bäck

(3) ELA features are less discriminative for high-dimensional
problems (see [11]).

Instead of improving the ELA method directly, e.g., searching for
more discriminative landscape features, we approach the problems
from a different perspective. In this paper, we introduce an auto-
mated self-supervised representation learning approach to charac-
terize optimization landscapes by exploiting information in the la-
tent space. Essentially, a deep variational autoencoder (VAE) model
is trained to extract an informative feature vector from a design of
experiments (DoE), which is essentially a generic low-dimensional
representation of the optimization landscape. Thus, the name of
our approach: DoE2Vec. While the functionality of our approach
is fully independent of ELA, experimental results reveal that its
performance can be further improved when combined with ELA
(and vice versa). To the best of our knowledge, a similar application
approach with VAE in learning optimization landscape characteris-
tics is still lacking. Section 2 briefly introduces the state-of-the-art
representation learning of optimization landscapes as well as the
concepts of (variational) autoencoder. This is followed by the de-
scription of our methodology in Section 3. Next, we explain and
discuss our experimental results in Section 4. Lastly, conclusions
and outlooks are included in Section 5.

2 REPRESENTATION OF OPTIMIZATION
LANDSCAPE

In the conventional ELA approach, landscape features are computed
primarily using a DoE of some samples points W = {𝑤1, ...,𝑤𝑛}
evaluated on an objective function 𝑓 , i.e., 𝑓 : R𝑑 → R, with𝑤𝑖 ∈ R𝑑 ,
𝑛 represents sample size, and 𝑑 represents function dimension. The
objective function values 𝑓 (𝑤𝑖 ), 𝑖 ∈ {1, . . . , 𝑛} are the inputs of VAE
models in DoE2Vec. In this work, we consider ELA features simi-
lar to those in [9], which do not require additional sampling, and
compute them with the package flacco by [7]. These features in-
clude commonly used dimensionality reduction approaches such as
principal component analysis (PCA), a number of simple surrogate
models and many others.

To overcome the drawbacks of the ELA approach, attentions
have been focused on developing algorithm selection approaches
without requiring landscape features. For example, [13] proposed
two feature-free approaches using a deep learning method, where
optimization landscapes can be represented through either 1) image-
based fitness maps or 2) graph-like fitness clouds. In the first ap-
proach, convolutional neural networks were employed to project
data sets into two-dimensional fitness maps, using different di-
mensionality reduction techniques. In the second approach, data
sets were embedded into point clouds using modified point cloud
transformers, which can accurately capture the global landscape
characteristics. Nonetheless, the fitness map approach suffered from
the curse of dimensionality, while the fitness cloud approach was
limited to fixed training sample size. Additional relevant works
can be found in [14, 18]. Unlike these approaches, which were di-
rectly used as classifiers, the latent feature sets generated by our
proposed approach can be easily combined with other features,
such as ELA features, for classification tasks. In our work, we do
not propose to replace conventional ELA features, but to actually
extend them with autoencoder (AE) based latent-space features.

Since the implementation of both approaches mentioned above
is not available, a comparison to our work in terms of classifying
high-level properties is only feasible by directly comparing their re-
sults on a identical experimental setup. Following this, results from
the downstream tasks in this work can partially be compared to
the mentioned results in [18], including the standard PCA, reduced
multiple channel (rMC) and a transformer based approach (Transf.),
taking into account that additional hyperparameter tuning was
involved in their classification experiments with ELA features.

Our approach is capable of learning the representations of op-
timization landscapes in an automated, generic and unsupervised
manner, with the advantage that the learned features are not biased
towards any particular landscape characteristic. Unlike previously
mentioned approaches, our proposed method is independent of the
sampling method. By using only fully connected (dense) layers that
learn from one-dimensional (flattened) landscapes, an AE or a VAE
is, in theory, capable of learning any number of input-dimensions
without scaling difficulties. Furthermore, the fast-to-train (V)AE
models can be easily shared in practice.

2.1 (Variational) Autoencoder
A standard AE usually has a symmetrical architecture, consisting of
three components: an encoder, a hidden layer, also known as bottle-
neck, and a decoder. In short, an encoder projects the input spaceX
to a representative feature spaceH , i.e., 𝑒 : X −→ H , while a decoder
transforms the feature space back to the input space𝑑 : H −→ X̂ (see
[2]). In other words, AE attempts to optimally reconstruct the origi-
nal input spaceX, by minimizing the reconstruction error L(X, X̂),
e.g. mean squared error, during the (unsupervised) training process.

Unlike AE, the latent space of a Variational Auto Encoder (VAE)
is encoded as a distribution by using a mean and variance layer,
together with a sampling method. Following this, the latent space
can be properly regularized to provide more meaningful features.
Detailed explanations regarding VAE can be found in [8].

2.2 Black-Box Optimization Benchmarking
The development of DoE2Vec is based on the well-known aca-
demic BBOB suite by [4], consisting of altogther 24 noise-free
real-parameter single objective optimization problems of different
landscape complexity. For each BBOB problem, the global optimum
(within [−5, 5]𝑑 ) can be randomly shifted, e.g., through translation
or rotation, to generate a new problem instance.

3 DOE2VEC
Generally, our proposed method uses a VAE with an architecture
of altogether seven fully connected layers, where rectified linear
unit (ReLU) activation functions are assigned to the hidden layers,
while a sigmoid activation function is used for the final output layer
of the decoder. The encoder is composed of four fully connected
layers with 𝑑𝑖𝑚(𝑋 ) depending on the DoE sample size 𝑛, starting
with the input layer size 𝑛, two hidden layers with sizes 𝑛/2 and 𝑛/4
and the latent size 𝑙𝑠 (𝑙𝑠 < 𝑛/4) for the mean and log variance of
the latent space. The decoder is composed of three fully connected
layers with sizes 𝑛/4, 𝑛/2 and 𝑛 for the final output layer. The focus
of our approach lies on VAE, rather than AE, because it has the
additional benefits of regularizing the latent space without loss of
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generalisation. For comparison, we consider a standard AE model
as well (with the same number of hidden layers, except that the
latent space is now a single dense layer, instead of a mean and log
variance layer with a sampling scheme). Full specifications of the
different models are available in our Github repository ([20]), while
pre-trained models are also available on Huggingface.

The general workflow of DoE2Vec can be summarized as follows:
(1) First, a DoE of size 2𝑚 is created, where𝑚 is a user defined

parameter. By default, a Sobol sequence is used as sampling
scheme, but any sampling scheme or even a custom DoE can
be utilized in practice.

(2) The DoE samples, initially within the domain [0, 1]𝑑 , can be
re-scaled to any desired function boundaries, as the DoE2Vec
method is scale-invariant by design.

(3) Next, the DoE samples are evaluated for a set of functions
randomly generated using the random function generator
from [9]. The main advantage of using this function genera-
tor is that a large training set can be easily created, covering
a wide range of function landscape of different complexity.

(4) Following this, all objective function values are first re-scaled
to [0, 1] and then used as input vectors to train (V)AEmodels.

(5) Lastly, the latent space of the trained V(AE) models can be
used as feature vectors for further downstream classification
tasks, such as optimization algorithm selection.

In the next section, we will show that the learned feature repre-
sentations have attractive characteristics and they are indeed useful
for downstream classification and meta-learning tasks.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this work, we have conducted altogether four experiments for
different research purposes, but only one experiment is included in
this paper. For the remaining three experiments, that investigate
the quality of the VAE models and the learned latent space, we
refer to the full paper [22]. The experimental setup presented here
includes three downstream multi-class classification tasks to show
the potential of the proposed approach in practice, using the latent
feature vectors as inputs.

In our experiments, we fix the sampling scheme to a Sobol se-
quence and𝑚 to eight, ending up with a DoE of 256 samples. Unless
otherwise specified, all AE and VAE models are trained on a set of
250, 000 five-dimensional (5𝑑) random functions.

The DoE2Vec approach is designed to learn characteristic rep-
resentations of an optimization landscape, which can be verified
through a classical classification task of high level function prop-
erties. These high level properties, such as multimodality, global
structure and funnel structure, are important for the ASP, as they
often determine the difficulty of an optimization problem. See [18]
for the table that illustrates the BBOB functions and their associated
high level properties.

In this experiment, a standard random forest (RF) model is im-
plemented for the multiclass classification tasks based on the latent
representations learned by four DoE2Vec models, consisting of
AE-24, AE-32, VAE-24 and VAE-32. In other words, the high level
properties of a BBOB function are to be predicted using the latent
representations. Again, we compare the DoE2Vec approach against

the classical ELA method, which is specifically constructed to excel
in exactly this kind of function property classification tasks. Beyond
that, a combination of classical ELA features with a VAE-32 model
is included to evaluate the complimentary effect of the different
feature sets.

The classification results (macro F1 scores) of the different fea-
ture sets are summarized in Table 1. It is not surprising that the
ELA features generally perform very well and outperform the latent
features most of the time, especially in classifying the global struc-
ture and multimodal landscapes. Fascinatingly, the classification
performances can be significantly improved when the DoE2Vec
is combined with the classical ELA method, indicating that both
feature sets seem to be complimentary to each other.

5 CONCLUSIONS AND FUTUREWORK
In this work we propose DoE2Vec, a VAE-based approach to learn
the latent representations of an optimization landscape, similar to
the classical landscape features. Using a wide set of experiments (see
[22]), we have shown that DoE2Vec is able to reconstruct a large set
of functions accurately and that the approach can be used for down-
streammeta-learning tasks, such as algorithm selection.We provide
an open-source documented implementation of our package at [20],
with visualizations and video explanations. Pre-trained models
(weights) are available on Huggingface. The proposed methodology
can be effectively used next to existing techniques, such as clas-
sical ELA features, to further increase the classification accuracy
of certain downstream tasks. In fact, DoE2Vec can learn good fea-
ture representations for optimization landscapes and has several
advantages over the ELA approach, such as feature engineering
or selection knowledge is not required, domain knowledge in ELA
is not needed and it is applicable to optimization tasks in a very
straightforward manner.

Nonetheless, there are a few known limitations to the proposed
method, such as 1) our approach is scale-invariant, but not rotation-
or translation-invariant. Using a different loss function to train the
autoencoders might be able to improve this. 2) If a custom DoE
sample is used, the model needs to be trained from scratch (no
pre-trained model available). This typically takes a few minutes up
to an hour, depending on the sample size 𝑛 and number of random
functions to train on. 3) The learned feature representations are
a black-box that are hard to interpret directly. In future work, we
plan to improve our approach by tackling some of the challenges
mentioned.
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