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Genetic analysis of blood molecular
phenotypes reveals common properties
in the regulatory networks affecting
complex traits

A full list of authors and their affiliations appears at the end of the paper

We evaluate the shared genetic regulation of mRNA molecules, proteins and
metabolites derived from whole blood from 3029 human donors. We find
abundant allelic heterogeneity, where multiple variants regulate a particular
molecular phenotype, and pleiotropy, where a single variant associates with
multiple molecular phenotypes over multiple genomic regions. The highest
proportion of share genetic regulation is detected between gene expression
and proteins (66.6%), with a furthermedian shared genetic associations across
49 different tissues of 78.3% and 62.4% between plasma proteins and gene
expression. We represent the genetic and molecular associations in networks
including 2828 known GWAS variants, showing that GWAS variants are more
often connected to gene expression in trans than othermolecular phenotypes
in the network. Our work provides a roadmap to understanding molecular
networks and deriving the underlying mechanism of action of GWAS variants
using different molecular phenotypes in an accessible tissue.

Genome-wide association studies (GWAS) can explain how genetic
variation contributes to phenotypic variation by associating particular
genomic regions to a trait of interest, often with the underlying
assumption that one or multiple genes mediate this association.
However, identifying the mediating molecules is still a challenge, as a
large proportion of GWAS variants are located in noncoding regions
with no obvious gene target1. Molecular studies at the population level
can be used to identify these mediating molecules, by testing whether
the genetic variant associated with a complex trait is also associated
with gene expression levels. These expression quantitative trait loci
(eQTLs) studies have been very successful in identifying molecular
regulatory regions and candidate genes2,3. However, to understand the
full causal relationship between genetic variants and complex traits,
and the various stages appropriate for clinical intervention, we require
studies with deep molecular phenotyping.

Recent studies have focused on molecular regulatory processes
associated to GWAS studies affecting the abundance of phenotypes
other than mRNA expression, such as circulating metabolites4, plasma

proteins5–7 or other molecular phenotypes8,9. However, these studies
often focus on one additional type of molecular phenotype, revealing
only a few elements of the complete molecular path between a GWAS
variant and disease. The few studies that have explored the relation-
ships between multiple phenotypes derived from samples from the
same individuals are often limited in sample size for genetics
analyses10. A challenge for these types of study is to integrate genetic
associations across molecular phenotypes to understand the down-
stream consequences of genetic perturbations and their cascade
effects through different layers of regulation. Integrated information
from these studies will be key to understand how the relationships
between multiple perturbations and phenotypes define complex trait
variability11.

An additional challenge for employing molecular phenotypes to
identify the full causal relationship between genetic variants and
complex traits is the availability of samples from the relevant disease
tissue or cell type.Our ownwork haspreviously shown thatusing eQTL
analyses to identify genes mediating GWAS activity benefits greatly
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from data in a disease-relevant tissue3. For example, it took a moder-
ately large gene expression study in pancreatic islets to detect evi-
dence that the gene TCF7L2mediates the activity of the type 2 diabetes
(T2D) loci with the same name. However, and in agreement with other
publications9,12, we also observed that many genetic effects are often
shared across tissues, allowing to some extent the use of proxy tissues
to study the genetics of common diseases. Given the practical diffi-
culties of obtaining multiomics datasets from nonaccesible tissues, a
question that remains unanswered is how deep molecular phenotyp-
ing in accessible tissues such as blood may aid in understanding the
genetics of complex diseases.

Here, we use data from the DIabetes REsearCh on patient straTi-
fication (DIRECT) consortium to investigate the genetic regulation of
multiplemolecular phenotypes.Using blood andplasma samples from
DIRECT participants, we performed local (cis) and distal (trans)
quantitative trait loci (QTLs) analysis in derived gene expression,
protein and metabolite phenotypes. A deep analysis of these QTLs
investigated allelic heterogeneity and pleotropic effects shared across
molecular phenotypes with local and distal effects. Comparison with
genetic associations across multiple tissues allowed us to evaluate the
value of deep phenotyping in an accessible tissue to understand the
genetics of complex traits. Visualization and characterization of

regulatory networks from shared QTLs across phenotypes was used to
connect clusters of genetic regulation across phenotypes and toGWAS
signals. Our work has implications for the mechanistic understanding
of the activity of GWAS variants, the identification of therapeutic tar-
gets for complex genetic diseases treatment and the general principles
of genetic regulation of molecular phenotypes and complex traits.

Results
Identification of local genetic regulation of molecular
phenotypes
The DIRECT dataset consists of 3029 individuals of European descent,
with genotype information, gene expression quantified by RNA
sequencing (RNA-seq), targeted proteomics (multiplexed immuno-
assays) and metabolites (targeted and untargeted mass spectrometry)
in whole blood (Fig. 1A, Methods, Supplementary Table 1). To identify
independent local (cis-) genetic effects that regulatemRNA expression
(cis-eQTLs) and levels of circulating protein (cis-pQTLs), we performed
QTLanalyses followedby a stepwise regression conditional analysis for
each phenotype. We identified independent significant associations
for 94.4% (15,305) of genes and 97.3% (363) of proteins (Supplemen-
tary Table 2, Methods, Supplementary Data 1–3), finding similarities in
the regulation of both gene expression and proteins (Fig. 1B–E, and

Fig. 1 | Multiomic QTL analysis identifies extensive allelic heterogeneity and
pleotropic effects across molecular phenotypes. A The DIRECT consortium
derived genetic, transcriptomic, proteomic and metabolite data from blood and
plasma samples from 3029 individuals. Significant genetic associations (FDR<
0.05) after linear regression between the molecular phenotypes and SNPs in cis
(cis-QTLs) and trans (trans-QTLs or GWAS) were used to build a network of genetic
perturbations affecting molecular phenotypes. Partially created with BioR-
ender.com. B Location of the lead eSNP with respect to the TSS of the significantly
associated genes (FDR<0.05) for cis-eQTL. The most associated eSNP per gene
(primary) is shown in black (n = 15,305). Secondary cis-eQTL are shown in orange
(n = 44,667). Data shows the -log10 P values of the linear regressions between gene
expression and SNPs, n = 3029. C Number of cis-eQTLs per gene, ranging from 1 to
38.D The location of the SNPs acting as cis-pQTLs (pSNPs) centred around the TSS

of the coding gene. The most associated pSNP per protein (primary) is shown in
black (n = 373). Secondary cis-pQTL are shown in orange (n = 1217). Stronger cis-
pQTLs were significantly closer to the canonical TSS of the gene coding the protein
than secondary signals (Wilcoxon test = 9.54e-25). Data shows the -log10 P values of
the linear regressions between proteins abundance and SNPs, n = 3027. E Number
of cis-pQTLs per protein, ranging from 1 to 19. F Integration of cis-eQTLs identified
the largest cis-network of local regulatory genetic effects for genes around
POLR2J2. The lower lollipop plot shows the genomic location of the genes (boxes)
and SNPs (lollipops), coloured by the associated genes. G Abundance of genes
sharing the lead cis-eSNPs ordered by the distance between the TSS of the pair of
genes in Mb. H Pairs of genes with the same lead eSNP (n = 583). Data show the
-log10 P values of the linear regressions between gene expression and the common
SNPs, adjusted by the direction of the effect of the eSNP.
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Supplementary Fig. 1A–F). For example, 83.8% of the genes and 86.7%
of the proteins with cis-QTLs were associated with multiple SNPs,
demonstrating extensive allelic heterogeneity. However, functional
enrichment analysis of eSNPs relative to pSNPs, using available
ChromHMM annotations from 14 blood cell lines13 and VEP
annotations14, found these two classes of regulatory variants had dif-
ferent properties. pSNPs were enriched in 5’ UTR variants relative to
eSNPs (OR = 2.84, P value = 8.6e-16) and in variants in zinc finger pro-
tein binding sites (up to OR= 10.34, P value = 1e-3), a common DNA-
bindingmotif involved inprotein-DNA interactions.On theother hand,
eSNPs were enriched in active transcriptional start sites (TSS) (OR
E044 = 4.95, P value = 7.7e-03) (Supplementary Fig. 1G and 1H, Sup-
plementary Data 4). In summary, the abundance of independent local
genetic regulation identified here supports extensive allelic hetero-
geneity regulating molecular phenotypes12.

Pleiotropic effects, when one SNP affects multiple molecular
phenotypes, were also common among cis-QTLs and identified net-
works of local regulatory genetic effects shared across nearby genes
(Fig. 1F). For cis-eQTLs, these networks included 1,924 examples of
one SNP (eSNP) associated to the expression of two or more genes
(Supplementary Data 5). For proteins with limited number of phe-
notypes (n = 373), just 3 SNPs were associated (pSNP) to two proteins
each, all with the same direction of effect: rs2405442 regulated PILRB
and PILRA, rs1130371 CCL18 and CCL3, and rs7245416 CD97 and
EMR2 (Supplementary Fig. 2A). For cis-eQTLs, genes with shared
eSNPs had a mean distance of 0.14Mb, with 30.30% of the pairs
showing the opposite direction of effect for the two cis-eQTLs
(Fig. 1G–J). For example, the C allele in rs907612, a variant previously
associated withmonocyte abundance15, increased gene expression of
the lymphocyte-specific protein 1 (LSP1) while decreasing the gene
expression of IFITM10, a gene that codes for the interferon induced
transmembrane protein 10 (Supplementary Fig. 2B). To better
understand how pleiotropic SNPs may affect gene expression, we
annotated genes to topologically associated domains (TADs) called
in 8 different blood cell types16. Across the different cell types, we
found that on average 87% of the pleiotropic eSNPs were only asso-
ciated with genes within the same TAD, while 13% were associated
with genes in 2 different TADs (Supplementary Data 6). Moreover, we
observed that pairs of genes associated with a variant with opposite
direction of effect were more likely to be further away from each
other than those where the variant had the same direction of effect
on both genes (Wilcoxon test P value = 7.16e-15), and were more
likely to be located on different DNA strands (OR = 1.52, Fisher test P
value = 4.21e-06). An enrichment analysis of SNPs associated to two
or more genes with opposite direction of effects (N = 583 eSNPs)
using VEP found enrichment for “SNPs downstream genes” (Supple-
mentary Fig. 2C). This suggests that the location of the effect allele
with respect to the gene body, e.g.: up- or downstream the gene TSS,
influences the effect it may have in regulating the expression of the
genes. The enrichment analysis using ChromHMM annotations
found SNPs with opposite directions of effects were enriched in
active enhancers for multiple cell types from peripheral blood
(OR = 10.4, P value = 2.38e-03); while SNPs with same direction of
effect were enriched in regions classified as “transcription” and
“transcription regulation” among others (Supplementary Fig. 2D).
These suggest those eSNPs with the same direction of effects on
multiple genes may have a more direct and stronger effect on
expression by promoting transcription, while those with opposite
effects may have effects mediated by other factors such as enhancer
regulation. In summary, our results support previous reports of
abundant pleiotropic effects by cis-eQTLs12 with limited information
for cis-pQTLs. Given the increased number of proteins and samples
evaluated in pQTL studies and reports of overlapping genetic
architecture properties with gene expression17–19, we expect these
pleiotropic effects to be also abundant at the protein level.

Distal genetic regulation shared properties with local regulation
Distal genetic regulation also exhibited allelic heterogeneity and
pleotropic genetic effects for gene expression, proteins and metabo-
lites. To identify trans-QTLs, we first performed genome-wide dis-
covery analyses identifying 1,670 (11.04%) and 139 (37.26%)
significantly associated SNPs with gene expression and proteins,
excluding a 5Mb window around the TSS of each phenotype (Meth-
ods). Metabolites, which do not have a genomic location of reference,
such as a TSS, were evaluated without excluding any window, identi-
fying 172 metabo-QTLs (49.2%). Using a conditional analysis scan we
identified independently associated trans-QTLs for each of the three
phenotypes. Similar to cis-QTLs, we found evidence that multiple
variants were often associated with a phenotype in trans, with an
average of 1.38 independent trans associations discovered for each
gene, 1.18 for proteins and 1.75 formetabolites (SupplementaryTable 1,
Supplementary Data 7–9, Supplementary Fig. 3A–D). Similarly, 20.65%
of genes with at least one trans-QTL were associated with 2 or more
variants, compared to 25.46% of proteins and 39.53% ofmetabolites. In
contrast, pleiotropic regulation was less common for proteins with
8.24% of the pSNPs associated with 2 or more proteins in trans, com-
pared to 14.57% and 17.79% of the SNPs associated with gene expres-
sion and metabolites in trans (Supplementary Fig. 3E).

Trans effects on gene expression have been shown to also act as
cis-eQTLs20. For example, a local effect on the expression of a tran-
scription factor can have downstream consequences on the gene
expression of a distal gene. To investigate the common regulatory
processes between cis and trans regulation, we looked for trans-QTLs
which also acted as cis-QTLs and found significant cis-eQTL effects for
19.39% (n = 262) of 1,351 trans-eSNPs (Supplementary Fig. 4A–H). For
proteins, we found no trans-pSNPs that were also acting as cis-pSNPs.
Given that these comparisons are limited by differences in significance
thresholds and multiple testing, we estimated the proportion of sig-
nificant trans-eSNPs that also affected local molecular phenotypes and
applied theπ1methodology to estimate the proportion of associations
from the alternative hypothesis3,21. We estimated that 77.34% of trans-
eSNPs and 0% of trans-pSNPs had an effect on local gene expression
and proteins, respectively (Supplementary Fig. 4I–L). This estimate
was higher for trans-pSNPs acting also as cis-eQTLs (91%), while there
was no evidence of trans-eSNPs acting as cis-pSNPs (π1 = 0%). Next, we
investigated if cis-eSNPs that also have an effect in trans were more
likely to regulate a transcription factor (TF)22 in cis (Methods) and
found a significant enrichment of TFs in genes for which the cis-eQTL
was also associatedwith distal genes (OR = 2.26, P value = 5.09e-08). In
conclusion, our results support a complex interplay between local and
distal regulation of the same phenotypes where trans-QTLs activity
involved local regulation of both gene expression and proteins. These
distal effects were often driven by local regulation of TFs for
trans-eQTLs.

Phenotype and tissue-specific genetic regulation
We next explored the shared genetics regulation across molecular
phenotypes by comparing cis-eQTLs with cis-pQTLs. Of the 373 pro-
teins investigated, 287 had gene expression available for the coding
gene in whole blood, while the expression of 86 genes was not
detected (Supplementary Data 10). For the available gene-proteins
pairs, we compared the P value distribution of significant cis-pQTLs
with P values for the same SNP-gene pair from the cis-eQTLs analysis
(Fig. 2A–B). We observed a P value enrichment of 66.58% for all pSNPs
(73.87% considering only the stronger pQTLs), suggesting a large
proportion of cis-eQTLs acted also as pQTLs, even when they were not
individually significant. Of the genome-wide significant cis-QTLs
detected, 101 cases had a SNP associated with both a protein and the
expression of a gene (20.9% of the proteins). For example, rs34097845
was significantly associated with both the gene expression ofMPO and
its protein (MPO) with a consistent direction of effect (Fig. 2C). Of
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those, 53 SNPs were associated with a different gene than the coding
gene of the protein. From the 48 SNPs associated to a protein and its
coding gene, 4 had an opposite direction of effect for the cis-QTLs
effect (Fig. 2D, Supplementary Fig. 5A–D). In conclusion, we estimated
a large proportion of shared genetic regulation across gene expression
and proteins. However, as reported by others before5,17–19,23,24, the
genetic regulation of circulating proteins seems to involve additional
protein-specific regulatory processes that complicates the identifica-
tion of genomic regions acting in both phenotypes.

Failure to identify shared cis-QTLs across molecular phenotypes
may also be driven by tissue-specific genetic regulation. For example,
CCL16 is a cytokine which has a strong, replicated cis-pQTL in whole
blood (lead-pSNP rs10445391, P value = 9.57e-245). However, we did
not discover a corresponding cis-eQTL for this gene, as the gene is not
expressed in whole blood. GTEx v812 reports the gene to be expressed
mainly in the liver, with rs10445391 acting as a cis-eSNP with the same

direction of effect as the blood cis-pQTL. This suggests that the cis-
pQTL in the blood is the downstream consequence of gene expression
genetic regulation in the liver (Fig. 3A), and demonstrates the need to
put single tissuemolecular phenotypes into awhole organismcontext.

To further investigate the relationship between blood and plasma
molecular associations and similar processes in other tissues, we
looked for evidence that cis-eQTLs detected in other tissues (49 GTEx
v8 tissues12 and pancreatic islets3) were also active in the DIRECT data
from blood. Using P value enrichment analysis (π1) (Methods), we
compared the distribution of P values for significant cis-eQTLs for
genes expressed across different tissues in DIRECT blood eQTLs,
estimating that between91.2% (pancreatic islets) and 71.6% (esophagus
mucosa) of those cis-eQTLs were also active in whole blood (Fig. 3B).
Our results indicate that a sufficiently large sample size in blood can be
informative of the regulation of genes expressed in other tissues,
although a specific genetic process acting on specific genes, such as

Fig. 2 | Abundant pleiotropy identified across molecular phenotypes. A, B
Distribution of the P values for SNP in significant (FDR <0.05) cis-eQTL (A) as
pQTLs and for SNPs in significant (FDR<0.05) cis-pQTLs (B) as eQTLs. Most pairs
showed consistent direction of effect. Data shown are the -log10 P values of the
linear regressions between gene expression or protein abundances and SNPs.
C Local network of QTLs for rs34097845, a SNP significantly associated with both

the expression of MPO (P value = 1.7e-10, blue) and its protein (MPO, P value =
2.08e-14, orange) with a consistent direction of effect (ßexpression = −0.87,
ßprotein = −0.40). DWe identified 101 trios of expression-SNP-proteins, of which 48
involved a protein and its coding gene, while 53 involved the expressionof a nearby
gene different that the coding gene for the protein.
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the effect of rs7903146on TCF7L2 in pancreatic islets,maybemissed if
relevant tissues are not studied (Fig. 3C, Supplementary Fig. 5E–G).
However, a comparison of these estimates with an earlier version of
GTExwith a smaller sample size per tissue (v6p25), showed the increase
in sample size for cis-eQTLs studies in less accessible tissues reduced
the degree of shared genetic effects detected across tissues and phe-
notypes (Fig. 3D, Supplementary Fig. 5H). Next, we investigated whe-
ther these cis-eSNPs active in other tissueswere also regulating protein
ormetabolite levels frombloodplasma. For cis-pQTLs,we observedπ1
estimates ranging from 0% (artery coronary tissue or minor salivary
gland) to 94.9% (adipose visceral omentum, Fig. 3E). However, these
estimates were calculated using only between 13 and 311 P values, as
the number of pQTLs was limited. These estimates therefore showed
large confidence intervals (Supplementary Fig. 5I–K), indicating a

limited value to evaluate the level of activity of cis-eQTLs frommultiple
tissues acting as cis-pQTLs in plasma. For metabolites with no direct
match between phenotypes, we extracted all the cis-eQTLs or cis-
pQTLs associated with the most significant metabo-SNPs to calculate
π1 estimates. Metabo-SNPs acting also as cis-eQTLs and cis-pQTLs in
DIRECT whole blood were of 33.63% and 27.03%, respectively. These
estimates are lower than the cis-pQTLs detected as cis-eQTLs (66.6%)
and suggest a higher degree of independent regulation across those
phenotypes. Enrichment estimates for metabo-SNPs active in the 49
GTEx tissues were between0% and 19.6% (Fig. 3F), suggesting a limited
direct relationship between the genetic regulation of these pheno-
types across tissues. Overall, our results indicate that blood gene
expression and protein levels share a large degree of genetic regula-
tion, bothwithin and across tissues, and to amuch greater degree than

Fig. 3 | Tissue specific genetic regulation partially explains the lack of shared
associations between gene expression and proteins. A Using n = 3027 biologi-
cally independent samples, we detected a cis-pQTL for CCL16 in whole blood (P
value = 9.5e-243, n = 3029). The GTEx consortium reported a cis-eQTL, with the
same SNP (rs10445391) affecting the expression of the gene in liver (n = 208). Violin
plots show the median and first and last quartiles as defined by ggplot geom_violin
function. Partially created with BioRender.com B Between 91.2% (pancreatic islets)
and 71.6% (esophagusmucosa) of cis-eQTLs discovered byGTEx v8were also active
in whole blood DIRECT datasets (n = 3029) as shown by the π1 values (y-axis). The
number of P values per tissue used to calculate the π1 estimates ranged from 334 in
kidney to 14,920 in thyroid. C Comparison of the effect size of cis-eQTLs from
pancreatic islets (InsPIRE) andwholeblood (DIRECT). A total of 486eQTLswere not
significant in blood (P value > 0.035, orange color) but significant in pancreatic
islets (n = 420) and 294 had opposite direction of effect (N = 2691). Data shown are

the ß values (effect) resulting from the linear regressions between gene expression
and SNPs identifying eQTLs in both studies. D Comparison of the π1 enrichment
analysis between an earlier version of GTEx (v6p) and a larger later version (v8).
eQTLs from DIRECT blood detected in GTEx v8 decreased compared to v6p
independently of the change in sample size across versions (Supplementary
Fig. 5H). E Degree of sharing of pQTLs detected as eQTLs in GTEx v8 tissues. Up to
66.6% of plasma cis-pQTLs were also active as DIRECT whole blood cis-eQTLs. The
number of overlapping QTLs across tissues oscillates between 13 (kidney) and 311
(Thyroid). F Degree of sharing of metabo-QTLs acting as cis-eQTLs in GTEx v8. Up
to 16.88% (testis) of themetabo-QTLs detected in bloodwere active eQTLs in other
tissues, with many tissues sharing no associations with metabolites-QTLs. The
number of P values used to calculate π1 values per tissues ranged from 4298 in
whole blood to 6575 in testis.
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those shared with metabolites. Likewise, our comparison between
studies with different sample sizes highlights the value of increasing
the number of samples for the study of genetic regulation ofmolecular
phenotypes, as more tissue and molecular-specific regulation will be
identified.

Next we assessed the ability of the DIRECT data set to identify
distal genetic associations in other studies and tissues. Using GTEx v8,
we tested an average of 1662 gene-SNPs trans-eQTLs pairs per tissue
(range = 1,512-1,760) and found that blood trans-eQTLs were also
observed in whole blood (π1 = 0.336) and brain putamen basal ganglia
(π1 = 0.136) among others, while 15 tissues did not identify any sig-
nificant replicated trans-eQTLs from DIRECT blood (π1 = 0, Supple-
mentary Data 11). After multiple testing correction, we replicated 278
significant blood trans-eQTLs (237 unique genes, 159 unique SNPs),
corresponding to 643 gene-SNP pairs across all tissues. In contrast,
only 4 trans-pQTL were observed as trans-eQTLs in GTEx tissues after
multiple testing correction: FCRL5-rs569841457 (adipose sub-
cutaneous), MMP9-rs919377 adrenal gland, SPINK5-rs12462111 (nerve
tibial) and OLR1-rs76604815 (uterus). Additionally, we evaluated the
number of significant blood trans-eQTLs, trans-pQTLs and metabo-
QTLs that replicated in other blood and plasma datasets. Using the
eQTLGen dataset26, we were able to evaluate 514 gene-SNP pairs from
DIRECT trans-eQTLs, of which 463 were also significant (Supplemen-
tary Data 11). For cis and trans-pQTLs replication we used GWAS
summary statistics from Sun et al. 17 and found that 281 cis-pQTLs and
65 trans-pQTLs affecting 253 proteins replicated. For metabolites, we
were able to evaluate 65metabolite-SNPs pairs from 47metabolites, of
which all of them replicated in Long et al. 27 (Supplementary Data 11).

Causal networks
Given the abundant pleiotropy observed, with single SNPs associated
with multiple molecular phenotypes, we were interested in char-
acterizing the chain of action of genetic variation on molecular phe-
notypes. Therefore, we tested causal networks from 65,682 trios
consisting of 14,288 SNPs significantly associated with two molecular
phenotypes in cis or trans (Supplementary Fig. 6). These trios are
partially directed, as causation must travel outwards from the DNA
(QTLs)5,28. We used Bayesian Networks (BN, Methods) to evaluate two
main types of causativemodels: i) independentmodels, where the SNP
independently regulates the two phenotypes; ii) dependent models,
where the SNP regulation of one phenotype depends on the activity of
the other phenotype (Fig. 4A–B). After evaluation of the best models,
we identified 23,883 trios of SNPs (or two SNPs in high LD (R2 >0.9))
with evidence supporting a particular casual model (Supplementary
Data 12). All combinations of QTLs and the causative models investi-
gated are fully described in Supplementary Figs. 7 and 8.

The shared genetic regulation between different phenotypes,
such as mRNA vs. proteins, had different causative relationships than
the shared effects between pairs of the same molecular phenotypes,
such as cis-eQTLs vs. cis-eQTLs or cis-eQTLs vs. trans-eQTLs effects
(Fig. 4C–D). Dependent models, where the SNP’s effect on one phe-
notype was mediated by the abundance of the other phenotype, were
more often supported for trios where the SNP regulates two different
molecular phenotypes (e.g.: trans-eQTL/trans-pQTL, cis-eQTL/meta-
boQTL) than the same molecular phenotype. For example, we found
no evidence of SNPs independently affecting cis-gene expression and
metabolites, cis-gene expression and trans-protein levels, or trans-
gene expression and trans-protein levels. Only 24 out of 303 models
for shared effects on cis-eQTLs and cis-pQTLs found the independent
model as most likely causal, suggesting the genetic effects of one SNP
onbothgeneexpression andproteins is commonlymediatedbyoneof
the molecular traits (Fig. 4E–F). An exception of this trend was
observed for shared genetic regulation between twometabolites, as it
wasmoreoften identified as independent (Supplementary Fig. 7D). For
trios involving local and distal genetics effects, we found little support

for independent SNP effects. More models were supported with local
associations mediating the effects on the distal phenotype when the
same type of phenotype was considered (mRNA-to-mRNA), while for
different phenotypesmoremodels supported a regulation of the local
phenotype mediated by the distal phenotype (Supplementary Fig. 8).
In conclusion, our causal network analysis supports amodel where the
downstream consequences of genetic variation are often mediated by
other molecular phenotypes. Counterintuitively, we also found that
the path of local-distal regulation can often be mediated by distal
regulation acting locally. This suggests that even well-powered studies
such as this one are not yet large enough to identify the full extent of
regulatory elements involved in the distal regulation of molecular
phenotypes.

Integration of molecular QTLs identifies networks of GWAS
variant effects
QTL studies are often used to identify candidate molecules mediating
the activity of GWAS variants. However, the huge polygenicity,
extensive allelic heterogeneity and pleiotropy reported for even single
molecular phenotypes29 limits our ability to identify candidate gene
products, as variant’s effects can span multiple genes, assays and tis-
sues. To simultaneously evaluate the regulatory elements ofmolecular
phenotypes and GWAS variants, we constructed networks with nodes
representing either genetic variants or molecular phenotypes and
edges representing significant associations. This approach allowed us
to observe allelic heterogeneity asmultiple edges from genetic variant
nodes pointing out to a particular molecular phenotype, and pleio-
tropy as multiple edges from a single genetic variant pointing out to
multiple molecular phenotypes. In addition, this data representation
moves beyond pairs of QTLs by adding information from GWAS stu-
dies, partially visualizing the network of GWAS variant effects, and
their effects on mediating molecular phenotypes (Fig. 1A, Supple-
mentary Fig. 9).

The complete network of all connected genetic effects detected
on genes, proteins and metabolites included 79,733 nodes (15,254
genes, 373 proteins, 172 metabolites and 63,795 SNPs) and 80,645
edges identifying significant QTLs, connected in clusters containing
between 3 and 19,711 nodes. Nodes had an average of 4.31 edges
connecting them to neighbouring nodes. To investigate how mole-
cular phenotypes could havedownstreamconsequences for the risk of
disease, we extracted information from the GWAS catalogue (GWAS
catalogue v1.0.2, accessed 26/10/202030) and identified all SNPs that
were lead GWAS variants and acted as QTLs in blood. In our network,
we observed 2828 GWAS variants (Table 1, Supplementary Data 13–14)
connected with an average to 1.9 molecular phenotypes: in total 823
genes, 58 proteins and 44 metabolites were connected to GWAS var-
iants. Among the traits more often observed to be associated to SNPs
in the network, we found blood cell counts (33.01% of the 2,828 var-
iants tested) and plasma metabolites or proteins levels (9.11%), sug-
gesting blood-related traits were better characterized by the network.
We also investigated if blood-related traits were more likely to co-
localize with cis-eQTLs in blood than other phenotypes commonly
studied using GWAS, using data from 16 different studies (Supple-
mentaryData 15) that included blood-related traits such as lymphocyte
and platelet counts15, and other traits such as height31 and
schizophrenia32(Methods). We found that 72.13% of all blood cell
counts variants and 70.69% of all lipid traits variants co-localized with
cis-eQTLs (COLOC probability>0.9, Supplementary Data 16, Supple-
mentary Fig. A10). However, we also identified a large number of co-
localizing signals with other traits without a clear relationship with
blood. For example, 77 of 97 variants (79.38%) associated to height31

had evidenceof co-localizationwith eQTLs inblood, while we found 26
of 35 for Type 2 Diabetes33. All in all, we identified thousands of can-
didate molecular phenotypes associated to GWAS traits in an acces-
sible tissue, further analysis is required to investigate their potential
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Fig. 4 | Causal inference identifies distinct patterns of casual paths in the reg-
ulation of molecular phenotypes. A Two main models were tested for casual
inference. The dependent model assumes the effect of a genetic variant (SNP) on
one phenotype (1 or 2) is mediated by the other phenotype. The independent
model assumes the effect of the SNP on both SNPs is independent, and no med-
iation between phenotypes occurs. B Example of model testing for rs11073891
association with the gene expression of AP3S2 and the expression of ANPEP
(n = 3029). The results for the dependent model 2, testing for the mediation of
ANPEP in the SNP effect onAP3S2 shows a change in directionality consistent with a
mediation. Data shown are residuals of expression removing effects of any other
eSNP grouped by genotypes (nAA=1070, nAC = 1419 and nCC = 507 for all figures).

C Casualmodels testing paths for SNPs acting as cis-eQTLs for two genes identified
slightly more models supporting independent effects of the shared eSNPs than
dependent effects. The test used n = 3027 biologically independent samples with
gene expression. D Casual models testing paths for SNPs acting as cis-pQTLs for
two proteins identified similar numbers of dependent and independent cases, but
only 7 models were conclusive. E Casual models for shared SNPs associations
between gene expression and proteins supported more often dependent models,
with similar proportions where expression was the mediating factor as where the
mediating factor was the protein levels. F The casual network analysis supports a
model where the downstream consequences of genetic variation were often
mediated by other molecular phenotypes.
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causal role in disease given that QTL signals are often shared across
tissues3,12.

Next, we evaluated the type of molecular phenotypes thatmay be
involved in mediating the activity of GWAS variants. Using all SNPs
reported as GWAS variants in the network, we found that these were
connected to more molecular phenotypes than other variants in the
network (P value = 6.7e-97, Wilcoxon test), and were more likely to be
associated to proteins (OR = 8.93, P value = 3.15e-25) or metabolites
(OR = 17.51, P value = 1e-09) than to gene expression (Supplementary
Data 13). Per type of QTL, weobserved that GWASweremore often cis-
and trans-eQTLs (Fig. 5A). However, when considering the number of
tested phenotypes, we saw that a large percentage of SNPs involved in
metaboQTLs were also GWAS variants (63.12%), followed by SNPs
acting as trans-eQTLs (34.48%) (Fig. 5A). This enrichment could be due
to GWAS variants more likely acting via processes not captured by
gene expression, such as post-transcriptional modification, or it could
be due to lack of statistical power. As we have more power to identify
eQTLs, a higher proportion of our gene expression associations
represent weak biological effects, with smaller downstream con-
sequences on GWAS traits than proteins or metabolites. To evaluate
the influence of statistical power for different phenotypes, we repe-
ated the enrichment considering only the most significant gene
expression associations, matching the number of protein associated
SNPs or the number of metabolite associated SNPs (Methods). While
the relative metabolite enrichment remained significant (OR = 2.99, P
value = 1.51e-3), the protein enrichment was reversed (OR = 10.9, P
value = 3.28e-81 for gene expression over proteins), suggesting GWAS
enrichment was here not driven by post transcriptional processes.
Moreover, genetic associations with metabolites and proteins are
generally reported as GWAS studies, and included in the GWAS cata-
logue, driving to some extent the large overlap between both. This is
not true for trans-eQTLs signals, for which we observed a large per-
centage of trans-eSNPs also as GWAS variants for nonmolecular traits
and diseases. Overall, we observed that GWAS variants modulated the
levels of more molecular phenotypes than non-GWAS variants asso-
ciated to molecular phenotypes; in particular they were enriched in
associations with metabolites and strong genetic effects on local and
distal gene expression.

Finally, we highlight here three examples to illustrate the com-
plexities of GWAS variant interpretation and the benefits of under-
standing the full regulatory context to infer their underlying
mechanism of action. First, we evaluated the largest network cluster,
with 19,711 nodes (3362 genes, 147 proteins, 15 metabolites and 15,334
SNPs) (Fig. 1A, Supplementary Fig. 9). The cluster was enriched in
genes and proteins involved in immune response and hematopoietic
cell lineage regulation (SupplementaryData 17) and included 928 SNPs
previously associated with multiple GWAS traits/diseases for blood
protein levels, platelet counts, and triglycerides. Among the 614 trans-
eSNPs included in this cluster, we found a replicated trans-eQTL for
rs135403426; this variant was associated with the expression of 297
genes and is involved inplatelet function regulation34,35 Supplementary
Fig. 10B). Within this cluster, we also found the resistin gene (RETN),
previously associated with low-density lipoproteins (LDL) levels and
cardiovascular disease36 (Fig. 5B). RETN expressionwas associatedwith
two trans-eSNPs: rs13284665, also associated with the expression of 16
other genes, and rs149007767, previously associated with blood cell
counts15 and responsible for the regulation of 67 other genes in our
study. This second trans-eSNP also acted on two genes in cis, the
growth factor receptor-bound protein 10 (GRB10) and the transcrip-
tion factor IKAROS family zinc finger 1 (IKZF1) with opposite direction
of effect, suggesting both would be mediating candidates genes for
the trans effect on RETN (Supplementary Fig. 10C). Overall, this
example highlights the shared genetic regulation between hemato-
poietic production and lipid metabolism, and demonstrates the com-
plex network of multiple molecular phenotypes mediating GWAS
variants activity.

In a second example we focus on the cis-window around the
FADS1 gene on chromosome 11 (Fig. 5C). This region contains a cis-
eSNP (rs968567) associated with FEN1, FADS1 and FADS2 expression
which has previously been associated with rheumatoid arthritis37 and
fatty acid desaturase activity38. The region also harbours a complex
locus with multiple replicated GWAS associations for metabolites4,39.
Our results suggest multiple independent SNPs regulate fatty
acid related metabolites, supporting the mediation of FADS1/FADS2
in regulating plasma metabolites levels such as arachidonate
(20:4n6)40, while also identifying other candidate effector transcripts
mediating metabolites regulation such as TMEM229B or FEN1.
The third example involves a shared genetic regulation of the
interleukine-6 (IL-6) and its receptor (IL-6R) (Fig. 5D). Both expression
and protein levels of IL-6 were locally regulated by rs11766947 in
addition to other cis-SNPs on chromosome 7. IL-6 proteins levels
were also associated with a trans-pSNP on chromosome 1 in high LD
(R2 = 0.97) with a replicated cis-eSNP (rs12133641) for the IL-6R gene
(also known as IL-6-RA). These networks support the hypothesis that
shared genetic regulation may modulate IL-6 levels, which increase
after treatment with anti-IL-6 receptor antibodies for rheumatoid
arthritis18.

Discussion
Using genetic association analyses, we have evaluated the interplay
between blood mRNA molecules, proteins and metabolites, as well as
their genetic basis. We used genetic perturbations which allow for the
orientation of effects and causal modelling to identify the regulatory
principles of molecular phenotypes and potentially the paths of
genetics-to-disease in humans. We report large and complex cis-
regulatorynetworks connected acrossdifferent regions of the genome
by trans-effects. Local allelic heterogeneity and pleotropic effects have
been reported for expression and proteins5,12,17,18,41–43, but we observed
here cis and trans allelic heterogeneity at larger scales than previously
reported. This supports the presence of additional downstream reg-
ulation for proteins independent of gene expression regulation and
provides an explanation for the lack of correlationbetween expression
and protein levels reported previously23.

Table 1 | Summary of GWAS SNPs overlapping with
significant QTLs

Trait SNPs Percentage total

Total blood cell counts 1290 33.01

Metabolites/proteins 356 9.11

Blood pressure/CAD 338 8.65

Blood protein levels 248 8.77

BMI/obesity 171 4.38

Lipids 133 3.4

Autoinmune/inflamatory 129 3.3

Education/brain/behaviour 120 3.07

Height 106 2.71

ALL OTHER TRAITS 1513 38.62

Core binding factor acute mye-
loid leukemia

59 1.51

Heel bone mineral density 57 1.46

Type 2 diabetes 44 1.13

Multiple sclerosis 37 0.95

C-reactive protein levels 27 0.69

We identified all SNPs that were lead GWAS variants and acted as QTLs in blood, identifying
2,828 GWAS variants acting as QTLs. Most SNPs were associated to blood related traits, such as
blood cell counts or plasma proteins and metabolites, which are often included as GWAS stu-
dies. Full list and summary of GWAS SNPs counts can be found in Supplementary Data files 13
and 14.
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We evaluated the extent to which molecular genetic analyses on
whole blood and plasma can inform us about molecular genetic
regulation in other tissues. Early multi-tissues eQTL studies found a
large proportion of genetic effects shared across tissues9,25. With the
increase in the number of samples and the genetic diversity included,
similar studies report now a lower degree of sharing across tissues12,
with more cis-eQTLs with weaker effects and tissue specific effects.
However, when we attempted to identify cis-eQTLs from other tis-
sues, we could detect between 71.6% and 91.2% of these signals in our
whole blood dataset as active in genetic regulation in other tissues.

This suggests that a sufficiently large sample size in an accessible
tissue can be informative of regulation in other tissues. However, we
also reported up to a 20% decrease in the degree of sharing genetic
signal across tissues when the sample size of the GTEx dataset
increased with the transition from version 6 to version 8. Since this
decrease was not uniform across tissues, researchers should evaluate
carefully what accessible tissue may be most suitable for their
research.

The choice of tissue for the study of genetic regulation is
even more critical for those aiming to understand the underlying

Fig. 5 | QTL integration identifies regulatory networks associated to GWAS
variants. A Of the GWAS signal overlapping SNPs in the full network (Supple-
mentary Fig. 9), the largest number were cis-eSNPs followed by trans-eSNPs
(Number). However, when considering the number of significant QTLs evaluated
(Percentage), we observed that more metabo-SNPs were also reported GWAS fol-
lowed by trans-eSNPs. The barplots show numbers and percentages of SNPs
involved in QTLs that were also reported as lead GWAS by the GWAS catalogue
(Supplementary Data 13). B Network of associations for the resistin gene (RETN).
TheRETN gene and its protein (orange node) have been associatedwith lowdensity
lipoproteins (LDL) levels. The regulatory network associated with the gene inclu-
ded GWAS variants (purple nodes) associated to RETN abundance (rs1477341);
cardiovascular diseases and cholesterol levels (rs13284665); platelet counts

(rs13284665, rs13284665, rs149007767) and monocyte counts (rs149007767).
C Network for the FADS1/FADS2 genes centred in a cis-eSNP (rs968567, purple)
associated with FEN1, FADS1 and FADS2 and reported as lead GWAS associaiton for
lipid metabolism. The network shows their relationship with a cluster of genetic
associations with metabolites (metabo-QTLs), many of which have been reported
by other studies.DNetwork for the Interleukin-6 (IL6) gene. This network shows an
example of a SNP in chromosome 7 (rs11766947) acting as cis-eQTL and cis-pQTL
for both the gene expression and the protein levels for the same gene, IL6. The
network shows a shared genetic regulatory effect for IL6 and the expression of its
receptor IL6Rmediated by a trans-eQTLs signal (rs4845373, chromosome 1) for IL6
and in high LD (R2 > 0.9) with rs12133641, a splice-QTL for the IL6-receptor (IL6R).
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mechanism of GWAS variant effects on molecular phenotypes. A
clear example is the TCF7L2 loci associated with T2D. Despite finding
6 independent cis-eQTLs for the gene, none of these involved the
T2D loci, which has only been shown to have an effect on expression
in pancreatic islets3. Therefore, the tissue of choice to study complex
traits remains critical for research involving the activity of specific
variants. This is confounded with the difficulty in defining the rele-
vant tissue for a given disease or trait2,44. First, such definitions imply
complex diseases such as T2D or cardiovascular diseases are driven
by genetic and environmental factors active only in one or a handful
of tissues. However, we have been able to identify a large number of
co-localizing QTLs with GWAS signals from traits without a clear
relationship with blood. One reason, particularly when working
with circulating proteins and metabolites, is that those molecules
may not have been produced in blood, reflecting genetic effects in
non-accesible tissues, e.g.: CCL16. Other reasons include a large
degree of sharing of genetic regulation across tissues, cross tissue
regulation, and cross phenotype regulation. Until we learn the gen-
eral principles of regulation of multiple molecular phenotypes and
the possible coordinated impact of genetic variation in and across
tissues, our knowledge about how genetic effects cascade from the
specific alleles to gene expression and other molecules to drive dis-
ease will remain limited. This is only currently possible using acces-
sible tissues.

Finally, our work provides a roadmap to understanding the
underlying mechanisms of action of GWAS variants. Using networks
derived from thousands of QTLs, we observed the intricate connec-
tions across molecular components regulated throughout the whole
genome, rather than a single direct pathway from genotypes to
phenotypes. Our results support models of genetic regulation that
consider thousands of small and coordinated genetic regulatory
effects across the genome to modulate complex traits29,45–47. More-
over, our results suggest that the regulatory process that connects
genotype to phenotypes is robust, with redundancies in the form of
many connections between molecular phenotypes and the ability to
find alternative routes in the event of a particular process being
altered by disease-related variants. Therefore, as proposed by
others48, we have observed how a network of variants and its con-
nected molecules as a whole is likely required to define a given
phenotype or disease.

Methods
Cohort
The DIRECT (Diabetes Research on Patient Stratification) consortium
(Supplementary Data 19) includes pre-diabetic participants (target
sample size 2,200–2,700) and patients with newly diagnosed type 2
diabetes (target sample size ~1,000) with detailed metabolic phe-
notyping. Characteristic of the cohort as well as inclusion/exclusion
criteria have been described elsewhere49. In short, fasting blood
samples from venous blood were collected and DNA extractions and
other biochemical analyses were carried out as detailed bellow. All
measurements for each molecular data type were taken from dif-
ferent samples. Ethics approval for the study protocol was obtained
by all the regional research ethics review boards (Lund, Sweden:
20130312105459927; Copenhagen, Denmark: H-1-2012-166 and H-1-
2012-100; Amsterdam, Netherlands: NL40099.029.12; Newcastle,
Dundee, and Exeter, UK: 12/NE/0132). Participants gave informed
consent at enrolment in writing. The research conformed to the
ethical principles for medical research involving human participants
outlined in the declaration of Helsinki. The cohort included 2142men
and 887 womenwith a mean age of 61.6 years old (yo), and a range of
30yo to 75yo. Sex was determined by matching genotype informa-
tion and self reporting information. Analyses included sex as a co-
variate.

Genotyping
Genotyping was conducted using the Illumina HumanCore array
(HCE24 v1.0) and genotypes were called using Illumina’s GenCall
algorithm. Sampleswere excluded for anyof the following reasons: call
rate <97%; low or excess mean heterozygosity; gender discordance;
andmonozygosity. Genotyping quality control was then performed to
provide high-quality genotype data for downstreamanalyses using the
following criteria: call rate <99%; deviation from Hardy-Weinberg
equilibrium (exact p <0.001); variants not mapped to human genome
build GRCh37; and variants with duplicate chromosome positions. To
identify possible ethnic outliers in the DIRECT data, we performed a
principal component analysis (PCA) using the genotype data from our
studied population (3102 samples; 547,644 markers) using the fol-
lowing cut-offs MAF > 0.01, HWE>1e-4 and call rate>90%. A total of
3033 samples and 517,958 markers across the two studies passed
quality control procedures. Imputation to the 1000 Genomes Phase 3
CEU reference panel was performed with ShapeIt (v2.r790)50 and
Impute2 (v2.3.2)51.

RNAseq data generation
mRNA samples were processed and quality was assessed using the
TapeStation Software (A.01.04) with anRNA Screen Tape fromAgilent.
Truseq Stranded mRNA from Illumina was used to generate libraries
and their quality was evaluated using Qubit and TapeStation using
DNA1000 Screen Tape. The samples were then sequenced on the
Illumina HiSeq2000 platformusing 49 bp paired-end reads. The 49-bp
sequenced paired-end reads were mapped to the GRCh37 reference
genome52 with GEMTools 1.7.153. Exon quantifications were calculated
for all elements annotated on GENCODE v1954. Gene quantifications
were calculated as FPKM values. This pipeline is fully described in
Delaneau et al. 55, as part of QTLtools. Samples with a total number of
exonic reads lower than 5e +06 reads or with a proportion of exonic
reads over the total number of reads lower than 20% were considered
of low quality and removed. For each samples, we evaluated possible
samples mix-ups56 using the functionmatch from the suite QTLtools57.
To confirm the correct assignment of the matched DNA/RNA samples
and recovered failed genotypes during QC we re-genotyped samples
from 96 individuals. Further validation compared the sex information
provided by clinical reports with both genotype data andRNAseqdata.
The total number of samples with RNAseq-Genotypes pairing data
after QC of both RNAseq and imputed genotypes was 3029.

Expression phenotypes
Genes andexonswithmore than50%of zero readswere removed from
the study. Finally, exons and genes from chromosome Y, mitochon-
dria, and level 3 annotations, as defined by Gencode v19, were
removed from further analysis. The final number of genes and exons
used for analyses were 16,205 and 170,198, respectively. Splicing
phenotypeswere generated using LeafCutter58 requiring aminimumof
50 reads per cluster. Clusters with more than 50% zero reads across
samples were removed. The final number of phenotypes used for
further analyses was 64,546.

Proteins data
Plasma proteins were measured using the Olink® Cardiometabolic,
Cardiovascular II, Cardiovascular III, Development and Metabolism
panels (Olink Proteomics AB, Uppsala, Sweden) according to the
manufacturer’s instructions. The Proximity Extension Assay (PEA)
technology used for the Olink protocol has been well described59. The
obtained data was processed using Olink’s NPX manager software
version 0.0.85.0. Internal and external controls were used for quality
control and normalization of the data. Quality control included cal-
culating the standard deviation for the detection control and the
incubation/immuno controls and comparison of the results for the
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detection control and one of the incubation controls against the run
median. All protein measurements were reported, but proteins with
more than 50% samples below LOD levels were excluded, leaving a
total of 373 proteins for further analysis from 3027 individuals.

Metabolites data
Metabolites abundance was assessed using targeted and untargeted
technologies. The assays, quality control and analyses were performed
separately, and results combined for discussion. Plasma targeted
metaboliteswere evaluated for 163metabolites using a FIA-ESI-MS/MS-
based targeted metabolomics approach with the AbsoluteIDQTM p150
kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) as described in
Biocrates manual AS-P150. Mass spectrometric analyses were done on
an API 4000 triple quadrupole system (Sciex Deutschland GmbH,
Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent
Technologies Deutschland GmbH, Böblingen, Germany) and a HTC
PAL auto sampler (CTC Analytics, Zwingen, Switzerland) controlled by
the software Analyst 1.6.2. Data evaluation for quantification of meta-
bolite concentrations and quality assessment was performed with the
software MultiQuant 3.0.1 (Sciex) and the MetIDQ™ software package,
which is an integral part of the AbsoluteIDQ™ Kit. Five aliquots of a
pooled reference plasma were analyzed on each kit plate and used for
normalization purposes and for calculation of coefficient of variance
(CV) for each metabolite. Quality assessment evaluated peak shapes,
retention times, compound identity, and the number of samples with
zero values in the metabolites concentration, removing any individual
withmore than 50% of zeros. We then evaluated the CV permetabolite
removing samples with CV >0.25 relative to the reference samples.
Metabolites with concentration below the LOD were discarded. Of the
163 metabolites, 116 passed all quality controls in 3029 individuals.

Untargeted metabolites from human plasma samples were
assessed using the Metabolon platform. Controls included a pooled
matrix sample generated by taking a small volume of each experi-
mental sample serving as a technical replicate throughout the data set.
Experimental samples were randomized across the platform run with
QC samples spaced evenly among the injections. Metabolite con-
centration was assessed using Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS/MS). The LC-MS portion of the platform was
based on a Waters ACQUITY ultra-performance liquid chromato-
graphy (UPLC) and a Thermo-Finnigan LTQ mass spectrometer oper-
ated at nominal mass resolution, which consisted of an electrospray
ionization (ESI) source and linear ion-trap (LIT) mass analyzer. Raw
data was extracted, peak-identified and QC processed using Metabo-
lon’s hardware and software. For studies spanningmultiple days, a data
normalization step was performed to correct variation resulting from
instrument inter-day tuning differences. For every metabolite we
computed the coefficient of variation (CV) of measurements by run
day. We then took the median CV over run days and used that as a
measure of the variability of the measurement process. Metabolites
with amedian CV greater than 0.25 or thosewhere the CV could not be
computed for at least two runswere excluded. In total we analysed 233
untargeted metabolites from 3029 individuals.

Cis-QTLs discovery
Local SNP-phenotypes associations were performed for gene (FPKM),
exon, splice phenotypes and protein levels using linear regression in
FastQTL60, with the seed number 1461167480. Principal component
analysis (PCA) was used to control for unwanted technical variation. In
addition, all analyses included sex, 3 PCs derived from genotype data,
and a variable identifying the cohort of origin of the samples, called
“center”. Only SNPs in the region 1MB up- and down-stream of the TSS
of each phenotype were considered for cis-QTLs. Raw read counts
from exons and genes were used to discover cis-eQTLs after rank
normalization, using amodel that included 60PCs for gene expression
and 55 PCs for the exon level. Splicing-QTLs used rank normalized

phenotypes generated with LeafCutter58 and 20 PCs. Cis-pQTLs used
rank normalized protein levels and 10 PCs. Missing protein measures,
no more than 8.5% for any protein, were imputed using the mean of
each protein. The coding genes for the proteins were used to cen-
ter the cis-window for analysis. Two protein identifiers matched two
genes: FUT3 and FUT5. For simplicity, these were considered inde-
pendent measurements during analyses.

Multiple testing correction was performed using a beta approx-
imation coded in FastQTL. For exon-QTLs and splicing-QTLs, we
employed the grouping strategy described in Delaneau et al. (--grp
option)55 to control for multiple phenotypes associated to the same
TSS. This strategy considers all phenotype-SNPs pairs in a cis-window
for a givengene atonce, calculating abeta distributionper gene/TSS to
assess their significance. The best phenotype-SNP per gene were
reported as outcome in all analyses. To control the genome-wide false
discovery rate (FDR), we used the qvalue21 correction implemented in
the software largeQvalue61.

Independent QTLs
Identification of secondary independent cis-QTLs was performed as
described in Aguet et al. 12 and Viñuela et al. 3 using a stepwise
regression procedure over all variants in the window using fastQTL at
each stage fitting all other discovered signals as covariates in addition
to the other covariates and PCs. This was done only on phenotypes
with an QTL discovered in the association analysis (FDR < 1%). The
maximumbeta-adjusted P value (correcting formultiple testing across
the SNPs and phenotypes) over these phenotypes was taken as the
gene- or protein-level threshold. A cis-scan of the window was per-
formed in each iteration using 1,000 permutations and correcting for
all previously discovered SNPs. If this P value was significant, the best
associationwas added to the list of discoveredQTLs as an independent
signal and the forward step proceeded to the next iteration. The
backward stage consisted of testing each forward signal separately,
controlling for all other discovered signals and covariates. The exon
and splicing level cis-QTL scans used the -grp function and reported
only the best association in each iteration.

Trans-QTL discovery
Trans-QTL analysis was performed betweenmolecular phenotypes with
agenomic location (RPKMexpression andproteins) andall SNPs further
than 5MB from the TSS of the expressed gene or coding gene for the
protein. For all associations, since phenotypes PCs may capture
global trans effects removing true signals, we used residuals after
removing known technical covariates with a linear mixed model
implemented in the lme4package in R62. To control for false positives in
trans-eQTLs57 we removed: any gene with low mappability and SNPs
located in repetitive regions and with mapping issues. We then per-
formed a genome wide scan of SNP-gene associations using QTLtools55

storing all P values < 1e-04. Pairs of SNP-genes with known cross-
mapability issues in a 100 kb window were then removed. Multiple
testing corrections for trans-eQTLs was done using 50 permutations.
The best P values per phenotype were used to define a phenotype level
threshold and calculate adjusted P values for each gene. To adjust for
multiple testing across genes, we used the qvalue package to estimate
the false discovery rate. For proteins, 100 permutations per protein
were used. For the identification of secondary trans-QTL, we used a
stepwise regression analysis after defining non-overlapping cis-win-
dows around 1MB up- and down-stream of any significant trans-QTLs
signal. This created 2021 genomic regions for expression and 2589
regions for proteins to be tested for any nearby signal. Then, we ran the
standard conditional analysis using FastQTL to look for further signals.

Functional annotation
Functional enrichment analysis of eSNPs relative to pSNPs was
done using available ChromHMM annotations from 14 blood cell
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lines and VEP annotations13,14. Odds ratios for enrichment of cis-
eQTLs relative to cis-pQTLs and cis-QTLs relative to trans-QTLs were
computed in R.

Transcription factor enrichment
To estimate the proportion of significant trans-SNPs which also
affected local molecular phenotypes, we extracted all the cis-QTL P
values for SNPs with a significant trans-SNP effect and calculated π1

estimates using all significant associations and the qvalue package. The
product of all P values per SNPs were used to calculate the probability
of one gene to be associated to the trans-SNP, allowing us to calculate
one P value per phenotype using π1 enrichment. To investigate if cis-
SNPs that also have an effect in trans were more likely to regulate a
transcription factor (TF) in cis, we extracted all genes or proteins
reported by Lambert et al. 22 as transcription factors (TFs). We then
used a Fisher exact test to calculate the OR of a cis-eQTL affecting TFs,
given the number of TFs in the whole dataset that have trans
associations.

Metabolites-QTLs
Targeted and untargeted metabolites were residualised removing
technical covariates using a linear mixed model. We performed a
genome-wide association for eachmetabolite with no exclusion of any
genomic region. Multiple testing correction was performed using 100
permutations per metabolite. Secondary signal identification used
stepwise regression analysis after the identification of regions around
primary associations.

Tissue and phenotype specific associations, replications
To identify the proportion of cis-eQTLs, cis-pQTLs and metabo-QTLs
active in other tissues, we extracted the same SNP-gene in GTEx v6p25,
GTEx v812,and InsPIRE3 thatwere significantly associated in DIRECT. To
identify the proportion of eQTLs that were identified in DIRECT as
QTLs of any type, we extracted the SNP-gene pairs from the significant
GTEx and Inspire significant associations. P values were then evaluated
for enrichment using qvalue. For metabolites-QTLs with no TSS of
reference, we used all cis-eQTLs in 45 studies and cis-pQTLs in DIRECT
associated to the lead metabo-SNPs to calculate π1 estimates. To
identify the proportionof trans-eQTLs and trans-pQTLs active as trans-
eQTLs in other tissues we extracted all gene-SNP and protein-SNPs
pairs from the trans-QTL significant results inDIRECT-blood inGTEx v8
data and performed a linear regression. We controlled for covariates
reported by GTEx (PCs from genotypes 1 to 5, 15 to 60 inferred cov-
ariates depending on tissue, pcr, platform, and sex). We considered
SNP-genes or SNP-proteins to be active in other tissues when a test for
association in theGTEx v8 datasetwas significant aftermultiple testing
corrections (qvalue < 0.05).

Replication of distal QTLs was done by extracting P values for
genetic association from publicly available summary statistics. For
trans-eQTLs we used associations from the eQTLGen consortium
(https://eqtlgen.org/)26, extracting all gene-SNP pairs. For trans-pQTLs
we used associations from the INTERVAL consortium (http://www.
phpc.cam.ac.uk/ceu/proteins/)17. In both cases we evaluated the
replication level using π1 and the qvalue package across all pairs
commonly present between studies. Replication of metabolites asso-
ciations was performed using summary statistics from Long et al. 27,
however only P values < 1e-05 were available and therefore the degree
of replication could not be reported. From the metabolites-SNP pairs
matching between studies (n = 65), we considered those with
Benjamin-Hochberg corrected P values < 0.05 to be replicated.

Causal inference
To identify pairs of QTLs, we selected all SNPs, or pairs of SNPs in high
linkage disequilibrium (R2 > 0.9), which were significantly associated
with two phenotypes in cis or trans. We identified 23,539 cases with

one genetic variant and two molecular phenotypes (simple trios),
independently of the genomic location of the two phenotypes. To
avoid bias due to quantification correlations, we removed all pairs
involving expression phenotypes where at least one exon overlaps
both genes. We then used Bayesian Networks (BNs) to learn the causal
relationship between pairs of QTLs. We only considered network
topologies that assume a causal effect from genetic variants towards
molecular phenotypes, as the opposite effect does not have biological
meaning. Three models were evaluated (Fig. 3): 1) Direction 1 model
([1] and [2]): The genetic variant affects first phenotype 1, then phe-
notype 2; 2) Direction 2model ([3] and [4]): The genetic variant affects
first phenotype 2, then phenotype 1; 3) Independent model ([5] and
[6]): The genetic variant affects both phenotypes 1 and 2 indepen-
dently. The probabilities can be described in the following formulas,
for one or two SNPs:
1. Direction 1, 1 SNP: P(Phenotype2|Phenotype1) P(Phenotype1|SNP)

P(SNP)
2. Direction 1, 2 SNPs: P(Phenotype2|Phenotype1)

P(Phenotype1 | SNP1) P(SNP1)
3. Direction 2, 1 SNP: P(Phenotype1 |Phenotype2) P(Phenotype2|SNP)

P(SNP)
4. Direction 2, 2 SNPs: P(Phenotype1|Phenotype2)

P(Phenotype2 | SNP2) P(SNP2)
5. Independent, 1 SNP: P(Phenotype1 |SNP) P(Phenotype2|

SNP) P(SNP)
6. Independent, 2 SNPs: P(Phenotype1 | SNP1) P(Phenotype2 | SNP2)

P(SNP1) P(SNP2)

We used normalized quantifications after removing any technical
covariates. In addition,we removed from thephenotypes the effects of
other QTLs by including SNPs as covariates, creating two phenotypes
per trio. Computation to generate these pseudo-phenotypes were
doneusing the–single-signal option fromCaVEMaN63. Thephenotypes
were used to compute the likelihood of the three possible BN topol-
ogies using the R/bnlearn package64. The best fit was evaluated using
BIC score, with a trio considered for further evaluation if one of the
three models had a BIC score >10 compared to each of the other two
models.

GWAS variants identification and colocalization
To identify genetic variants with known GWAS associations we used
theGWAS catalogue v1.0.2, accessed 26/10/202030. All SNPswith aQTL
effect that were also lead GWAS variants by the catalogue were
reported and used in further analysis. To provide a measure of the co-
localization signals, we calculated the probability that a GWAS hit
shares the same causal variant as a cis-eQTL by bayesian colocalisation
analysis as implemented by COLOC65 and in a subset of GWAS studies.
We used GWAS summary statistics from 16 studies listed on Supple-
mentaryData 15. SNPswere filtered to keep variants with P values < 0.1,
including all the variants in a 20 kb window around the lead cis-eQTL
variant. The minor allele frequencies used for the analysis were those
from the GWAS summary statistics. As cis-eQTL variants selected for
theses analyses were previously found to be associated with the traits
studied, we reported the probability that both GWAS and cis-eQTLs
were shared as P(H4’) = P(H4)/(P(H3) + P(H4)). H3 is the probability
that both traits have different causal variants and H4 the probability of
both traits sharing the same causal variant. For GWAS studies report-
ing different sample sizes per significant variant due to population
differences, we calculated probabilities using the median number of
samples across studies. To identify enrichment of GWAS associations
amongQTLs,wecalculated andevaluatedodd ratios using afisher test.
Since the GWAS catalog includes results from pQTL and metabolite-
QTL studies, we removed any GWAS-SNP from blood proteins levels,
metabolites levels and related phenotypes (Supplementary Data 18).
The complete list of variants, SNPs and studies considered is included
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in Supplementary Data 15. To evaluate if the enrichments were due to
statistical power, we evaluated the odd ratios using two sets of ran-
domly selected SNPs from the most significant associations eSNPs
matching the number of pSNP (N = 2027) and metabolite-SNPs
(n = 236) being evaluated.

Networks construction
Networks were visualised using Cytoscape v3.7.266. For all the QTLs
results, a table was created including phenotype (target node), SNPs
(source node) and type of association (interaction). The STRING
enrichment functionwas used to evaluate the biological enrichment of
some networks.

Figures
Data and results figures were generated using R or Cytoscape66 v3.7.2
for the networks. Figures 1A and 3A were partially created with BioR-
ender.com. Figure 1Bwas created using a network fromCytoscape and
a lolliplot figure generated using the lolliplot() function from the
trackViewer package67. Figures were combined in panels using
Inkscape v1.0.1. Tables and objects to load networks into Cytoscape
are included in the Zenodo submission (https://zenodo.org/record/
7521410).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The molecular and clinical raw data as well as the processed are
available under restricted access due to the informed consent given
by study participants, the various national ethical approvals for the
present study, and the European General Data Protection Regulation
(GDPR), individual-level clinical and molecular data cannot be
transferred from the centralized IMI-DIRECT repository. Requests for
access will be informed on how data can be accessed via the DIRECT
secure analysis platform following submission of an appropriate
application. The IMI-DIRECT data access policy is available at https://
directdiabetes.org. As described in the methods section we used the
human genome build GRCh37 as a reference for genomic location of
genotypes and transcriptomics data, and Gencode v1954 for gene
models and TSS information (https://www.gencodegenes.org/
human/release_19.html). For functional enrichment analyses we
used dataset from the Ensembl Variant Effect Predictor14 (VEP)
information v98 (https://grch37.ensembl.org/info/docs/tools/vep/
script/vep_download.html) and ChromHMM13 models (https://egg2.
wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/imputed12marks/jointModel/final/). GTEx v6p and v8
summary statistics were accessed using the GTEx Portal (https://
www.gtexportal.org/home/). The 16 GWAS studies evaluated for co-
localization and the links to their summary statistics are listed in
Supplementary Data 15. Complete summary statistics including cis
and trans genetic associations for gene expression, proteins and
metabolites, as well as files to visualize networks on Cytoscape are
freely available in the following link https://zenodo.org/record/
7521410.
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