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Phase-shifted Andreev levels in an altermagnet Josephson junction
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Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 3 July 2023; revised 13 August 2023; accepted 15 August 2023; published 22 August 2023)

We compute the effect of a d-wave magnetization (altermagnetism) on the spectrum of bound states (Andreev
levels) in a junction between two s-wave superconductors (gap �0 and phase difference φ). Compared to
a nonmagnetic junction, the φ dependence of the spectrum is shifted by an offset ±δφ, dependent on the
spin direction, so that the Andreev levels become spin polarized. In a planar junction, oriented along the
crystalline axis of dxy-wave symmetry, the excitation energies are determined by the normal-state transmission

probability T according to E = �0

√
1 − T sin2 1

2 (φ ± δφ). We calculate the corresponding Josephson energy
and supercurrent, recovering the 0-π transition of related studies.

DOI: 10.1103/PhysRevB.108.075425

I. INTRODUCTION

Altermagnets (metals with a d-wave magnetization that
“alternates” direction in momentum space) differ from fer-
romagnets and antiferromagnets in that they combine a
spin-polarized Fermi surface with a vanishing net magnetiza-
tion [1–4]. Candidate altermagnetic materials include RuO2,
MnTe, and Mn5Si3 [5–8]. The interplay of altermagnetism
and superconductivity produces unusual effects [9], including
orientation-dependent Andreev reflection [10,11], negative
critical supercurrent with finite-momentum Cooper pairing
[12,13], and topological Majorana modes [14,15].

A basic building block for these effects is the altermagnet
Josephson junction in which two s-wave superconductors (gap
�0, phase difference φ) are connected by a d-wave magnetic
region (see Fig. 1). The subgap excitations are Andreev levels,
electron-hole superpositions confined to the junction. If the
length L of the junction is short compared to the supercon-
ducting coherence length ξ0 = h̄vF/�0, there is one Andreev
level per spin direction and per transverse mode.

For a nonmagnetic Josephson junction, the Andreev levels
are spin degenerate, and the φ dependence of the excitation
energy is given by [16]

E = �0

√
1 − T sin2(φ/2), (1.1)

where T ∈ (0, 1) is the transmission probability through the
junction of an electron mode at the Fermi level in the normal
state.

Here, we investigate how the altermagnet modifies the
excitation spectrum. For unit transmission through a planar
junction the cos(φ/2) Andreev band is split into spin-
polarized branches. The splitting is a phase-shift ±δφ that
depends on the angle θ of the junction with the crystalline
axis of dxy-wave symmetry. For θ = 0, the relation (1.1)
with φ �→ φ ± δφ still holds for nonunit transmission. We
test these analytical predictions with a computer simula-
tion of a tight-binding model of the altermagnet Josephson
junction.

These results provide an alternative description of the 0-
π transition reported recently [12,13] where the sign of the
critical current oscillates with increasing L. The description
is particularly simple for θ = 0 when the phase-shift δφ is
proportional to the transverse momentum ky, so ∂E/∂φ ∝
∂E/∂ky. The supercurrent I ∝ ∫ kF

−kF
dky(dE/dφ) is, therefore,

directly given by an energy difference—the integral operation
cancels the derivative. The resulting critical current Ic oscil-
lates ∝ (sin δφmax)/δφmax, with δφmax ∝ kFL.

II. ALTERMAGNET JOSEPHSON JUNCTION

We consider the Josephson junction geometry of Fig. 1,
consisting of a pair of superconducting regions (x < 0 and
x > L) connected by a nonsuperconducting magnetic metal
(0 < x < L). The superconducting pair potential � has s-
wave symmetry, whereas, the magnetization has the d-wave
symmetry characteristic of an altermagnet. The junction has
length L and width W .

For large width W , and without impurity scattering, we
may assume translational invariance in the y direction so that
the transverse momentum ky is a good quantum number. We
work in the short-junction regime L � ξ0.

The excitation spectrum is described by the Bogoliubov–de
Gennes (BdG) Hamiltonian,

H(k) =
(

H0(k) �

�∗ −σyH∗
0 (−k)σy

)
, (2.1)

H0(k) = h̄2

2m

(
k2

x + k2
y

) − μ

+ h̄2

m
t1kxkyσz + h̄2

m
t2

(
k2

y − k2
x

)
σz. (2.2)

The σα’s are Pauli spin matrices, k = (kx, ky) is the elec-
tron momentum (two dimensional, for simplicity), and μ =
h̄2k2

F/2m = 1
2 mv2

F is the Fermi energy. In what follows, we set
h̄ = 1 and the electron mass m = 1 (restoring units in the final
results).

The d-wave exchange interaction is characterized by two
dimensionless parameters t1 and t2, which depend on angle θ
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FIG. 1. Josephson junction consisting of a pair of supercon-
ductors (pair potential �0, phase difference φ) connected by an
altermagnet. We consider a short planar junction W 	 ξ0 	 L.

of the altermagnet-superconductor (AS) interface relative to
the crystalline axes,

t1 = 2t0 cos 2θ, t2 = t0 sin 2θ. (2.3)

The parameter t0 is on the order of 10−1 [8]. For θ = 0, the
magnetization has pure dxy-wave symmetry for θ = π/4, it
has pure dx2−y2 -wave symmetry.

The 4 × 4 Hamiltonian (2.1) decouples into 2 × 2 blocks
H↑ and H↓. The blocks are spin polarized in the sense
that electrons and holes occupy opposite spin bands so that
each block describes quasiparticles with a definite magnetic
moment.

We consider the spin-up block,

H↑(k) =
(

H+(k) �

�∗ −H−(k)

)
, (2.4)

H±(k) = 1

2

(
k2

x + k2
y

) − μ ± t1kxky ± t2
(
k2

y − k2
x

)
. (2.5)

The spin-down block H↓ is obtained by switching t1 �→ −t1,
t2 �→ −t2.

Near the Fermi level (E = 0), we may linearize the kx

dependence of H↑ at given momentum ky, parallel to the
AS interfaces at x = 0 and x = L. In the altermagnet region
0 < x < L, where � = 0, we have

H↑ = (v̄ − τzδv)νzτz(kx − Q0 − Qzτz ). (2.6)

The Pauli matrix τz acts on the electron-hole degree of free-
dom, whereas, νz distinguishes right movers from left movers.

In Eq. (2.6), we have introduced the velocities,

v± = vF

√
1 ± 2t2 − (ky/kF)2

(
1 − t2

1 − 4t2
2

) ≡ v̄ ± δv,

(2.7)

and momentum offsets

Q0 = kF
(
1 − 4t2

2

)−1
[νz(v̄ − 2t2δv)/vF − 2t1t2ky/kF],

Qz = kF
(
1 − 4t2

2

)−1
[νz(2t2v̄ − δv)/vF − t1ky/kF]. (2.8)

For later use, we also define

Q±
0 = kF

(
1 − 4t2

2

)−1
[±(v̄ − 2t2δv)/vF − 2t1t2ky/kF],

Q±
z = kF

(
1 − 4t2

2

)−1
[±(2t2v̄ − δv)/vF − t1ky/kF]. (2.9)

FIG. 2. Phase dependence of the Andreev levels, computed from
Eq. (3.3) for t1 = t2 = 0.1, kFL = 20, ky/kF = 1/2. There are four
levels at each value of the phase difference, distinguished by the spin
direction ↑, ↓ and by the ± sign of the current ∝dE/dφ, which they
carry. Another four levels at ky/kF = −1/2 ensures the electron-hole
symmetry of the spectrum. Normal reflections are neglected in this
calculation.

III. ANDREEV LEVELS WITHOUT
NORMAL REFLECTION

Andreev reflection at x = 0 and x = L converts electrons
into holes, with absorption of the missing charge of 2e into the
superconducting condensate [17]. It coexists with normal re-
flection without charge conversion. In this section, we neglect
normal reflections, we will include these in the next section.

Andreev reflection from electron to hole with energy E , at
a pair potential � = �0eiφ , is associated with a phase-shift
e−iφ−iα(E ), where

α(E ) = arccos(E/�0) ∈ (0, π ), |E | < �0. (3.1)

The phase shift for reflection from hole to electron is
e+iφ−iα(E ). We set � = �0eiφ/2 at the left-superconductor
(x < 0) and � = �0e−iφ/2 at the right-superconductor
(x > L).

The condition for a bound state is that the phase incre-
ment on a round-trip x = 0 �→ L �→ 0 is a multiple of 2π .
For kFL � μ/�0 (equivalently, L � ξ0, the short-junction
regime) we may ignore the energy dependence of the phase
shift accumulated in the normal region, whereas, retaining
the energy dependence of the Andreev reflection phase-shift
α(E ). This gives the bound-state condition,

φ + 2LQ±
z = ±2α(E ) mod(2π ). (3.2)

The ± sign distinguishes whether the right-moving quasi-
particle is an electron or a hole. The contribution Q0 to the
phase shift cancels in the round trip, only the increment Qz

contributes.
We, thus, obtain two branches of Andreev levels E±

↑ , with

E±
↑ = ±�0 sgn(sin ψ±

↑ )
∣∣ cos 1

2ψ±
↑

∣∣, (3.3a)

ψ±
↑ = φ + 2LQ±

z . (3.3b)

We have added the subscript ↑ as a reminder that these are the
bound states of H↑. For H↓, one replaces L �→ −L.

In a nonmagnetic Josephson junction, the Andreev levels
are spin degenerate with a cosine phase dependence [18]:
E = ±�0 cos(φ/2). As illustrated in Fig. 2, the altermagnet
breaks up the cosine into branches that are phase shifted by
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a spin-dependent amount. Each branch connects the edges
of the gap at ±�0 where the bound states merge with the
continuous spectrum. Electron-hole symmetry (±E symmetry
of the spectrum) is ensured by the identity,

Q+
z (ky) = −Q−

z (−ky) ⇒ E±
↑ (ky) = −E∓

↓ (−ky). (3.4)

IV. INCLUDING NORMAL REFLECTION

An electron incident on the superconductor may be An-
dreev reflected as a hole, but it may also be reflected as
an electron. Such normal reflection can be modeled by the
insertion of a tunnel barrier at the two ends of the altermagnet.
We assume that the barrier potential V (x) does not break
the translational invariance along the y direction so that the
transverse momentum ky remains a good quantum number. We
also assume the potential is spin independent.

A simple solution of the scattering problem is possible for
pure dxy-wave pairing (t2 = 0). The BdG Hamiltonian then
reads

H = [
1
2 k2

x + 1
2 k2

y + V (x) − μ
]
τz + 1

2

[
t1(x)kx + kxt1(x)

]
kyσz

+ �0(x)[τx cos φ(x) − τy sin φ(x)]. (4.1)

The x dependence of the magnetization and pair potential is
included to describe the entire junction profile. The anticom-
mutor of t1(x) and kx ensures the Hermiticity of H [10].

We make the unitary transformation H �→ U (x)HU †(x)
with

U (x) = exp

(
iτzσzky

∫ x

0
t1(x′)dx′

)
, (4.2)

resulting in
H = [

1
2 k2

x + 1
2

(
1 − t2

1

)
k2

y + V (x) − μ
]
τz

+ �0(x)[τx cos φ̃(x) − τy sin φ̃(x)], (4.3)

where φ̃(x) = φ(x) + 2σzky
∫ x

0 t1(x′) dx′ is a spin-dependent
phase difference.

So for a given ky and given spin direction, the altermagnet
Josephson junction is equivalent to a nonmagnetic Josephson
junction with phase difference φ ± 2kyLt1. The factor 1 − t2

1
that multiplies k2

y in Eq. (4.3) amounts to an anisotropic mass,
this factor can be set to unity for t1 � 1. We can, then, use the
known result (1.1) for the Andreev levels in a nonmagnetic
Josephson junction,

E±
↑ (ky) = ± �0

√
1 − T (ky) sin2(φ/2 − kyLt1),

E±
↓ (ky) = ± �0

√
1 − T (ky) sin2(φ/2 + kyLt1), (4.4)

where T (ky) is the transmission probability through the junc-
tion in the normal-state (�0 = 0).

If t2 is nonzero, we do not have such a closed-form and gen-
eral expression for the Andreev levels. We specify to the case
of a tunnel barrier at each AS interfacewith tunnel probability
� (the same at x = 0 and at x = L). The scattering matrix
calculation in Appendix A gives the spin-up Andreev levels
E±

↑ as the two solutions of the nonlinear equation,

(1 − �)2 cos[2α(E ) + L(Q+
z − Q−

z )]

+ cos[2α(E ) − L(Q+
z − Q−

z )]

− �2 cos[φ + L(Q+
z + Q−

z )]

FIG. 3. Same as Fig. 2, but now including normal reflections at
each AS interface. The spectra are calculated from Eq. (4.5) for two
values of the transmission probability �, at t1 = t2 = 0.1, kFL = 20,
ky/kF = 1/2.

= 2(1 − �) cos[L(Q+
z − Q−

z )] + 4(1 − �)

× cos[L(Q+
0 − Q−

0 )]
(
1 − E2/�2

0

)
. (4.5)

The spin-down Andreev levels E±
↓ are the solutions of

Eq. (4.5) upon replacement of L by −L.
As a check, if we now set t2 = 0, we have Q+

z = Q−
z , Q+

0 =
−Q−

0 , and Eq. (4.5) has the solution (4.4) with

T (ky) = �2

2(1 − �) cos 2LQ+
0 + 1 + (1 − �)2

. (4.6)

This is indeed the normal-state transmission probability
through a double-barrier junction, at momentum Q+

0 =√
k2

F − (1 − t2
1 )k2

y .
If t2 �= 0, Eq. (4.5) can readily be solved numerically. As

illustrated in Fig. 3, crossings in the spectrum between levels
of the same spin become anticrossings.

V. COMPARISON WITH COMPUTER SIMULATIONS

To test these analytical predictions, we have discretized the
BdG Hamiltonian (2.2) on a square lattice and computed the
subgap excitation spectrum numerically (see Appendix B).
These computer simulations fully include the normal re-
flections at the AS interfaces, and they do not rely on the
short-junction approximation.

In Fig. 4, we compare with the analytical predictions that
ignore normal reflection. As expected, the main effect of nor-
mal reflection at the AS interfaces is to transform the crossings
between same-spin branches into anticrossings. The effect is
most pronounced when t1 and t2 are both nonzero: In the two
cases of pure dxy-wave or pure dx2−y2 -wave magnetization the
crossings are only weakly affected.

In Fig. 5, we test the relation (4.4) between the Andreev
levels and the normal-state transmission probability in the
case of dxy-wave pairing. The agreement is quite good without
any adjustable parameter.

VI. JOSEPHSON ENERGY AND SUPERCURRENT

The supercurrent in the short-junction regime is carried
entirely by the bound states, the continuous spectrum does not
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FIG. 4. Andreev level spectra in the altermagnet Josephson junc-
tion for kFL = 20, ky/kF = 1/2, and different choices of t1, t2. The
solid curves result from the numerical solution of the BdG equa-
tion on a lattice. The dashed curves are the analytical predictions
(3.3) in which normal reflections at the AS interfaces are neglected
(blue for spin up, red for spin down).

contribute [16,19,20]. In equilibrium at inverse temperature
β, the supercurrent I is given by the phase derivative of the
Josephson energy F ,

I = 2e

h̄

d

dφ
F, F = −

∑
E>0

1

2
E tanh

(
1

2
βE

)
, (6.1)

where
∑

E>0 is a sum over the transverse momentum ky and
spin ↑,↓ of the Andreev levels in the interval (0,�0).

In the absence of normal reflections, we find from
Eqs. (3.3) and (3.4) that

F = −
∑

ky

∑
s=±

1

2
εs�0 tanh

(
1

2
εsβ�0

)
, (6.2a)

εs = | cos(φ/2 + sLQ+
z )|. (6.2b)

FIG. 5. Solid curves: Andreev levels for dxy-wave pairing in the
presence of a tunnel barrier at the two AS interfaces (kFL = 20,
ky/kF = 1/2). The normal-state transmission probability T = 0.75
through the junction was obtained directly from the computer sim-
ulation (by setting �0 ≡ 0). The dashed curves are the analytical
prediction (4.4) for the same value of T (blue for spin up, red for
spin down).

The transverse momenta range over the interval (−kmax, kmax)
with

kmax = kF

√
1 − 2t2

1 − t2
1 − 4t2

2

, (6.3)

in view of Eq. (2.7). In a junction of width W 	 L, ξ0, and at
zero temperature, one has

I (φ) = −e�0

h̄

W

2π

∫ kmax

−kmax

dky
d

dφ
(ε+ + ε−). (6.4)

The integral over ky in Eq. (6.4) can be carried out in closed
form for the case t2 = 0 of a pure dxy-wave magnetization
when εs = | cos(φ/2 − st1kyL)|. We find

I = I0

2α
(| cos(φ/2 − α)| − | cos(φ/2 + α)|), (6.5)

with I0 = (e�0/h̄)(kmaxW/π ) and α = t1kmaxL.
The critical current from Eq. (6.5) is given by

Ic = I0
sin 2α

2α
, (6.6)

see Fig. 6. A negative sign of Ic means that the maximum
supercurrent is reached in the interval −π < φ < 0. When
Ic < 0, the Josephson energy is minimal at φ = π rather than
at φ = 0, the altermagnet Josephson junction has become a π

junction [12,13].
With increasing L, a negative critical current first appears in

the interval π/2 < t1kmaxL < π . At L = L∗ ≡ 3π/(4t1kmax),
one has Ic = −(2/3π )I0, so the negative Ic is comparable in
magnitude to the value I0 at L = 0. Note that this characteristic
length L∗ is still in the short-junction regime provided that t1
is not too small, we need �0/μ � t1 � 1.

These results are not changed qualitatively if we include a
dx2−y2 contribution to the magnetization, see Fig. 7. In the case
of t1 = 0 of a pure dx2−y2 -wave magnetization, the negative
critical current first appears in the interval π/2 < t̃2kmaxL < π

with

t̃2 = 1
2 (1 − 2t2)−1/2 − 1

2 (1 + 2t2)−1/2 = t2 + O
(
t2
2

)
. (6.7)
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FIG. 6. Phase dependence of the Josephson energy (top panel in
units of F0 = �0kmaxW/π ) and the supercurrent [lower panel, in units
of I0 = (e/h̄)F0] in the altermagnet Josephson junction for different
lengths L of the junction [in units of L∗ = 3π/(4t1kmax)]. In the
interval 2/3 < L/L∗ < 4/3 the Josephson energy is maximal rather
than minimal at φ = 0, resulting in a negative critical current. These
are results for pure dxy-wave magnetization (t2 = 0) and without
normal reflection (� = 1).

All of this was without normal reflections. We consider the
effect of a tunnel barrier (transmission probability �) at each
AS interface in the case of pure dxy-wave magnetization when
we have the closed-form expression (4.4) for the Andreev
levels. As illustrated in Fig. 8, the barrier reduces the mag-
nitude of the critical current, but its sign remains unchanged.
For � � 1 the critical current (6.6) is reduced by a factor �

FIG. 7. Current-phase relationship for the case of pure dxy-wave
magnetization (black, t2 = 0, t1 = 0.1, and kFL = 25), pure dx2−y2 -
wave magnetization (red, t1 = 0, t2 = 0.1, and kFL = 20) and the
equal weight case (blue, t1 = t2 = 0.1, kFL = 15).

FIG. 8. The black curve shows the supercurrent (6.5) without
normal reflections, the blue and red curves include normal reflections
from a barrier at each AS interface [transmission probability �,
Andreev levels given by Eqs. (4.4) and (4.6)]. Each curve is for the
same junction length L = L∗ and dxy magnetization strength t1 = 0.1
(with t2 = 0).

because only the transmission resonance peaks (unit height
and width �) contribute.

We can compare our analytical result (6.5) for the
supercurrent-phase relationship with Ref. [13], which studies
the same system in a different formulation. (The numerical
study of Ref. [12] does not contain results that can be di-
rectly compared with ours.) Although qualitatively, we find
the same sign changes in the critical current with increasing
L, the decay rate of the oscillations is different in Ref. [13]:
Ic ∝ L−3/2 instead of the 1/L decay in Eq. (6.6). Moreover,
Eq. (6.5) is strongly nonsinusoidal, whereas, Ref. [13] finds
I (φ) ∝ sin φ. The absence of higher harmonics suggests a
perturbative approximation (� � 1). We emphasize that our
result is fully nonperturbative.

VII. CONCLUSION

To summarize, we have extended the scattering theory of
nonmagnetic Josephson junctions to the case of an altermag-
netic junction. The basic effect of the d-wave magnetization is
to spin polarize the Andreev levels by giving the spin-up and
spin-down spectra E (φ) opposite phase-shifts ±δφ.

For a planar junction aligned along the crystalline axes
of dxy-wave symmetry, the phase shift is proportional to the
transverse momentum ky, which upon integration of dE/dφ

over ky gives the simple closed-form result (6.5) for the
supercurrent.

As noticed previously [12,13], the altermagnet Josephson
junction undergoes 0-π transitions with increasing junction
length L where the critical current changes sign. Our approach
is nonperturbative in the transmission probability through
the junction, producing the strongly nonsinusoidal current-
phase relationship of Figs. 6 and 7. To observe this the
junction length, L should be below the superconducting co-
herence length ξ0 and also below the mean free path l for
impurity scattering. The characteristic value of L for a neg-
ative critical current is 3π/(4t1kF), which for t1 � 0.1 and
kF � 109 m−1 amounts to a realistically short junction length
of L � 20 nm.
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APPENDIX A: SCATTERING MATRIX CALCULATION
OF THE ANDREEV LEVELS

We consider the altermagnet Josephson junction of Fig. 1
with a tunnel barrier (transmission probability �) at x = 0 and
x = L. We calculate the Andreev level spectrum by means of
the scattering formulation of Ref. [16].

The scattering matrix S(E ) of electrons (e) and holes (h)
at energy E , incident on the altermagnet from the left (L) or
the right (R) with transverse momentum ky, has the block-
diagonal form

S(E ) =
(

Se(E ) 0
0 Sh(E )

)
, (A1)

�out = S�in, � = (ψe,L, ψe,R, ψh,L, ψh,R). (A2)

Without the tunnel barrier and at the Fermi level (E = 0) one
would have simply

Se(0) =
(

0 exp(−iL[Q−
0 + Q−

z ])

exp(iL[Q+
0 + Q+

z ]) 0

)
, (A3a)

Sh(0) =
(

0 exp(−iL[Q+
0 − Q+

z ])

exp(iL[Q−
0 − Q−

z ]) 0

)
, (A3b)

in terms of the momentum offsets defined in Eq. (2.9).
Multiple reflections by the two barriers change this into

Se(0) = 1

1 + (1 − �)eiLKe

×
( √

1 − �(1 + eiLKe ) � exp(−iL[Q−
0 + Q−

z ])

� exp(iL[Q+
0 + Q+

z ]) −√
1 − �(1 + eiLKe )

)
,

(A4a)

Ke = Q+
0 − Q−

0 + Q+
z − Q−

z , (A4b)

Sh(0) = 1

1 + (1 − �)eiLKh

×
( √

1 − �(1 + eiLKh ) � exp(−iL[Q+
0 − Q+

z ])

� exp(iL[Q−
0 − Q−

z ]) −√
1 − �(1 + eiLKh )

)
,

(A4c)

Kh = −Q+
0 + Q−

0 + Q+
z − Q−

z . (A4d)

We set � = �0eiφ/2 at the left superconductor (x < 0)
and � = �0e−iφ/2 at the right superconductor (x > L). The
condition for a bound state is

Det[1 − R(E )S(E )] = 0, (A5)

in terms of the scattering matrix S(E ) of the normal region
and the Andreev reflection matrix,

R(E ) = e−iα(E )

(
0 Reh

Rhe 0

)
,

Reh = R∗
he =

(
eiφ/2 0

0 e−iφ/2

)
. (A6)

The function α(E ), given by Eq. (3.1), varies on the scale
of �0. The energy scale on which S(E ) varies is on the order
of �v̄/L. If L � �v̄/�0, it is consistent to evaluate S(E ) at
E = 0, whereas, retaining the energy dependence of R(E ).

Substitution of of Eqs. (A4) and (A6) into Eq. (A5) gives
the determinantal equation (4.5) from the main text.

APPENDIX B: TIGHT-BINDING CALCULATIONS

For the computer simulations, we discretized the altermag-
net Hamiltonian (2.2) on a square lattice (lattice constant a,
mass m, and h̄ all set to unity),

H0 = 2 − cos kx − cos ky − μ + t1 sin kx sin kyσz

+ 2t2(cos kx − cos ky)σz. (B1)

In the two superconducting regions, we set t1 = 0 = t2 and
couple the electron and hole blocks by a pair potential
�0e±iφ/2. We keep the same chemical potential μ throughout.

The system is infinitely extended in the y direction. In
the x direction, the altermagnet is in the interval 0 < x < L,
whereas, the superconductors occupy the regions −LS < x <

0 and L < x < LS . The length LS is chosen much larger than
the superconducting coherence length ξ0 = √

2μ/�0. We
took μ = 0.5 and �0 = 5 × 10−4, hence, ξ0 = 2000. With
L = 20, we are, therefore, deep in the short-junction regime.
The tight-binding model is implemented by means of the
Kwant toolbox [21].

For Fig. 5, we inserted a tunnel barrier at x = 0 and x = L
by locally modifying the hopping matrix elements. The trans-
mission probability T through the junction was calculated
separately for �0 = 0 so that there are no adjustable parame-
ters in the comparison with the analytics.
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