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ABSTRACT: The inherent diversity of approaches in proteomics research has led to a wide
range of software solutions for data analysis. These software solutions encompass multiple tools,
each employing different algorithms for various tasks such as peptide-spectrum matching,
protein inference, quantification, statistical analysis, and visualization. To enable an unbiased
comparison of commonly used bottom-up label-free proteomics workflows, we introduce
WOMBAT-P, a versatile platform designed for automated benchmarking and comparison.
WOMBAT-P simplifies the processing of public data by utilizing the sample and data
relationship format for proteomics (SDRF-Proteomics) as input. This feature streamlines the
analysis of annotated local or public ProteomeXchange data sets, promoting efficient
comparisons among diverse outputs. Through an evaluation using experimental ground truth
data and a realistic biological data set, we uncover significant disparities and a limited overlap in
the quantified proteins. WOMBAT-P not only enables rapid execution and seamless comparison
of workflows but also provides valuable insights into the capabilities of different software
solutions. These benchmarking metrics are a valuable resource for researchers in selecting the most suitable workflow for their
specific data sets. The modular architecture of WOMBAT-P promotes extensibility and customization. The software is available at
https://github.com/wombat-p/WOMBAT-Pipelines.
KEYWORDS: workflow, data analysis, benchmarking, label-free proteomics, quality metrics

■ INTRODUCTION
Computational workflows play a crucial role in data-intensive
sciences such as mass spectrometry (MS)-based proteomics by
providing a way to automate and streamline complex analysis
processes and to make them easier to repeat and share with
other researchers.1 The search for an optimal data analysis
solution is mostly data-dependent and cumbersome in many
ways. In an optimal scenario, one would require extensive tests
using ensembles of differently designed or parametrized
workflows, all of them providing results in a comparable and
standardized manner. We are aware that multiple search
engines provide different results for the same data set, and how
to integrate these results is an open question. In fact, on one
hand, the combination of different workflows results in a
boosted false identification rate of peptides and proteins; on
the other hand, their intersection decreases the identification
power. However, combining results from different tools
remains a simple strategy to significantly improve the
performance and reliability of the identification results for
shotgun MS, maximizing the exploitation of the experimental
MS spectra.2

Despite the significant developments made in recent years,
there are still many challenges that must be addressed to
enable more efficient, accurate, reproducible, and standardized
analysis of proteomic data. This holds particularly for defining,
building, executing, and benchmarking workflows. These
challenges are not unique to proteomics but are exacerbated
when compared to many other fields due to the diversity of
experimental designs, operations on data, and file formats.
One major challenge is defining and identifying powerful

algorithms and tools for proteomic data analysis. To achieve
this, researchers require extensive knowledge of the current
state of the art and software registries that provide an updated
overview of the available tools such as bio.tools.3 Additionally,
benchmarks of software usage and popularity can help
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researchers to identify the most appropriate tools for their
specific research questions.4

Another challenge is constructing workflows from scratch or
adding new software tools to an established pipeline. This can
become problematic due to file format incompatibilities,
inconsistent annotation, parameter definitions, and demands
on the computational environment. However, an increasing
amount of format converters and shims is starting to alleviate
this issue. Moreover, accurate annotation of software tool input
and output, e.g. via the EDAM ontology,5 helps identifying
suitable software combinations.6,7 Interoperability issues can
be solved using standardized file formats.
Running workflows relies on successful installations and

execution settings to adapt to different computational
environments. Workflow systems such as Galaxy, SnakeMake,
common workflow language (CWL), and Nextflow can help
address these issues by adapting the execution protocol to a
wide range of local and cloud environments. These can utilize
software containers such as Docker and Singularity8,9 and
standardized package management systems like Conda.10

However, many proteomics tools are still not available via
fully functional software containers or Conda packages.

Analyzing data of different origins can also pose a challenge
as it requires the raw spectra and details about the study design
and experimental protocol. Standardization of this information
has been initiated recently via the SDRF-Proteomics format
linking data files to samples and attributes from the data
acquisition.11,12 However, this format still lacks both in details
about the data analysis protocol and availability in
ProteomeXchange public repositories such as the PRIDE
database.13 Moreover, very few workflows can directly process
this standardized information.
Workflow outputs like reports on peptide spectrum matches

(PSMs), peptides, proteins, and differential abundance can
come in a myriad of different formats and depend on different
levels of interpretation, making a direct and objective
comparison a major challenge. Efforts to compare the output
of different data analysis pipelines have been carried out quite
extensively (e.g., ref 14−16), but they are restricted to very few
data sets. Nonetheless, these studies indicated large differences
between the performance of various workflows, which shows
the importance to benchmark different workflows and different
workflow modules. Furthermore, few platforms provide
benchmarking results over both different workflows and

Figure 1. Scheme of the WOMBAT-P analysis workflows. They allow different types of input files for setting the workflow parameters and
experimental design. This can be given either in the SDRF-Proteomics file format or as separate parameter files, which can also be used to overwrite
the original settings.
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different data sets without cumbersome adaptations to work
with a particular data set.
While some efforts have been made to create central

repositories for workflows, like Workflow Hub17 and nf-core,18

there are still relatively few workflows listed for proteomics
there. This might be due to the relatively small size of the
proteomics community as well as due to the heterogeneity and
multitude of vendor-specific tools and workflows often used to
characterize proteomic profiles.
To address these challenges, the WOMBAT-P platform has

been developed to provide a comprehensive solution for
defining, executing, and comparing ensembles of workflows.
The platform captures both generic and user-defined specific
benchmarks of performance, efficiency, and maintainability.
These benchmarks are essential for evaluating workflow
performance, its components, and hardware execution. They
often use reference standard data sets and evaluate perform-
ance of quantitative preprocessing and statistical analysis such
as a list of differentially abundant proteins, against which
performance of other workflows can be measured. This ensures
operation at an acceptable level and allows exploring the
applicability of new software tools and their parameters over
different data sets.
We demonstrate the WOMBAT-P platform with an

ensemble of semantically equivalent and complete label-free
quantification workflows for the analysis of bottom-up
proteomics data. For this purpose, we used combinations of
tools known from the recent literature to have a high degree of
compatibility:

1. Compomics tools19 + FlashLFQ20 + MSqRob21 (Compo-
mics workflow).

2. MaxQuant22 + NormalyzerDE23 (MaxQuant workflow).
3. SearchGUI24 + Proline25 + PolySTest26 (Proline

workflow).
4. tools from the Trans-Proteomic Pipeline (TPP)27 +

ROTS28 (TPP workflow).

■ METHODS

Workflow Implementation
WOMBAT-P bundles different workflows for the analysis of
label-free proteomics data (Figure 1). It is built using Nextflow,
a workflow language that allows running tasks across multiple
computing infrastructures in a portable manner. We used an
nf-core18 template from 2021 to set up the main framework,
and we used Docker and Singularity/Apptainer containers to
make installation and results maximally reproducible. The
Nextflow DSL2 implementation of the platform relies on one
container image per process and allows describing each process
in separate files, which makes it easier to maintain and update
software dependencies. It also organizes the workflow steps as
modules, facilitating their substitution or alternative tool
combinations. As part of this study, we implemented four
complete and mostly disjointed workflows based on existing
tools. An overview of all the processes is available in Figure S1.
We used the release version 0.9.2 in this study.
The first workflow (Compomics workflow) combines

Compomics tools with FlashLFQ20 and MSqRob.21 The second
workflow (MaxQuant workflow) is based on MaxQuant22 and
NormalyzerDE.23 In the third workflow (Proline workflow), we
used SearchGUI,24 Proline,25 and PolySTest.26 Finally, we also
included a workflow using tools from the TPP,27 specifically
PeptideProphet,29 ProteinProphet, and StPeter30 with

Comet31 for database search and ROTS28 for statistical
analysis (TPP workflow). Multiple modules were written in
Python and R scripts to facilitate conversion and para-
metrization within the workflows. Therein, we used MSnbase32

for normalization in the Compomics workflow and conversion
scripts from https://github.com/jeffsocal/proteomic-id-tools
in the TPP workflow.
Furthermore, we used wrProteo33 for in-depth analysis of

the investigated ground truth data set.
Input Options

WOMBAT-P allows a variety of input files, either based on
SDRF-Proteomics annotation or via parameters given by a
YAML file with the specifications of https://github.com/
bigbio/proteomics-sample-metadata/blob/master/sdrf-
proteomics/Data-analysis-metadata.adoc and the experimental
design as a tab-delimited file (see Figure 1 for an overview of
input options).
Workflow inputs are harmonized using a general set of

parameters. Initialization and parametrization of the workflows
are based on tools from the SDRF-pipelines11 and the
ThermoRawFileParser34 for file conversion. We extended the
definition of the SDRF-Proteomics data format to include a
generalized set of 30 data analysis parameters (Table S1 and
the specification of the YAML file), thus enabling the
reproducibility of the data analysis via annotations with
controlled vocabularies. When not provided, these parameters
were set to their default values according to the specification
file.
Output Options and Benchmarks

Intermediate and final files are stored in the results folder or a
folder specified via the outdir parameter. In addition to the
workflow-specific output, a standardized tabular format is
provided at the peptide and protein levels (stand_pep_quant_-
merged.csv and stand_prot_quant_merged.csv, respectively).
For each of the workflows, WOMBAT-P calculates the same

set of 32 benchmarking metrics for comparison between
workflows and between different values of the data analysis
parameters (Table S2).
Scripts for postprocessing are available at https://github.

com/wombat-p/Utilities. We used the heatmap.2 function
from the gplots R package for the hierarchical clustering. For
the Reactome pathway enrichment analysis of the differentially
abundant proteins resulting from each workflow,35 the
clusterProfiler Bioconductor R package36 was used.
Benchmarking Data Sets

Raw data files were downloaded automatically from PRIDE by
WOMBAT-P when SDRF-Proteomics files were used as the
links to the files in the online repository are provided in these
annotations. FASTA files for the database search were
retrieved from UniProt (UniProtKB/SwissProt version Feb
3, 2023) and Sigma-Aldrich (https://www.sigmaaldrich.com/
deepweb/assets/sigmaaldrich/marketing/global/fasta-files/
ups1-ups2-sequences.fasta).
The ground truth data set (PRIDE accession number

PXD009815)25 contains a yeast background and 48 human
proteins (Universal Proteomics Data Set, UPS) spiked at 10
different concentrations of UPS proteins (10 amol, 50 amol,
100 amol, 250 amol, 500 amol, 1 fmol, 5 fmol, 10 fmol, 25
fmol, and 50 fmol).
For experimental data from a standard liquid chromatog-

raphy (LC−MS) experiment, we used data from a study
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comparing COVID-19-negative and -positive samples (PRIDE
accession number PXD020394, from now on called COVID-
19 data set).37

Workflow Registration

WOMBAT-P data provenance can be downloaded from the
WorkflowHub as an RO-Crate (Research Object Crate38), see
https://workflowhub.eu/workflows/444. The WOMBAT-P
metadata RO-Crate contains information about the workflow,
as well as its context. We used it to organize and share our
workflow with other researchers in a standardized, interoper-
able, and reusable approach. The data provenance of
WOMBAT-P was generated with WfExS-backend (https://
github.com/inab/WfExS-backend), which is a high-level
orchestrator to run scientific workflows reproducibly. It

automates creating an RO-Crate by analyzing the structure
and content of the computational workflow files.
Creating an RO-Crate of the WOMBAT-P workflow for

instantiation or execution starts with the WOMBAT-P GitHub
repository link. WfExS-backend analyzes the workflow
repository, finds the workflow files, and extracts the metadata,
including file names, formats, file sizes, script dependencies,
and execution environments, needed to run the workflow. The
extracted metadata is mapped to the corresponding RO-Crate
metadata fields following the RO-Crate specification 1.1
(https://www.researchobject.org/ro-crate/1.1) to ensure that
the metadata is correctly organized and represented. Then, a
directory is generated using the extracted and mapped
metadata with the necessary JSON-LD metadata files,
including the ro-crate-metadata.json file, which contains the

Figure 2. Summary of the benchmarking results for the ground truth data set.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00636
J. Proteome Res. 2024, 23, 418−429

421

https://workflowhub.eu/workflows/444
https://github.com/inab/WfExS-backend
https://github.com/inab/WfExS-backend
https://www.researchobject.org/ro-crate/1.1
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


comprehensive metadata for the RO-Crate. In addition, the
directory includes the workflow files and associated data to
ensure that all relevant files are included and can be accessed.
A full version of a generated Workflow Run RO-Crate from

a workflow execution in singularity mode is available at
https://doi.org/10.5281/zenodo.10091549. This RO-Crate
contains snapshots of the workflow, inputs, containers, and
results as payloads.
Availability
All workflows and documentation are available in GitHub at
https://github.com/wombat-p/WOMBAT-Pipelines under an
MIT license.
The main result files and the files needed for running the

workflows are deposited at https://github.com/wombat-p/
WOMBAT-P_Processed. While this article discusses the
results from two particular data sets, the results from additional
data sets are being added iteratively (five were available at the
time of writing this article).

■ RESULTS
WOMBAT-P provides a platform for automated and scalable
proteomics data analysis for bioinformaticians and experienced
end-users, allowing a broad range of configurations to explore
workflow performance thoroughly. These can be set using the
30 harmonized input parameters by specifying their values in
either the SDRF file or the input parameter file. Parameters
that are not provided are set to their default values (as
documented in the WOMBAT-P GitHub main page).
The results, given in a standardized textual file format for

peptide and protein quantification levels, can be assessed using
32 metrics to benchmark distinct features. These are given in
the YAML format and thus can easily be processed for further
in-depth evaluation. We ran the postprocessing using an R
script, leading to the results described in what follows.
We provide detailed evaluations of the workflows and their

results on the basis of two different data sets. WOMBAT
version 0.9.2 was used for analyzing these data sets. The first
data set is a ground truth data set with known information
about the expected quantitative changes and thus serves to
directly assess workflow performance. The second data set
comes from a typical label-free proteomics experiment and
thus should resemble the structure and properties of such.
Ground Truth Data Set
Comparison of different data analysis software and pipelines
was performed on data from a ground-truth spike-in
experiment.25

Regarding the overall number of quantified peptides and
proteins, we observed that TPP reported a much lower peptide
count than those of MaxQuant and Compomics (Figure 2A).
We suspect that this is due to the prior filtering of peptides for
protein false discovery rates (FDRs) in the TPP workflow. This
also shows that the comparison at the same stage in the
analysis is often hampered by even slightly different data
treatment in the workflows. Despite the differences in peptide
quantifications, all workflows showed similar numbers of
proteins (Figure 2A). However, this means that the
proportionality of the reported quantified peptides and
proteins differs between the different tested pipelines. This
discrepancy implies that the underlying tools employ
algorithms (such as protein inference and protein-level FDR
control), leading to a different number of protein groups for a
given number of peptides.

Proline and FlashLFQ from the Compomics workflow
reported higher coverage of peptides and proteins across
samples compared to that of TPP, which lacked a match-
between-runs option (Figure 2B). A lower coverage of
quantified peptides across samples was observed in MaxQuant,
and even lower in TPP. The lower number in TPP is likely due
to the inability to use information from other MS runs to
improve the overall number of quantified peptides and proteins
(Figure 2B).
Higher coverage decreased the variation of protein

abundance values between replicates, and we consistently
observed high correlations for all workflows with the exception
of TPP, which provided slightly lower performance (Figure
2C).
Finally, we evaluated the dynamic range, i.e., the ratio

between the highest and the lowest reported quantitative
values for the reported peptides and proteins, to reproduce
actual changes in protein and peptide abundance within the
mass spectrometer’s sensitivity. We found that MaxQuant had
an approximately 10-fold higher range of protein abundance
changes of 599 when compared to that in TPP with 51, which
is considerably different from the variability observed in the
other workflows (Figure 2D). Here, StPeter from TPP uses a
method of quantification different from that used by the other
tools. It is noteworthy to mention that a higher dynamic range
does not necessarily reflect a more accurate output as distinct
summarization of PSMs and peptides can lead to different
deviations from the linear response.
While generic benchmarking metrics such as the number of

quantified peptides and proteins offer valuable insights into
workflow performance, it is equally important to assess the
overlap and similarity between the obtained results. We then
evaluated the overlap in quantified proteins across all the
samples and workflows (Figure S2), revealing distinct patterns
both across and within the four workflows. The Compomics and
Proline workflows exhibited a higher overlap among the
different samples.
In terms of quantified peptides, we observed that their

similarity with respect to their relative abundances was
generally higher within each workflow (Figure S3), likely due
to variations in the methods used to quantify peptide and
protein intensities. This trend was particularly noticeable in the
TPP workflow, where quantification was based on StPeter, an
algorithm that incorporates spectral counting. Furthermore,
the workflows successfully grouped the samples with the same
UPS protein concentrations in most instances.
The samples of the experiment consist of 48 human proteins

spiked at levels of the yeast proteome. Thus, only all proteins
annotated as this species (human in this data set) are expected
to vary between the samples, while the proteins of the other
species (yeast in this data set) are expected to be always
detected at a constant level.
We run the workflows with median normalization, i.e.,

without using a specialized normalization method that adapts
to the rather particular experimental design. Given the large
concentration changes of the spike-in UPS proteins, this design
led to an apparent underexpression of the background proteins
in the conditions where the UPS proteins are highly abundant,
thus providing misleading quantitative changes of the back-
ground proteins. A specialized analysis and extensive
interpretations using wrProteo for this spike-in ground truth
data including use of appropriate normalization are available in
the Supporting Information File.
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However, in a regular experiment, it is not known in advance
as to which proteins are expected to be constant in abundance.
Therefore, we did not apply such data transformations in order
to provide an objective view of the workflow performance.
This also meant that the “official” ground truth of finding 48
differentially abundant UPS proteins became mixed with
differentially abundant yeast proteins. While assuming that this
should not affect the outcome too drastically, we find

surprisingly different results when comparing the output
from the four WOMBAT-P workflows.
We checked how well the workflows detected the UPS

proteins as differentially abundant in a challenging case of their
low concentrations being 10 versus 500 amol. For that, we
assessed the number of human proteins observed as variants
(providing the sensitivity) and the percentage of wrongly
detected yeast variants (providing the specificity). When
examining the outputs of the workflows in terms of

Figure 3. Comparison of the proteins found to be differentially abundant between the samples with UPS amounts of 10 and 500 amol and a
background of equally abundant yeast proteins. Differential regulation was determined by the respective workflow components for statistical testing,
which uses different statistical approaches.

Figure 4. Comparison of the computational resources used for the different workflows. Given that MaxQuant bundles multiple operations, we only
report running times, which were available in theMaxQuant output. rchar: amount of the data being read; wchar: amount of written data; peak_rss:
peak amount of RAM; CPU: average number of used CPU threads in percentage.
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differentially abundant proteins (FDR < 0.05), there was poor
agreement among all workflows (Figure 3). The Proline and
Compomics workflows showed the highest number of UPS
proteins correctly detected as differentially abundant with a
total of 37 and 35 proteins, respectively. Notably, 14 of the 37
UPS proteins identified by Proline as significantly different
were found only by this particular workflow. Similarly, the
Compomics workflow reported 12 UPS proteins uniquely found
in this workflow. When comparing with the number of
differentially abundant yeast proteins representing false-
positives, their numbers were lower, and there was no overlap
between the workflows. Notably, all eight proteins found in at
least two workflows were UPS proteins. For a more systematic
exploration of the ground truth, we refer to Supporting
Information File 1.
We also measured the usage of available computational

resources with different metrics (Figure 4). These metrics were
extracted from a trace report that was computed by nextflow. It
contains information about each executed process in the

pipeline. The results varied widely across different tasks, which
could be attributed to different implementations and differ-
ently assigned subtasks of the major data transformations.
On the whole, we noticed that Proline and Compomics used

CPUs more efficiently and required more memory, while the
MaxQuant workflow performed more file read/write oper-
ations. In summary, when utilizing the ground truth data set
with UPS proteins spiked into a yeast background, significant
differences were observed among the outputs of the various
workflows.
Performance on Biological Data from COVID-19 Study

Ground truth data sets can be limited in accurately replicating
biological samples. Therefore, we decided to also assess the
performance of WOMBAT-P using a recent data set that
compared COVID-19-positive and -negative samples.37 The
utilization of this data set led to slightly different results,
showing that the workflow performance can depend strongly
on each particular data set it processes.

Figure 5. Summary of the benchmarking results for biological data set.
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When comparing the different benchmarks (Figure 5), the
Compomics and TPP workflows consistently exhibited lower
peptide quantification numbers, whereas the Compomics
workflow demonstrated up to 400 more quantified proteins
compared to that by the other workflows. When evaluating the
variance and correlation levels within the replicates of the same
sample type, the correlations were lower compared to that with
the ground truth data. This disparity can be attributed to the
increased biological variability among the samples (from
controls and patients) and to the lower number of quantified
proteins. Notably, the TPP workflow exhibited the lowest
coefficient of variance and the highest protein abundance value
correlations of nonlog-transformed values. It is worth
mentioning that we observed significant differences in the
dynamic ranges of protein and peptide quantifications, similar
to what was observed in the ground truth data set. These
differences could have influenced the high correlation values
and low coefficient of variance for the TPP workflow.
Run times showed a diverse picture, similarl to what was

observed for the UPS data set (Figure S4). Additionally,
computer resources used for the processing of this data set
exhibited very close relative values, compared to those used for
the UPS data set.
When comparing the overlap of the quantified proteins

within and across the workflows (Figure S5), it could be
confirmed that there was a much higher similarity in the
proteomes measured among the samples analyzed with the
same workflow. This cannot be merely attributed to the

applied match-between-runs option, given that the TPP
workflow separates similarly. While it is well attested in the
literature39−41 that different search engines identify non-
identical sets of peptides from the same data, downstream
components, such as for PSM validation42 or protein
inference,43 may also be of considerable influence.
The quantitative comparison of the workflow results (Figure

6) provided more insights into the workflow performance. For
the correlations within the samples of a given workflow, the
Proline workflow performed with the highest similarity among
all the samples. Notably, the results from the Compomics and
MaxQuant workflows were sufficiently similar to separate the
two sample types between them.
We furthermore compared the protein groups found to be

differentially abundant (Figure S6). While more than 100
proteins were detected in at least 3 of the 4 workflows, they
disagreed to a high degree, leading to more than 500 proteins
being uniquely found to be significantly changing between the
COVID-19-positive and -negative samples. However, further
analysis via Reactome pathway enrichment led to considerable
agreement between the results of the Compomics, Maxquant,
and Proline workflows for the most enriched pathways (Figure
S7).
In summary, we found both similarities and differences when

comparing workflow performances. The noise levels, as
expected, were higher for the COVID-19 data set and showed
higher similarity between the different workflows (Figures 2C
and 5C).

Figure 6. Similarity of workflow results using the COVID-19 data set. Pearson correlation values were calculated to compare the similarity on a
quantitative level, and then, the correlations were arranged using hierarchical clustering. In contrast to the benchmarking metrics in Figures 2 and 5,
here, the Pearson correlation values were calculated from the log2-transformed values.
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■ DISCUSSION
This study introduces WOMBAT-P as an innovative solution
for addressing the challenges of large-scale proteomic data
analysis. It relies on the importance of automated data quality
control and validation in scaling up to analyze a large number
of files. The scalability of WOMBAT-P using high-performance
computing (HPC) environments and its utilization of software
containers enable reproducible analyses, making it a valuable
tool for both public and in-house label-free data analysis on a
large scale. WOMBAT-P provides a directly applicable,
command-line-based platform for the analysis of in-house
data and for the reanalysis of public data sets. As the workflows
are written in NextFlow, it can furthermore be embedded in
cloud and HPC environments.
One notable feature of WOMBAT-P is its ability to create

SDRF-Proteomics file templates and produce harmonized
outputs, facilitating easy benchmarking and a comparison of
results. This comprehensive approach enhances the robustness
and reliability of proteomic data analysis.
We found different performances of the workflows when

testing them on two selected data sets. The comparison of the
quantification depth (ground truth data set) revealed
discrepancies in the reported number of protein groups,
when relatively compared to the number of peptides. This
could be attributed to various factors, primarily stemming from
the intricacies of the employed protein inference algorithms
and differences in FDR control at the protein identification
level. To delve deeper into this issue, it would be valuable to
examine the occurrence of one-hit wonders peptides (that
uniquely identify a protein) in each pipeline and also to
perform tandem mass spectrometry searches using entrapment
databases44,45 in order to better understand the nuances of the
underlying protein identification algorithms. The quantitative
performance comparison provided further details. The
Compomics and Proline workflows showed relatively higher
differentially abundant protein numbers, likely due to a more
effective match-between-runs feature. This finding of rather
different performances suggests the absence of a universally
optimal solution for proteomic data analysis, which might limit
the routine use of proteomics in clinical settings. It underscores
the significance of data-driven workflow analysis using
benchmarking metrics to assess and identify the best-
performing solutions for proteomic data analysis. However,
the biological interpretation of the results of the COVID-19
data set also showed that despite providing rather different
results, the workflow outputs still describe very similar
biological pathways, and thus, these differences might not
matter too much for systems in biology studies. However, this
observation most likely is not generalizable to other kinds of
studies, such as, for instance, biomarker discoveries and
quantitative profiling of post-translational modifications.
We are aware that benchmarking of software can be complex

due to the number of options available in terms of parameters,
the different characteristics of the benchmarking data sets, and
the need for expertise in all the tools used in the
benchmarking. WOMBAT-P allows users to run and compare
different configurations and thus explore alternative and more
optimized setup.
By providing a large number of 32 benchmarking metrics,

the user can tailor their assessment to their specific
requirements, such as the highest quantification depth, the
highest confidence in identifying differentially abundant

proteins, or the highest overlap of quantified proteins within
all samples. On purpose, given the often very different needs,
we cannot provide an optimal solution. Therefore, the user
must have a clear idea of what they consider to be optimal
performance depending on their needs and requirements.
Finding an optimal solution for a data analysis depends not

only on selecting the software and algorithms but also on fine-
tuning the parameter settings. The scalability of WOMBAT-P
to larger computational resources allows running multiple
instances to compare them on the basis of the provided
benchmarking metrics. Thus, the user can perform ensembles
of workflow executions to study both the performance and
robustness of the results of a particular data set.
In addition to finding the workflow solution that performs

best for a given set of criteria, by allowing to run different
workflows on the same data set, WOMBAT-P facilitates
combining the results from multiple workflows and thus
promotes, e.g., investigations of the complementarity of
different algorithmic and statistical approaches. Such combi-
nations can be done at different levels during the analysis and
thus increase the complexity considerably. Moreover, combin-
ing different results will require further processing, such as
careful correction for multiple testing.
The modularized architecture of WOMBAT-P enables the

incorporation of new processing algorithms and steps and
workflows, including new advancements such as tools that
apply deep learning and further downstream software for
biological interpretation. This flexibility enhances the capa-
bilities of WOMBAT-P and expands its potential for further
developments in proteomic analyses.
We view WOMBAT-P as a continuously evolving platform

with ongoing development and open development, with new
modules and updates anticipated in the near future, and
therefore, we invite contributions from the proteomics
bioinformatics community. Achieving the exchangeability of
certain operations like the downstream statistical tests across
all four workflows will make WOMBAT-P a more versatile and
flexible tool for proteomic data analysis.
In conclusion, this study highlights the significance and

relevance of WOMBAT-P for proteomic data analysis. By
providing a comprehensive tool that enhances accuracy,
scalability, and comparability in the analysis of large-scale
proteomic analyses, WOMBAT-P addresses critical challenges
and contributes to advancing our understanding of complex
biological systems.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636.

Flowchart of all processes run by WOMBAT-P, overlap
of protein identifications between all ground truth data
samples analyzed by the different workflows, similarity of
protein quantitative profiles between different samples of
the ground truth dataset, running times for the COVID-
19 data set, overlap of identified proteins in the different
samples and workflows for the COVID-19 data set,
differentially abundant proteins for COVID 19 dataset
for an FDR threshold of 5%, and most enriched
Reactome pathways for proteins found to be differ-
entially abundant between COVID-19-positive and
-negative samples. (PDF)

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00636
J. Proteome Res. 2024, 23, 418−429

426

https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00636?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00636/suppl_file/pr3c00636_si_001.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Definitions and categories of data analysis parameters in
WOMBAT-P (XLSX)
Definitions and categories of benchmarking metrics in
WOMBAT-P (XLSX)
Detailed evaluation of the UPS data set with wrProteo
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
Veit Schwämmle − Department of Biochemistry and
Molecular Biology, University of Southern Denmark, 5230
Odense M, Denmark; orcid.org/0000-0002-9708-6722;
Email: veits@bmb.sdu.dk

Authors
David Bouyssié − Institut de Pharmacologie et de Biologie
Structurale (IPBS), Université de Toulouse, CNRS,
Université Toulouse III�Paul Sabatier (UT3), 31062
Toulouse, France; Proteomics French Infrastructure, ProFI,
FR 2048 Toulouse, France; orcid.org/0000-0002-0847-
4759
Pınar Altıner − Institut de Pharmacologie et de Biologie
Structurale (IPBS), Université de Toulouse, CNRS,
Université Toulouse III�Paul Sabatier (UT3), 31062
Toulouse, France
Salvador Capella-Gutierrez − Life Sciences Department,
Barcelona Supercomputing Center (BSC), 08034 Barcelona,
Spain
José M. Fernández − Life Sciences Department, Barcelona
Supercomputing Center (BSC), 08034 Barcelona, Spain;
orcid.org/0000-0002-4806-5140

Yanick Paco Hagemeijer − Department of Analytical
Biochemistry, University of Groningen, Groningen Research
Institute of Pharmacy, 9712 CP Groningen, The
Netherlands; European Research Institute for the Biology of
Ageing, University Medical Center Groningen, 9713 GZ
Groningen, The Netherlands; orcid.org/0000-0001-6036-
3741
Peter Horvatovich − Department of Analytical Biochemistry,
University of Groningen, Groningen Research Institute of
Pharmacy, 9712 CP Groningen, The Netherlands;
orcid.org/0000-0003-2218-1140

Martin Hubálek − Institute of Organic Chemistry and
Biochemistry, CAS, 160 00 Prague, Czech Republic;
orcid.org/0000-0003-0247-7956

Fredrik Levander − National Bioinformatics Infrastructure
Sweden (NBIS), Science for Life Laboratory, Department of
Immunotechnology, Lund University, 22100 Lund, Sweden;
orcid.org/0000-0002-0710-9792

Pierluigi Mauri − Institute for Biomedical Technologies (ITB),
Department of Biomedical Sciences, National Research
Council (CNR), 20054 Milan, Italy
Magnus Palmblad − Leiden University Medical Center, 2300
RC Leiden, The Netherlands; orcid.org/0000-0002-
5865-8994
Wolfgang Raffelsberger − Wolfgang Raffelsberger: Institut de
Génétique et de Biologie Moléculaire et Cellulaire, Université
de Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch,
67404 Illkirch, France
Laura Rodríguez-Navas − Life Sciences Department,
Barcelona Supercomputing Center (BSC), 08034 Barcelona,
Spain

Dario Di Silvestre − Institute for Biomedical Technologies
(ITB), Department of Biomedical Sciences, National
Research Council (CNR), 20054 Milan, Italy
Balázs Tibor Kunkli − Balázs Tibor Kunkli: Department of
Biochemistry and Molecular Biology, University of Debrecen,
4032 Debrecen, Hungary; orcid.org/0000-0003-1266-
2792
Julian Uszkoreit − Medical Faculty, Medical Bioinformatics,
Center for Protein Diagnostics (ProDi), Medical Proteome
Analysis, and Medical Faculty, Medizinisches Proteom-
Center, Ruhr University Bochum, 44801 Bochum, Germany;
orcid.org/0000-0001-7522-4007

Yves Vandenbrouck − Proteomics French Infrastructure,
ProFI, FR 2048 Toulouse, France; CEA, Fundamental
Research Division, Proteomics French Infrastructure, 91191
Gif-sur-Yvette, France; orcid.org/0000-0002-1292-373X
Juan Antonio Vizcaíno − European Molecular Biology
Laboratory European Bioinformatics Institute (EMBL-EBI),
Cambridge CB10 1SD, U.K.; orcid.org/0000-0002-
3905-4335
Dirk Winkelhardt − Medical Faculty, Medizinisches Proteom-
Center, Ruhr University Bochum, 44801 Bochum, Germany;
orcid.org/0000-0001-8770-2221

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.3c00636

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was funded by ELIXIR (https://elixir-europe.org/),
the European research infrastructure for life-science data. The
work was also funded in part by a grant from the French
Ministry of Research with the “Investissement d’Avenir
Infrastructures Nationales en Biologie et Santé” program
(ProFI, Proteomics French Infrastructure project, ANR-10-
INBS-08). J.A.V. would also like to acknowledge the funding
from BBSRC [grant number BB/T019670/1].

■ REFERENCES
(1) Harjes, J.; Link, A.; Weibulat, T.; Triebel, D.; Rambold, G. FAIR
digital objects in environmental and life sciences should comprise
workflow operation design data and method information for
repeatability of study setups and reproducibility of results. Database
2020, 2020, baaa059.
(2) Zhao, P.; Zhong, J.; Liu, W.; Zhao, J.; Zhang, G. Protein-Level
Integration Strategy of Multiengine MS Spectra Search Results for
Higher Confidence and Sequence Coverage. J. Proteome Res. 2017, 16,
4446−4454.
(3) Ison, J.; Ienasescu, H.; Chmura, P.; Rydza, E.; Ménager, H.;
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