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Aim To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or
preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established
HF-associated clinical variables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods
and results

In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals
developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with
HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric
bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical
parameters linked to HF. A subset of 8–10 distinct or overlapping serum proteins predicted different future HF
outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80
for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone
encompassed the risk contained in the clinical information and improved the performance characteristics of prediction
models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors
performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular
Health Study.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusion A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and
they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up
to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding
replicated in an external cohort study.
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Graphical Abstract

The ability of the deep circulating proteome to predict future heart failure (HF) events, including its primary subtypes, in relation to event time
and known HF-associated clinical factors was studied in two prospective population-based cohorts. AGES-RS, Age, Gene/Environment Susceptibility
Reykjavik Study; CHS, Cardiovascular Health Study; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with
reduced ejection fraction; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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Introduction
Heart failure (HF) is not a single medical diagnosis, but a clinical
syndrome characterized by cardinal symptoms that are fre-
quently accompanied by signs and is caused by a structural and/or
functional heart defect.1 This can lead to elevated intracardiac
pressures and/or insufficient cardiac output at rest and/or during
exercise.1 Over the last few decades, various medical interven-
tions have improved the survival of HF patients.2–5 However, the
mortality remains high and the exact percentages are influenced
by the underlying aetiology, comorbidities, stage of the disease
(acute vs. chronic HF), study population and diagnostic criteria.6

HF is estimated to have a population prevalence of 2%, which is
steadily increasing as the population ages.7 Approximately equal
numbers of newly hospitalized individuals with HF have HF with
reduced ejection fraction (HFrEF) or HF with preserved ejection
fraction (HFpEF).7

There are many underlying aetiologic and pathophysiologic
factors that influence the risk of HF. Recent epidemiological
research indicates that the incidence of HFpEF is growing faster
than that of HFrEF,8 which may be explained by rapid increases
in HFpEF-associated risk variables such as type 2 diabetes (T2D) ..
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. and obesity.9–11 Other risk factors such as history of myocardial

infarction (MI), uncontrolled hypertension and valve failure are
linked to HFrEF.10,12 Endothelial dysfunction is also more notice-
able in HFpEF than in HFrEF, and patients with HFpEF are more
likely to be women.10 In contrast, cardiomyocyte loss, fibrosis, and
cardiomyocyte hypertrophy are all common features of HFrEF.10

HF is therefore a heterogeneous disorder where the epidemiology
and pathophysiology of the two major subtypes differ markedly.

Accurate prediction of new-onset HF allowing for the identifica-
tion of high-risk individuals, offers early focused intervention and
hence improved patient outcomes. Deep serum proteomics has
revealed links between circulating proteins and diseases of various
aetiologies,13–19 with recent discoveries fueled by aptamer-based
affinity methods in particular.13,16,20–22 In the current study, levels
of 4782 serum proteins encoded by 4137 distinct genes, including
the most reliable clinical diagnostic biomarker for HF, N-terminal
pro-B-type natriuretic peptide (NT-proBNP),1 measured in the
prospective population-based Age, Gene/Environment Susceptibil-
ity Reykjavik Study (AGES-RS) cohort, were examined individually
and in the context of multiple clinical variables for prediction of
future HF events. The AGES-RS findings were followed up on in
the Cardiovascular Health Study (CHS).

© 2023 European Society of Cardiology.
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Proteomic prediction of future heart failure 89

Methods
Study population
Cohort participants aged 66 through 96 years at the time of blood
collection were from the AGES-RS,23 a single-centre, prospec-
tive, population-based study of older adults (n= 5764, mean age
76.6± 6 years). The AGES-RS was formed between 2002 and 2006,
and its participants were randomly selected from the surviving mem-
bers of the established 40-year-long population-based prospective
Reykjavik study,24,25 with a 72% recruiting rate. The Reykjavik study,
a prospective cardiovascular survey, recruited a random sample of
30 795 adults born between 1907 and 1935 who lived in the greater
Reykjavik area in 1967, that were examined in six phases from 1967
to 1996.24,25 Furthermore, the Reykjavik study accurately repre-
sents the entire country because 65.3% of participants came from
all around Iceland, resulting in a proportional representation of the
overall population at the time of birth. The AGES-RS measurements,
which include for instance brain and vascular imaging, are designed
to assess four biologic systems: vascular, neurocognitive (including
sensory), musculoskeletal, and body composition/metabolism.23 All
AGES-RS participants are of European ancestry. A decade-long col-
laboration with large genetic and epidemiology consortia of multiple
disease-related phenotypes revealed no discernible difference between
the Icelandic population and other European ancestry cohorts.26–28

AGES-RS was approved by the National Bioethics Committee in
Iceland that acts as the institutional review board for the Icelandic
Heart Association (approval number VSN-00-063, in accordance with
the Helsinki Declaration) and by the US National Institutes of Health,
National Institute on Aging Intramural Institutional Review Board.

Prevalent coronary heart disease (CHD) was defined as previous
or prevalent MI, coronary artery bypass graft or percutaneous coro-
nary intervention obtained from hospital records at AGES-RS visit.
Incident CHD events included fatal CHD or incident non-fatal CHD
(International Classification of Diseases [ICD] 9th edition, codes
410, 411, 414, 429, and ICD 10th edition, codes I21-I25), obtained
from cause of death registries and hospitalization records from the
National University Hospital, the main provider of tertiary care in
Iceland. Systolic and diastolic blood pressure were measured twice
with subjects in a supine position using a mercury sphygmomanometer.
Body mass index (BMI) was calculated as weight (kg) divided by height
(m) squared, lipoproteins and plasma glucose levels were measured
on fasting blood samples. Triglyceride was measured using enzymatic
colorimetry (Roche Triglyceride Assay Kit), high-density lipoprotein
(HDL) cholesterol with an enzymatic in vitro assay (Roche Direct HDL
Cholesterol Assay Kit), and glucose was measured using photome-
try (Roche Hitachi 717 Photometric Analysis System). Low-density
lipoprotein (LDL) cholesterol was calculated using the Friedewald
equation. T2D was determined from self-reported diabetes, diabetes
medication use, or fasting plasma glucose ≥7 mmol/L according to the
American Diabetes Association guidelines.29

Coronary artery calcium (CAC) was quantified using the Agatston
scoring method,30 which was reviewed independently by four image
analysts. Phantom-adjusted CAC was expressed as a sum score for
all four coronary arteries, as previously described in greater detail.31

Thoracic aorta calcium (TAC) was quantified using the Agatston
method.30 TAC was scored in the proximal descending thoracic aorta
(from the inferior border of the transverse arch to the level of the
aortic bulb), and the distal descending thoracic aorta (from the level
of the aortic bulb to the bottom of the left ventricular apex). The
calcium score of each lesion was calculated by multiplying the lesion ..
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.. area by a density factor derived from the maximum Hounsfield units
(HU) within this area.

The criteria for HF were based on clinical symptoms and signs,
chest X-ray, and, in many cases echocardiographic findings from
hospital records, which were adjudicated by examining every record
for both prevalent HF, that is had HF at the baseline visit, and incident,
that is HF diagnosed after the baseline visit. The incident HF cases
were participants of the AGES-RS who were free of HF diagnosis
at the baseline visit, but who were later hospitalized and diagnosed
(hospital discharge ICD-10 diagnosis codes starting with I50) with HF
during the follow-up period of 8 years. Each patient’s thorough medical
records were subsequently adjudicated by a cardiologist in accordance
with the pre-specified criteria of AGES-RS,23 to confirm the diagnosis
of symptomatic HF and the date of the incident HF event documented.
Among the criteria were symptoms such as shortness of breath that
could be ambulatory, and signs of pulmonary oedema. Further, infor-
mation on cardiac ultrasound (i.e. echocardiography) to determine
left ventricular ejection fraction (LVEF) and comorbid conditions were
also collected for each patient. Echocardiographic measures of LVEF
were used to classify HF subgroups. Individuals with HFpEF had a LVEF
of ≥50% whereas those with HFrEF had and LVEF of ≤40%.

Serum protein measurements
Blood samples were collected at the AGES-RS baseline visit after an
overnight fast, and serum prepared using a standardized protocol and
stored in 0.5 ml aliquots at −80∘C. Serum samples collected from the
inception period of AGES-RS, that is, from 2002 to 2006, were utilized
to generate proteomics data. Before the protein measurements, all
serum samples from this period went through their first freeze–thaw
cycle. Serum protein levels were determined using a multiplex SOMAs-
can proteomic profiling platform (Novartis V3-5K) which employs
SOMAmers (Slow-Off rate Modified Aptamers) that bind to target pro-
teins with high affinity and specificity.16 The custom-design SOMAscan
platform was built to quantify proteins that are known or expected to
be present extracellularly or on the surface of cells.16 The proteomics
platform-specific aptamers which target 4782 human proteins, map to
4137 gene identities where some proteins were targeted by more than
one aptamer. In such cases, individual aptamers had distinct binding
sites (epitopes) or binding affinity.16 The single gene NPPB, for example,
produces three protein products: full-length BNP, NT-proBNP, and
BNP32, each of which are targeted by different aptamers. Duplicate
aptamers to single pass transmembrane proteins (one to extracellular
domain and another to intracellular loop), aptamers targeting multi-
mers (e.g. interleukins), and duplicate aptamers generated in distinct
expression systems are further examples. Proteins targeted by multi-
ple aptamers received the same treatment during the analyses as those
targeted by a single aptamer. Of the 5764 AGES-RS participants, 5457
were measured for the serum proteome.16 The aptamer-based pro-
teomics platform measures proteins with femtomole (fM) detection
limits and a broad detection range or>8 logs of concentration. To avoid
batch or time-of-processing biases, the order of sample collection and
separately, sample processing for protein measurements were random-
ized and all samples run as a single set at SomaLogic Inc. (Boulder, CO,
US). The platform exhibits ∼5% coefficients of variation for median
intra- and interassay variability.16 SomaLogic performed the assays in
collaboration with Novartis, according to the protocol described by
our group.16 Several metrics, including aptamer specificity through
direct tandem mass spectrometry analysis and inferential assessment
via genetic analysis, have been used to determine the performance of
the proteomic platform, suggesting robust target specificity throughout

© 2023 European Society of Cardiology.
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the platform.16 Protein data were centred, scaled and Box–Cox trans-
formed,32 and extreme outlier values excluded, defined as values
above the 99.5th percentile of the distribution of 99th percentile
cutoffs across all proteins after scaling, resulting in the removal of an
average 11 samples per aptamer (∼2% of samples/aptamer).

Statistical analysis
The least absolute shrinkage and selection operator (LASSO)
model,33,34 and non-parametric bootstrap,35 were used to approxi-
mate the sampling distribution of proteomic variables’ coefficients in
age- and sex-adjusted logistic and Cox proportional hazards regression
models as well as their predictive performance as measured by the
area under the curve (AUC) and the Harrel’s concordance index
(C-index).36 This allows us to assert ambiguity in model parameters
and instability.37,38 Harrel’s C-index is best known for its intuitive and
straightforward interpretation, as it evaluates the predictor’s ability to
order events by estimating the fraction of correctly ordered pairs out
of all comparable pairs in the dataset. In brief, we created two datasets
that were repeated for each bootstrap sample. For the training dataset,
the bootstrap selects datapoints from approximately 63% of the sam-
ples. These were used to fit the LASSO models and estimate the
coefficients. For the testing dataset, the datapoints not selected by the
bootstrap and comprising ∼37% of the data were used to estimate the
model’s out-of-sample predictive performance, expressed as AUC and
C-index. Following that, we took the training dataset and performed
10-fold cross-validation by dividing the samples into 10 equally sized
groups and selecting one of the 10 groups to exclude from the model
fitting process. The LASSO path was then fitted to the remaining nine
groups using a set of values for the regularization coefficent’s lambda.
The prediction error for the left-out tenth group was calculated for
each value of lambda. The prediction errors were averaged for each
value of lambda, and each of the 10 models fitted in this manner
provided an error curve. We used this to determine which value of
lambda minimizes the error curve and the LASSO model re-fitted on
the entire training dataset, and to return the coefficient values from
that model. Finally, the coefficients calculated on the training dataset
were used to compute out-of-sample prediction errors on the testing
dataset. This procedure was carried out 500 times.

Based on the boLASSO,39 and stability selection methods,40 a
protein was classified as important to the prediction of HF if it had an
estimated non-zero coefficient in at least 80% of 500 bootstrap replica-
tions. After determining which proteins were important for prediction,
we conducted additional analyses to decide whether including these
proteins in clinical prediction models would improve prediction quality.
This was done for both individual proteins and all proteins selected by
LASSO-bootstrap iterations, combined. Here each bootstrap iteration
gives us the estimated coefficients for proteins. For the combined
protein panel, we used these coefficients to compute a weighted sum
of the measured protein values, yielding a single number for each par-
ticipant that is the log of the hazard ratio for that participant, which we
can use to compare the relative hazards between participants. We used
the non-parametric bootstrap to approximate the out-of-sample con-
cordance of the models by sequentially adding variables to the models
and considering which ones added to the predictive capability by com-
paring the performance of each model on the same bootstrap samples
and calculating 95% confidence intervals on the pairwise differences in
AUC and C-index. In all analyses we adjusted for age and sex, and for
LASSO models the coefficients for age and sex were unpenalized.

The timeROC R package41 was used to perform inverse probability
of censoring weighting (IPCW) estimation of cumulative/dynamic ..
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.. time-dependent receiver operating characteristic (ROC) curves,
which was then used to calculate the time-dependent AUC, monthly
over a 8-year period, for the different protein predictor panels.
The time to event estimates for the various protein predictors did
not include demographic or clinical variables. To obtain an estimate
of the uncertainty for the protein predictor panels we performed
500 bootstrap replications of the time-dependent ROC curves and
calculated the mean, 2.5% quantile, and 97.5% quantile at each time
point. All analyses of the current study were conducted using R
version 4.2.1. and R Rstudio (1.1.456).

Replication cohort
Replication of the AGES-RS analyses was performed in the CHS, a
population-based U.S. cohort study of risk factors for cardiovascular
disease in adults aged 65 and older.42 Participants in the CHS were
recruited in 1989–1990 (n= 5201) and again in 1992–1993 (n= 687),
when the African-American cohort was recruited. A subset of CHS
participants with available plasma specimens at the 1992–1993
exam underwent proteomics measurement with the SomaScan
5K platform.43 The CHS cohort was evaluated semi-annually for
ascertainment and central adjudication of incident HF events over
long-term follow-up.44,45 HF events were ascertained by self-report
and by screening the diagnostic codes of all hospitalizations.45,46 The
Cardiovascular Events Committee reviewed all events, and an HF
event required symptoms, a physician diagnosis, plus evidence from
the physical exam, diagnostic tests such as chest X-rays and echocar-
diograms, and the initiation of some form of treatment.45,46 After
excluding prevalent HF at the 1992–1993 baseline, there were 3484
participants with available proteomics measures who experienced
first-ever 1198 HF events (316 HFrEF and 360 HFpEF) over 23 years of
follow-up. The protein predictions scores were recalculated by fitting
the model weights determined in the AGES-RS discovery dataset in
CHS again using bootstrap resampling. The CHS proteomics data were
log2 transformed and standardized to have a mean of zero and stan-
dard deviation of one. The methodologies, processes, and proteome
assessment in the CHS are detailed in online supplementary material.

Results
Incidence of heart failure and baseline
characteristics of the AGES-RS cohort
In the AGES-RS cohort, 612 individuals were diagnosed with HF,
with 440 being diagnosed after blood was drawn at the baseline
visit. Table 1 displays selected measures of the baseline character-
istics of the AGES-RS cohort including sex-stratified demographic,
biochemical, clinical, physiological, anthropometric, and computed
tomography (CT) imaging data on coronary artery and thoracic
aorta calcification (CAC and TAC), as well as the prevalence and
incidence of HF, and HF-related disease endpoints.

Given the significance of identifying protein predictors for future
HF in this study, the characteristics of the incident HF group
were of particular relevance. This study excluded all participants
who had been diagnosed with HF before to enrolling in the
AGES-RS. Thus, the 440 incident HF patients were AGES-RS
subjects who were not diagnosed with HF at the baseline visit
but were hospitalized and diagnosed with HF throughout the
8-year follow-up period (see Methods). The incident cases had a

© 2023 European Society of Cardiology.
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Proteomic prediction of future heart failure 91

Table 1 Age, Gene/Environment Susceptibility Reykjavik study cohort baseline characteristics with serum proteome
measurements

Characteristic Male Female Total
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Demographics
Numbers 2330 (43) 3127 (57) 5457
Age (years) 76.7 (5.4) 76.5 (5.7) 76.6 (5.6)

Anthropometry
BMI (kg/m2) 26.9 (3.8) 27.2 (4.8) 27.1 (4.4)
Obese (BMI ≥30 kg/m2) 439 (18.9) 777 (24.9) 1216 (22.3)

Lifestyle
Smoker (current) 265 (11.7) 390 (12.8) 655 (12.3)

Physiological
DBP (mmHg) 76.2 (9.6) 72.2 (9.5) 73.9 (9.7)
SBP (mmHg) 143.2 (20.4) 142.2 (20.9) 142.6 (20.7)
HbA1c 0.51 (0.1) 0.47 (0.08) 0.49 (0.09)
HDL-C (mmol/L) 1.4 (0.4) 1.7 (0.4) 1.6 (0.4)
LDL-C (mmol/L) 3.2 (1) 3.7 (1) 3.5 (1)
TG (mmol/L) 1 [0.8–1.4] 1.1 [0.8–1.5] 1 [0.8–1.4]

Cardiovascular imaging
CAC 622.9 [170.7–1513.7] 148.8 [14.8–568.8] 296.4 [47.1–945.5]
TAC 216.5 [26.7–912] 295.6 [38.9–1078.1] 261.3 [31.9–998.9]
Plaque 1493 (69.4) 1891 (66.0) 3384 (67.5)

Metabolic
T2D 365 (15.7) 293 (9.4) 658 (12.1)
MetS 486 (20.9) 641 (20.5) 1127 (20.7)

Cardiovascular
CHD, prevalent 777 (33.6) 440 (14.2) 1217 (22.5)
MI, prevalent 427 (18.5) 242 (7.8) 669 (12.4)
HTN 1877 (80.6) 2542 (81.3) 4419 (81)
HF total 334 (14.5) 278 (9) 612 (11.3)
HF total, incident 233 (10.1) 207 (6.7) 440 (8.1)
HF total, prevalent 101 (4.4) 71 (2.3) 172 (3.2)
HFpEF total 103 (4.5) 135 (4.4) 238 (4.4)
HFpEF, incident 81 (3.5) 107 (3.5) 188 (3.5)
HFpEF, prevalent 22 (0.9) 28 (0.9) 50 (0.9)
HFrEF total 159 (6.9) 78 (2.5) 237 (4.4)
HFrEF, incident 112 (4.8) 55 (1.8) 167 (3.1)
HFrEF, prevalent 47 (2.0) 23 (0.7) 70 (1.3)
HF follow-up (years) 5.3 [4.4–6.3] 5.5 [4.8–6.5] 5.4 [4.7–6.4]

Values are given as mean (standard deviation) for continuous variables, n (%) for categorical variables, and median [interquartile range] for skewed variables.
BMI, body mass index; CAC, coronary artery calcium; CHD, coronary heart disease; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin; HDL-C, high-density
lipoprotein HDL cholesterol; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LDL-C, low-density
lipoprotein cholesterol; MetS, metabolic syndrome; MI, myocardial infarction; SBP, systolic blood pressure; T2D, type 2 diabetes; TAC, thoracic aorta calcium; Plaque, presence
of carotid plaque (carotid plaque was assessed in 5017 individuals of the AGES-RS cohort); TG, triglyceride.

median follow-up time of 5.45 years (range 0.005–7.77 years) and
an incidence rate of 1.58 cases per 100 person-years at risk. After
adjusting for age at diagnosis, HF patients had a 5-year survival
rate of 32.5% and a median survival time of 2.87 years. Of the 440
incident HF patients with echocardiographic data, 167 had HFrEF
(LVEF ≤40%) and 188 had HFpEF (LVEF ≥50%) (Table 1).

Serum proteins that predict all incident
heart failure events
In order to identify independent predictors of all incident HF
events, which included all ejection fraction categories as well as
those without echocardiographic data, we estimated the sampling ..
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. distribution of logistic regression coefficients for all 4782 proteins,
measured in serum samples from the baseline visit, as well as a num-
ber of known HF risk clinical variables using LASSO regression,33

and non-parametric bootstrap.35 We applied the LASSO regres-
sion to complete 500 iterations of the 10-fold cross-validation step
in the AGES-RS discovery cohort to provide internal validation
of findings (Figure 1), where the bootstrap validated concordance
probability estimate (C-index) was based on out-of-sample predic-
tions. The Harrel’s C-index was employed to assess the goodness
of fit when modelling the prognostic risk scores over the 8 years of
follow-up.36 For serum proteins, most showed no association with
HF, with ∼90% present in fewer than ∼20% of iterations, indicating
that this is a sparse prediction problem. Only proteins identified

© 2023 European Society of Cardiology.
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92 V. Emilsson et al.

440 individuals with incident HF events

167 new-onset HFrEF 188 new-onset HFpEF440 new-onset HF

Three study groups

Each incident study group analyzed separately via LASSO and bootstrap

Training set (63% of samples)

Count non-zero estimates

10-fold cross validation

Split into 10 equally sized groups

1 2 3 4 5 6 7 8 9

10th

Fit LASSO for �

Compute prediction error

Test set (37% of samples)

Re-fit LASSO on all Training
samples

Estimate out-of-sample
predictive (C-index, AUC)

performance

Use coefficients to compute
out-of-sample prediction

errors

AGES-RS cohort
5457 individuals with 4782 proteins measured in serum at baseline

LASSO analysis

Bootstrap
500 times

Figure 1 A flowchart describing the process of identifying protein predictors for future heart failure (HF) events in the Age,
Gene/Environment Susceptibility Reykjavik Study (AGES-RS). The flowchart depicts the number of individuals in each HF group, as well
as the approach and analysis that used least absolute shrinkage and selection operator (LASSO), non-parametric bootstrap, and internal
cross-validation. For a more complete discussion, see Methods. The bootstrap validated concordance probability estimate (C-index) was based
on out-of-sample predictions. All incident HF events, included all ejection fraction categories as well as those without echocardiographic data.
AUC, area under the curve; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction.

in ≥80% of the bootstrap replications were evaluated further as
potential predictors.

For incident HF, 10 proteins were selected, with NT-proBNP,
troponin I3 cardiac type (TNNI3) and matrix metalloproteinase-12
(MMP12) found in over 99% of the iterations (online
supplementary Figure S1). Figure 2A displays the concordance
gain for individual proteins or all proteins combined as a weighted
sum of measured coefficients (see Methods) for predicting inci-
dent HF events. Concordance gain is demonstrated using several
models of adjustment incorporating various clinical variables and
demographic information including the BMI-based Framingham risk
score (FRS) components,47 that is, age, sex, total cholesterol, HDL ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. cholesterol, systolic blood pressure, smoking status and BMI, plus
T2D as well as CAC, TAC and prior history of CHD. We used the
FRS, as it is a well-established risk model for CHD and was origi-
nally developed for both CHD and HF,48 and also because no single
clinical risk model of HF has been fully validated and approved
for use in the clinic.49,50 Furthermore, adding a CAC score to the
traditional FRS prediction model improved risk classification for
future CHD events significantly.51 The clinical characteristics that
were most likely to predict all incident HF events using the LASSO
model and 500 bootstrap iterations are shown in online supple-
mentary Figure S2. It is evident that the protein predictors, either
with or without NT-proBNP, improve prediction beyond the scope

© 2023 European Society of Cardiology.
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Proteomic prediction of future heart failure 93

1 year 2 years 3 years 4 years 5 years 6 years 7 years

Time−Dependent AUC for all incident HF

2 months 5 months 8 months 11 months

Time−Dependent AUC for the first year

Protein Null SRFxeS+egAledoM FRS + T2D Full Model

0.30 [0.27 – 0.32] 0.12 [0.09 – 0.15] 0.10 [0.06 – 0.13] 0.10 [0.05 – 0.13]
All - NPPB
All

0.26 [0.22 – 0.29] 0.09 [0.06 – 0.12] 0.07 [0.04 – 0.11] 0.07 [0.04 – 0.10]
NPPB 0.22 [0.18 – 0.25] 0.06 [0.02 – 0.08] 0.05 [0.02 – 0.07] 0.05 [0.02 – 0.07]
MMP12 0.18 [0.15 – 0.22] 0.04 [0.01 – 0.06] 0.02 [0.01 – 0.04] 0.02 [0.00 – 0.04]
TNNI3 0.14 [0.11 – 0.18] 0.02 [0.00 – 0.03] 0.02 [0.00 – 0.03] 0.02 [0.00 – 0.03]
MICA 0.09 [0.05 – 0.13] 0.01 [0.00 – 0.02] 0.01 [–0.01 – 0.01] 0.01 [0.00 – 0.01]
CILP2 0.07 [0.03 – 0.10] 0.01 [0.00 – 0.01] 0.01 [–0.01 – 0.01] 0.00 [–0.01 – 0.01]
OSBPL11 0.06 [0.01 – 0.10] 0.01 [–0.01 – 0.02] 0.00 [–0.01 – 0.01] 0.00 [–0.01 – 0.01]
GPLD1 0.06 [0.02 – 0.10] 0.01 [0.00 – 0.01] 0.00 [0.00 – 0.01] 0.00 [0.00 – 0.01]
EXOSC3 0.06 [0.02  – 0.11] 0.01 [0.00 – 0.02] 0.01 [–0.01 – 0.01] 0.00 [–0.01 – 0.01]
CACNA2D3 0.05 [0.01 – 0.10] 0.02 [0.00 – 0.03] 0.01 [–0.01 – 0.02] 0.01 [0.00 – 0.01]

PKN1 0.01 [–0.06 – 0.05] 0.00 [–0.01 – 0.01] 0.00 [–0.01 – 0.01] 0.00 [–0.01 – 0.01]

0.50 [0.50 – 0.50] 0.69 [0.65 – 0.72] 0.71 [0.67 – 0.75] 0.71 [0.67 – 0.75] 0.73 [0.70 – 0.77]

A

B
AGES-RS

0.08 [0.03 – 0.11]

0.05 [0.03 – 0.08]

0.04 [0.01 – 0.05]

0.01 [0.00 – 0.03]

0.02 [0.00 – 0.03]

0.00 [–0.01 – 0.01]

0.00 [0.00 – 0.01]

0.00 [–0.01 – 0.01]

0.00 [0.00 – 0.01]

0.00 [0.00 – 0.01]

0.01 [0.00 – 0.01]

0.00 [0.00 – 0.01]

Cumulative number of events, first year

Incident HF: Concordance gain by including serum proteins
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Figure 2 Serum protein predictors of all heart failure (HF) incidences in the Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS).
(A) The numbers in each line represent the improvement in concordance (C-statistics) over chance in predicting incident HF, with 95%
confidence intervals in brackets. There is no adjustment for any clinical variable in the null model. As we move to the right of the figure,
we include age plus sex, then components of the body mass index-based Framingham risk score (FRS), FRS plus type 2 diabetes (T2D), and in
the full model we adjusted for FRS, T2D, coronary heart disease, coronary artery calcium and thoracic aorta calcium. The protein predictors are
highlighted individually and collectively in the leftmost column. The C-index for each model incorporating various clinical variables is presented
in bold below each annotated model, along with 95% confidence intervals in brackets. In All (leftmost column), all 10 top proteins from the least
absolute shrinkage and selection operator (LASSO) and bootstrap analysis are added to the model while in All-NT-proBNP, the NT-proBNP is
removed. (B) An inverse probability of censoring weighting estimation of cumulative/dynamic time-dependent receiver operating characteristic
curve (ROC) was used to compute the time-dependent area under the curve (AUC) at monthly intervals over a 8-year period (upper panel)
in the AGES-RS, for prediction of all incident HF events. The prediction model did not include any demographic or clinical data. To estimate
the uncertainty, we ran 500 bootstrap replications of the time-dependent ROC and calculated the mean, 2.5% quantile, and 97.5% quantile at
each time point (blue shaded areas). The lower left panel displays the AUC versus HF event time for the first 12 months, while the lower right
panel shows the cumulative number of HF events for the first 12 months.

© 2023 European Society of Cardiology.
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94 V. Emilsson et al.

of recognized clinical risk indicators (Figure 2A). All 10 proteins
combined have a C-index of 0.80 in the null model, which includes
no demographic or relevant clinical information (Figure 2A). This
performance was superior to that of individual proteins, although
MMP12 and NT-proBNP had high individual C-indices of 0.68 and
0.72, respectively (Figure 2A). Figure 2A also shows the C-index for
each model with a broad range of demographic and clinical param-
eters but no proteins, demonstrating that protein predictor panels
outperformed these models. The annual observed HF event rates
and percentage survival for being diagnosed with HF during the
follow-up period are displayed in online supplementary Figure S3.

Next, we calculated time-dependent AUC for the protein pre-
dictor panel using monthly intervals, over a nearly 8-year period,
without including demographic or any clinical variables. To avoid
chance observations, we estimated the uncertainty using 500 boot-
strap iterations throughout the whole follow-up period, comput-
ing the mean, 2.5% quantile, and 97.5% quantile for each month
(see Methods). Intriguingly, the protein panel performed best in
the 5 months proximal to the event of HF with an AUC greater
than 0.90 in the first 2 months and remaining at around 0.80 after
5 months and throughout the follow-up period (Figure 2B).

The performance of the protein predictors was evaluated over
the first year of follow-up using alternative protein panel composi-
tions (online supplementary Figure S4). Here, NT-proBNP predicts
early HF events well (online supplementary Figure S4A), but the
other nine proteins in the panel also predicted proximal disease
well (online supplementary Figure S4B), with some additional
improvements in performance, implying that these proteins may
predict outcome independently of NT-proBNP. The protein pre-
dictors with the smallest individual estimates performed best near
HF events, with overall lower aggregate estimates, as expected
(online supplementary Figure S4C).

Serum proteins predict the incidence
of the main subtypes of heart failure
We examined the ability of protein predictors and several clinical
indicators to predict future HFrEF and HFpEF separately (online
supplementary Figure S5). Online supplementary Figure S5B displays
the serum proteins that have non-zero estimates in at least 80% of
the bootstrap replications for incident HFrEF or HFpEF. Figure 3A
shows the concordance gain for the protein predictors of HFrEF
using several models of adjustment that incorporated various clini-
cal variables of interest. Again, the protein panel has high prediction
scores on its own and improves prediction beyond known clini-
cal variables related to HF (Figure 3A). In the null model, that is
no adjustment for clinical variables, all proteins combined have a
C-index of 0.80 for HFrEF (Figure 3A), with individual protein pre-
dictors such as TNNI3, MMP12 and NT-proBNP predicting HFrEF
with C-indices ranging from 0.67 to 0.74 (Figure 3A). Figure 4A
depicts the improvement in concordance for the protein predic-
tors of HFpEF for proteins alone and when various clinical variables
are added to the prediction model. Here, the C-index of the com-
bined protein panel predicting HFpEF was 0.78 (Figure 4A). Inter-
estingly, NT-proBNP and MMP12 predicted HFpEF equally well,
both with a C-index of 0.70 (Figure 4A), whereas tissue inhibitor of ..
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.. metalloproteinases 4 (TIMP4) had a C-index of 0.66. The protein
TNNI3 did not appear in the HFpEF prediction panel. Also, it is
worth mentioning that the variation of the individual protein pre-
dictor estimate sizes is greater for HFpEF than for HFrEF (Figures 3A
and 4A). The yearly observed event rates and percentage survival
for being diagnosed with HFrEF or HFpEF during the follow-up
period are shown in online supplementary Figure S6.

The protein predictor panel for HFrEF performed best proximal
to the time of the event (Figure 3B). More specifically, the protein
panel for HFrEF performed best in the 4 months preceding the
HF event, with an AUC greater than 0.90 compared to 0.80 for
the rest of the follow-up period (Figure 3B). Similar to HFrEF,
the protein panel for incident HFpEF performed best close to
event time, with AUCs exceeding 0.90 the first 2 months before
an event (Figure 4B). The protein predictor panels for HFrEF and
HFpEF outperform models that solely include traditional clinical
and demographic factors, as shown in Figures 3A and 4A.

Replication of the predictor
time-dependent performance in the
Cardiovascular Health Study cohort
For external validation, we used plasma proteome data and
new-onset HF information from the prospective population-based
CHS cohort.42,44 The baseline characteristics of the CHS replica-
tion sample are provided in online supplementary Table S1 and
supplementary material. In order to focus solely on the protein
predictors, the timeROC model, like in the AGES-RS analysis,
did not include any information such as age and sex or known
HF-associated clinical variables. The protein panel included all
protein predictors identified in the AGES-RS for all incident HF
(n= 1198) except for glycosylphosphatidylinositol-specific phos-
pholipase (GPLD1), which was excluded during quality control
in the CHS study (online supplementary material). We found
that the AUC was greater than 0.90 in the first months and
remained relatively high for the next 23 years with no signs of
diminished effect (Figure 5A, online supplementary Figure S7A). Sim-
ilarly, the protein predictor panels for incident HFrEF (n= 316) or
HFpEF (n= 360) performed best near the time of the event and
remained stable for up to 23 years of follow-up (Figure 5B,C, Figure
S7B,C). The annual observed event rates and percentage survival
for being diagnosed with all incident HF, HFrEF or HFpEF during
the 23-year follow-up period are shown in online supplementary
Figure S8.

Comparing the performance of the
protein predictors to known heart failure
risk factors
Table 2 compares the C-indices computed throughout the full
follow-up period for various models incorporating demographic
and clinical predictors (age, sex, NT-proBNP, FRS, etc.) alone or
in combination with protein predictors for all incident HF. This
comparison demonstrates that the newly found protein predictors
significantly improve prediction of well-known HF risk variables,

© 2023 European Society of Cardiology.
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Proteomic prediction of future heart failure 95

AGES-RS

A

Protein Null SRFxeS+egAledoM FRS + T2D Full Model

0.30 [0.26 – 0.34] 0.11 [0.06 – 0.16] 0.10 [0.06 – 0.14] 0.10 [0.07 – 0.14] 0.08 [0.04 – 0.12]
All - NPPB
All

0.26 [0.20 – 0.32] 0.08 [0.02 – 0.14] 0.07 [0.02 – 0.11] 0.07 [0.02 – 0.11] 0.06 [0.02 – 0.10]
NPPB 0.24 [0.18 – 0.31] 0.06 [0.02 – 0.10] 0.06 [0.03 – 0.09] 0.06 [0.03 – 0.09] 0.05 [0.01 – 0.07]
TNNI3 0.17 [0.12 – 0.24] 0.02 [–0.01 – 0.05] 0.02 [0.00 – 0.04] 0.02 [0.00 – 0.04] 0.02 [0.00 – 0.04]
MMP12 0.17 [0.11 – 0.23] 0.02 [–0.02 – 0.04] 0.01 [–0.02– 0.03] 0.01 [–0.02– 0.03] 0.00 [–0.02– 0.02]
NFE2L1 0.12 [0.07 – 0.19] 0.02 [–0.01 – 0.05] 0.02 [0.00 – 0.04] 0.02 [0.00 – 0.04] 0.02 [0.00 – 0.04]
ADAMTS3 0.12 [0.07 – 0.18] 0.01 [–0.01 – 0.03] 0.01 [–0.01– 0.02] 0.01 [–0.01– 0.02] 0.00 [–0.02– 0.02]
CILP2 0.07 [0.01 – 0.14] 0.01 [–0.01 – 0.03] 0.01 [–0.01– 0.02] 0.01 [–0.01– 0.02] 0.01 [–0.01– 0.02]
KLRC3 0.06 [–0.01 – 0.11] 0.00 [–0.01 – 0.01] 0.01 [–0.01– 0.02] 0.01 [–0.01– 0.02] 0.01 [0.00 – 0.02]
AGAP2 0.03 [–0.07 – 0.10] 0.00 [–0.02 – 0.01] 0.00 [–0.02– 0.01] 0.00 [–0.02– 0.01] 0.00 [–0.02– 0.01]
CACNA2D3 0.03 [–0.09 – 0.09] 0.01 [–0.01 – 0.03] 0.01 [–0.02– 0.02] 0.01 [–0.02– 0.02] 0.01 [–0.01– 0.02]
IL21 –0.02 [–0.08 – 0.05] 0.00 [–0.02 – 0.01] 0.00 [–0.02– 0.00] 0.00 [–0.02– 0.00] 0.00 [–0.02– 0.00]

Incident HFrEF: Concordance gain by including serum proteins

0.50 [0.50 – 0.50] 0.71 [0.65 – 0.76] 0.71 [0.66 – 0.76] 0.71 [0.66 – 0.76] 0.74 [0.68 – 0.79]

B

1 years 2 years 3 years 4 years 5 years 6 years 7 years

Time−Dependent AUC for incident HFrEF

2 months 5 months 8 months 11 months

Time−Dependent AUC for the first year
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Figure 3 Serum protein predictors of incident heart failure with reduced ejection fraction (HFrEF) in the Age, Gene/Environment
Susceptibility Reykjavik Study (AGES-RS). (A) The C-indices for the protein predictors of HFrEF, with a similar approach to that in Figure 2
(see description). The leftmost column displays individual protein predictors as well as all predictors combined. The full model adjusted
for Framingham risk score (FRS), type 2 diabetes (T2D), coronary artery calcium plus history of coronary heart disease. In All (leftmost
column), all 10 top proteins from the least absolute shrinkage and selection operator and bootstrap analysis are added to the model while in
All-NT-proBNP, the NT-proBNP is removed. (B) Time-dependent receiver operating characteristic curve (ROC) for HFrEF in the AGES-RS
based on the proteins alone from the corresponding prediction panel. The upper panels in each figure show time-dependent area under the
curve (AUC) monthly over a 8-year period. To estimate the uncertainty, we ran 500 bootstrap replications of the time-dependent ROC and
calculated the mean, 2.5% quantile, and 97.5% quantile at each time point (blue shaded areas). The upper left panel shows the AUC versus HF
event time for the first 12 months, while the lower right panel shows the total number of HFrEF events for the first 12 months.

such as NT-proBNP, in the AGES-RS. Comparable to AGES-RS in
terms of follow-up duration (8 years) and recognized risk variables,
and focusing on all incident HF for statistical power, the inclusion
of protein predictors resulted in higher C-indices in the CHS but
was statistically significant only when compared to NT-proBNP ..

..
..

..
..

..
..

. and demographic factors (Table 2). It should be noted that one of
the 10 protein predictors, GPLD1, was not included in the CHS
cohort’s protein prediction panel (online supplementary material).
Further, the CHS has mixed ethnicity, which may have influenced
the outcome of the replication effort in Table 2.

© 2023 European Society of Cardiology.
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A

B

Protein Null SRFxeS+egAledoM FRS + T2D Full Model

All 0.28 [0.23 – 0.32] 0.12 [0.06 – 0.17] 0.09 [0.06 – 0.14] 0.09 [0.05 – 0.13] 0.07 [0.03 – 0.10]

All - NPPB 0.26 [0.20 – 0.30] 0.10 [0.04 – 0.15] 0.08 [0.03 – 0.12] 0.08 [0.04 – 0.11] 0.06 [0.02 – 0.10]

MMP12 0.20 [0.14 – 0.26] 0.06 [0.01 – 0.10] 0.05 [0.00 – 0.08] 0.05 [0.01 – 0.08] 0.03 [0.00 – 0.06]

NPPB 0.20 [0.14 – 0.24] 0.05 [0.01 – 0.08] 0.05 [0.01 – 0.07] 0.05 [0.01 – 0.07] 0.03 [–0.01 – 0.05]

TIMP4 0.16 [0.11 – 0.22] 0.03 [0.00 – 0.06] 0.03 [0.01 – 0.05] 0.04 [0.01 – 0.06] 0.02 [0.00 – 0.05]

CCL21 0.12 [0.06 – 0.18] 0.03 [–0.01 – 0.06] 0.02 [–0.01 – 0.04] 0.02 [–0.01 – 0.04] 0.02 [–0.01 – 0.03]

ECEL1 0.09 [0.03 – 0.16] 0.01 [–0.01 – 0.03] 0.01 [–0.01 – 0.02] 0.01 [–0.01 – 0.02] 0.00 [–0.01 – 0.01]

SPINK9 0.08 [0.03 – 0.15] 0.01 [–0.02 – 0.03] 0.00 [–0.03 – 0.02] 0.00 [–0.02 – 0.02] 0.00 [–0.02 – 0.01]

ARFIP2 0.08 [0.03 – 0.14] 0.02 [–0.01 – 0.04] 0.01 [–0.01 – 0.02] 0.00 [–0.01 – 0.01] 0.00 [–0.01 – 0.01]

PKN1 0.07 [0.01 – 0.13] 0.01 [–0.01 – 0.03] 0.01 [–0.01 – 0.02] 0.01 [–0.01 – 0.02] 0.01 [–0.01 – 0.02]

0.50 [0.50 – 0.50] 0.66 [0.61 – 0.73] 0.69 [0.63 – 0.74] 0.69 [0.63 – 0.74] 0.72 [0.66 – 0.78]

Incident HFpEF: Concordance gain by including serum proteins
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Figure 4 Serum protein predictors of incident heart failure with preserved ejection fraction (HFpEF) in the Age, Gene/Environment
Susceptibility Reykjavik Study (AGES-RS). (A) The C-index for the protein predictors of incident HFpEF (see Figure 2 for description). The
leftmost column displays individual protein predictors as well as all predictors combined. In All (leftmost column), all eight top proteins
from the least absolute shrinkage and selection operator and bootstrap analysis are added to the model while in All-NT-proBNP, the
NT-proBNP is removed. In the full model we adjusted for Framingham risk score (FRS), type 2 diabetes (T2D) and thoracic aorta calcium. (B)
AGES-RS time-dependent receiver operating characteristic curve (ROC) for HFpEF versus the corresponding protein predictor panel alone
(no demographic or clinical information included). The upper panel shows time-dependent area under the curve (AUC) monthly over a 8-year
period. To estimate the uncertainty, we ran 500 bootstrap replications of the time-dependent ROC and calculated the mean, 2.5% quantile,
and 97.5% quantile at each time point (blue shaded areas). The lower left panel shows the AUC versus HF event time for the first 12 months,
while the lower right panel shows the total number of HFpEF events for the first 12 months.

Characteristics of the proteins predicting
future heart failure events

Figure 6 demonstrates the overlap in the number of shared or
unique protein predictors for all incident HF, HFrEF, and HFpEF,
totalling 20 distinct proteins. These proteins were significantly
enriched for heart pathology-related processes, such as rheumatic ..

..
..

..
..

..
..

..
..

.. heart disease, dilated cardiomyopathy, pericardial effusion, and
heart atrial appendage (online supplementary material). Online
supplementary material, Appendix S1 and Figures S9–S11 highlight
protein predictors associated with incident HF and its subtypes
using standard logistic regression analysis. NT-proBNP and MMP12
were selected by the LASSO model in all three incident HF anal-
yses (Figure 6). Additionally, TINNI3 was included in the predictor

© 2023 European Society of Cardiology.
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Figure 5 Replication of the prediction of the Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS) protein panels in the
Cardiovascular Health Study (CHS) cohort. (A) Time-dependent receiver operating characteristic curve (ROC) for all incident heart failure
(HF) (n=1198), (B) incident heart failure with reduced ejection fraction (HFrEF) (n= 316) and (C) incident heart failure with preserved ejection
fraction (HFpEF) (n= 360) in the prospective CHS (online supplementary material), showing the time-dependent area under the curve (AUC)
versus event time for the first 12 months (left panels) and monthly over a 23-year period (right panels). To estimate the uncertainty, 500
bootstrap replications of the time-dependent ROC were carried out and the mean calculated with 2.5% and 97.5% quantiles at each time point
(blue shaded areas). The prediction model did not include any demographic or clinical data. Online supplementary Table S1 shows the total
number of HF-related events in the CHS cohort throughout the first year.

panel for all incident HF and HFrEF but not HFpEF (Figure 6). In
the AGES-RS, NT-proBNP, MMP12, and TNNI3 were directly
associated with MI as well as CAC and TAC (online supplementary
Figure S12, Tables S3 and S4). NT-proBNP and MMP12 were also
associated with carotid plaque (online supplementary Figure S12,
Tables S3 and S4), and unlike NT-proBNP and TNNI3, MMP12 was
directly associated with T2D (online supplementary Figure S12,
Table S3). Further, the proteins MHC class I polypeptide-related
sequence A (MICA), C–C motif chemokine ligand 21 (CCL21),
and killer cell lectin like receptor C3 (KLRC3) in the predictor
panel of all incident HF or incident HFpEF were positively linked to
CHD (online supplementary Figure S12, Table S3). CCL21 was also
positively associated with T2D (online supplementary Figure S12). ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. In contrast, the cartilage intermediate layer protein 2 (CILP2)
and calcium channel voltage-dependent, alpha 2/delta subunit 3
(CACNA2D3), in the prediction panels for all incident HF and
HFrEF (Figure 6), protein kinase N1 (PKN1), ADP ribosylation
factor interacting protein 1 (ARFIP), and serine peptidase inhibitor
Kazal type 9 (SPINK9), all members of the HFpEF prediction
panel (Figure 6), were found to be inversely related to T2D and
various intermediate metabolic traits, but did not show links to
MI or CHD (online supplementary Figure S12, Tables S3 and S4).
The extracellular matrix A disintegrin and metalloproteinase with
thrombospondin type 1 motif 3 (ADAMTS3) of the prediction
panel for HFrEF was inversely associated with both T2D and
CHD (online supplementary Figure S12, Tables S3 and S4). Finally,

© 2023 European Society of Cardiology.
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98 V. Emilsson et al.

Table 2 C-statistics for incident heart failure using several predictions with or without all protein predictors included

Modela C-index for all incident HF events
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGES-RS cohort CHS cohort
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 95% CI p-value Mean 95% CI p-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age+ sex 0.69 0.65–0.72 0.64 0.61–0.67
Age+ sex+NT-proBNP 0.74 0.71–0.78 0.71 0.69–0.76
Age+ sex+ all proteins 0.80 0.77–0.83 <0.001 0.74 0.72–0.79 0.023
FRS 0.71 0.67–0.75 0.68 0.65–0.71

FRS+NT-proBNP 0.76 0.73–0.80 0.74 0.72–0.79
FRS+ all proteins 0.80 0.77–0.83 0.001 0.76 0.74–0.81 0.058
Full model 0.73 0.70–0.77 0.71 0.69–0.76
Full model+NT-proBNP 0.77 0.74–0.80 0.76 0.74–0.81

Full model+ all proteins 0.81 0.78–0.84 0.003 0.77 0.75–0.82 0.163

AGES-RS, Age, Gene/Environment Susceptibility Reykjavik Study; CHS, Cardiovascular Health Study; CI, confidence interval; FRS, Framingham risk score; HF, heart failure;
NT-proBNP, N-terminal pro-B-type natriuretic peptide.
C-statistics are point estimates based on an 8-year follow-up period. The C-index was calculated in R using the concordance function from the survival package (function
Surv). The non-parametric bootstrap was used to calculate the p-values empirically. In 1000 bootstrap iterations, the concordance values of models containing NT-proBNP
versus all protein predictors were estimated, and the p-value calculated as the percent of iterations where the concordance for all protein predictors was greater than the
concordance for NT-proBNP, i.e. a one-sided alternative to the null hypothesis of all protein predictors=NT-proBNP.
aFRS components; age, sex, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, smoking status, and body mass index. The full model includes
FRS+ history of type 2 diabetes+ history of coronary heart disease+ coronary artery calcium+ thoracic aorta calcium, and the term ‘all proteins’ is the same as shown in
Figure 2.

the metalloproteinase inhibitor TIMP4, one of the leading pre-
dictors of HFpEF, was directly linked to plaque, CAC, and TAC
(online supplementary Figure S12, Tables S3 and S4). Many of these
proteins were significantly associated with increased or reduced
overall and/or post CHD survival (online supplementary Table S3),
including for instance CILP2, SPINK9, TIMP4 and MMP12 (online
supplementary Figures S13 and S14). Other protein predictors
were not associated with any or only a few disease-related traits
(online supplementary material). In summary, these findings sug-
gest a multifaceted basis of the protein predictor panels and HF
outcomes.

Discussion
Circulating proteins reflect processes taking place in solid tissues,
and many of them participate in cross-tissue regulatory loops,
which could be a mechanism for system wide coordination in
normal and disease settings including response to local (e.g.
heart) pathological changes. Similarly, the onset of disease states
in individual tissues is most likely the result of the interaction
between local and global signals.16,52 We examined the relationship
of standard risk factors and the levels of thousands of serum
proteins to future HF events in the AGES-RS cohort. This resulted
in the identification of a small set of proteins that alone, or in
combination with known risk factors, accurately predict incident
HF events. Additionally, separate though somewhat overlapping
sets of proteins could predict both incident HFrEF and HFpEF.
Another notable finding is that the different protein predictor
panels performed best for blood donors who were closest to the
clinical diagnosis of HF, and remained relatively stable throughout
the follow-up period. Importantly, the CHS, a population-based ..
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.. prospective cohort study of 1198 incident HF cases with a 23-year

follow-up,44,45 replicated this effect (Graphical Abstract).
The identified proteins appeared to capture the risk of

new-onset HF linked with various clinical variables and risk
not captured by those variables. All protein predictors improved
AGES-RS prediction of HF significantly above NT-proBNP alone
plus demographic and clinical variables (Table 2). When all protein
predictors were compared to age, sex, and NT-proBNP alone, the
C-statistics in CHS were significant (Table 2) but fell short when
FRS and other clinical factors were included with NT-proBNP.
We should point out that one of the proteins (GPLD1) was
not included in the CHS panel (online supplementary material),
and that the CHS cohort had mixed ethnicity, which could have
influenced the replication outcome. More research will be needed
to determine whether the existing multi-marker score performs
better when restricted to populations of European ancestry only.

The current study demonstrates that both established protein
biomarkers such as NT-proBNP and TNNI3 as well as additional
new proteins contribute to the risk score in predicting future HF.
For short-term HF prediction, these proteins may predominantly
reflect preclinical HF (stage B) and incipient/mild clinical HF (stage
C), whereas for long-term HF prediction, these proteins signal
a prodromal stage encompassing stages A and B prior to clini-
cally presenting HF. Identification of this high-risk group may allow
for immediate evaluation and institution of lifestyle/pharmacologic
interventions. Prevention trials like SOLVD,53 STOP-HF,54 and
PONTIAC,55 have shown improved patient outcomes when indi-
viduals with either asymptomatic LVEF,53 or high plasma levels of
BNP,54 or NT-proBNP,54 were identified before transitioning to
symptomatic HF. Each of these prevention trials employed a ther-
apeutic intervention that mostly consisted of renin–angiotensin

© 2023 European Society of Cardiology.
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All incident HF

HFpEF

HFrEF

NT-proBNP
MMP12

EXOSC3
GPLD1
MICA

OSBPL11

ADAMTS3
AGAP2

IL21
KLRC3
NFE2L1

ARFIP2
CCL21
ECEL1
SPINK9
TIMP4

PKN1

CILP2
CACNA2D3

TNNI3

Figure 6 Venn diagram displaying the overlap between the vari-
ous protein predictor panels. The various protein predictors that
overlap or are unique for the different heart failure (HF)-related
outcomes including all incident HF, incident HF with reduced ejec-
tion fraction (HFrEF), and/or HF with preserved ejection fraction
(HFpEF), are listed in each relevant section of the diagram. The
category of all event HF comprised all ejection fractions as well
as participants lacking echocardiographic data.

system antagonists, and improved patient outcome was assessed
via decreased hospitalization rate, lower rates of mortality, and a
less severe left ventricular dysfunction. These trials show that early
intervention can greatly lessen or delay the severity of HF-related
consequences. The current study suggests that, in addition to
NT-proBNP, other protein predictors identified for both short-
and long-term prediction of future HF, including its major subtypes,
may contribute to a more refined prediction and identification of
high-risk individuals who may benefit from echocardiography and
other testing for more accurate diagnosis and intensive interven-
tion strategies. However, the benefit of employing multiple protein
panels over NT-proBNP alone for identifying those at high risk for
effective early intervention is beyond the scope of this study.

A total of 20 unique proteins, including NT-proBNP, were
selected as predictors by the LASSO model for all incident HF, inci-
dent HFpEF, or incident HFrEF. NT-proBNP is currently the gold
standard prognostic biomarker for HF,1 so it is reassuring that it
appears in all predictor panels of incident HF in our study. MMP12
appeared in all three incident HF analyses, while TNNI3 was one
of the predictors for all incident HF and HFrEF events. MMP12 has
previously been reported to predict incident HF events,56 whereas
TNNI3, a well-known plasma biomarker for acute MI,57 has been
associated with incident HF and cardiovascular-related mortality.58

In the current study, all three proteins contributed strongly and
independently to their respective prediction scores. TINNI3 did
not appear in the prediction panel for incident HFpEF, but the ..
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.. metalloproteinase inhibitor TIMP4 did, with a similar estimate size
to TINN3 for HFrEF. Interestingly, TIMP4 has been linked to heart
tissue remodelling and HF in rodent models.59 Proteins within the
predictor panels with smaller estimates sizes than NT-proBNP,
MMP12, TNNI3 and TIMP4, have been associated with HF-related
outcomes that are directionally consistent with our findings includ-
ing for instance CILP2 found with lower plasma levels in patients
with diabetes and HFpEF,60 PKN1 deficiency linked to systolic and
diastolic dysfunction with preserved ejection fraction in a global
ischaemia and reperfusion mouse model,61 and CCL21 levels in
plasma found to be directly related to survival in individuals with
chronic HF.62 Finally, NFE2L1, which is specifically expressed in car-
diomyocytes, is activated in regenerating cardiomyocytes.63 Many
of the protein predictors represent well-known mechanisms driv-
ing HF, such as cardiac injury or remodeling (TNNI3, MMP12,
NFE2L1, TIMP4), myocardial stretch (NT-proBNP), inflammatory
processes (MICA, IL21, CCL21), extracellular matrix (CILP2,
ADAMTS3), and unspecified cardiac dysfunction (PKN1). The roles
of proteins like CACNA2D3, SPINK9, ARFIP2, GPLD1, ECEL1,
EXOSC3, AGAP2, KLRC3 and OSBPL11 in HF-related pathol-
ogy remain unclear. Finally, the wider range in protein predictor
estimate sizes for HFpEF compared to HFrEF (Figures 3A and 4A)
may indicate that HFpEF is a more multifactorial syndrome. More
research is needed before any conclusions can be drawn about the
mechanistic relevance of the protein predictors to future risk of HF.

Risk prediction models are intended to identify people who are
at high risk of developing a disease so that they can be targeted
for additional testing and appropriate early intervention. The pre-
dictors themselves, on the other hand, do not necessarily imply a
causal relationship with the outcome in the sense that modulating
a predictor will affect the outcome.64 Our findings lay the ground-
work for identifying circulating protein and non-protein biomarkers
that can predict future HF, including its main subtypes. As such they
could be used in population surveillance to facilitate early iden-
tification of those at risk for HF and provide opportunities for
monitoring interventions during the pre-clinical phase.

Limitations
This study has several limitations that must be acknowledged. The
AGES-RS cohort is an older adult cohort with a multi-morbid pro-
file that includes high prevalence of hypertension and CHD, and
therefore at high risk of developing HF. This may limit the generaliz-
ability of prediction models to different populations. Furthermore,
despite the fact that the LASSO model is designed to avoid over-
fitting, and that the discovery cohort used 500 repeats of 10-fold
cross-validation and C-index based on out-of-sample predictions
for internal validations, some of the estimates may be optimistic as
they are obtained from the same sample. Although none have been
fully validated, numerous risk prediction models for HF have been
established,65 which used risk factors not included in the current
study, such as urinary albumin/creatinine ratio, heart rate and atrial
fibrillation, to name a few. The presented findings were limited to
serum proteins and may not fully capture HF-related pathobiology
in solid tissue such as the heart. Moreover, the study does not
examine the entire serum proteome, which is still being identified.

© 2023 European Society of Cardiology.
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Some of the serum protein predictors for HF in this study are char-
acterized as intracellular proteins, and the significance of their pres-
ence in serum, remains to be determined. Finally, as all AGES-RS
and majority (∼80%) of CHS participants are of European ancestry,
the results’ transferability and generalizability needs to be tested
across all ethnicities.

Conclusions
We examined 4782 circulating proteins in serum as well as mul-
tiple clinical variables measured in the deeply annotated AGES-RS
population-based cohort for prediction of incident HF. A small
subset of serum proteins emerged as independent predictors
of incident HF, including new-onset HFpEF and HFrEF, comple-
menting previously approved clinical biomarkers like NT-proBNP
and the FRS components. Intriguingly, the protein predictors
performed particularly well near the event time, a finding that
was replicated in the CHS cohort, a population-based prospective
study of older adults, implying opportunities for early diagnosis and
immediate intervention. This study offers a unique opportunity
for further validation of the protein predictor panel presented,
panel expansion with new proteins measured, leading to the
development of an accurate and robust prediction panel that, in
one platform, in conjunction with currently approved diagnostic
tools, could be used by clinical practitioners for early diagno-
sis and prediction of new-onset HFpEF and HFrEF. The single
platform nature of the measures may allow for more extensive
at-risk population surveillance by physicians, as well as the pos-
sibility of early imaging and intervention in advance of clinical
onset of HF.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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