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Abstract
Exopolysaccharides are produced and excreted by bacteria in
the generation of biofilms to provide a protective environment.
These polysaccharides are generally generated as heteroge-
neous polymers of varying length, featuring diverse substitu-
tion patterns. To obtain well-defined fragments of these
polysaccharides, organic synthesis often is the method of
choice, as it allows for full control over chain length and the
installation of a pre-determined substitution pattern. This
review presents several recent syntheses of exopoly-
saccharide fragments of Pseudomonas aeruginosa and
Staphylococcus aureus and illustrates how these have been
used to study biosynthesis enzymes and generate synthetic
glycoconjugate vaccines.
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Introduction
Using one of the first-ever microscopes, Antonie van
Leeuwenhoek discovered bacterial biofilms in dental
plaque, reporting on these in a 1684 communication to
the Royal Society of London: “The number of these
animalcules in the scurf of a man’s teeth are so many that
I believe they exceed the number of men in a kingdom.”
By the attachment to surfaces, bacteria, or animalcules as
Van Leeuwenhoek termed them, survive through the
www.sciencedirect.com
generation of a protective environment, the biofilm, in
which bacterial colonies are encased by an extracellular
polymeric matrix (Figure 1) [1]. Here, bacteria reside in
a protective living milieu, protecting them from dehy-
dration and adversaries such as the immune system of

their host and providing resistance against mechanical
stress [2,3]. Biofilms play a profound role in human
health as they sustain bacterial infections. They protect
bacteria from antibiotics [4,5] and enable bacteria to
survive on medical devices such as catheters, ventilators
and prostatic joints. The extracellular biofilm matrix
contains proteins, extracellular DNA (eDNA) and
exopolysaccharides (EPS) [6,7]. The exopolysaccharides
play important roles in the attachment to surfaces,
scaffolding the biofilm matrix, and the retention of water
and ions. Depending on growth conditions and needs,

different exopolysaccharides may be expressed and
polysaccharides may be chemically modified [8,9].

The vast majority of bacteria produce biofilms, and the
structures of the exopolysaccharides in these biofilms
are incredibly diverse [10]. This review describes some
recent chemical syntheses of well-defined fragments of
exopolysaccharides that have been employed in
biochemical and immunological studies to showcase the
applicability of these fragments. Key challenges in the
assembly of bacterial EPS fragments are the rare

monosaccharide constituents, the cis-glycosidic linkages
and the presence of (labile) non-stochiometric func-
tional groups, such as acetyl esters (See Figure 1a for
examples) [11,12]. The generation of long fragments is
confronted by the lower reactivity of large oligosaccha-
ride building blocks, challenges associated with the
structural characterization of large complex molecules
and difficulties with the final deprotection steps, as a
large amount of protecting groups have to be removed
simultaneously.

The ESKAPE pathogens, Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa and Enterobacter, are highly infec-
tious antibiotic-resistant pathogens, that pose a great
threat to human health. Here we primarily focus on
P. aeruginosa and S. aureus, which are responsible for most
health care-associated infections. Both pathogens have
been shown to form polymicrobial biofilms. The studies
Current Opinion in Chemical Biology 2024, 78:102418
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Figure 1

a) Biofilm formation. Planktonic bacteria adhere to surfaces and establish cell-cell contacts. Production of exopolysaccharides is a key step in the
generation of a mature biofilm, from which bacteria can be liberated in the dispersion stage to start another colony. b) Selected examples of exopoly-
saccharides are shown, highlighting the structural variation present in these polysaccharides.
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illustrate well how well-defined synthetic poly-
saccharide fragments can be used in epitope mapping
studies and semi-synthetic vaccines and to probe the
biosynthetic enzymes [13e15]. Understanding enzy-
matic biomachinery at the molecular level opens up
avenues to interfere with their assembly and thus offers
new avenues for therapeutic intervention. For example,
different approaches have been reported to use the
bacterial hydrolases, involved in the biosynthesis of the
exopolysaccharides, to degrade the biofilms and sensi-

tize the bacterial colonies for antibiotic treatment
[16**,17].
Synthetic biofilm polysaccharide fragments
Pseudomonas aeruginosa
Pseudomonas aeruginosa is a life-threatening bacterium
that mainly infects patients with an impaired immune
system, patients suffering from burn wounds and pa-
tients with cystic fibrosis [18]. It is a Gram-negative
bacterium that produces three distinct exopoly-
saccharides: alginate, Psl and Pel. Each of these exopo-
lysaccharides has a different role and are found in
different stages during infection and biofilm formation

[19e22]. Psl is a neutral oligosaccharide which consists
of a repeating pentameric saccharide, which is built up
from D-mannose, L-rhamnose and D-glucose [21]. Be-
sides its function as a biofilm backbone, it acts as a
‘molecular glue’, promoting attachment to cells [23,24],
and it can function as a trail for bacterial exploration and
microcolony formation [25]. Psl also influences the
expression of cyclic-di-GMP, which serves as an activator
for exopolysaccharide biosynthesis [26].
Current Opinion in Chemical Biology 2024, 78:102418
Pel is a positively charged polymer built up from dimeric
repeats of a-1,4-linked galactosamine and N-acetylga-
lactosamine [27**]. The positive charge enables cell-
cell contacts, the adherence to surfaces, crosslinking of
negatively charged polymers such as alginate and
extracellular DNA (eDNA) through ionic interactions
[28] and helps in protecting the bacteria from cationic
antimicrobials, such as aminoglycoside antibiotics [29].

Alginate is an anionic polymer, composed of b-1,4-linked
D-mannuronic and a-L-guluronic acids [30]. The C-2
and C-3 hydroxy groups of the mannuronic acid residues
can be acetylated to a varying degree, and these esters
have been shown to play a role in initial surface coloni-
zation [31]. Alginate is a major constituent of mature
P. aeruginosa biofilms and transitions to a mucoid

phenotype in the lungs of cystic fibrosis (CF) patients,
playing a major role in chronic infections [32].

Well-defined synthetic fragments of exopolysaccharides
have been used as synthetic antigens to probe the
interaction with antibodies and to interrogate biosyn-
thesis enzymes. Figure 2a shows the building blocks used
by Boons and co-workers to assemble a Psl deca-
saccharide [33]. Building on the Crich b-mannosylation
chemistry [34*], employing benzylidene-protected
mannosyl building blocks, the critical cis-mannosidic

linkages were constructed. Of note, the presence of the
bulky C-2-O-TBS ether in 3 e required as an orthogonal
protecting group to enable regioselective unmasking and
attachment of the a-mannose appendages e posed no
significant problem in forging the sterically demanding b-
mannosidic linkage. The decasaccharide was obtained in
www.sciencedirect.com
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Figure 2

Recent syntheses of P. aeruginosa exopolysaccharides. a) Assembly of an Psl-decasaccharide by Boons and co-workers, used for antigen mapping
studies. The challenging b-mannosyl linkages were constructed using Crich mannosylation chemistry. b) Assembly of Pel and GAG oligosaccharides
hinges on the use of di-tert-butyl silyl-protected galactosamine building blocks to ensure the stereoselective construction of the a-galactosyl linkages. c)
Mannuronic acid donors have allowed for the synthesis of large alginate structures. The excellent stereoselectivity of the mannuronic acid donors has
allowed for the reliable installation of the b-mannuronic acid bonds both in an automated solid phase approach and using large oligosaccharide building
blocks.
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a [4 þ 6] coupling strategy. The decasaccharide and
constituting tetramer and hexamer fragments were used
to probe the binding of three different monoclonal anti-
bodies, identified using single-chain variable fragment
phage libraries, derived from antibodies originating from
healthy donors and patients recovering from a Pseudo-
monas infection: WapR-001, WapR-016 and Cam-003, the
latter of which has shown highest opsonophagocytic ac-

tivity [35**]. WarP-001 recognized all sequences, while
WarP-016 only bound the hexasaccharide, indicating that
the natural polysaccharide could terminate in this
sequence. The Cam-003 mAb did not show binding to
any of the synthetic fragments, which may be explained
by the fact that it targets either a conformational epitope,
not present in the synthetic fragments, or that other
structural elements are required. Indeed, when the nat-
ural polysaccharide is treated with mild alkali binding
with Cam-003 is abolished, pointing to the presence of
esters in (parts of) the natural Psl.

Figure 2b shows the synthetic endeavors undertaken to
assemble Pel structures [36*,37*,38,39]. The key
challenge in the synthesis of Pel fragments is the ster-
eoselective installation of the a-1,4-linkages. Around
the same time, Kazakova et al. [36] and Zhang et al. [37]
reported a similar strategy to generate libraries of Pel
structures. Both groups employed Kiso’s di-tert-butylsi-
lylidene (DTBS) galactosylation methodology [40**],
to achieve the stereoselective construction of the
glycosidic linkages. This was combined with a regiose-

lective protection step of the 4,6-diol, liberated by the
removal of the DTBS group after the glycosylation re-
actions. Kazakova et al. [36] achieved the synthesis of a
GalNAc and GalN hexasaccharide, whereas Zhang et al.
[37] generated structures up to the dodecasaccharide
level as well as structures featuring alternating GalN and
GalNAc monosaccharides, that were introduced by the
combination of azide and trichloroacetyl-protected
GalN building blocks. In addition, structures were
generated featuring a-1,4-galactose residues, as these
constitute the galactosaminogalactan (GAG) poly-
saccharide of the invasive pathogenic fungus Aspergillus
fumigatus [41]. The hexasaccharides of Kazakova et al.
were used to determine the GAG epitopes recognized
by anti-GAG antibodies in sera of patients with allergic
bronchopulmonary (ABPA) or chronic pulmonary
aspergillosis (CPA), showing that the level of antibodies
that recognized the GalNAc and GalN hexamers was
significantly higher in the blood of aspergillosis patients,
with the acetylated fragments binding most antibodies.
The larger and alternating Pel structures were used to
interrogate different biosynthesis enzymes. It was found
that the A. fumigatus glycosyl hydrolases Sph3 and Ega3

are both endoglycosidases and that Sph3 requires longer
(>7 monosaccharides in length) substrates and cleaves
GalNAc linkages while Ega3 degrades GalN bonds
[42,43]. Using the synthetic fragments, the activity of
Current Opinion in Chemical Biology 2024, 78:102418
Agd3, the A. fumigatus esterase, was characterized
revealing that this metal-dependent hydrolase also re-
quires large (>6 residues) substrates [44].

Figure 2c summarizes synthetic efforts undertaken to
generate well-defined alginate fragments. Building on
the b-selectivity of mannuronic acid (ManA) donors,
several approaches have been reported to generate

mannuronic acid alginates [45**,46,47]. Using an auto-
mated solid phase synthesis approach alginates up to the
dodecamer length have been assembled using N-
phenyltrifluoracetamide donor 16, showcasing the high
reliability in constructing the b-mannuronic acid link-
ages [48*]. More recently block couplings have been
performed to generate a 24-mer through a [8 þ 8þ8]
approach. For this latter approach, an active-latent
strategy was devised in which latent Z-(3)-iodoacrylate
synthons could be transformed to a Z-ynenoate donor,
through a Sonogashira coupling reaction [49*]. The

donors could effectively be activated using an excess of a
gold(I) activator. The latter synthetic alginates have
been used for epitope mapping studies and as probes for
biosynthesis enzymes. Quite strikingly, in a preliminary
study, in which mice were immunized with inactivated
P. aeruginosa and Freund’s adjuvant, ELISA analysis of the
pooled sera showed that a small ManA-tetrasaccharide
was recognized best by the raised antibodies. These re-
sults will have to be corroborated in follow-up studies.

The assembly of alginate by P. aeruginosa is achieved

using an ensemble of 10 enzymes, that build and export
the polysaccharides [21]. A poly-ManA is assembled by
Alg8 using GDP-ManA donors, and while the polymer
traverses through the periplasmic space, the polymers
can be epimerized (by AlgG) and acetylated (by the
concerted action of AlgI, J, F and X). A lyase (AlgL) can
cleave the polymeric fragments. Using the synthetic
fragments, AlgX has been identified as the enzyme that
transfers the acetyl ester to the growing polymers
[50,51]. Through a combination of X-ray studies, activ-
ity assays with active site mutants, docking efforts and
mass spectrometry-based affinity assays the mode of

action of the epimerase AlgG has been elucidated at the
atomic level [52]. An electropositive groove in the AlgG
enzyme can accommodate a ManA 9-mer to properly
align the ManA residue destined for epimerization,
which happens in a processive fashion to epimerize
every other ManA residue to generate repetitive [ManA-
GulA] dimer blocks.

Poly N-acetylglucosamine (PNAG)
Poly-b-1,6-N-acetylglucosamine (PNAG) is produced by
various bacteria and fungi [53]. Partially deacetylated
(dPNAG) is the major exopolysaccharide present in
biofilms of S. aureus, Bacillus subtilis, E. coli and A. baumannii
[54,55]. The positively charged amine groups are
essential for cell-surface attachment, bacterial virulence
www.sciencedirect.com
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Figure 3

Various PNAG oligosaccharides have been assembled to unravel binding interactions with (monoclonal) antibodies.
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and protection against positively charged antimicrobial

peptides and proteins [56]. Inhibitors of the poly-
saccharide deacetylase have been forwarded as potential
therapeutic agents, but potent inhibitors have not been
disclosed yet [57]. Anti-PNAG antibodies are part of the
natural antibody repertoire of humans and animals, but
these generally offer little immune protection, while it
has been shown that antibodies capable of recognizing
dPNAG are capable of complement activation and can be
opsonic [58**]. A human monoclonal antibody F598,
isolated from an individual recovered from an invasive
S. aureus infection, is in development for passive immune

protection [59]. Using synthetic PNAG fragments, the
binding mode of the antibody and PNAG was studied,
revealing the binding cleft formed by the heavy and light
chains to accommodate a (d)PNAG stretch of at least five
monosaccharides in length.[60*] Molecular modeling
showed that a PNAG polysaccharide spanning 40 mono-
saccharides can bind both fab-fragments of the antibody.

Various syntheses of short (d)PNAG have been re-
ported, and Figure 2 presents the assembly of a set of
dPNAG nonsaccharides, as developed by Nifantiev and

co-workers. They have used building blocks having
either an N-acetyl group or an N-phthaloyl group to
discriminate between the acetamides and free amino
groups in the end products. Thioglycoside building
blocks were combined in chemoselectve glycosylation
reactions with either oxazolidinone or bromide donors to
generate larger building blocks, that were then used to
assemble the set of PNAG fragments shown in Figure 3
[60,61]. These nonasaccharides have, amongst others,
been used to generate a glycoconjugate vaccine modality
using tetanus toxoid (TT) as a carrier protein [62,63*].

This model vaccine was used to elicit mouse and rabbit
www.sciencedirect.com
antibodies that were shown to be capable of inducing

killing of several S. aureus and E. coli strains.
Conclusion
Most bacteria survive in a biofilm habitat, in which
polysaccharides play essential structural and functional

roles. These polysaccharides have been an inspiration
for the development of novel synthetic methodologies
to access well-defined fragments of these poly-
saccharides. Innovative glycosylation methodology has
been used to construct the challenging glycosidic link-
ages encountered in these glycans and effective strate-
gies have been devised to generate relatively long
fragments, including convergent active-latent block
couplings and automated solid phase approaches. The
synthetic glycans have been key to unravel the mode of
action of biofilm polysaccharide biosynthesis enzymes as

well as the generation of vaccine modalities. With more
effective chemistry continuously being developed to
assemble rare monosaccharide building blocks and our
increasing knowledge of glycosylation chemistry the
future will see the generation of longer and more com-
plex structures. Libraries of oligosaccharides with vary-
ing substitution patterns will be generated for epitope
mapping and receptor and enzyme interaction studies.
Well-defined, large oligomers may be used in the gen-
eration of structures comprising several biosynthesis
enzymes, where the oligomers can function as a scaffold

for the different proteins. The development of biosyn-
thesis inhibitors, inspired by the polysaccharide struc-
ture will open up new avenues for therapeutic
development. With numerous biofilm polysaccharides
not being targeted yet, there seem to be many oppor-
tunities for synthetic chemistry to deliver powerful
molecular tools and make a significant contribution to
Current Opinion in Chemical Biology 2024, 78:102418
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the exploration and exploitation of bacterial biofilm
biosynthesis machinery.
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