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Orexin neurons track temporal features of 
blood glucose in behaving mice

Paulius Viskaitis1, Alexander L. Tesmer    1, Ziyu Liu1,2, Mahesh M. Karnani1,3, 

Myrtha Arnold1, Dane Donegan1, Eva Bracey1, Nikola Grujic    1, 

Tommaso Patriarchi    4, Daria Peleg-Raibstein    1 & Denis Burdakov    1 

Does the brain track how fast our blood glucose is changing? Knowing  
such a rate of change would enable the prediction of an upcoming  
state and a timelier response to this new state. Hypothalamic arousal- 
orchestrating hypocretin/orexin neurons (HONs) have been proposed 
to be glucose sensors, yet whether they track glucose concentration 
(proportional tracking) or rate of change (derivative tracking) is unknown. 
Using simultaneous recordings of HONs and blood glucose in behaving 
male mice, we found that maximal HON responses occur in considerable 
temporal anticipation (minutes) of glucose peaks due to derivative  
tracking. Analysis of >900 individual HONs revealed glucose tracking 
in most HONs (98%), with derivative and proportional trackers working 
in parallel, and many (65%) HONs multiplexed glucose and locomotion 
information. Finally, we found that HON activity is important for 
glucose-evoked locomotor suppression. These findings reveal a  
temporal dimension of brain glucose sensing and link neurobiological  
and algorithmic views of blood glucose perception in the brain’s  
arousal orchestrators.

Many sensory inputs to our brain change rapidly in time. Knowing 
the rate of change of an input, as opposed to just the current value, 
allows for the prediction of a future state and a timelier response to this 
new state. For key external sensory inputs, classical experiments have 
established that the brain tracks both their current value and rate of 
changes1. Whether the brain also tracks the rate of change of internal 
body variables, such as glucose concentration, is less well understood. 
Glucose is increasingly appreciated as an important internal variable 
that—separately from its ubiquitous role as a metabolic fuel—acts as a 
sensory input to the brain, detected by specialized ‘glucose-sensing’ 
neurons located only in certain brain areas, such as the lateral hypo-
thalamus (LH)2.

In the LH, hypocretin/orexin neurons (HONs) are a cornerstone of 
adaptive arousal across species and have been proposed to be glucose 
sensors3–7. Many studies of HONs focused on disentangling their gene 

expression fingerprints, causal circuit interactions and long-term plas-
ticity. An equally important aspect that is much less studied concerns 
the temporal relations between internal variables and HON activation. 
In particular, the fundamental question of whether HONs track the 
temporal features of blood glucose, such as the rate of change, has 
been difficult to resolve because prior studies did not simultaneously 
record HON activation and blood glucose dynamics at a sufficient 
temporal resolution. This is especially important because HON activity 
is thought to be regulated by multiple neural inputs and can be linked 
to metabolic rates and energy use8–13. This emerging multivariate con-
text of HON regulation makes it unclear whether HON activity reflects 
blood glucose at all.

To address these gaps in knowledge, here we used LH-implanted 
optics in behaving male mice to record HON population activity or 
the separate responses of >900 individual HONs, with concurrent 
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Fig. 1 | Temporal relations of HON population activity and blood glucose.  

a, Scheme of the experimental setup for simultaneous fiber photometry, indirect 

calorimetry, glucose and temperature telemetry, and locomotion recordings. 

sCMOS, scientific complementary metal–oxide–semiconductor; LED, light-

emitting diode. b, Left: stereotaxic surgery schematic. LHA, lateral hypothalamic 

area. Right: expression of GCaMP6s in HONs for fiber photometry. The dashed 

square box indicates the fiber location. 3V, third ventricle. c–e, Hypothetical 

temporal relations of HON signal and blood glucose versus time (c), HON–

glucose correlation versus lag time between their peaks (d) and HON activity 

versus glucose (e), Glu, glucose. f–h, Measured temporal relations of HON 

activity and blood glucose simultaneously recorded in the same experiments 

(the preinfusion glucose baseline was subtracted from the glucose values for 

visual clarity). f, HON activity and blood glucose concentration traces; the peak 

HON response preceded the peak glucose concentration. Glucose infusion 

significantly decreased the HON photometry signal (between 0 and 10 min) 

compared to baseline (−10 to 0 min), P < 0.0001, t = 4.146, degrees of freedom 

(d.f.) = 105. g, Cross-correlation of HON activity and blood glucose. h, The linear 

fit did not explain variability, and the fit slope was not different from zero: R2 = 0, 

P = 0.288. i–k, Measured temporal relations of HON activity and the glucose 

derivative (d[glucose]/dt). The linear fit explained some variability, and the slope 

was significantly nonzero (i): R2 = 0.04, P < 0.0001. In f–k, data are means and 

s.e.m. of n = 57 IG glucose infusion responses from 22 mice. Data are smoothed by 

a 10-min moving mean for visualization.
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electrochemical monitoring of blood glucose dynamics and multiple 
physiological and behavioral variables. These parallel experimental 
measurements and their multivariate statistical analyses enabled us 
to probe the temporal features of blood glucose dynamics tracked 
by HONs in behaving mice. By documenting how HON loss- and 
gain-of-function manipulations affect behavioral responses to glu-
cose, we also probed the causal role of HONs in behavioral responses 
to glucose. We found that maximal HON responses to blood glu-
cose deviations occur in temporal anticipation of the glucose peaks 
due to rate-of-change (first derivative) tracking of glucose. At the 
single-cell resolution, we found ‘rate-of-change’ and ‘current-value’ 
glucose trackers operating in parallel, with each transmitting addi-
tional information about the animal’s locomotion state. Finally, our 
experiments revealed that HONs are important for glucose-mediated 
locomotor control.

Results
Blood glucose fluctuations rapidly affect HONs in vivo
To correlate HON dynamics with concurrently measured changes in the 
blood glucose concentration, we designed and implemented an experi-
mental paradigm that combined telemetry of carotid electrochemical 
glucose sensors and fiber photometry of HON-selective GCaMP6s 
fluorescent neural activity sensors (Fig. 1a,b and Methods).

Previous models of HON glucose sensing predict that HON 
inhibition should proportionally track the absolute glucose 
concentration, with a sensing delay of a few minutes6,7. If such 
concentration-proportional sensing occurred in the intact organ-
ism whose blood and brain glucose levels rapidly equilibrate14, we 
would expect maximal HON inhibition to occur after the glucose peak 
(Fig. 1c,d), and a negative monotonic relation between HON activity 
and glucose concentration (Fig. 1e).

We found that, in vivo, an increase in blood glucose rapidly and 
significantly inhibited HON population activity (Fig. 1f). However, 
the timing of HON inhibition strikingly diverged from a time-delayed 
copy of the blood glucose waveform. Instead, the HON inhibitory 
response was seen only during blood glucose increase, with the peak 
HON response occurring several minutes before—rather than after—
the blood glucose peak (Fig. 1f,g). Also, unexpectedly, HON activ-
ity subsequently returned to control levels when glucose was at the 
peak level and stable and then increased when the glucose level was 
declining (Fig. 1f,g). As a result, the HON activity state, as a function 
of blood glucose, displayed a hysteresis profile (Fig. 1h) rather than 
the expected monotonic relationship (Fig. 1e). From this noncanoni-
cal temporal profile of the HON glucose response, we hypothesized 
that HON inhibition tracked the rate of change of glucose (that is, its 
first derivative, d[glucose]/dt). Indeed, replotting of differentiated 
glucose data revealed that the dynamics of HON inhibition was a close 
mirror image of the glucose derivative (Fig. 1i,j), and there was a sig-
nificantly negative linear relationship between HONs and the glucose 
derivative (Fig. 1k). This relationship was similar irrespective of the 
glucose administration route (intragastric (IG; Fig. 1) or intraperitoneal  
(IP; Extended Data Fig. 1)).

Together, these data show that the HON population is rapidly 
inhibited by an increase in blood glucose, and this inhibition tracks 
the rate of change of blood glucose.

Encoding of multiple variables in HON low-frequency waves
Blood glucose fluctuations are expected to affect multiple behavioral 
and metabolic parameters, and HON activity may covary with a number 
of those15,16. This raises a fundamental question: do HONs specialize in 
glucose sensing, or is the influence of glucose relatively minor com-
pared to that of other variables that may affect HONs in vivo?

Answering this question requires simultaneous experimental 
tracking of multiple physiological variables and a method to quan-
tify how much HON activity variability is attributed to each separate 
variable despite the presence of multiple variables. To achieve this, we 
designed an experimental and analysis workflow enabling the comoni-
toring of multiple variables at the same temporal resolution, including 
blood glucose, CO2 and O2 respiratory gas exchange, HON-GCaMP6s 
activity, body temperature and locomotion (Figs. 1a and 2a). We then 
used the resulting data matrix (Fig. 2a–g) to quantitatively predict 
the HON population activity based on the other physiological vari-
ables (‘predictors’) with a multiple linear regression encoding model17 
(Fig. 2h and Methods). Predictors also included the first derivatives of 
the variables (Fig. 2h) because this temporal feature was implicated in 
HON responses to glucose (Fig. 1i–k).

Using this encoding model, we calculated the relative contribution 
of each physiological variable to the slow HON population response 
by quantifying how much of the explained variance decreased when 
that variable was removed from the model (Fig. 2i). The highest rela-
tive contribution was attributed to the derivative of glucose (29.7 ± 2% 
relative contribution to the explained variance), followed by consumed 
oxygen volume (VO2, 21.1 ± 3.6%) and the derivative of produced carbon 
dioxide volume (VCO2, 17.6 ± 2.8%) (Fig. 2j; confirmed for a variety of 
glucose infusion parameters in Extended Data Fig. 2).

Thus, when the covariation of HON activity across multiple phys-
icochemical and behavioral factors is considered, the glucose deriva-
tive emerges as a strong determinant of information transmitted by 
the HON population.

Multiplexed tracking of glucose and running in single HONs
We next sought to determine whether blood glucose homogene-
ously affects individual HONs. Therefore, we switched our HON 
activity recording mode from bulk photometry to a single-cell 
resolution using two-photon volumetric imaging of HONs through 
hypothalamus-implanted gradient index (GRIN) lenses15 (Fig. 3a). We 
confirmed that, at the population level, HON glucose responses were 
similar across the two recording modes, by observing comparable glu-
cose responses in fiber photometry (above) and summed two-photon 
HON imaging (Fig. 3b–d).

In each mouse (n = 7), we simultaneously resolved the activity of 
92–180 HONs. We analyzed a total of 913 HONs from 7 mice (the full 
dataset is shown in Fig. 3b for glucose and Extended Data Fig. 3 for 
vehicle control). To compare the glucose responses of individual cells, 

Fig. 2 | Relative influence of behavioral and metabolic variables on HONs.  

a, Example multiparameter data from a single recording session. b–g, Group 

data for the experiment shown in a. Data are shown in 5-min bins for visualization 

only. The 5- to 25-min postinfusion was used for statistics. Compared to saline 

infusion, glucose infusion increased the blood glucose level (b) (t-test P < 0.0001; 

d.f. = 26, t statistics = −5.193; n = 7 and 21 responses from 6 and 6 animals to 

saline and glucose, respectively), reduced HON activity responses (c) (t-test 

P = 0.023; d.f. = 69, t statistics = 2.321; n = 39 and 32 responses from 13 and 10 

animals to saline and glucose, respectively), increased body temperature (d) 

(t-test P = 0.038; d.f. = 31, t statistics = −2.167; n = 7 and 26 responses from 7 

and 8 animals to saline and glucose, respectively), increased the respiratory 

exchange ratio (RER; e) (t-test P < 0.0001; d.f. = 89, t statistics = −5.03; n = 59 and 

32 responses from 30 and 15 animals to saline and glucose, respectively), did not 

alter energy expenditure (f) (t-test P = 0.10; d.f. = 89, t statistics = 1.648; n = 59 

and 32 responses from 30 and 15 animals to saline and glucose, respectively) and 

reduced running (g) (t-test P < 0.0001; d.f. = 117, t statistics = 4.39; n = 80 and 

39 responses from 32 and 19 animals to saline and glucose, respectively). The 

10-min time bar shown in g also applies to a–f. Data in b–g are means and s.e.m. 

h, Depiction of the workflow to predict HON activity from the simultaneously 

measured set of physiological variables. der, derivative. i, Illustration of the 

testing of the contributions of input variables. j, Ranking of input variable 

contributions for accuracy in modeling HON activity after glucose infusion 

(box-and-whisker plot: center line, median; box, 25th–75th percentiles; whiskers, 

minimum–maximum extremes). Data are from 17 recording sessions in 5 mice.
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we fitted each cell’s activity profile to several templates representing 
distinct temporal features of glucose dynamics, and classified cells 
based on the best goodness of fit (Fig. 4a and Methods). Based on this 
classification, the majority of HONs (98%, 895 of 913 cells) responded 
to blood glucose dynamics, with only 2% of cells not fitting any of the 
templates (Fig. 4b,d). Most of the glucose-responding HONs were 
glucose inhibited (64%, of which 31% were glucose-derivative-inhibited 
cells and 33% were glucose-proportional-inhibited cells), but we also 

detected other functional subclasses (glucose-derivative-activated 
cells, 11%; glucose-proportional-activated cells, 25%) (Fig. 4b,d). 
The summed/population-level response (Figs. 1 and 3c) resem-
bled that of glucose-derivative-inhibited cells (idG cells in 
Fig. 4b), presumably because of the small response amplitudes of 
glucose-derivative-activated cells (dG cells in Fig. 4b) and the rela-
tively similar response amplitudes of glucose-proportional-inhibited 
and glucose-proportional-activated cells (iG and G cells in Fig. 4b).  
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(NS) (high-absolute-glucose period), n = 7 mice. NS, not significant. Data are 
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M, medial; L, lateral; A, anterior; P, posterior. Breaks in the neural recordings are 

due to the laser shutter being closed during infusions in most of the experiments. 

Data are presented as means and s.e.m.
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We could also recreate the HON population response to glucose 
infusion by multiplying the glucose templates by the relative 
HON-subgroup prevalence (Extended Data Fig. 4a). The HON subsets 
were largely intermingled within the recording volume (Fig. 4e).

We next asked how other information is distributed across these 
glucose-classified HONs. On faster timescales than the glucose dynam-
ics analyzed above, individual HONs displayed heterogeneous tempo-
ral coupling to locomotion, with some neurons positively correlated, 
some negatively correlated and some noncorrelated with running15. 
We reexamined our new data at a high temporal resolution from this 
perspective of running, which we recorded concurrently with neu-
ral activity in all the two-photon experiments. When we combined 
the insights about the slow glucose responses and the fast running 
responses, we found that most of the running-correlated HONs were 
glucose inhibited, whereas most of the HONs that were negatively cor-
related with running were glucose excited (Fig. 4d, right). In agreement 
with this, glucose-inhibited cell subpopulations had larger proportions 
of cells positively correlated with running than the other classes of 
HONs (Extended Data Fig. 4b).

Overall, these data indicate that, while there are distinct subpopu-
lations of HONs in terms of correlations with blood glucose dynamics or 
running, the bulk of HONs are glucose inhibited (proportional-tracking 
iG and derivative-tracking idG cells in Fig. 4b), and most of the indi-
vidual HONs that are positively correlated with running are glucose 
inhibited.

Role of HONs in glucose-evoked locomotor suppression
Finally, we considered the possibility that blood glucose governs behav-
ior and HONs are involved in this process. Locomotion is stimulated 
by bulk HON activation15. This suggests that locomotion may be sup-
pressed by HON inhibition, such as that evoked by glucose. Thus, we 
hypothesized that glucose suppresses locomotion, and this suppres-
sion is sensitive to HON-selective perturbations (Fig. 5a,f).

In support of the first part of this hypothesis, we observed that glu-
cose suppressed locomotion (Fig. 5b, dataset labeled ‘WT’) in the same 
epoch in which bulk HON inhibition occurs (Figs. 1 and 3). This involved 
a reduced number of running bouts, but no change in bout speed or 
duration (Fig. 5c–e, datasets labeled ‘WT’). To probe how HON inhibi-
tion may suppress locomotion, we considered the substantia nigra pars 
compacta (SNc), a brain region with a high density of HON axons18. The 
SNc contains dopamine (DA) neurons that promote locomotion19, are 
activated by HON firing (implied by ref. 20 and confirmed in vivo in 
Extended Data Fig. 5a,b) and are thought to release DA onto DA recep-
tors critical for HON-evoked locomotion21,22 (Extended Data Fig. 5c). 
Using SNc-targeted photometry of the orexin/hypocretin peptide 
sensor OxLight1 (ref. 23), we found that glucose reduced endogenous 
orexin release in the SNc (Extended Data Fig. 5d,e). This would reduce 
endogenous orexin receptor activation. To test whether reducing 
endogenous orexin receptor activation is sufficient to suppress loco-
motion, we infused the orexin receptor antagonist almorexant24 locally 
into the SNc. This suppressed locomotion (Extended Data Fig. 5f). 
Together, these results suggest that glucose reduces pro-locomotor 
orexin signals in the SNc.

To test the second part of our hypothesis, we designed two dif-
ferent but complementary experiments probing the role of HONs in 
glucose-evoked locomotor suppression. The loss-of-function experi-
ment examined the suppression of locomotion when HONs were 
selectively ablated in the HON-diphtheria toxin (DT) receptor (DTR) 
model25 (Fig. 5a–e). The gain-of-function experiment examined the 
suppression of locomotion when HON activity was artificially main-
tained at a high level by HON-selective optostimulation (Fig. 5f–j). Each 
of these experiments has distinct potential confounds (for example, 
baseline shifts and chronic effects), but combining the evidence from 
the two experiments reduces interpretation difficulties arising from 
these confounds.

In the HON-ablated mice, glucose infusions increased blood glu-
cose as normal (Extended Data Fig. 6a,b) but no longer suppressed 
locomotion (Fig. 5b–e, dataset labeled ‘DT’). As expected15, there was a 
notable (but not statistically significant) reduction in baseline locomo-
tion in HON-ablated mice (saline DT group versus WT groups; Fig. 5b,c). 
Thus, it was important to confirm this observation in a different experi-
ment without this downward trend. This was accomplished in the HON 
optostimulation experiment, which also prevented glucose-evoked 
locomotor suppression (Fig. 5g–j). Together, these two complementary 
experiments indicate that intact HON activity dynamics are important 
for normal motor responses to glucose.

Discussion
In sensors, the question of whether an input is simply relayed (pro-
portional tracking) or tracked in a more selective and specialized way 
(derivative or integral tracking) has great functional implications1,26. 
This is because proportional, integral and/or derivative tracking modes 
enable reactions based on the present, past and future of an input, 
respectively26,27. Identifying the temporal nature of input percep-
tion thus reveals fundamental information about the overall opera-
tional logic of a sensory system. This has been of broad interest for 
glucose-tracking systems and the design of artificial glucose trackers 
in clinically relevant applications, such as the artificial pancreas28–37. 
By identifying derivative and proportional tracking of blood glucose 
in HONs, our study directly visualizes this fundamental aspect of HON 
operation in the living brain.

In behaving mice, we found that HONs transmitted multiple tem-
poral features of blood glucose dynamics. At the population level, the 
dominant feature transmitted by the low-frequency HON response was 
the glucose derivative (Fig. 2). At the single-cell level, HONs operated 
as multiplex transmitters, in which low-frequency glucose modula-
tion typically coexisted with high-frequency locomotion modulation 
(Fig. 4d). Multiplexing increases communication efficiency by sending 
diverse information streams through one communication channel38, 
in our case, one HON. This reduces the number of neurons required 
to transmit the diverse information. This is thought to be important 
because neurons are energetically expensive39, and physical space to 
accommodate them in the brain is limited, thus placing constraints 
on information processing. Therefore, the multiplexing of diverse 
information within one neuron may allow for the more efficient use 
of the limited brain resources for neural coding40,41. We speculate that, 
when an animal is experiencing a wide variety of slowly and rapidly 
changing stimuli, as typically occurs in the wild, demultiplexer circuits 
downstream of HONs may be able to extract information about the 
distinct stimuli from the superimposed slow and fast HON modulation.

Anticipatory algorithms based on associative cues and learning are 
increasingly documented in the hypothalamus42–45. In addition to these 
cue-based algorithms, there is a fundamentally different type of antici-
patory algorithm that is cue independent and instead involves emitting 
control signals based on the temporal derivative of an input26. This 
derivative-based algorithm is well established as a simple and effective 
way of creating rapid, anticipatory-like signals in practical and theo-
retical engineering26,27. Our data suggest that this algorithm may also 
operate in the hypothalamus. If glucose is viewed as an input, the glu-
cose derivative-based HON population signal (Fig. 1) closely resembles 
derivative-based anticipatory control signals. Control is more effective 
when it uses the derivative signals because their anticipatory-like 
dynamics preempt big deviations from a set point26. We propose that 
understanding and mimicking the natural mathematics of the brain’s 
glucose-sensing strategies may improve the performance of clinically 
relevant glucose-sensing artificial organs28,29,36.

Our data indicate that HONs have an essential role in glucose- 
evoked locomotor suppression (Fig. 5). This may have an evolutionary 
advantage by suppressing moving away from a glucose-containing 
food source, thus facilitating additional consumption and/or energy 
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Fig. 5 | HONs and glucose-evoked behavior. a, HON-ablation strategy (left), 

histology (middle; similar data were obtained in n = 12 mice) and behavior 

assessment schematic (right). CNN, convolutional neural network; sal, saline.  

b, Mobility. Two-way RM ANOVA: treatment × group F(1, 9) = 5.4, P = 0.04; WT: 

saline versus glucose, P = 0.03; DT: saline versus glucose, P = 0.995; n = 5 WT  

mice, n = 6 DT mice. c, Running-bout number. Two-way RM ANOVA: treatment 

F(1, 9) = 6.933, P = 0.03; WT: saline versus glucose, P = 0.03; DT: saline versus 

glucose, P = 0.82; n = 5 WT mice, n = 6 DT mice. d, Running-bout speed. Two-way 

RM ANOVA: treatment × group F(1, 9) = 0.71, P = 0.42; n = 5 WT mice, n = 6 DT 

mice. e, Running-bout duration. Two-way RM ANOVA: treatment × group  

F(1, 9) = 0.31, P = 0.59; n = 5 WT mice, n = 6 DT mice. f, HON-activation strategy 

(left), histology (middle; similar images were obtained in each of n = 5 mice) 

and behavior assessment schematic (right). g, Mobility. Two-way RM ANOVA: 

treatment × group F(1, 11) = 13.78, P = 0.003; control (Ctrl): saline versus 

glucose, P = 0.01; stimulated (Stim): saline versus glucose, P = 0.23; n = 5 control 

mice, n = 8 Chrimson mice. h, Running-bout number. Two-way RM ANOVA: 

treatment × group F(1, 11) = 5.29, P = 0.04; control: saline versus glucose, 

P = 0.02; stimulated: saline versus glucose, P = 0.9953; n = 5 control mice, n = 8 

Chrimson mice. i, Running-bout speed. Two-way RM ANOVA: treatment × group 

F(1, 11) = 3.57, P = 0.09; n = 5 control mice, n = 8 Chrimson mice. j, Running-bout 

duration. Two-way RM ANOVA: treatment × group F(1, 11) = 1.38, P = 0.26; n = 5 

control mice, n = 8 Chrimson mice. All group data are presented as means and 

s.e.m. *P < 0.05; P > 0.05 (NS).
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storage46–48. The essential role of HONs in this locomotor suppression 
is supported by two independent—but interpretationally comple-
mentary—observations: the loss of suppression upon selective HON 
ablation and the overriding of suppression by selective HON hyperstim-
ulation (Fig. 5). Physiologically, HONs are activated by diverse salient 
signals, such as those indicative of stress or a reward49. In future work, 
it would be important to test whether the suppression of locomotion 
by glucose may be overridden by salient signals that activate HONs, to 
permit behavioral flexibility.

Our findings open additional directions for further study. Down-
stream of HONs, it could be elucidated whether HON subsets with 
distinct glucose responses engage distinct or overlapping decoders 
and effectors. While the midbrain may be one such effector (Extended 
Data Fig. 5), other HON-innervated areas18 are likely to contribute. In 
particular, areas involved in metabolic control deserve further inves-
tigation, as the apparently normal glucose tolerance of HON-ablated 
mice does not rule out potential HON effects on multiple other aspects 
of metabolism. Upstream of HONs, other glucose-interpreting systems 
may provide inputs to HONs, as the in vivo diversity of HON glucose rep-
resentations (Fig. 4) is absent in isolated HONs in vitro6,7. While indirect 
HON glucose sensing through such inputs seems likely, we note that the 
fact that peak HON responses precede peak blood glucose increases 
does not prove indirect sensing, as it would be equally explainable 
by direct derivative sensing. Thus, it remains to be experimentally 
established—for example, by inactivating putative upstream sensors—
whether the in vivo HON glucose responses arise from inputs from 
other glucose sensors50 or through some combination of direct6,7 and 
indirect50 sensing. It is also interesting that the relationship between 
HON population activity and glucose displayed hysteresis (Fig. 1h). 
Hysteresis could have many underlying causes51, including bistable 
biological switches and feedback loops52. It would be interesting to 
test whether such operations exist in the broader HON network and 
whether they implement the glucose derivative tracking. Finally, on 
a whole-body level, it remains to be determined how HON glucose 
sensing works together with other hypothalamic sensors of blood 
glucose53, as well as with multiple other blood and interstitial glucose 
sensors, to produce an integrated response to multicompartment 
glucose dynamics54,55.

Together with the transcriptomic and projection complexity of 
the HONs, the temporal dimension revealed here may aid downstream 
circuits in efficiently interpreting the wide range of information trans-
mitted by HONs. Deeper knowledge of how precisely defined neural 
classes and connections turn blood glucose into adaptive responses 
will facilitate insights into the impact of glucose dynamics on health 
and disease.
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Methods
Experimental subjects
All animal experiments followed the UK Home Office regulations or 
the Swiss Federal Food Safety and Veterinary Office Welfare Ordinance 
(TSchV 455.1, approved by the Zurich Cantonal Veterinary Office). Adult 
male C57BL/6 mice were studied; thus, whether conclusions apply 
to female mice remains to be determined. For HON-deletion experi-
ments (Fig. 5 and Extended Data Fig. 6), we used the already validated 
orexin-DTR mice25,46; the confirmatory histology shown in Fig. 5a was 
performed as in ref. 46. For SNc DA neuron recordings (Extended Data 
Fig. 5a,b), we used DA transporter-Cre transgenic mice (The Jackson 
Laboratory 020080, Slc6a3tm1(cre)Xz/J). The animals were housed in a 
reversed light–dark cycle (lights off at 7:00 a.m.), and all experiments 
were performed during the dark phase. The animals had ad libitum 
access to food (3430 Maintenance Standard diet, Kliba Nafag) and water 
unless stated otherwise. Known effect sizes and variations were used 
for power calculations and the determination of the required number 
of animals, where possible, to maximize the chances of meaningful 
results without using excessive numbers of experimental animals. 
Studies were repeated in at least two independent cohorts and used a 
semirandomized crossover design.

Surgeries and viral vectors
HON activity measurement or optogenetic control was achieved using 
an orexin promoter (hORX)-driven GCaMP6s sensor or the excita-
tory optogenetic actuator ChrimsonR, respectively; the specificities 
of these constructs for HONs have been validated by histological 
analyses15,23,25. Briefly, the GCaMP6s calcium indicator was delivered 
using AAV1-hORX-GCaMP6s.hGH (1013–1014 genome copies (GC) per 
ml, Vigene Biosciences). For fiber photometry recordings of HONs, 
the hORX-GCaMP6s adeno-associated virus (AAV) was stereotaxi-
cally injected into the LH bilaterally (anteroposterior (AP), −1.35 mm; 
mediolateral (ML), ±0.90 mm; dorsoventral (DV), −5.70, −5.40 and 
−5.10 mm; 70 nl per site), and optic fiber cannulae (200-μm diameter, 
0.39-numerical-aperture (NA) fiber with 1.25-mm ceramic ferrule; 
Thorlabs) were implanted above the LH (AP, −1.35 mm; ML, ±0.90 mm; 
DV, −5.00 mm). For fiber photometry recordings of SNc DA cells 
(Extended Data Fig. 5a,b), Cre-dependent GCaMP AAV (pAAV.CAG.Flex.
GCaMP6s.WPRE.SV40, 1.7 × 1013 GC per ml; 1:3 dilution in sterile PBS) 
was stereotaxically injected into the SNc unilaterally (AP, −3.2 mm; ML, 
±1.4 mm; DV, −4.2 mm; 200 nl per site at 1 nl s−1), and optic fiber (200-μm 
diameter, 0.39-NA fiber with 1.25-mm ceramic ferrule; Thorlabs) was 
implanted above the SNc 0.1 mm above the injection site. For fiber 
photometry recordings of SNc orexin/hypocretin levels (Extended Data 
Fig. 5d,e), 300 nl of the OxLight1 sensor AAV (~7 × 1012 GC per ml, AAV 
DJ, UZH Viral Vector Facility) was stereotaxically injected unilaterally 
into the SNc (the coordinates and subsequent fiber implantation are 
the same as in the previous sentence). For central infusion of almorex-
ant, a bilateral cannula (RWD Life Science) was introduced into the SNc 
(Extended Data Fig. 5f). For two-photon imaging, the same GCaMP6s 
virus and coordinates were used as for fiber photometry; however, 
surgery was performed only on the left hemisphere, and a GRIN lens 
(0.39-NA, 7.3-mm-long, 0.6-mm-diameter; Inscopix) was slowly 
(150 μm min−1) implanted instead of the cannulae. The implants and 
a custom-made aluminum head plate were secured to the skull using 
three skull screws and dental cement (Kemdent dental cement and 
C&B Metabond (Parkell)). For optogenetic HON experiments, surgeries 
were performed in the same way as for the HON photometry studies, 
but ChrimsonR was delivered using AAV9-hORX-ChrimsonR-mCherry 
(2 × 1012 GC per ml, UZH Viral Vector Facility).

For IG infusion experiments, the surgery was adapted from that 
performed in rats46. A custom-made catheter was implanted by guid-
ing the tubing subcutaneously from the dorsal to the ventral incision. 
A fixation mesh was then positioned subcutaneously at the level of the 
scapula blades, and the catheter exited on the animal’s back. To prevent 

damage, we placed a custom-made cover on the catheter after every 
experiment. To prevent catheter blockage, we used saline (~0.1 ml) to 
flush the catheters daily for 5 days after surgery and then every second 
day until the end of the study. Catheter functionality was confirmed 
by the presence of backflow after saline IG infusion and terminally by 
dissection. In the event of catheter blockage, subjects were excluded 
from further experiments, but data collected before the blockage were 
included in the analyses.

Glucose and temperature telemeters (DSI) were implanted follow-
ing the manufacturer’s instructions. The glucose sensor entered the 
systemic blood system through the left carotid artery, with ~1.5 mm 
of the sensor protruding into the aorta. All surgeries were performed 
under aseptic conditions. The animals received isoflurane anesthesia 
and operative and postoperative analgesia.

Fiber photometry
For fiber photometry experiments (Figs. 1 and 2 and Extended Data 
Fig. 5b,e), we used a custom camera-based photometry system (built 
with the assistance of D. Elgar (Custom and open-source systems for 
neuroscience (COSYS)) and based on ref. 56). Alternating illumination 
from two excitation LEDs (405 and 465 nm at 20 Hz each, average power 
of 100 μW at the implant fiber tip) was used to record LH HON-GCaMP6s 
emission fluorescence bilaterally in one to three animals simultane-
ously. The emission generated by the 405-nm LED was used as a control 
for movement artifacts, the effects of which were further minimized 
by recording in habituated, head-fixed animals (Fig. 1a). GCaMP6s 
bleaching, fiber illumination and expression variability were accounted 
for by detrending and normalizing each trace as follows: (1) the local 
minima of each trace were found (‘convhull’ function in MATLAB); (2) 
a least-squares triple exponential was fit through the convex hull; (3) 
each trace was detrended by subtracting and dividing by its minima 
fit; and (4) each trace was z-score normalized based on its 20-min 
preinfusion s.d. and mean.

Two-photon imaging and data analysis
We performed volumetric two-photon imaging using GRIN lenses15. 
Excitation of GCaMP6s was achieved with a femtosecond-pulsed 
mode-locked Ti:sapphire laser (Spectra-physics Mai Tai HP Deepsee 2)  
at 950 nm. The emission fluorescence was imaged using a resonant/
galvanometer-scan-head two-photon microscope (Independent Neu-
roScience Services) equipped with a 20× (0.45-NA, Olympus) air-IR 
objective, a custom electrotunable lens and a 510/80-nm band-pass 
emission filter. A volume of 512 × 512 pixels × 6 planes was recorded 
at 5.1 volumes per second using custom LabVIEW software. Resultant 
image stacks were processed in FIJI, MATLAB and Python software 
programs, as follows: (1) the imaged volume was split into separate 
planes (the lens-transition plane was discarded from further analysis); 
(2) 2 × 2 binning and TurboReg (precise, rigid) motion correction were 
applied; (3) cell outlines were manually drawn and labeled as ROIs;  
(4) ROI maps were applied across sessions within the same animal 
and adjusted; (5) ROIs that corresponded to the same cell in a plane or 
across neighboring planes were identified (in at least two independent 
experimental sessions, >5% ROI overlap of 3-pixel expanded contours, 
>90% cross-correlation coefficient and <2 s lag) and joined in further 
analysis; (6) HON cell activity was aligned based on saline/glucose infu-
sion timing, and same-condition recordings were averaged for each 
cell; (7) HONs were assigned to glucose-response classes by fitting their 
activity profile to transformations of glucose dynamics (inverted-sign 
derivative, derivative, proportional and inversely proportional); and 
(8) classified cells were anatomically mapped.

For the classification of HON activity to transformed glucose 
dynamics, templates were constructed using the average blood glu-
cose trace following an IP injection of 2 g kg−1 glucose from mice that 
were not used in the classification. The mean trace was smoothed 
using a 1.5-min-window moving mean before relevant transformations 
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were applied. If the transformation was a derivative, the template was 
smoothed again after differentiation using the same filter parameters. 
Cell activity traces were extracted and aligned to the first 20 min of 
the template trace following the IP injection of glucose. By calculating 
the Pearson’s correlation coefficient of the extracted traces with each 
of these templates, we assigned cells to the response class with the 
maximum Pearson’s correlation coefficient. A two-sided P value was 
calculated alongside each correlation (SciPy library). Using the Bonfer-
roni adjustment for multiple comparisons, we classified responses that 
had no P value with any template less than α = 0.001/4 as belonging to 
a fifth (‘no-response’) category.

For the classification of individual HONs with regard to their cor-
relation with running events at fast timescales15, we used the 5-Hz 
data from whole sessions. Positively correlated (P < 0.05, ρ > 0.01), 
negatively correlated (P < 0.05, ρ < −0.01) and noncorrelated (P > 0.05 
or ρ between −0.01 and 0.01) cells were identified using Spearman’s 
correlation.

Concurrent monitoring of glucose, metabolic parameters and 
locomotion
Blood glucose concentration and flank body temperature were 
measured and preprocessed with the HD-XG telemetry system (DSI). 
Metabolic measurements were obtained by recording continuous 
gas exchange in a custom enclosure by using an adapted Field Meta-
bolic System (Sable Systems International). The running of head-fixed 
animals was measured on a wheel using an optical encoder (Honey-
well, 128 ppr 300 rpm Axial). Encoder state changes were recorded 
using a master MATLAB code running photometry or LabVIEW pro-
grams synced with the two-photon microscope. Metabolic data were 
preprocessed in ExpeData software, z-transformed to account for 
sensor lag and exported for analysis in MATLAB. Respiratory energy 
expenditure was calculated using Weir’s formula: energy expenditure 
(kcal min−1) = (3.94 × VO2 (l min−1)) + (1.1 × VCO2 (l min−1)). All acquisition 
systems were synced using digital signals to the MATLAB code running 
photometry or to the LabVIEW two-photon imaging program. All data 
were exported and further processed in MATLAB. Each of the simul-
taneously measured time series was resampled to achieve the same 
acquisition rate of 1 Hz. For visual clarity, glucose and photometry 
data in Figs. 1 and 2 were smoothed with a 10-min moving mean and 
downsampled to 20 s. To generate hysteresis plots of HON activity 
versus blood glucose from diverse infused glucose parameters in Fig. 1, 
temporal boundaries of the blood glucose transient were identified, 
and 50 equally spaced points were taken to plot the HON signal versus 
the blood glucose level (Fig. 1h) or the blood glucose derivative (Fig. 1k). 
Classical glucose tolerance tests (Extended Data Fig. 6a,b) were per-
formed as in our previous work25.

Glucose doses
A critical feature of our experimental design is that, because of the 
rapid physiological counter-regulation of glucose in the body, in all our 
analyses of HON population responses to glucose, we used actual meas-
ured blood glucose values rather than the administered glucose doses. 
In this way, we assessed the effects on neural activity of a large range 
of blood glucose concentrations (baseline range, 3.5–11.1 mM (mean, 
7.3 ± 0.17 mM); glucose peak range, 11.1–34.9 mM (mean, 24 ± 0.9 mM)) 
and rates of change (range, 0.12–1.45 mM min−1; mean of maximum 
rate of change, 0.56 ± 0.03 mM min−1). These glucose parameters are 
comparable to physiological variations of blood glucose in mice57–59. To 
achieve this range of glucose variations, we varied our glucose infusions 
in both concentration and route of administration (IG or IP). Specifi-
cally, for IG infusions, we used a range of concentrations (0.08, 0.12, 
0.146, 0.24 and 0.45 g ml−1), infusion rates (50, 66.7, 90 and 180 μl min−1) 
and volumes (<0.45 ml for fast infusions of 180 μl min−1 and <0.9 ml for 
the other rates). For IP glucose infusions, a dose of 2 g kg−1 was achieved 
by injecting 100–150 μl. All infusion parameters were used to generate 

the data analyzed in Fig. 1. An IG dose of 0.24 mg ml−1 (delivered at a rate 
of 90 μl min−1 over 10 min) was used in Fig. 2; in Extended Data Fig. 2, 
the findings are confirmed for a wider range of infusion parameters (as 
indicated in the legend of Extended Data Fig. 2). An IP dose of 2 g kg−1 
was used in Figs. 3–5. Note that the administration routes and doses 
are provided here for the sake of completeness, as our study relates 
blood glucose (directly measured rather than inferred from injected 
doses) to HON activity, and the relationship between blood glucose 
and HON activity is similar across different methods of glucose injec-
tion (Extended Data Fig. 1, IP and IG compared in the figure legend).

Encoding model
To determine the relative contributions of various behavioral and meta-
bolic variables to HON responses, we used a generalized linear model 
approach based on ref. 17. For this model, HON population activity was 
used as the response variable, whereas the predictor variables were 
running, blood glucose, body temperature, VO2, VCO2 and their deriva-
tives with respect to time (Fig. 2h). All variables were downsampled to 
1 min to equalize their sampling rates and focus on the slow dynamics, 
Savitzky–Golay filtered (first-order, five-sample window) and normal-
ized by z scoring. Resultant data were fit using the ‘glmfit’ function in 
MATLAB by bootstrapping 1/4 experiment-duration chunks randomly 
over 2,000 iterations. Here, 70% of the data were used for training, and 
30% were used for validation on untrained data. Nonbootstrapping 
methods, such as leave-one-out cross-validation, were also used to 
confirm the findings. Examination of the correlation coefficient matrix 
of predictor pairs confirmed low collinearity (correlations ≪ 0.8)60, 
as expected, because, in addition to the temporal variations in blood 
glucose concentration, CO2 production and O2 consumption depend 
on other dynamic variables—for example, the intensities of aerobic and 
anaerobic intracellular metabolisms and glycogen metabolism. This 
presence of multiple variables that display distinct temporal patterns 
provides further justification for the multivariate modeling approach, 
which attempts to disentangle this complex situation by looking at 
the temporal covariability of the different metabolic parameters as 
predictors of the temporal activity patterns of HONs. For each fitting 
iteration, partial models based on the same training data, but without 
a single independent variable, were generated. Then, a coefficient 
of determination (R2) was calculated for full and partial models on 
the validation data (either on the 30% of bootstrapped data or the 
left-out experiment). We determined the relative contribution of a 
given predictor to HON activity dynamics by comparing how much the 
encoding model performance has declined without a given variable—by 
comparing the R2 of the partial model to the R2 of the full model (Fig. 2i). 
Negative relative contributions were set to zero, following the method 
described in ref. 17.

Behavioral analysis
HON-ablated mice and their respective controls were produced by 
injecting DT (Sigma D0564, 1 mg ml−1, 0.1 ml) through the IP route 
into both DTR+ and DTR− mice25. A constitutively active HON state was 
produced by optogenetic LH stimulation of HON-Chrimson mice, 
achieved by tonic 10-Hz, 5-ms pulses of 635-nm laser. In both cases, 
HON-manipulated and control mice were injected with either glucose 
or saline (in a randomized crossover fashion over two consecutive days) 
and placed in an open-field arena (40 × 40 cm). Behavior was scored 
using video analysis of the first 10 min by EthoVision XT (Noldus) and a 
custom-made machine-learning classifier46. The machine-learning clas-
sifier was trained on ~1,200 labeled examples to identify five separate 
behaviors: grooming, rearing, resting, running, and turning or sniffing. 
More than 300 additional labeled examples were used to train a behav-
ioral classifier for optogenetic-cable-tethered mice. Separate running 
bouts were defined as occurrences of movement above a threshold 
(18 cm s−1 for untethered mice or 10 cm s−1 for tethered mice) for at 
least 1 s per bout, separated by more than 2 s. Similarly, when machine 
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learning was used to identify forward locomotion directly, separate 
running bouts were identified when spaced by at least 2 s.

Data analysis and statistics
Raw data were processed in MATLAB. Statistical analysis was done 
in GraphPad Prism 9.0, MATLAB or Python. For data analysis, the 
researcher was blinded to group identity; behavioral quantification 
(pupil size) was performed in an unbiased, automated way using EthoVi-
sion or custom behavioral classifiers. Key comparisons between saline 
and glucose, as well as cell classification analyses, were performed on 
raw, nonsmoothed data. Sample size, statistical tests used and their 
results are indicated in the figures, figure legends and/or descriptions 
in the text. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those reported in previous pub-
lications15,46. Statistical comparisons were performed on nonfiltered 
data, but some traces were filtered for visual purposes, as indicated. 
Statistical analysis was based on settings recommended by GraphPad 
Prism 9.0. P values of <0.05 were considered significant. Where relevant 
for testing, data distribution was assumed to be normal, but this was 
not formally tested. Where significance is presented, P values are as 
follows: *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001; NS, P > 0.05. 
Outliers that failed a ROUT 1% test were removed. Data are presented 
as means and s.e.m. unless stated otherwise. All t tests were two-tailed.

Ethics declaration
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Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Extended Data Fig. 1 | Relationship between blood glucose and HON activity 

after IP injection of glucose. Related to Fig. 1. (A) HON activity did not have a 

linear relationship with varying blood glucose after intraperitoneal (IP) injection 

of glucose. Linear fit did not explain variability and fit slope was not different 

from zero: R2 = 0.0005, p = 0.87. (B) There was a significant linear relationship of 

HON activity with changes in blood glucose and the slope was significantly non-

zero: R2 = 0.64, p < 0.0001. The slope of the relation between HON activity and 

change in blood glucose was not affected by the route of glucose administration: 

IG (Fig. 1k) vs IP (this figure, panel B); F test, p = 0.17. IP glucose responses 

quantified using 19 HON responses from 8 mice & 4 glucose recordings in 4 mice. 

Data are presented as means and s.e.m.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01648-w

Extended Data Fig. 2 | Glucose derivative is a top predictor across a wide 

range of glucose infusion parameters. Related to Fig. 2. Unlike the dataset  

than shown in Fig. 2 (0.24 g/ml, 90 μl/min for 10 min), here a wider range of  

the infused glucose parameters were used: glucose concentration was either 

0.12, 0.146 or 0.45 g/ml, the infusion rate was varied between 66.7, 90 and  

180 μl/min, and duration was either 2.5, 10 or 15 min. N = 11 sessions from  

5 mice. (box and whisker plot, showing median, 25th to 75th percentile box, and 

min/max extremes).
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Extended Data Fig. 3 | Single cell HON responses to saline and glucose 

infusions. Related to Fig. 3. (A) Individual responses of 913 HONs to saline 

infusion from 7 mice. (B) Temporal alignment of average HON responses (top) 

to blood glucose concentration (middle) and its derivative (bottom) after saline 

or glucose infusions. Blood glucose data is from the same recording sessions as 

shown in Extended Data Fig. 1. Breaks in the neural recordings are due to laser 

shutter being closed during infusions in majority of the experiments. Data are 

presented as means and s.e.m.
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Extended Data Fig. 4 | HON population response to glucose and correlation 

of single cell HON responses to glucose infusions versus running. Related to 

Fig. 4. (A) Using blood glucose templates from Fig. 4A and multiplying them by 

the relative prevalence of individual HONs that fit these profiles, we obtained 

an average response trace that resembles that of the actual HON population 

response after the infusion of glucose. (B) Glucose inhibited cells (iG and idG) 

tended to also have a larger proportion of +ve correlated running cells.
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Extended Data Fig. 5 | Probing a pathway for HON regulation of 

locomotion. Related to Fig. 5. (A) Schematic drawings of AAV injections for 

HON optostimulation combined with SNc DA neuron photometry (top), and 

representative histology (bottom, fiber placement shown as dashed rectangle). 

Similar histology was obtained in n = 5 mice. (B) DA neuron responses to 

HON optostimulation. Left, SNc GCaMP fluorescence responses to HON 

optostimulation (grey bar). n = 5 HON-ChrimsonR mice, and n = 3 control (ctrl) 

mice. Right, Peak fluorescence (95th percentile) in a 20 second window after 

stimulation onset; paired t-test t4 = 6.271 p = 0.007. Right, Comparison of 20 Hz 

stimulation in Chrimson vs control (Ctrl) mice; unpaired t-test t6 = 6.131, p = 0.002 

(n = 5 HON-ChrimsonR mice, and n = 3 control mice). Multiple comparisons were 

Bonferroni adjusted. (C) Effect of DA antagonist drugs (haloperidol, SCH23390) 

or saline on locomotor responses to HON optostimulation. Mice were placed in 

an open field to assess movement for 5 minutes either without (no stim) or with 

LH laser stimulation (Laser stim, 40 Hz). Anova, p = 0.0078, F (1, 29) = 8.178, with 

Šídák’s posthoc test, control vs chrimson saline, p = 0.0004; other effects were 

not significant (Laser stim, control vs Chrimson haloperidol, p = 0.9992; control 

vs chrimson SCH, p = 0.7799), n = 6 mice (control saline and haloperidol), n = 4 

mice (control SCH), n = 7 mice (Chrim saline and haloperidol), n = 5 mice (Chrim 

SCH). (D) Schematic drawing of AAV injection for SNc orexin level photometry 

recording (top), and representative histology (bottom, fiber placement shown 

as dashed rectangle). Similar histology was obtained in n = 5 mice. (E) Effect of 

glucose on SNc orexin levels. Left, each row is a trial from a different mouse. Mice 

were injected with either saline or glucose (2 g/kg, given 3 min before the start 

of the traces). Open circles depict identified peaks. Right, Number of OxLight1 

fluorescence peaks detected during 20 min period after injection of either saline 

(white box) or glucose (gray box). Paired t-test, p < 0.02 (n = 5 mice). (F) Effect 

of SNc infusion of orexin antagonist (alm) on locomotion. Five minutes after 

infusion of either almorexant or vehicle mice were placed in an open field arena 

for 20 min during which their distance travelled was recorded. Paired t-test, 

p = 0.0473 (n = 5 mice). All group data shown as means and s.e.m.
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Extended Data Fig. 6 | Glucose tolerance test (GTT) in wild-type and HON-ablated mice. Related to Fig. 5. (A) GTT timeline. (B) GTT area under the curve.  

Unpaired t-test p = 0.56, t = 0.59, df=14, n = 8 WT and 8 DT mice. Data presented as means and s.e.m. of n = 8 WT and 8 DT mice.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection LabView 2023, Matlab 2021b, Ethovision XT

Data analysis Matlab 2021b, Python 3.0, GraphPad Prizm 9, Ethovision XT

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We included the requested statement in the manuscript, you can see it there
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications: 1) 

Karnani, M.M., et al. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 187, 101771 

(2020). 2) Viskaitis, P., et al. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 32, 1812-1821 

e1814 (2022).

Data exclusions No data were excluded

Replication Experiments were replicated the numbers of times that are stated and defined as "n numbers" in each panel in the figure legends  

Randomization We used randomized counterballancing of experimental groups where applicable

Blinding For data analysis, the researcher was blinded to group identity; behavioral quantification (pupil size) was performed in an unbiased 

automated way using Ethovision or custom behavioral classifiers as described in the Methods

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Study used male C57BL6  mice  (>8 weeks in age). 

Wild animals no wild animals were used in this study

Reporting on sex Adult C57BL6 male mice were studied, thus whether conclusions apply to female mice remains to be determined

Field-collected samples no samples were collected in the field

Ethics oversight All animal experiments were performed in accordance with the Animal Welfare Ordinance (TSchV 455.1) of the Swiss Federal Food 

Safety and Veterinary Office, and approved by the Zurich Cantonal Veterinary Office.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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