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Simple Summary: Cerebrospinal fluid analysis is an important diagnostic test for a neurological 
canine patient. For this analysis, the total nucleated cell count and differential cell counts are rou-
tinely taken, but both involve time-consuming manual methods. The Sysmex XN-V body fluid mode 
is a specific setting used for analyzing different body fluids, including cerebrospinal fluid samples, 
while the deep-learning-based algorithm generated by the Olympus VS200 slide scanner allows 

recognition and classification of various cell types on scanned slides. In this study, the faster auto-

mated methods mentioned above were assessed by comparing them with the manual methods for 

both the total nucleated and differential cell counts. Manually set gates were used for the Sysmex 
body fluid mode following incorrect cell classifications recorded when using the predefined set-
tings. This study demonstrates that automated methods may be used for total nucleated cell count 

assessments in canine cerebrospinal fluid samples, but optimization is still needed for both differ-
ential counts. 

Abstract: Cerebrospinal fluid analysis is an important diagnostic test when assessing a neurological 
canine patient. For this analysis, the total nucleated cell count and differential cell counts are rou-
tinely taken, but both involve time-consuming manual methods. To investigate faster automated 

methods, in this study, the Sysmex XN-V body fluid mode and the deep-learning-based algorithm 

generated by the Olympus VS200 slide scanner were compared with the manual methods in 161 

canine cerebrospinal fluid samples for the total nucleated cell count and in 65 samples with pleocy-

tosis for the differential counts. Following incorrect gating by the Sysmex body fluid mode, all sam-
ples were reanalyzed with manually set gates. The Sysmex body fluid mode then showed a mean 

bias of 15.19 cells/µL for the total nucleated cell count and mean biases of 4.95% and −4.95% for the 

two-part differential cell count, while the deep-learning-based algorithm showed mean biases of 

−7.25%, −0.03% and 7.27% for the lymphocytes, neutrophils and monocytoid cells, respectively. 

Based on our findings, we propose that the automated Sysmex body fluid mode be used to measure 
the total nucleated cell count in canine cerebrospinal fluid samples after making adjustments to the 
predefined settings from the manufacturer. However, the two-part differential count of the Sysmex 
body fluid mode and the deep-learning-based algorithm require some optimization. 

Keywords: canine; cerebrospinal fluid; Sysmex; body fluid mode; regating; total nucleated cell 
count; differential count; deep learning; artificial intelligence 
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The analysis of cerebrospinal fluid (CSF) serves as a crucial diagnostic test when as-
sessing patients with neurological diseases. The analysis is sensitive but unspecific and 
can provide valuable information when evaluating central and peripheral neurological 

diseases with infectious, inflammatory, traumatic, degenerative and neoplastic causes [1]. 
Routine CSF assessment includes both qualitative macroscopic evaluation of the sam-

ple and quantitative measurements of the total nucleated cell count (TNCC), differential 
cell count, erythrocyte count and total protein concentration. 

In healthy canine patients, the TNCC is very low (reference interval up to 5 cells/µL) 

for samples collected from either the cerebromedullary or lumbar cistern [2–4]. An in-
creased TNCC is called pleocytosis, the gradation of which—as mild (6–50 cells/µL), mod-

erate (51–500 cells/µL) or marked (>500 or 1000 cells/µL)—is rather subjective [5,6]. The 
manual method of using a hemacytometer (either a Fuchs-Rosenthal or Neubauer count-

ing chamber) has long been viewed as the “gold standard” for TNCC measurements in 

the CSF since the cellularity is considered too low to be measured with a hematology an-

alyzer [1]. 
A differential cell count of 100 cells is usually taken after cells have been concentrated 

by either centrifugation, sedimentation or membrane filtration [1,5]. The relative numbers 
of monocytoid cells, lymphocytes, neutrophils and eosinophils are obtained manually by 

counting via light microscopy [1]. 
However, manual counting methods are time-consuming, labor-intensive and repet-

itive, require experienced staff and can lead to considerable inter- and intra-observer var-

iability [7,8]. Therefore, automated methods for cell quantification and differentiation in 
CSFs are being explored. 

In the last 25 years, a number of studies have assessed automated TNCC and differ-
ential cell count measurements in the CSF using either impedance or flow cytometry 
methods [7,9–21]. In addition to the routinely available blood mode on every hematology 
analyzer, in 2005, Siemens introduced a specific CSF analysis mode on their ADVIA ana-
lyzer [19], while, in 2007, Sysmex introduced a body fluid (BF) mode on their XE series 
[22]. The Sysmex BF offers measurements of both the TNCC (TC-BF; in this text, referred 

to as BF-TNCC) and white blood cell count (WBC) (WBC-BF; in this text, referred to as BF-

WBC). The difference between these two parameters is that the BF-WBC recognizes and 

counts only leukocytes, while the BF-TNCC also counts large and highly fluorescent cells 

such as mesothelial cells [23]. Additionally, a two-part differentiation into mononuclear 
(MN) and polymorphonuclear (PMN) cells is also performed using flow cytometry. Fur-
thermore, it is possible to develop specific profiles by setting manual gates on the analyzer 

in the Sysmex BF mode. The two main advantages provided by the BF mode are its auto-

mated washing step with a subsequent background check whenever the BF mode is ac-

cessed and its capacity to count three times as many cells per measurement when com-

pared with the blood mode [24]. 
In veterinary medicine, only a few studies on automated CSF measurements are 

available, all of them in dogs and obtained using hematology analyzers operating based 

on flow cytometry. In terms of assessing specific BF modes, two studies were undertaken 
that tested the ADVIA 2120 CSF analysis mode, and one study evaluated the Sysmex BF 

mode. A correlation of r > 0.85 was noted for the TNCC in all three studies when excluding 

outliers [7,19,25]. However, for the two-part differentiation into MN and PMN cells, their 

results varied notably: the ADVIA 2120 CSF analysis mode showed a correlation of r = 

0.86 for both MN and PMN cells, while the Sysmex XN BF mode showed a nonexistent 
correlation of r = <0.03 for the two cell populations [19,25]. For differentiation into indi-
vidual cell populations, the correlation seemed to depend on cellularity. The ADVIA 2120 

CSF analysis mode demonstrated a correlation of r = 0.92 for lymphocytes, r = 0.77 for 

neutrophils and r = 0.70 for monocytoid cells in samples with pleocytosis, while in unre-

markable CSF samples, the correlation was only r < 0.53 and thus notably lower than those 

for all three cell populations [7,19]. 
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Another rapidly developing area with huge potential is artificial intelligence (AI), 
particularly its subdivision of machine learning, which can make predictions and deci-

sions similarly to the human mind. One subset of machine learning, deep learning, re-

quires remarkably low human intervention since it automatically extracts the identifying 

features based on which it builds algorithms of artificial neural networks. Deep learning 
is being progressively applied in digital cytology since it allows for the quick processing 

of large amounts of data and does not require staff with specific information technology 
knowledge. Recent advancements in AI, particularly machine learning and deep learning, 

have shown promise in identifying cellular abnormalities in various medical contexts. For 

example, a 2021 study demonstrated 95% accuracy in recognizing specific cell types in 
human CSF samples using a deep-learning-based algorithm. The deep learning algorithm 

also showed an 86% reduction in the turnaround time when compared to the manual 

technique [26]. In a similar study with a five-part differential count (lymphocytes, mono-
cytoid cells, neutrophils, erythrocytes and cancer cells), the deep-learning-based algo-

rithm demonstrated a predictive average precision of 91.1% to 98.7%, thus accurately rec-

ognizing even cancer cells and outperforming the manual differentiation by interns and 
junior doctors while showing close results to the differentiation performed by experts [27]. 

Based on the extant literature and a similar study that has been recently published 

by the authors on equine bronchoalveolar lavage samples [28], we hypothesized that it is 
possible to obtain accurate automated measurements for both the TNCC and the differen-
tial cell count in CSF samples. We also hypothesized that the automated methods are more 

precise than the manual methods due to the higher numbers of cells counted. Accordingly, 

the aims of this study were as follows: 

1. To compare the Sysmex XN-V BF mode with manual techniques for taking the TNCC 

and the two-part differential cell count. 
2. To compare the Olympus VS200 software’s deep-learning-based algorithm with 

manual techniques for taking the three-part differential cell count on digital images 
of scanned CSF cytospin preparations. 

2. Materials and Methods 

2.1. Study Design 

This prospective study was conducted between July 2020 and October 2022 in the 

Clinical Laboratory of the Vetsuisse Faculty, University of Zurich (Switzerland) according 
to the Swiss law. All analyses were performed using leftover material from fresh daily 

routine diagnostic samples. No additional samples or volumes were collected for this 

study. Samples were submitted for routine diagnostic purposes by veterinarians from the 
Clinic for Small Animal Medicine, University Animal Hospital Zurich of the Vetsuisse 

Faculty, University of Zurich. All samples were collected by the attending veterinarian in 
plain tubes. The TNCC was taken and cytospin preparations were assembled within two 

hours after sampling, and the cytospin preparations were evaluated via light microscopy 

on the same day. Later, the archived cytospin preparations were scanned, and the digital 

images were assessed via AI, for all slides at once. For the comparison study (Table 1), the 

TNCC and the two-part differential cell count as obtained with the Sysmex XN-V (Sysmex 

Corporation, Kobe, Japan) BF mode were compared with the results from the manual 

techniques. To improve the experiment, the gating of the scattergrams produced by the 
Sysmex XN-V BF mode was manually optimized for the canine CSF samples, and all sam-

ples of the comparison study were then reanalyzed using the new gates (see the Results 

section). Next, our cytospin preparation slides were scanned and processed with the 

Olympus Slideview VS200 slide scanner (Olympus Corporation, Hachioji, Tokyo, Japan), 

and afterward, three-part differential cell counts of the digital images were taken both 

manually and using the VS200 software (version 3.3 (Olympus Soft Image Solution 

GmbH) with an AI neural network algorithm (which was developed via training before 

beginning the comparison study); moreover, the slides were also manually differentiated 
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via light microscopy (Table 1). In total, 161 routine CSF samples from dogs presenting for 

either a clinical workup or follow-up due to various neurological disorders were included 

in the comparison study. The manual TNCC was taken by experienced laboratory techni-

cians, while all manual differential cell counts both via light microscopy and on digital 
images, as well as the training of the AI neural network algorithm, were performed by one 

of the authors, a senior resident of veterinary clinical pathology (S.L.). For instrument val-

idation of the Sysmex XN-V BF mode for canine CSF samples, both systematic and ran-

dom error were assessed by a method comparison study and a precision study for the test 

and reference method. Furthermore, linearity was tested for the Sysmex XN-V [29]. 

Table 1. Overview of the tested methods, compared parameters and the number of samples for each 

method and parameter. 

 Parameters 
TNCC 

Two-Part Differential Cell 
Count 

Three-Part Differential Cell 
Count Methods  

Sysmex XN-V BF mode (automated count-

ing) 
161 CSF samples 

65 CSF samples with pleocy-

tosis 
 

Olympus VS200 scanner and software 

(a) Manual differentiation on digital images 

(b) Automated differentiation on digital im-

ages using AI algorithm 

  

62 CSF scanned cytospins with 

pleocytosis, digital images of 

100 cells each 

Light microscopy (manual counting) 
161 CSF samples, Fuchs-

Rosenthal chamber 

65 CSF cytospins with pleo-

cytosis, 100 cells counted 

64 CSF cytospins with pleocyto-

sis, 100 cells counted * 

AI—artificial intelligence; BF—body fluid; CSF—cerebrospinal fluid; TNCC—total nucleated cell 

count. * Only for classification of the samples with pleocytosis by the type of pleocytosis. 

2.2. Training the AI Neural Network Algorithm 

Training of the AI neural network algorithm for canine CSF samples was performed 

as described previously [28]. Shortly, cytospin preparations of 20 arbitrarily chosen rou-

tine canine CSF samples with morphologically well-preserved cells when assessed via 

light microscopy were scanned with the Olympus Slideview VS200 slide scanner (Olym-

pus, Shinjuku, Japan) at 40× magnification (oil immersion) to obtain virtual slides. These 
were further processed with the VS200 software, taking 40 digital images in the brightfield 
imaging mode from the monolayer areas with the best cytological quality. All cells on all 

images were manually labeled as either monocytoid cells, lymphocytes or neutrophils. 

The total cell count on each image ranged between 26 and 88 cells, in total reaching 2240 

cells on all digital images, and the cell-type distribution was as follows: 529 monocytoid 

cells, 832 lymphocytes and 879 neutrophils. To establish a neural network algorithm, sev-

eral configurations offered by the VS200 software were applied. The maximum similarity 

of 0.75 was reached with multi-label classification and a specific network (RGB) after 
1,000,000 iterations. Increasing the number of training images did not further improve the 

similarity at this point, and so we considered the AI neural network algorithm to be 

trained and ready for further use in this study. 

2.3. TNCC 

The TNCC obtained with the automated hematology analyzer Sysmex XN1000-V 

(Sysmex Corporation, Kobe, Japan) using software version 3.04-00 in the BF mode was 

compared with the manual TNCC obtained with a hemacytometer (Table 1). The auto-

mated measurements with the Sysmex XN-V and manual TNCC were taken from the 

same aliquot tube, which was thoroughly mixed on the nutating laboratory tube mixer 

(VWR International, Radnor, PA, USA) for five minutes. The TNCC was graded as follows: 
unremarkable, 0–5 cells/µL; mild pleocytosis, 6–50 cells/µL; moderate pleocytosis, 51–500 

cells/µL; and marked pleocytosis, >500 cells/µL. This grading of pleocytosis is subjective 

and, to the authors’ knowledge, the applied grading protocol is partly based on a study 

conducted on cats in 2005 [6]. 
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2.3.1. Manual TNCC 

The manual TNCC was taken as follows: a Fuchs-Rosenthal hemocytometer (Hecht 

Assistant, Altnau, Germany) was filled with 90 µL of the CSF mixed with 10 µL of Sam-
son’s concentrate (Artechemis, Zofingen, Switzerland) and left to sediment for five 
minutes. Afterward, all nucleated cells were counted in the chamber’s 16 large squares on 

both sides, and the average number of cells per side was determined and then divided by 

three to obtain the number of cells per µL (cells/µL). 

2.3.2. Automated TNCC Count with Sysmex XN-V 

The Sysmex XN-V uses fluorescence flow cytometry, and the results are reported as 

cells/µL. Quality control (QC) was performed daily before processing routine samples us-

ing the XN-CHECK 3 Level controls (Sysmex Corporation, Kobe, Japan), covering both 

the normal range and abnormally low and high tested parameters. Additionally, a back-

ground check was performed every time BF analysis was conducted, with an acceptable 

BF WBC value of 0.001 × 103 cells/µL or less [30,31]. 

2.4. Two-Part Differential Cell Count 
The two-part differential count was taken only in samples with pleocytosis (TNCC > 

5 cells/µL), classified as such by at least one of the TNCC methods, which amounted to 65 
samples of the total 161 samples of this study. The automated two-part differential count 

in the Sysmex BF mode was compared with the manual two-part 100-cell differential 
count obtained via light microscopy (Table 1). The samples were further classified by the 
type of pleocytosis: >70% MN% as mononuclear pleocytosis, >70% PMN% as polymor-

phonuclear pleocytosis and other samples as mixed-cell pleocytosis. 

2.4.1. Manual Two-Part Differential Cell Count 
The cytospin preparations were assembled as follows: First, 0.5 mL of the CSF (from 

the same aliquot tube that the Sysmex BF mode automated measurements were per-

formed on) was spun in 406 g for five minutes to obtain a cell pellet. The supernatant was 
then removed, leaving approximately 0.1 mL of fluid with the pellet, and then 0.4 mL of 
laboratory-prepared 5% bovine serum albumin solution (Sigma-Aldrich, St. Louis, MO, 
USA) was added to the tube to return its contents to the initial total fluid volume of 0.5 

mL. Following that, the tube contents were thoroughly mixed with a pipette five times. 
Three drops of the obtained fluid were then spun at 72× g for 10 min using the cytocentri-

fuge Shandon Cytospin 4 (Thermo Fisher Scientific, Waltham, MA, USA). The cytospin 

preparation slides were then air-dried and stained with the modified Wright–Giemsa 

stain from the Hematek Stain Pak (Siemens, Munich, Germany) on a Hematek 4488C slide 
stainer (Siemens, Munich, Germany). Both the cytospin preparation and the staining pro-

cess were highly standardized. 

The differential count was taken via brightfield light microscopy on an Olympus 
BX53 microscope (Olympus, Shinjuku, Japan) at a 500× magnification. First, a manual 
four-part 100-cell differential cell count of monocytoid cells, lymphocytes, neutrophils and 
eosinophils was obtained from an area of well-dispersed cells. Then, the percentages of 

monocytoid cells and lymphocytes were summed to obtain the MN%, while the percent-
ages of neutrophils and eosinophils were summed similarly to obtain the PMN%. 

2.4.2. Automated Sysmex BF Two-Part Differential Cell Count 
The Sysmex XN-V BF mode offers a two-part differential count in MN or PMN cells 

using fluorescence flow cytometry. The samples were thoroughly mixed as described 
above for the automated TNCC. The results were reported as percentages for the relative 

cell counts. 

  



Animals 2024, 14, 1655 6 of 22 
 

2.5. Three-Part Differential Cell Count 
The three-part 100-cell differential cell count was taken only in samples with pleocy-

tosis (TNCC > 5 cells/µL), classified as such by at least one of the TNCC methods. The 
cytospin preparations were scanned with the Olympus Slideview VS200 slide scanner and 

processed with the VS200 software using the herein-developed AI neural network algo-

rithm. Digital images were taken of approximately 100 cells from each sample. Those im-

ages were taken from well-dispersed areas, where the cells were located individually and 

touched as little as possible. The three-part 100-cell differential cell count of monocytoid 
cells, lymphocytes and neutrophils was then performed on these digital images. Each im-

age was counted both manually and with the pre-developed AI algorithm, and then the 

two methods were compared. In addition, a three-part differential cell count was also 
taken via light microscopy for each sample on the cytospin preparations. The samples 

were then classified by the type of pleocytosis, that is, as having either lymphocytic (≥70% 
lymphocytes), mononuclear (≥70% mononuclear cells, but <70% lymphocytes), mixed-cell 

(all cell types <70% and mononuclear pleocytosis does not apply) or neutrophilic (≥70% 
neutrophils) pleocytosis [5]. 

2.6. Precision and Linearity 

With all counting methods performed, we tested the precision for both the TNCC 

and the differential cell count. The precision for the TNCC and the two-part differential 
count was assessed in samples with low and high cell counts with both manual methods 

and the Sysmex XN-V analyzer in the BF mode. The precision for the three-part differen-
tial cell count was assessed in three CSF samples by performing a 100-differential cell 
count in well-dispersed areas with the following three methods: manually via light mi-

croscopy on cytospin preparations, manually on digital images and with the AI algorithm 

on digital images. To test the AI precision with more counted cells, an 800-cell three-part 

differential cell count was taken on digital images of the same three samples using the AI 

algorithm. All precision experiments were performed by repeating the measurements 6–

10 times within a run, using a subset of both the 161 samples from the comparison study 

and other routine samples not part of the comparative study. 

The linearity of the TNCC obtained with the Sysmex BF was measured within-run 

with five dilutions (20%, 40%, 60%, 80%, 100%) from a routine sample (BF-TNCC of 199 

cells/µL). 

2.7. Statistical Analysis 

Passing–Bablok regression and a Bland–Altman difference plot were used to com-
pare the methods and assess the bias [32]. Spearman’s rank correlation coefficient (r) was 
used to determine the correlation between different methods [33]. To assess precision, the 
standard deviation (SD) and coefficient of variation (CV) were calculated. Linear regres-
sion was applied to evaluate linearity. Wilcoxon’s signed-rank test was used to compare 

the measurements of the same parameter in the same sample, considering a p-value < 0.05 

as statistically significant. The statistical analysis was performed with Analyse-it on Mi-
crosoft Excel version 2108 (Build 14326.20404). 

3. Results 

3.1. Sysmex XN-V BF Mode Versus Manual Methods: TNCC 

The TNCC was obtained using the Sysmex XN-V BF mode and manual methods. The 

former allows for the classification of events into debris, MN cells and PMN cells by sep-
arating these entities into different colors. When analyzed by the Sysmex BF mode, an 
incorrect automated gating for both MN and PMN cells was observed on the scattergrams 
of many CSF samples (for an example, see Figure 1A; after manual regating, see Figure 

1B). The issue manifested in frequent misidentification of distinctly demarcated cell pop-
ulations on the scattergram, classifying the PMN cells as debris while the MN cells were 
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depicted as a mixture of debris, MN and PMN cells. To solve this issue, before including 
the samples in the comparison study, a manual gate was established in the extended scat-

tergram of one of the CSF samples with clearly identifiable PMN and MN cell populations. 

This manual gate was then further applied to all other samples while carefully assessing 

its suitability in each case. The established manual gate fit all samples according to visual 
inspection of the scattergrams. In this text, only the results obtained after regating are re-

ported. 

 

Figure 1. Comparison of representative Sysmex XN-V BF mode scattergrams before (A) and after 

(B) setting of manual gates. Debris is depicted as dark blue, MN cells are green, and PMN cells are 
light blue. Before manual regating (A), most of the PMN were are classified as debris, while MN 
cells were partly counted as debris, MN cells and PMN cells. After manual regating (B), the cell 

populations were correctly distinguished. 

Comparison results for the Sysmex BF mode and the manual TNCC measurements 

are depicted in Table 2 and Figure 2. The BF-TNCC and the BF-WBC yielded identical 

values without any statistically significant difference; therefore, only the BF-TNCC is fur-

ther reported herein (Figure 2A,B). Our comparison of the Sysmex BF-TNCC with the 

manually obtained TNCC revealed a positive proportional systematic bias in the Passing–

Bablok regression analysis (Figure 2A). The Bland–Altman difference plot, meanwhile, 
showed a small mean bias with moderately wide limits of agreement indicating random 

error (Figure 2B). A correlation of r = 0.91 was observed between the BF-TNCC and the 

manual TNCC, and we found a statistically significant difference between the TNCC 
measurements of both methods (p-value < 0.001). The raw data for the TNCC measure-

ments are depicted in Table S1. 
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Figure 2. Agreement between the manual TNCC and Sysmex BF-TNCC (cells/µL). The graph on the 

left (A) is a Passing–Bablok regression analysis with intercept 0.64 (from 0.25 to 0.66)* and slope 1.18 

(from 1.14 to 1.27)*. The graph on the right (B) is a Bland–Altman difference plot. The thin horizontal 
gray line (0 at the y-axis) is the line of identity, and the thick black line indicates the bias (mean 

difference between methods), with its confidence intervals as thin blue dashed lines. The black 
dashed horizontal lines are the 95% limits of agreement with their 95% confidence intervals as the 
thin blue dashed lines. The mean difference is 15.19 (from −11.17 to 41.56)* cells/µL, the lower limit 

of agreement is −316.76 (from −361.91 to −271.62)* cells/µL and the upper limit of agreement is 347.15 

(from 302.01 to 392.30)* cells/µL. * Numbers in parentheses are 95% confidence intervals. 

Table 2. Comparison of the TNCC and the two-part differential cell count results from the Sysmex 
XN-V BF mode with those from the manual method. 

Parameter 
Passing–Bablok Regression Analysis 

(95% CI Slope and Intercept) 
Bias Bland–Altman Difference Plot (95% CI) r p-Value 

BF-TNCC  

y = 0.64 + 1.18x 

(Slope: 1.14 to 1.27 

Intercept: 0.25 to 0.66) 

15.19 cells/µL 

(−11.17 to 41.56) 
0.91 <0.001 

BF-WBCs  

y = 0.64 + 1.18x 

(Slope: 1.14 to 1.27 

Intercept: 0.25 to 0.66) 

15.19 cells/µL 

(−11.17 to 41.56) 
0.91 <0.001 

BF-MN%  

y = 11.67 + 0.88x 

(Slope: 0.77 to 0.97 

Intercept: 2.99 to 23.08) 

4.95% 

(1.34 to 8.56) 
0.89 0.03 

BF-PMN%  

y = 0 + 0.88x 

(Slope: 0.77 to 0.96 

Intercept: 0 to 1.69) 

−4.95% 

(−8.56 to −1.34) 
0.89 0.03 

BF—body fluid; CI—confidence interval; MN—mononuclear; PMN—polymorphonuclear; p-

value—Wilcoxon signed-rank test; r—Spearman’s rank correlation coefficient; TNCC—total nucle-

ated cell count; WBCs—white blood cells. 

With the TNCC cut-off set at ≤5 cells/µL for unremarkable CSF samples [2–4], 65/161 
(40.4%) samples were classified as abnormal by the BF-TNCC and 56/161 (34.8%) by the 

manual TNCC (Table 3). Thus, the Sysmex BF-TNCC classified nine more samples as hav-
ing pleocytosis than the manual TNCC. When inspecting these, we found that eight of the 

samples showed borderline TNCC in the range of 4–6 cells/µL, thus being close to classi-

fication cut-off. All samples classified as abnormal in the manual TNCC were also classi-

fied as such in the BF-TNCC (Table S1). 
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Table 3. Classification of the samples by the TNCC as either unremarkable or having pleocytosis. 

Parameter 
Number of Unremarkable 

Samples (TNCC ≤ 5 Cells/µL) 

Number of Abnormal Samples 

(TNCC > 5 Cells/µL) 

BF-TNCC  96 65 

BF-WBCs 96 65 

Manual TNCC 105 56 

BF—body fluid; TNCC—total nucleated cell count; WBC—white blood cells. 

3.2. Sysmex XN-V BF Mode Versus Manual Methods: Two-Part Differential Cell Count 
To compare the Sysmex BF mode with the manual method for the two-part differen-

tial cell count in samples showing pleocytosis, the BF-MN% was compared with the com-
bined percentage of MN cells (monocytoid cells and lymphocytes) from the manual four-

part 100-cell differential count (Figure 3A,B). In addition, the BF-PMN% was compared 
with the manually obtained combined percentage of PMN cells (neutrophils and eosino-
phils) (Figure 4A,B). The comparison results of the automated and manual methods for 

the two-part differential in samples with pleocytosis are depicted in Table 2. The raw data 
for the two-part differential cell count are depicted in Table S2. 

 

Figure 3. Agreement between the manual MN% and Sysmex BF-MN%. The graph on the left (A) is 

a Passing–Bablok regression analysis with intercept 11.67 (from 2.99 to 23.08)* and slope 0.88 (from 

0.77 to 0.97)*. The graph on the right (B) is a Bland–Altman difference plot. The thin horizontal gray 
line (0 at the y-axis) is the line of identity, and the thick black line indicates the bias (mean difference 
between methods), with its confidence intervals as thin blue dashed lines. The black dashed hori-
zontal lines are the 95% limits of agreement with their 95% confidence intervals as the thin blue 
dashed lines. The mean difference is 4.95 (from 1.34 to 8.56)* %, the lower limit of agreement is 

−23.60 (from −29.80 to −17.40)* % and the upper limit of agreement is 33.50 (from 27.30 to 39.70)* %. 

* Numbers in parentheses are 95% confidence intervals. 
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Figure 4. Agreement between the manual PMN% and Sysmex BF-PMN%. The graph on the left (A) 

is a Passing–Bablok regression analysis with intercept 0 (from 0 to 1.69)* and slope 0.88 (from 0.77 

to 0.96)*. The graph on the right (B) is a Bland–Altman difference plot. The thin horizontal gray line 
(0 at the y-axis) is the line of identity, and the thick black line indicates the bias (mean difference 
between methods), with its confidence intervals as thin blue dashed lines. The black dashed hori-
zontal lines are the 95% limits of agreement with their 95% confidence intervals as the thin blue 

dashed lines. The mean difference is −4.95 (from −8.56 to −1.34)* %, the lower limit of agreement is 

−33.50 (from −39.70 to −27.30)* % and the upper limit of agreement is 23.60 (from 17.40 to 29.80)* %. 

* Numbers in parentheses are 95% confidence intervals. 

A proportional systemic bias was noted in the Passing–Bablok regression analysis for 

both MN% and PMN% (Figures 3A and 4A), while a small mean bias with moderate limits 
of agreement was present on the Bland–Altman difference plot, indicating random error 
(Figures 3B and 4B). A correlation of r = 0.89 was found between the methods’ measure-

ments for both MN% and PMN%, with a statistically significant difference (p-value 0.03). 

All samples with pleocytosis were classified by their type, according to the measure-
ments obtained both by the Sysmex BF mode and manually via light microscopy. When 

classifying the samples by the type of pleocytosis, according to the results obtained by the 

Sysmex BF, 39/65 (60%) of all samples met the criteria for mononuclear, 18/65 (27.7%) for 

mixed-cell and 8/65 (12.3%) for polymorphonuclear pleocytosis. Meanwhile, in the results 
obtained manually via light microscopy, 39/65 (60.0%) of all samples were classified as 
having mononuclear, 6/65 (9.2%) mixed-cell and 20/65 (30.8%) polymorphonuclear pleo-

cytosis (Table 4). Of the 65 samples showing pleocytosis, 51 had concordant classifications 
for the type of pleocytosis. Of the aforementioned samples, 37 were classified as having 
mononuclear, 8 polymorphonuclear and 6 mixed-cell pleocytosis. A further 14 samples 

showed discrepant pleocytosis classifications between different pleocytosis groups, 
though 9 of those samples could be considered borderline, lacking a difference of greater 
than 5% past the border value in either MN% or PMN% for classification in a different 
pleocytosis category (Table S2). 
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Table 4. Classification of the samples with pleocytosis by the two-part differential count according 
to the type of pleocytosis. 
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Sysmex BF differential count  39 18 8 

Manual differential count via light microscopy 39 6 20 

BF—body fluid; MN—mononuclear; PMN—polymorphonuclear; 1 ≥70 MN%; 2 both MN% and 
PMN% < 70; 3 ≥70 PMN%. 

3.3. Olympus VS200 Slide Scanner and Software-Generated Deep-Learning-Based Algorithm 

Versus Manual Methods: Three-Part Differential Cell Count 
Using the Olympus Slideview VS200 slide scanner in the brightfield imaging mode, 

between one and six images were taken from each virtual cytospin preparation slide of all 

65 samples with pleocytosis, to give a total number of approximately 100 cells per virtual 

slide. Two of the cytospin preparation slides were damaged while wiping off oil after the 
light microscopy, and another slide was so cellular that both staining and visual recogni-

tion of individual cells were severely impaired on most of the cytospin preparation area; 

these three samples were therefore excluded from this part of the study. From the remain-

ing 62/65 virtual cytospin preparation slides, a total of 120 digital images was obtained in 

well-dispersed monolayer areas. Each image was counted both manually and with a pre-

developed AI algorithm, allowing us to obtain a differential count in three categories: 
monocytoid cells, lymphocytes and neutrophils (Figure 5). One of the samples demon-

strated eosinophilic pleocytosis, showing 67% eosinophils in the manual four-part 100-

cell differential count by light microscopy, and, in contrast, a few other cytospin prepara-
tion slides contained very few eosinophils, which never exceeded 3% in the differential 
cell count via light microscopy. Generally, apart from the one sample with eosinophilic 

pleocytosis, the number of eosinophils in the other samples was deemed to be negligible 

in the differential cell count, and since samples with a sufficient number of eosinophils to 
adequately train the AI algorithm were hard to come by, no specific AI algorithmic train-
ing was undertaken for this specific cell population. According to the authors’ visual ob-
servation, the eosinophils were misclassified as neutrophils in most cases. The raw data 
for the three-part differential cell count are depicted in Table S3. 
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Figure 5. Digital images of the same location of a virtual cytospin preparation slide in the brightfield 
imaging mode. (A)–native image; (B)–after being analyzed with a deep learning neural network. 

Color code: red–monocytoid cells; yellow–lymphocytes; green–neutrophils. 

When comparing the cell categories between the AI-algorithm-based identification 
and the manual differentiation on digital images, lymphocytes and neutrophils showed 
correlations of r = 0.90 and r = 0.91, respectively. Passing–Bablok regression analysis re-

vealed intercepts of between 1.51 and 3.45 and slopes of between 0.85 and 1.12. (Figures 

6A and 7A). On the Bland–Altman difference plot, a small mean difference of −7.25% (CI: 

from −10.58 to −3.91) for lymphocytes and very small mean difference of −0.03% (CI: from 

−2.18 to 2.13) for neutrophils were observed, with moderately wide limits of agreement 

indicating a moderate random error (Figures 6B and 7B). The sample with the marked 

eosinophilic pleocytosis was seen as an outlier in both the Passing–Bablok regression anal-

ysis and the Bland–Altman difference plot for neutrophils (Figure 7A,B). The monocytoid 

cell population showed a correlation of r = 0.78 and a proportional systemic bias in the 

Passing–Bablok regression analysis (intercept 3.45, slope 1.12) (Figure 8A), while on the 

Bland–Altman difference plot, a small mean difference of 7.27% (CI: from 4.91 to 9.63) was 

observed, with moderately wide limits of agreement indicating a moderate random error 

(Figure 8B). A statistically significant difference between the measurements of the two 
methods was seen in the case of the neutrophils and the monocytoid cells (p-values 0.001 

and <0.0001, respectively) but not for the lymphocytes (p-value 0.56). 

 

Figure 6. Agreement between manually and artificial intelligence (AI)-algorithm-counted lympho-

cytes on images of virtual cytospin preparation slides. The graph on the left (A) is a Passing–Bablok 

regression analysis with intercept 1.51 (from −0.03 to 4.99)* and slope 0.85 (from 0.79 to 0.90)*. The 

graph on the right (B) is a Bland–Altman difference plot. The thin horizontal gray line (0 at the y-

axis) is the line of identity, and the thick black line indicates the bias (mean difference between 
methods), with its confidence intervals as thin blue dashed lines. The black dashed horizontal lines 
are the 95% limits of agreement with their 95% confidence intervals as the thin blue dashed lines. 
The mean difference is −7.25 (from −10.58 to −3.91)* %, the lower limit of agreement is −33.00 (from 

−38.74 to −27.27)* % and the upper limit of agreement is 18.51 (from 12.78 to 24.25)* %. * Numbers 

in parentheses are 95% confidence intervals. 
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Figure 7. Agreement between manually and artificial intelligence (AI)-algorithm-counted neutro-

phils on images of virtual cytospin preparation slides. The graph on the left (A) is a Passing–Bablok 

regression analysis with intercept 1.83 (from 0.86 to 2.89)* and slope 0.91 (from 0.87 to 0.95)*. The 

graph on the right (B) is a Bland–Altman difference plot. The thin horizontal gray line (0 at the y-

axis) is the line of identity, and the thick black line indicates the bias (mean difference between 
methods), with its confidence intervals as thin blue dashed lines. The black dashed horizontal lines 
are the 95% limits of agreement with their 95% confidence intervals as the thin blue dashed lines. 
The mean difference is −0.03 (from −2.18 to 2.13)* %, the lower limit of agreement is −16.68 (from 

−20.38 to −12.97)* % and the upper limit of agreement is 16.62 (from 12.92 to 20.33)* %. The red circles 

depict the sample with marked eosinophilic pleocytosis. * Numbers in parentheses are 95% confi-
dence intervals. 

 

Figure 8. Agreement between manually and artificial intelligence (AI)-algorithm-counted monocy-

toid cells on images of virtual cytospin preparation slides. The graph on the left (A) is a Passing–

Bablok regression analysis with intercept 3.45 (from 0.25 to 6.71)* and slope 1.12 (from 0.95 to 1.42)*. 

The graph on the right (B) is a Bland–Altman difference plot. The thin horizontal gray line (0 at the 
y-axis) is the line of identity, and the thick black line indicates the bias (mean difference between 
methods), with its confidence intervals as thin blue dashed lines. The black dashed horizontal lines 
are the 95% limits of agreement with their 95% confidence intervals as the thin blue dashed lines. 
The mean difference is 7.27 (from 4.91 to 9.63)* %, the lower limit of agreement is −10.97 (from −15.03 

to −6.91)* % and the upper limit of agreement is 25.51 (from 21.45 to 29.57)* %. * Numbers in paren-

theses are 95% confidence intervals. 

Regarding the differences noted between the methods, and also regarding the ob-
served outliers, we detected several misclassification issues with the neural network. For 
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instance, closely located cells in the same category were often counted as one (Figure 

9A,B). This issue was most frequently observed in dense regions of the virtual cytospin 

preparation slides. Alternatively, the recognition of some cells was fragmented, and one 

cell was thus counted as several cells of either the same or different categories (Figure 9C–

H). A further issue was that staining artifacts and unidentified artifacts were often misi-
dentified as various cell categories (Figure 9I–L). Moreover, in the case of paler stained 

cytospin preparations, the cells were either misidentified as different cell populations (Fig-
ure 9E,F) or remained unrecognized (Figure 9M,N). Finally, eosinophils were misclassi-
fied as neutrophils in most cases or occasionally as monocytoid cells (Figure 9G,H). 

 

Figure 9. Misclassification issues with artificial intelligence (AI) algorithm. (A,C,E,G,I,K,M)—native 

digital images from different locations on the virtual cytospin preparation slides; (B,D,F,H,J,L,N)—

corresponding classification performed by the AI algorithm on the same locations. (A,B)—pair of 

lymphocytes counted as one (black arrow), and pair of monocytoid cells counted as one (white ar-

row); (C,D)–two monocytoid cells fragmentally classified as eight cells, comprising four monocy-
toid cells and four lymphocytes (arrow); (E,F)—due to pale staining, all lymphocytes were fragmen-

tally misclassified as monocytes and neutrophils; (G,H)—eosinophils were misidentified as neutro-
phils and monocytoid cells (*); (I,J)—staining artifacts misclassified as neutrophils (arrow); (K,L)—

unidentified artifact counted as several lymphocytes and a monocytoid cell (arrow); and (M,N)—

due to pale staining of three neutrophils, two were not detected (arrow). Color code: red—monocy-

toid cells, yellow—lymphocytes, green—neutrophils. 

All samples with pleocytosis were classified by their type, according to the three-part 

differential cell count results provided by each of the following three methods: differential 
cell count via the AI algorithm on digital images, manual differential cell count on digital 
images and manual differential cell count via light microscopy on cytospin preparations. 
According to the AI algorithm on digital images, 15/62 (24.2%) samples were classified as 
lymphocytic, 10/62 (16.1%) as mononuclear, 20/62 (32.3%) as mixed-cell and 17/62 (27.4%) 

as neutrophilic pleocytosis, while for the manual differentiation on digital images, the re-
spective results were as follows: 18/62 (29.0%), 7/62 (11.3%), 10/62 (16.1%) and 26/62 

(41.9%). The light microscopy provided the following results: 26/62 (41.9%) for lympho-

cytic, 12/62 (19.4%) for mononuclear, 4/62 (6.5%) for mixed-cell and 19/62 (30.6%) for neu-

trophilic pleocytosis. The sample with the eosinophilic pleocytosis was classified as such 
by both manual methods and misclassified as a mixed-cell pleocytosis by the AI algorithm 

(Table 5). Of all 62 samples classified as having pleocytosis, only 4 received a concordant 
classification by all three methods, 1 for each category of neutrophilic, lymphocytic, mon-

onuclear and mixed-cell pleocytosis. The greatest concordance between the methods was 
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observed for both methods operating on digital images, with which 45/62 samples (72.6%) 

were classified into the same category (16 as having neutrophilic, 15 lymphocytic, 8 
mixed-cell and 6 mononuclear pleocytosis). The other 17/62 samples (27.4%) were classi-

fied in different pleocytosis categories by the three methods. The greatest incidence of 
pleocytosis misclassification was observed for the manual count via light microscopy on 
the cytospin preparations, with lymphocytic pleocytosis most often being misclassified as 
neutrophilic pleocytosis and vice versa (Table S3). 

Table 5. Classification of the samples with pleocytosis by the three-part 100-cell differential count 
according to the type of pleocytosis. 
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AI differential count on digi-
tal images 

15 10 20 17 0 

Manual differential count on 
digital images 

18 7 10 26 1 

Manual differential count via 
light microscopy 

26 12 4 19 1 

1 ≥70% cells are lymphocytes, 2 ≥70% cells are mononuclear, but <70% cells are lymphocytes, 3 all cell 

types are <70% and mononuclear pleocytosis does not apply, 4 ≥70% cells are neutrophils, 5 ≥20% 
cells are eosinophils [5]. 

3.4. Precision of Different Methods and Linearity of the Sysmex BF Mode 

A comparison of the precision of the TNCCs from the Sysmex BF mode and the man-

ual method, for samples with low and high cell counts, is depicted in Table 6. Note that 

all Sysmex BF measurements assessed were regated ones, due to the previously described 

cell misclassification issue before regating. The CV for the low cell count as obtained by 
the Sysmex BF-TNCC was 21.5% and thus notably lower than the CV for the manual 

method, which was 47.5%. Meanwhile, the CVs for the high cell count were similar for the 

two methods, at 3.8% for the manual method and 4.8% for the Sysmex BF mode. 

Table 6. Comparison of precision for the TNCC between the automated Sysmex BF TNCC and the 

manual counting with a hemocytometer. 

Method Sample Cellularity Mean TNCC (Cells × 106/µL) n SD (Cells × 106/µL) CV (%) 

Sysmex BF 
Low 2.4 10 0.5 21.5 

High 757.0 6 36.5 4.8 

Manual 
Low 1.5 8 0.7 47.5 

High 127.3 6 4.9 3.8 

BF—body fluid; CV—coefficient of variation; n—number of replicates; SD—standard deviation; 

TNCC—total nucleated cell count. 

The linearity for Sysmex BF-TNCC was good and showed a recovery of between 90% 

and 108% up to a cellularity of 199 cells/µL (Figure 10). 
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Figure 10. Linearity for Sysmex BF-TNCC depicted as a linear regression. The intercept is 0.76, and 

the slope is 1.01. The gray line is the identity line. 

A precision study was performed for the three-part differential cell count with the 
following three methods: (1) 100-cell differential count manually via light microscopy on 
cytospin preparations, (2) 100-cell differential count manually on digital images and (3) 

100-cell differential count with AI algorithm on digital images. To assess the performance 
of the AI algorithm when counting more cells, an additional 800-cell differential cell count 
was performed on digital images with the AI algorithm (Table 7). For this precision study, 

three samples of good quality and high cellularity were selected, with cell populations 

that were morphologically well distinguishable via light microscopy. For the 100-cell dif-

ferential count, the AI algorithm showed the lowest CVs for the lymphocytes in two sam-

ples, while, for the neutrophils, all three methods showed similar precision. The biggest 

discrepancy was observed in the case of monocytoid cells, where manual counting via 

light microscopy showed the lowest CVs in all samples. For the 100-cell differential count 
with the AI algorithm, the CVs of all samples and all cell categories varied between 3.7% 

and 92.0%. Meanwhile, the CVs for the 800-cell differential with the AI algorithm, in all 
cell populations and all three samples, varied between 1.2% and 49.7% and were generally 

lower, except for the monocytoid cells in one sample. In this sample, the monocytoid cells 

were the smallest cell population, accounting for between 0.8% and 3.1% of all cells, and 

the previously described misclassification issue of fragmented recognition was noted. 

Table 7. The precision of the three-part 100-cell differential count as determined by three methods 
(applying AI algorithm and manual counting on digital images and via light microscopy on cytospin 

preparations), as well as the three-part 800-cell differential with the AI algorithm. 
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(337 cells × 

106/µL) 

Average 13.3 10.2 10.7 11.9 3.6 3.1 3.7 5.1 83.1 86.6 85.5 83.0 

CV% 29.3 42.6 40.5 7.5 80.7 70.8 75.8 13.7 4.6 6.3 7.6 1.2 

2 Average 10.1 5.5 3.0 2.4 4.3 1.5 7.0 10.1 85.6 92.7 90.0 87.5 
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(1170 cells × 

106/µL)  
CV% 21.4 40.5 92.0 49.7 72.0 87.4 38.5 10.7 3.1 2.8 5.1 2.1 

3 

(1451 cells × 

106/µL) 

Average 5.5 3.6 5.3 4.4 1.9 1.1 3.7 3.7 92.6 95.3 91.0 91.9 

CV% 37.6 61.6 51.6 20.1 66.5 75.6 45.6 33.1 2.4 2.9 3.7 2.2 

AI—artificial intelligence; CV—coefficient of variation. 

4. Discussion 

This study compared automated and manual methods for taking the TNCC and dif-

ferential cell counts from the CSF of dogs. The results obtained with the Sysmex XN-V 

highlighted the importance of manual regating, as graphically demonstrated on scatter-
grams. Without manually set gates, the BF mode often misclassified the PMN cells as de-
bris, while the MN cells were partly counted as MN and PMN cells as well as debris, 
which could further lead to deceptively low BF-TNCC and BF-WBC counts, as well as 

inaccurate percentage distributions in the two-part differentiation into BF-PMN% and BF-

MN%. For this reason, only the results collected after regating were analyzed further in 
this study. Before regating, the misclassification issue was mainly observed on scatter-
grams with moderate to marked pleocytosis. Similar gating errors were previously ob-

served in a similar study that we performed with equine bronchoalveolar lavage samples 

[28]. However, to our knowledge, no other study has yet explicitly discussed the im-
portance of regating on any hematology instrument. Indeed, very few studies have re-

ferred to regating in general: in one study, “gating out” of cellular debris on a Coulter 

Counter® using vital stain or cell-specific antibodies in mice was mentioned [34], and in 
another study, this one of bronchoalveolar lavage in animal research for the pharmaceu-

tical industry, a disadvantage of the ADVIA instrument was noted compared to the Sys-

mex hematology analyzer in that the former has no custom gating settings [35]. Further-
more, the authors also suspect that the observed lack of correlation seen in the Sysmex 

XN-V study from 2020 with canine CSF could at least be partly explained by incorrect 

gating since both debris and the well-demarcated cloud of dots in the PMN cell area were 

of the same color in the depicted scattergrams [25]. 
After regating, the measurements of the BF-TNCC and the BF-WBC were identical in 

all samples. For this reason, only the BF-TNCC results were included in our further de-

tailed analysis. Similar results, showing a correlation of r > 0.83 for both the Sysmex BF-

WBC and the Sysmex BF-TNCC with the manual TNCC in canine CSF samples with ple-

ocytosis (>5 cells/µL), were observed in the aforementioned study from 2020 [25]. 
The samples were classified as either unremarkable or having pleocytosis based on 

the TNCC. In comparison to the manual TNCC, 5.6% more samples were classified as 
having pleocytosis according to the automated TNCC. Although all of these samples 

showed borderline pleocytosis, we advise that the two methods should not be used inter-

changeably when monitoring individual animals. 

It must also be mentioned that neither the manual TNCC nor the BF-TNCC can be 

considered the gold standard for TNCC measurements of the CSF. However, the BF-

TNCC is arguably the more accurate of the two since more cells are quantified, suggesting 
a higher precision. 

For the Sysmex XN-V two-part differential cell count, we obtained similar results to 
what has been reported using the ADVIA 2120 in the CSF assay mode [19]. In contrast, the 
study from 2020 with the Sysmex XN-V showed no correlation at all for either MN or 

PMN cells, which was most likely due to the incorrect gating mentioned previously [25]. 
Nonetheless, the two-part differentiation is limited in its practical applicability. Therefore, 
in future studies, specific gates should be developed to separately quantify different cell 
populations. This goal seems to be attainable since three distinct cell populations could be 
clearly distinguished on some scattergrams with pleocytosis in this study. To date, no 
studies in veterinary medicine have yet tested the ability of the Sysmex XN-V BF mode to 

detect eosinophils, but the detection of these cells using the analyzer’s BF mode has been 
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set as a research objective [36], and we propose that establishing a separate gate for the 
eosinophils should be considered as well. 

Furthermore, in this study, all samples with pleocytosis were classified by their type 
using both the automated and manual two-part differential cell counts. All samples clas-
sified as having mixed-cell pleocytosis and most samples classified as having mononu-

clear pleocytosis according to the manual differential count via light microscopy were also 
classified in the same pleocytosis category according to the results of the Sysmex BF mode. 
Meanwhile, the samples being classified as having polymorphonuclear pleocytosis ac-

cording to the manual differentiation were mostly classified in the category of mixed-cell 

pleocytosis according to the Sysmex BF mode. It can be argued that the automated method 

may be more accurate than the manual one as it allows for the differentiation of more cells 

than the 100-cell differential count performed manually. However, the key takeaway 
seems to be the importance of using one method rather than mixing the two, since these 

results demonstrate again that the methods should not be used interchangeably. 

Regarding precision, the Sysmex BF mode outperformed the manual method for the 

TNCC in the case of a low-cell-count sample, as was expected, but showed relatively sim-

ilar CVs with the manual method in the case of a high-cell-count sample. These results 

demonstrate the superior performance of the Sysmex BF mode in low-cell-count samples. 

The linearity for the TNCC was also acceptable. 

This study also showed, for the first time, that AI can accurately recognize lympho-

cytes, neutrophils and monocytoid cells in most cases, when digital images of virtual CSF 

cytospin preparations are analyzed using a pre-developed algorithm. The lower correla-

tion coefficient of the monocytoid cells can be explained by their pleomorphic cytologic 

appearance, with, in some cases, morphological features similar to those of lymphocytes 

or neutrophils [37]. Some difficulty regarding the differentiation between lymphocytes 

and monocytoid cells was noted even during the manual differentiation of a few samples 
in this study. While, to the authors’ knowledge, no similar studies of CSF have been per-

formed in veterinary medicine, the results of this study are supported by two publications 

in human medicine from 2022. The accuracy of an AI algorithm in the recognition of mon-

ocytoid cells was noted to be high in those two studies but still lower than for the cell 

populations of lymphocytes and neutrophils [26,27]. Regarding research on AI cell recog-

nition in veterinary medicine, a study of equine bronchoalveolar lavage showed correla-

tions of between r = 0.85 and 0.92 with a manual method for the identification of alveolar 
macrophages, lymphocytes, neutrophils and mast cells [28], and a study with bovine uter-
ine cytobrush samples demonstrated adequate agreement between AI and the manual 

method for >5% and >10% PMN cell thresholds [38]. 
When comparing the pleocytosis classifications based on the three-part differential 

counts, as determined using the three different methods, our results varied notably in all 
categories of pleocytosis. The greatest concordance, of 73.8% and involving all pleocytosis 

categories, was observed between the differential counts taken manually and by an AI 
algorithm on digital images. This was not surprising as both methods analyzed the same 

images of cells, but it underlines the strong performance of the AI algorithm. Unexpect-

edly, the best agreement was observed for mononuclear pleocytosis. The discrepancies 

that we observed between the results of these two methods on the same images can mainly 

be explained by various classification errors for the AI-algorithm-based differential count, 
as discussed in the next paragraph. Meanwhile, the greatest discordance was observed 
between the manual differential cell count via light microscopy on the cytospin prepara-
tions and both methods applied on the digital images, with only 8.2% of samples concord-

ant for all three methods. The most common mismatch was noted between neutrophilic 

and lymphocytic pleocytosis. This discordance was surprising and could be explained by 

an uneven distribution of the cells on the cytospin preparations, the relatively large num-

ber of samples with borderline differential counts or the relatively high imprecision when 
counting only 100 cells [39]. 
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Regarding the classification issues, the following errors appeared to apply to numer-
ous samples: misidentification of several closely located or touching cells as one, frag-
mented misclassification of one cell as several and misidentification of staining artifacts 

or unidentified artifacts as various cells. The first two errors were similar to those observed 
in the study of the AI differential counts for digital images of equine bronchoalveolar lav-
age samples [28]. A possible solution to the issue of counting several closely packed cells 

as one cell could be adjusting the cytospin preparation protocol to decrease the cell density 

on the slide. Such adjustments would be most beneficial for samples with moderate to 
marked pleocytosis, and they could be researched in future studies. Another notable issue 

was the misclassification of whole cell populations due to inadequately stained slides. In 
this case, the cells appeared paler than their counterparts on the training images, meaning 

the recognition and classification of entire cell populations was severely impaired, empha-

sizing the tone-sensitive nature of AI algorithms. No staining protocol error was found in 

these cases, but careful assessment of the staining quality of slides before scanning is ad-

vised to allow for restaining if needed. An unexpected discovery was the misclassification 
of the canine eosinophils as neutrophils, which was explicitly demonstrated in the sample 

with eosinophilic pleocytosis. No similar issue was previously observed with equine bron-

choalveolar samples, which could be explained by the very distinct appearance of equine 

eosinophils in terms of their prominent intracytoplasmic granules [40], which may pre-
vent any misidentification issues with an AI algorithm, though the same is not necessarily 
the case for canine eosinophils. 

We must highlight one of the main advantages of taking the differential cell count 
using the AI algorithm, which is the ability to rapidly count several thousand cells without 

any human bias or assistance and without requiring staff to have technical knowledge of 

either cell-recognition or information technologies [38]. The precision of AI appears to in-
crease with the number of counted cells, since for the 100-cell differential count, manual 
differentiation both on digital images and via light microscopy on cytospin preparation 

slides demonstrated superior results, but for the 800-cell differential count, the AI algo-
rithm showed lower CVs for lymphocytes and neutrophils, as well as monocytoid cells in 

most cases. Nevertheless, the AI-algorithm-based differentiation has some drawbacks: the 

equipment is expensive; the development of the neural network algorithm is time-con-

suming and requires high-quality samples containing all of the cell populations to be clas-

sified, and classification issues can lead to various inaccuracies. Nevertheless, the differ-
entiation via an AI algorithm still holds immense potential and seems very promising. 

The main limitation of this study was the highly standardized conditions under 

which the algorithm was developed, which preclude its successful implementation if the 

visual appearance of the cells is even slightly altered. Likewise, any changes to the sample 

preparation protocol, including using different stains or altering the staining procedure, 
may render the developed algorithm inapplicable. This was explicitly demonstrated when 

a pair of slides were accidentally stained paler than expected, and the algorithm conse-

quently misclassified or failed to identify whole cell populations because the cells ap-
peared of paler color than their counterparts on the slides used for algorithm training had 

been. Further multicenter studies are needed to broaden the applicability of the algorithm, 

including studies using different stains and sample preparation protocols. Moreover, ad-
ditional cell types such as eosinophils, surface epithelial cells and erythrocytes should also 

be investigated. In addition, the algorithm could be further optimized by emphasizing the 

cell size as one of the recognition criteria and thus avoiding the misclassification of several 
closely packed cells as one. In the current study, however, no further optimization of the 

algorithm could be achieved once the similarity had reached 0.75, as the similarity failed 

to improve upon increasing the number of training images. Lastly, it must be mentioned 

that a possible approach to overcoming staining issues altogether is the application of vir-

tual staining, as similar approaches have been successfully used in histopathology with 

hematoxylin and eosin staining [41–44]. 
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5. Conclusions 

This study has demonstrated the applicability of the Sysmex XN-V BF mode for de-

termining the TNCC in canine CSF. However, we were required to generate a manual gate 

in order to obtain accurate two-part differential cell count measurements. This manual 
gate could then consequently be applied to all canine samples without the need for indi-

vidual optimization and should thus be viewed by the manufacturer as an opportunity to 

improve their settings. An advantage to the automated approach is that the Olympus 
VS200 software can be operated without specific computer programming skills in order 
to generate an AI algorithm. Furthermore, the AI three-part differential cell count offers 
similar precision to the 100-cell differential cell count obtained with manual methods and 

better precision than the 800-cell differential cell count obtained likewise. In the authors’ 
opinion, AI algorithms, in general, offer a promising tool for the assessment and differen-
tiation of canine CSF samples. Nonetheless, optimization is required as classification is-
sues still occur. Such optimization may be realized through multicenter studies aiming to 

broaden the applicability of algorithms to further cell types and sample preparation pro-

tocols. 
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