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Abstract

Morphological variation in modern human dentition is still an open field of study. The under-

standing of dental shape and metrics is relevant for the advancement of human biology and

evolution and is thus of interest in the fields of dental anthropology, as well as human anat-

omy and medicine. Of concern is also the variation of the inner aspects of the crown which

can be investigated using the tools and methods of virtual anthropology. In this study, we

explored inter- and intra-population morphometric variation of modern humans’ upper third

and fourth premolars (P3s and P4s, respectively) considering both the inner and outer

aspects of the crown, and discrete traits. We worked by means of geometric morphometrics

on 3D image data from a geographically balanced sample of human populations from five

continents, to analyse the shape of the dentinal crown, and the crown outline in 78 P3s and

76 P4s from 85 individuals. For the study of dental traits, we referred to the Arizona State

University Dental Anthropology System integrated with more recent classification systems.

The 3D shape variation of upper premolar crowns varied between short and mesio-distally

broad, and tall and mesio-distally narrow. The observed shape variation was independent

from the geographical origin of the populations, and resulted in extensive overlap. We noted

a high pairwise correlation (r1 = 0.83) between upper P3s and P4s. We did not find any sig-

nificant geographic differences in the analysed non-metric traits. Our outcomes thus sug-

gest that geographical provenance does not play a determinant role in the shaping of the

dental crown, whose genesis is under strict genetic control.

Introduction

Dental morphology has been investigated widely in order to study the variation within and

between species based on general shape, metric and non-metric traits [1–14]. The crown of the

premolars is usually composed of two main cusps (buccal and lingual) each continuing into a

root cone [15]. These cones can form two separate roots or be fused into one root. Rarely, a three-
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rooted premolar with one lingual and two buccal roots can be observed [11,15]. By position

within the dental row and function, maxillary premolars are intermediate between front and

molar teeth. In this respect, third premolars possess some functional characteristics of a canine,

while fourth premolars are more engaged in grinding functions comparable to molars [6].

3D morphological variation of upper premolar crowns among modern human populations

is poorly investigated since most of the studies focused on the roots and root canals [16,17]

also in clinical settings [18–20]. Previous investigations of the human maxillary premolar vari-

ation using traditional metric approaches [21] and landmark-based multivariate techniques

[22], but on the outer enamel surface (OES), revealed morphological differences that help to

distinguish between modern human populations. On the other hand, upper premolar mor-

phology delivered varying results for the purposes of taxonomic classification in paleoanthro-

pological studies using non-metric trait analyses [2,23,24], and geometric morphometric

approach delivered significant results only for the P4s [23]. Metric measurements such as

bucco-lingual and mesio-distal crown dimensions or crown height have also been used to

study premolar size variation between and within populations [3,25,26]. Other studies focused

on the occurrence and expressions of non-metric traits such as the maxillary premolar acces-

sory ridges [11,27,28], the premolar mesial and distal accessory cusp [11,29,30], or the essential

crests [30] among various modern human populations.

Compared to the OES, the examination of the enamel-dentine junction (EDJ) presents

advantages because it represents the primary developmental structure of the crown and is con-

sequently the precursor of the enamel cap’s morphology [31–40], naturally resulting in a

strong correlation between these two surfaces [31,33,41,42]. Furthermore, the overlying

enamel protects the EDJ from early deterioration processes such as abrasion, erosion or chip-

ping. The EDJ thus represents an appropriate alternative to the OES since it also bears relevant

taxonomic information [31,37,39,43,44]. Morphometric studies of the EDJ of both permanent

and deciduous molars are well represented in the literature [31,33,44–46], while for maxillary

premolars, extensive comparative studies are very rare [47], or only focused on the descriptive

assessment of the EDJ and OES [48–51]. Currently, 3D geometric morphometric (GM) analy-

ses of the inner tooth crown variation in geographically diverse modern human samples have

been published for permanent and deciduous molars [23,33,44,46,47,52], as well as lower pre-

molars [53,54], and central incisors [55]. These studies did not detect geographically-depen-

dent dental shape variation [33,54], thus, in the current study, we applied quantitative

approaches to explore inter- and intra-population shape variation and covariation of modern

human P3s and P4s, expecting to find similar outcomes. We want to test the hypothesis that

the ranges of shape variation of upper premolars in different world populations overlap, mean-

ing that recent human populations cannot be distinguished based on the shape of their upper

premolar’s dentinal crown. We used high-resolution 3D image data and GMM to investigate a

geographically heterogeneous sample consisting of modern human populations from Africa,

South America, Europe, the Near East, Southeast Asia and Oceania. Size variation was investi-

gated based on the natural logarithm of Centroid Size. Moreover, we analysed the expression

of the non-metric trait on both the EDJ and the OES. Comprehensive knowledge of these fac-

tors is essential in biology for taxonomic and evolutionary research, including human geno-

type-phenotype associations, and is also relevant in the various fields of medicine including

forensics and dentistry.

Materials

We included 78 maxillary P3s and 76 maxillary P4s from 85 recent modern humans (Table 1).

In particular, our sample comprised individuals from Oceania (n = 15), including the
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Table 1. List of third and fourth premolars (P3 and P4, respectively) used in this study. (Wear recorded according to Molnar, 1977; f = female; m = male; + = present;
— = absent; N.A. = not available; EDJ = enamel-dentine junction).

Population sample Individual Origin Wear Age (years) Sex P3 analyses P4 analyses

P3 P4 EDJ Outlines EDJ Outlines

Africans a S16 Sub-Saharan 2 1 9–13 N.A. + + + +

S29 Sub-Saharan 3 2 30–40 m + + + +

S46 Sub-Saharan 2 2 14–18 f + + + +

S61 Sub-Saharan 1 2 25–30 m + + + +

S68 Sub-Saharan 2 2 25–30 m + + + +

S97 Sub-Saharan 2 2 12 15 f + + + +

S103 Sub-Saharan - 2 12 15 m - - + +

S111 Sub-Saharan 2 2 20–30 m + + + +

S121 Sub-Saharan 2 2 25–30 m + + + +

C333 Sub-Saharan 1 1 adult N.A. + + - +

ID_122_421_1464 Sub-Saharan 2 2 adult m + + + +

S85 Sub-Saharan 3 2 adult N.A. + + + +

S87 Sub-Saharan 2 2 adult N.A. + + + +

S128 Sub-Saharan 3 2 adult N.A. + + + +

S138 Sub-Saharan 2 2 adult N.A. + + + +

Europeans a, b Cs428 Avar 3 2 16–18 m + + + +

Cs495 Avar 1 1 7–8 N.A. + + + +

Cs498 Avar 2 2 25–30 f + + + +

Cs502 Avar 2 1 13–15 N.A. + + + +

Cs541 Avar 3 2 19–30 f + + + +

Cs582 Avar 3 2 19–25 f + + - +

Cs654 Avar 1 1 3–5 N.A. + + + +

ID_120_123_1043 Central European 1 1 10 m + + + +

ID_300_510_578 Central European 1 1 11 f + + - -

ID_125_028_1089 Central European 1 - 10 f + + - -

ID_125_415_1124 Central European - 1 6 m - - + +

ID_120_074_711 Central European 1 1 6 m + + - +

ID_122_510_1554 Central European 2 1 22 m + + + +

ID_122_511_1555 Central European 2 2 adult f + + + +

Anatomy_19710 Central European 2 2 20 N.A. + + + +

ID_126_804_1171 Central European 2 2 29 m + + + +

ID_122_199_961 Central European 2 2 20 m + + + +

Near Easterners c BLZ_483 Bedouin 2 2 N.A. N.A. + + + +

BLZ_506 Bedouin 1 1 N.A. N.A. + + + +

BLZ_515 Bedouin 3 2 N.A. N.A. + + + +

NN1 Bedouin 3 3 N.A. N.A. + + + +

RCEH038 Bedouin 3 - N.A. N.A. + + - -

AM_23 Natufian 2 2 N.A. N.A. + + + +

AM_56 Natufian 1 1 N.A. N.A. + + + +

AM_67 Natufian 3 2 N.A. N.A. + + + +

AM_69 Natufian 3 3 N.A. N.A. + + + +

AM_101 Natufian 3 2 N.A. N.A. + + + +

Hay_8 Natufian 4 4 N.A. N.A. - + - +

Hay_12 Natufian 1 1 N.A. N.A. + + + +

Hay_19 Natufian 2 2 N.A. N.A. + + + +

Hay_25 Natufian 3 3 N.A. N.A. + + + +

(Continued)
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Table 1. (Continued)

Population sample Individual Origin Wear Age (years) Sex P3 analyses P4 analyses

P3 P4 EDJ Outlines EDJ Outlines

Oceanians a C54 Oceanian 2 2 adult m + + + +

C55 Oceanian 3 3 adult m + + + +

C104 Oceanian 1 1 juvenile N.A. + + + +

S89 Oceanian 2 1 adult N.A. + + + +

NZ_1459 Oceanian 4 4 N.A. N.A. - + - +

NZ_3093 Oceanian 1 - N.A. N.A. + + - -

NZ_3099 Oceanian - 3 N.A. N.A. - - + +

NZ_3104 Oceanian 4 3 N.A. N.A. - + + +

NZ_3108 Oceanian 1 - N.A. N.A. + + - -

CN5 Papuan - 1 adult m - - + +

CN220 Papuan 1 2 adult m + + + +

CN230 Papuan 2 2 adult m + + + +

CN232 Papuan 2 2 adult m + + + +

CN236 Papuan 3 2 mature m + + + +

CN264 Papuan 2 1 30 m + + + +

South Americans b 793 American 2 3 adult m + + + +

806 American - 2 adult m - - + +

1169 American 1 1 juvenile N.A. - + + +

2286 American 2 2 N.A. f + + + +

3537 American 2 2 adult N.A. + + + +

5382 American 1 - juvenile N.A. + + - -

5385 American 2 2 adult N.A. + + + +

5389 American 1 1 infant N.A. + + + +

5443 American - 1 juvenile f - - + +

6321 American 3 3 adult N.A. + + + +

15353 American 1 2 adult m + + + +

TF_6031 Selk’nam 4 4 adult N.A. - + - +

TF_6034 Selk’nam 4 3 adult f - + + +

TF_6035 Selk’nam 3 3 adult N.A. + + + +

TF_6038 Selk’nam 3 - adult m + + - -

TF_6040 Selk’nam 3 - adult f + + - -

TF_6041 Selk’nam 4 3 adult m - + + +

TF_21462 Selk’nam 4 - N.A. N.A. - + - -

Southeast Asians b ID_122_342_1383 Indonesian 2 1 28 m + + + +

ID_122_335_1376 Indonesian 3 3 36 m + + + +

ID_122_369_1412 Indonesian 3 2 adult m + + + +

1365 Indonesian 4 - N.A. f - + - -

1368 Indonesian - 4 N.A. f - - - +

2583 South Chinese 4 4 N.A. f - + - +

aUniversity of Vienna, Department of Evolutionary Anthropology
bNatural History Museum, Vienna
cTel Aviv University, Department of Anatomy and Anthropology, The Sackler Maculty of Medicine.

https://doi.org/10.1371/journal.pone.0301482.t001
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indigenous people of Papua New Guinea (n = 6), the former diverging from Eurasian popula-

tions around 62 to 75 thousand years ago [56–58], South America (n = 19), including the

native population of Selk’nam from Tierra del Fuego (n = 7), Europe (n = 17), including Avars

from the 8th century (n = 7), sub-Saharan Africa (n = 15), Southeast Asia (n = 6) and the Near

East (n = 14) including Bedouins (n = 4) and Natufians (n = 10). All teeth used for the EDJ

analyses were free of decay or fillings and did not exceed Molnar’s [59] wear stage 3 (slight to

moderate wear). Accordingly, populations from various geographical regions, climatic zones,

and environments, featuring different life styles, were represented in our sample.

Methods

Scanning & segmentation

All specimens were scanned at the Vienna μCT Lab, Austria, with an industrial Viscom X8060

NDT scanner (scanning parameters: 110–140 kV, 280–410 mA, 1400–2000 ms, 0.75 mm cop-

per filter with a voxel size ranging between 20 and 50 μm). Virtual segmentation of the μCT

data was performed in Amira software (www.thermofisher.com) to obtain triangulated surface

models of the enamel and dentine. Models were extracted from the left premolars but, if absent

or unusable, the right-side premolars were considered (n = 49) since directional asymmetry is

not expected in teeth [60]. If this was the case, the right-side datasets were flipped before sur-

face extraction. Slightly worn dentinal horn tips were virtually reconstructed in Amira soft-

ware by extending the contours of the existing part of the dentinal horn tips (n = 38).

Reorientation of the models and data collection on the cervical and crown
outlines

The segmented dental surface models were reoriented in Geomagic Design X 64 (www.

3dsystems.com) according to an established protocol [61]. Thus, the best-fit plane of the cervi-

cal margin, or cervical plane, was computed and was used to reorient the dataset to set the cer-

vical plane parallel to the x-y plane of the virtual working space. Afterwards, the crown was

rotated to align the mesial ridge to the y-axis. Cervical and crown outlines of the reoriented

surfaces were collected and projected onto the cervical plane. The outlines were imported into

Rhinoceros 6 (www.rhino3d.com) and split into 24 curve segments by equiangular radial vec-

tors that originated from the centroid of the outline. The intersection points between the radii

and the outline marked 24 pseudo-landmarks.

Landmark collection on the EDJ

The reoriented surfaces of the dentinal crowns were imported into the free-to-download

EVAN-Toolbox software (www.evan-society.org) for further landmark collection. A total of

24 landmarks were placed on the EDJ of each of the premolars. On all premolars, two fixed

landmarks were placed on the paracone and protocone horn tips. On the P3s, the remaining

two fixed landmarks were placed at the deepest mesial and distal points of the central groove.

Since the central groove is not as well defined in P4s, the landmarks were instead placed on the

deepest points of the distal and mesial ridges, which are always well visible. Additionally, the

marginal ridge of both tooth types was represented by 20 curve semilandmarks. The sliding of

the semilandmarks was performed using the bending energy technique [62–64]. Our approach

matched that performed on lower premolars in Krenn et al. [54], who validated this technique

by assessing the observer error. We do not expect the validity of these protocols to change in

the upper premolars.
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Geometric morphometric analyses

We performed GM analyses using the EVAN-Toolbox for each set of landmarks (namely, cer-

vical outline, crown outline, EDJ, and dentinal crown) for P3s and P4s, separately. The den-

tinal crown dataset was created by merging the cervical outline and the EDJ landmark

configurations. A General Procrustes Analysis (GPA [65]) was performed for all data sets to

normalize the landmark configurations. The resulting Procrustes shape coordinates were ana-

lyzed via principal component analysis (PCA). The Thin-Plate Spline technique was used to

visualize the shape changes along the principal components (PCs) by means of warping

[62,66]. To explore the shape covariation between P3s and P4s, as well as between different

aspects within the same dental type (i.e. between the cervical outline and the EDJ), we per-

formed a 2-block partial least squares (2B-PLS) analysis. To analyze the effect of allometry,

multivariate regression was performed. The size was investigated by using the natural loga-

rithm of Centroid Size (lnCS [67]). By using the lnCS derived from the dentinal crown dataset

(combining the EDJ with cervical outline) we obtained a measure of size representing crown

height as well. For testing tooth size differences between populations, we performed Kruskal-

Wallis and Mann-Whitney-U tests (in PAST 4.03; www.softpedia.com), since the obtained

data was not normally distributed. Permutational Multivariate Analysis of Variance (PERMA-

NOVA) was performed using PAST 4.03 to test for shape differences between the groups

(using all PC-scores), allowing for a distribution-free setting using permutational algorithms.

Non-metric traits

The following non-metric traits were considered:

1. Premolar mesial and distal accessory cusps

Accessory mesial or distal cusps originate from a bifurcation on the margin of the sagittal

sulcus that is separating the buccal and lingual cusps, forming a free-standing cusp on the OES

[11,13,68]. Sakai et al. [69] describe accessory cusps as indistinct on the EDJ, with a protrusion

or swelling of the marginal ridge where the cusp could be. We used the following classifications

to evaluate the presence of the accessory cusps: absent (0), mesial cusp (1), distal cusp (2), and

mesial and distal cusp (3).

2. Maxillary premolar accessory ridges (MxPAR)

Accessory ridges may or may not be present on the lingual lobe segment of the buccal cusp,

mesially and distally from the essential crest of both P3s and P4s [11], and can be extended

into the central groove. These features are prevalent in both the OES and the EDJ, and their

distribution was found to be heterogeneous among populations [28,70]. To represent the

expression of these features, we used the following classification: absent (0), mesial accessory

ridge (1), distal accessory ridge (2), and mesial and distal accessory ridges (3).

3. Essential crest

The essential crests of the central lobe of the paracone and protocone are usually separated by the

sagittal sulcus and central groove. However, if this is not the case, i.e., both essential crests are con-

nected, they create a transverse crest. Additionally, the separated essential crest of the buccal cusp

can also be bifurcated. Several studies were able to detect these features on both EDJ andOES [48–

51]. In this study, we classified every kind of essential crest expression separately, namely the sepa-

rated buccal and lingual crests (0), transverse crest (1), and the bifurcated buccal essential crest (2).

Traits 1 and 2 were derived from the Arizona State University Dental Anthropological Sys-

tem [11,12]. For trait 3 (essential crest) we referred to Bailey’s [2] buccal essential crest and

PLOS ONE Shape variation in modern human upper premolars

PLOSONE | https://doi.org/10.1371/journal.pone.0301482 April 9, 2024 6 / 19

http://www.softpedia.com/
https://doi.org/10.1371/journal.pone.0301482


traverse crest grading system. All traits were scored both on the OES and EDJ of each specimen

and evaluated according to their presence and expression (Fig 1), performing a Chı́2 test in

PAST 4.03.

Ethics statement

In this study, we used non-invasive μCT (micro computed tomography) data (a three-dimen-

sional X-ray method) from human remains included in the collections of the Department of

Evolutionary Anthropology, University of Vienna and the Natural History Museum Vienna,

Austria. Since only osteological material was used, no ethical approval or guidance was

required as the research did not involve present-day human samples. The specimens were

exported to Europe between the 19th century and the beginning of the 20th century, being

curated in Austrian institutions for over a century. They were regarded and treated as precious

parts of natural history collections and used for research since then. Today, their acquisition

raises concerns according to current ethical principles. During the last 15 years, skulls

were μCT-scanned at the Vienna μCT Lab of the University of Vienna for the purpose of pres-

ervation and fundamental research. Specimens were handled only by highly trained personnel

in the most respectful way. No damages or alterations of any kind were caused to the remains.

Results

Shape variation in P3s

Results obtained from the PCA analysis of the P3 dentinal crown (Fig 2A) revealed an exten-

sive overlap of the populations. Variation along PC1 (27% of the total variance explained) was

Fig 1. Illustration of scored non-metric traits and their expression categories.

https://doi.org/10.1371/journal.pone.0301482.g001
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mainly driven by the expansion of the distal fossa relative to the mesial fossa and the relative

mesio-distal broadening of the cervical outline. The shape of the P3 dentinal crown varied

from relatively short with a broad base, and rounded lingual occlusal aspect, to tall and mesio-

distally narrow crowns. The horn tips shifted towards each other or apart, relative to the

expansion and reduction of the cervical aspect of the crown, with broad crowns expressing

horn tips closer to each other and narrow crowns the other way around. Shape variation along

Fig 2. PC1—PC2 plot for third premolars (a) and fourth premolars (b) in shape space for the dentinal crown. The
warpings show the real variation in occlusal and distal view at values PC1±0.15/ PC2 ±0.10; c) Landmark configuration
capturing the dentinal crown of the P3s; and d) the P4s (orange = landmarks, blue = semi- and pseudolandmarks).

https://doi.org/10.1371/journal.pone.0301482.g002
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PC2 (14%) reflected the relative expansion of the mesio-buccal and mesio-lingual areas of the

dentinal crowns with respect to each other. With the expansion of the mesio-lingual side, the

relative position of the lingual cusp shifted mesially. Along PC3 (10%), the relative shape

changes reflected the expansion of the distal aspect of the tooth as well as the relative position

of the lingual cusp. The lingual cusp was more mesially positioned in disto-buccally expanded

dentinal crowns, and disto-lingually positioned in disto-lingually expanded crowns.

Shape variation in P4s

The shape of the P4 dentinal crowns (Fig 2B) along PC1 (29%) varied between short with

mesio-distally expanded lingual cusp and bucco-lingually elongated crown base to tall with a

mesio-distally narrow lingual cusp and bucco-lingually shorter crown base. A narrower occlu-

sal aspect corresponds with a taller buccal cusp, positioned further from the lingual cusp rela-

tive to the crown base, while in broader occlusal aspects the cusps are more even and shifted

towards each other. We observed a separation of Southeast Asian individuals from South

Americans and Oceanians. However, this was probably caused by the small size of the South-

east Asian sample. On the other hand, Near Easterners and South Americans, although par-

tially overlapping, tended to show the opposite shape variation along PC1. Shape variation

along PC2 (18%) was mainly driven by the relative bucco-lingual position of the mesial fossa.

A taller buccal cusp and relatively buccolingually elongated cervical outline were associated

with a lingually shifted mesial fossa and vice versa. The variation along PC3 (14%) reflected

the relative buccolingual position of the distal fossa as well as the height of the crown and rela-

tive expansion of the cervical outline.

The PCA analyses of the cervical outline, crown outline and EDJ dataset in both P3s and

P4s (Supplementary Fig A, B, C, D in S1 File) showed that the populations in our sample over-

lapped widely and could not be differentiated based on the morphology of the upper premolars

crown. Supplementary Table A in S1 File contains percentages of variance explained by the

first five PCs in every dataset. Furthermore, our observations were confirmed by insignificant

results obtained from the PERMANOVA analyses for P3s’ (p = 0.572), as well as P4s’

(p = 0.613) dentinal crowns, EDJ (P3, p = 0.53; p4, p = 0.87), cervical outlines (P3, p = 0.45;

P4 = 0.06) and the P3s’ crown outlines (p = 0.17) (Supplementary Tables B and C in S1 File).

We have found significant results only in the crown outline analysis for P4s (p = 0.03).

Covariation

The 2B-PLS analysis demonstrated a strong pairwise correlation (r1 = 0.83) between P3 and

P4 dentinal crowns (Fig 3), which showed concurrent trends of dentinal crown shape varia-

tion. For the Singular Warp scores 1 of the dentinal crown analysis (explaining 81% of total

covariance), both tooth types covaried between short-crowned with mesio-distally broad base

or tall-crowned with mesio-distally narrow base. The occlusal aspect associated with the short

and broad crown type was mesio-distally expanded and squared with a broad central groove.

Tall- and slender-crowned teeth, on the other hand, showed mesio-distally reduced occlusal

aspects and were lingually narrow. Furthermore, higher dentinal horn tips were observed in

short-crowned P4s with respect to tall-crowned premolars.

The covariation between the EDJ occlusal aspect and the crown base (represented by the

cervical outline) within tooth types was not as high as the covariation between the dentinal

crowns of the two different tooth types. Nevertheless, pairwise correlation within the P4s

parameters was higher (r1 = 0.56) than within P3s (r1 = 0.46) (Table 2).
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Size

The lnCS was compared across the sample separately for the dentinal crown, cervical and

crown outlines, and EDJ (Fig 4, Supplementary Fig E in S1 File). Kruskal-Wallis test showed

significant differences for lnCS between all populations (Table 3). Comparing the groups

against each other, the Mann-Whitney-U test showed that the Oceanian teeth were signifi-

cantly larger than any other group for all features except the EDJ analysis. Similarly, Europeans

and Africans were consistently smaller. Supplementary Table D in S1 File shows size differ-

ences between sexes in upper premolars, assessed via Mann-Whitney-U test.

Multivariate regression of size on shape for dentinal crowns was performed to analyse

allometry and showed that only 1.9% and 2.1% of the total P3, respectively P4 shape variance

could be explained by size.

Non-metric traits

Table 4 reports the prevalence of the premolar mesial and distal accessory cusps, accessory

ridges and essential crest expressions on both the OES and the EDJ. Mesial and distal accessory

cusps were present in only 10% of our sample. None of the Southeast Asian individuals exhib-

ited this feature, and within the European, Near Eastern, South American and African samples,

it could only be detected in a few individuals either on the OES or the EDJ of the P3 or P4.

Fig 3. 2B-PLS plot capturing the covariation of upper third and fourth premolar dentinal crowns (dataset
combining enamel-dentine junction and cervical outline; the warping shows the real shape variation in occlusal
and distal view at the extremities of the range of distribution).

https://doi.org/10.1371/journal.pone.0301482.g003

Table 2. Results of the 2B-PLS (single warp score 1) for the upper third and fourth premolars (P3 and P4, respec-
tively). (EDJ = enamel-dentine junction).

Pairwise correlation (r1) % of the total covariance

P3 dentinal crown P3 dentinal crown

P4 dentinal crown 0.83 81

P3 cervical outline P3 cervical outline

P3 EDJ 0.46 57

P4 cervical outline P4 cervical outline

P4 EDJ 0.56 70

https://doi.org/10.1371/journal.pone.0301482.t002
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Various expressions of the accessory cusps on the OES were three times more frequent in P4s

(12%) than in P3s (4%). Only five of these specimens expressed also an elevation of the mar-

ginal ridge on the EDJ. Interestingly, three accessory cusps were detected on the EDJ of the

P3s and another three in the P4s, without any sign of expression on the OES.

MxPARs were present in 55% of P3s and 65% of P4s. In P3s, a distally located accessory

ridge occurred commonly on both OES and EDJ. Conversely, most of the P4 specimens

expressed accessory ridges in both mesial and distal positions. The highest frequency of expres-

sion of accessory ridges in P3s was found in South Americans (50% on the OES, 75% on the

EDJ), while in P4s, Europeans possessed most MxPARs (76% on the OES, 70% on the EDJ).

Essential crest expression was homogenously distributed on both surfaces in both tooth

types. Approximately 90% of the individuals possessed a simple essential crest, separated by

the sagittal sulcus. The prevalence of the transverse crests and bifurcated crest expressions

were comparable among the samples in both tooth types on both OES and EDJ.The results of

the Chı́2 test performed for every non-metric trait in both tooth types for both surfaces showed

no significant difference in trait occurrence.

Discussion

Dental development is generally under strong genetic influence resulting in constrained mor-

phological variation of the dentition [71–73]. The applied 3D methodology delivered fine-

scale results about the morphometric variation of premolars’ crowns. Maxillary premolars var-

ied mainly in the length-to-breadth ratio of the occlusal aspect as well as the height of the den-

tinal crown and horn tips. A broader tooth shape is associated with short crowns but higher

Fig 4. Boxplots of the natural logarithm of centroid sizes from the dentinal crown.

https://doi.org/10.1371/journal.pone.0301482.g004

Table 3. Results of the Kruskal–Wallis test. Differences in dental sizes (expressed by the logarithm of Centroid Sizes) for the upper third and fourth premolars (P3 and
P4, respectively) among all populations across the sample. (EDJ = enamel-dentine junction).

P3 P4

Kruskal-Wallis test p-value Kruskal-Wallis test p-value

Cervical outline 21.20 < 0.001 19.51 < 0.001

Crown outline 25.54 < 0.001 14.06 0.015

EDJ 17.88 0.003 10.30 0.067

Dentinal crown 14.88 0.01 16.05 0.006

https://doi.org/10.1371/journal.pone.0301482.t003
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Table 4. List of non-metric traits scored for the third and fourth premolars (P3 and P4, respectively). (Numbers 0,1,2 and 3 refer to the manifestation (see Methods);
n = Number of individuals).

Prevalence (%)

P3 Trait
expression

Oceania
(n = 13)

South America
(n = 16)

Europe
(n = 16)

Africa
(n = 14)

Southeast Asia
(n = 3)

Near East
(n = 13)

Complete
sample

Accessory cusp Enamel 0 85 100 100 100 100 93 96

1 7 - - - - 7 3

2 8 - - - - - 1

3 - - - - - - -

Dentine 0 93 93 93 93 100 100 95

1 7 7 7 - - - 4

2 - - - 7 - - 1

3 - - - - - - -

Accessory ridges
(MxPAR)

Enamel 0 69 50 44 36 67 39 48

1 - - - 7 - 15 4

2 8 31 25 43 33 15 25

3 23 19 31 14 - 31 23

Dentine 0 69 25 31 57 100 38 45

1 - 6 6 7 - 8 5

2 31 25 44 36 - 16 30

3 - 44 19 - - 38 20

Essential crest Enamel 0 77 93 100 72 67 100 88

1 15 7 - 14 - - 7

2 8 - - 14 33 - 5

Dentine 0 77 76 93 72 67 100 83

1 15 12 7 14 - - 9

2 8 12 - 14 33 - 8

P4 Trait
expression

Oceania
(n = 13)

South America
(n = 16)

Europe
(n = 16)

Africa
(n = 14)

Southeast Asia
(n = 3)

Near East
(n = 13)

Complete
sample

Accessory cusp Enamel 0 62 86 100 93 100 93 88

1 31 - - 7 - - 7

2 7 7 - - - 7 4

3 - 7 - - - - 1

Dentine 0 84 93 100 73 100 100 91

1 8 - - 27 - - 7

2 8 - - - - - 1

3 - 7 - - - - 1

Accessory ridges
(MxPAR)

Enamel 0 31 47 24 27 34 69 38

1 8 - 6 13 33 8 8

2 15 13 29 13 33 15 18

3 46 40 41 47 - 8 36

Dentine 0 86 13 30 40 67 54 35

1 8 - - 20 - 8 5

2 8 7 23 7 33 15 14

3 - 80 47 33 - 23 46

Essential crest Enamel 0 100 100 93 74 67 92 91

1 - - - 13 - 8 4

2 - - 7 13 33 - 5

Dentine 0 93 100 88 74 100 84 88

1 - - 12 13 - 8 7

2 7 - - 13 - 8 5

https://doi.org/10.1371/journal.pone.0301482.t004
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horn tips positioned closer to each other. On the contrary, narrow teeth displayed a tall crown

but lower horn tips more apart from each other.

Based on our analyses of the dentinal crown, it was evident that the populations in our sam-

ple could not be characterized or distinguished by their upper premolars crown morphology,

despite their different population history. A subtle divergence could be detected visually in the

PCA plots for the P4 dentinal crown, separating Southeast Asians from Oceanians and South

Americans, but a statistical shape difference between these groups could not be confirmed by

the PERMANOVA. Nonetheless, it is interesting that similar observations were made for

lower premolars [54]. However, this outcome should be confirmed using a larger sample since

our results are based on 3 specimens only. Additionally, the overlap between South American

and Near Eastern populations was minor. Prevailing short and broad posterior dental crown

types including its extreme expressions, like in the Near Easterners, were already described for

African populations [46,54]. As mentioned above, small sample sizes of various populations

have to be acknowledged, as well as the different number of sub-samples within geographical

populations. Our goal for this study was to create a sample containing as much diversity as

possible, thus including more sub-samples from geographical regions. In this sense, our sam-

ple composition works against its harmonization, nevertheless we find that these world popu-

lations have very similar upper premolar shape variation. Since our research requires dental

specimens with minimal signs of wear and abrasion, no dental treatments, and high-resolution

scanning, living or recently deceased individuals are not usable for our study. While these are

restrictions not in our favour, our approach allowed for an accurate 3D shape analyses of den-

tinal crowns, which are not accessible with traditional methods.

Compared to the dentinal crown and EDJ analyses, PERMANOVA analysis of the 2D out-

line datasets, revealed a couple of significant differences in group centroids in five out of sixty

pairs of populations (Supplementary Table B in S1 File). Since the cervical and crown outline

analyses do not contain 3D information, and thus are more similar to traditional linear mea-

surements that have been proven nonreliable in population variation analyses [14], we suggest

using them only in the absence of combined datasets rather than alone.

We interpret the strong covariation between P3 and P4 shapes (r1 = 0.83), both either

broad and short, or narrow and tall, as a sign of a strong genetic component during tooth

development in an environment with shared genetic influence [72,73]. This high correlation

might be surprising, considering that P3s show a rather prominent buccal cusp and share the

tearing function with the canines, while the P4s’ more even cusps engage in grinding activities,

like in molars [8]. These are the first 3D outcomes on upper premolars and they are in agree-

ment with those obtained for the lower premolars using a similar protocol [54], showing the

same general pattern of variation. Thus, combining the evidence from our study and that of

Krenn et al. [54], the dentinal crowns of both upper and lower P3s and P4s showed an exten-

sive overlap between diverse populations that vary from short and broad to tall and narrow.

European and Southeast Asian upper and lower premolars expressed extreme variations of the

tall crown variant in both analyses. However, we found the relative cusp position of both cusps

in upper P4s rather stable, with changes observable mainly in horn height, while in lower P4s,

significant variation of the mesio-distal position of the lingual cusp was observed. The covaria-

tion expressed by upper and lower premolars can be explained by the need for morphological

compatibility to guarantee stable occlusion and efficient function [6]. Since only the buccal

cusp of the lower premolars is engaged at maximum intercuspation of the dentitions, the lin-

gual cusp is less morphologically constrained [6,9,74]. Differently, in upper premolars both

cusps are directly involved in occlusion [6], thus a lower degree of morphological variation

might be expected. Consequently, the lingual aspect of the buccal cusp (paracone) and both
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the lingual and buccal aspects of the lingual cusp (protocone) should be more stable than other

parts of the crown [3,6] because they are directly involved in occlusion.

Such constraints in shape variation could also be reflected in more local features. In our

non-metric trait analysis, we observed a higher rate of trait expression on the paracone than

on the protocone, in the central groove and on the marginal ridges, which would be in line

with the predictions by Kraus et al. [6]. However, we also found considerable variation in the

lingual facet of the paracone. Therefore, not all of our results support the assumption of higher

morphological conservation due to functional constraints. On the other hand, non-metric

traits are understood to be under strong genetic control and vary neutrally in comparison to

metric traits [14,75], therefore we should not expect them to be strictly related to function

only. Our findings were mostly consistent with those of the previous studies on non-metric

traits focusing on the OES [2,3,13,21–23,27,28,68,76–78] as well as studies based on OES and

EDJ [48–51,69]. However, in contrast to our results, Sakai et al. [69] reported that mesial and

distal accessory cusps occurred more often in P3s than in P4s, working, however, only on Japa-

nese dentitions. Overall, the rate of expression of accessory cusps in different human popula-

tions is heterogeneous, most of them observed in Oceanian individuals, while Southeast

Asians and Europeans showed nearly none. Our findings are in agreement with Xing et al.

[49], who found that accessory cusps on the OES are not necessarily associated with elevations

on the EDJ. Turner et al. [68] also stated that there is no dentine involvement necessary in the

formation of mesial and distal accessory cusps. Uneven enamel disposition can also corre-

spond to accessory cusps, as well as other features displayed on the OES [38,79,80]. Similar pat-

terns can be found in the derived forms of the essential crest that are more common in the

African sample. We detected all different manifestations of the essential crest on the EDJ and

OES of both tooth types; however, more often in P3s. Accessory ridges are also equally present

on the EDJ and OES, where more than half of the P3s in our sample and nearly two-thirds of

the P4s possessed an accessory ridge. This is consistent with the results of Burnett et al. [70]

and Mihailidis et al. [28], which were, however, solely based on the OES. In agreement with

these studies, accessory ridges in our sample were primarily present on the distal aspect of the

tooth. In P3s, we observed the highest occurrence of accessory ridges in Europeans, followed

by Africans and Near Easterners. In contrast to our work, Burnett et al. [70] found the highest

frequency of accessory ridges in North-East Asian or Asian-derived populations and lower fre-

quencies in Africans and Europeans. For the P4s, again, the distribution of accessory ridges in

our sample was unequal, while Burnett et al. [70] described a relatively even distribution across

the whole sample.

Regarding premolar crown size, Townsend’s [81] findings showed a significant sexual

dimorphism for both maxillary premolars in the mesiodistal and buccolingual crown dimen-

sions, with females possessing more broad/circular tooth crowns and males more narrow/

ellipsoid crowns. We could not verify these results in our study due to the lack of reliable infor-

mation about sex for most of our individuals. However, with regard to dental size, as repre-

sented by the lnCS, we did not find significant differences between males and females for the

upper P4s, which parallels the results in Krenn et al. [54] for the lower premolars from a par-

tially overlapping human sample. Conversely, we found significant differences for the upper

P3s, but since our sample included more males (n = 26) than females (n = 9) our results should

be interpreted with caution because of the uneven composition of the sample. According to

Brace et al. [82] and Brace and Mahler [83], there is a gradient in increasing tooth size from

north to south of the world. We indeed observed the smallest dental size in Europeans, while

the largest teeth of our sample belonged to the Oceanian population. However, we also found

African teeth of small size, which would not support Brace’s theory, but is in agreement with

Hanihara and Ishida [24], who found sub-Saharan African dental sizes close to the average.
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Regardless of the unverifiable impact of sex on our results, we can state that static allometry in

maxillary premolars is generally quite small in our sample. The effect of size was also small,

explaining about 2% of the shape variation within our sample.

Our study generally demonstrated a generally large morphological variation of modern

human upper premolars, yet a high correlation between first and second upper premolar. This

variation does not seem to be the result of geographical separation in the course of modern

human evolution, since most studied populations from different continents, climatic zones

and environments did not differ from each other strong enough to be discriminated based on

their upper premolar morphology. Our results instead show that the upper premolar morpho-

logical variation of recent modern humans is very similar among world populations, and thus,

based on our data, we accept the tested hypothesis that the ranges of upper premolar shape var-

iation of various human populations overlap and they cannot be distinguished based on their

upper premolar’s dentinal crown morphology only. For evolutionary studies, comparing mod-

ern humans with archaic hominins or non-human primates, this means that the geographic

composition of the comparative modern human sample is of lesser importance. More work is

needed to unravel the mechanisms behind this concordance of premolar shape independent of

geographical origin.
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Investigation: Petra G. Šimková, Lisa Wurm.
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