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ABSTRACT

Introduction: There is accumulating cross- sectional evidence of decreased within- network resting- state functional con-

nectivity (RSFC) and increased between- network RSFC when comparing older to younger samples, but results from 

longitudinal studies with healthy aging samples are sparse and less consistent. Some of the variability might occur due 

to differences in network definition and the fact that most atlases were trained on young adult samples. Applying these 

atlases to older cohorts implies the generalizability of network definitions to older individuals. However, because age is 

linked to a less segregated network architecture, this assumption might not be valid. To account for this, the Atlas55+ 

(A55) was recently published. The A55 was trained on a sample of people over the age of 55, making the network solu-

tions suitable for studies on the aging process. Here, we want to compare the A55 to the popular Yeo- Krienen atlas to 

investigate whether and to what extent differences in network definition influence longitudinal changes of RSFC. For this 

purpose, the following networks were investigated: the occipital network (ON, “visual network”), the pericentral network 

(PN, “somatomotor network”), the medial frontoparietal network (M- FPN, “default network”), the lateral frontoparietal 

network (L- FPN, “control network”), and the midcingulo- insular network (M- CIN, “salience network”).

Methods: Analyses were performed using longitudinal data from cognitively healthy older adults (N = 228, mean age 

at baseline = 70.8 years) with five measurement points over 7 years. To define the five networks, we used different 

variants of the two atlases. The spatial overlap of the networks was quantified using the dice similarity coefficient 

(DSC). RSFC trajectories within networks were estimated with latent growth curve models. Models of varying com-

plexity were calculated, ranging from a linear model without interindividual variability in intercept and slope to a qua-

dratic model with variability in intercept and slope. In addition, regressions were calculated in the models to explain 

the potential variance in the latent factors by baseline age, sex, and education. Finally, the regional homogeneity and 

the silhouette coefficient were computed, and the spin test and Wilcoxon- Mann- Whitney test were used to evaluate 

how well the atlases fit the data.

Results: Median DSC across all comparisons was 0.67 (range: 0.20– 0.93). The spatial overlap was higher for primary 

processing networks in comparison to higher- order networks and for intra- atlas comparisons versus inter- atlas com-

parisons. Three networks (ON, PN, M- FPN) showed convergent shapes of trajectories (linear vs. quadratic), whereas 

the other two networks (L- FPN, M- CIN) showed differences in change over time depending on the atlas used. The 

95% confidence intervals of the estimated time and age effects overlapped in most cases, so that differences were 

mainly evident regarding the p- value. The evaluation of the fit of the atlases to the data indicates that the Yeo- Krienen 

atlas is more suitable for our dataset, although it was not trained on a sample of older individuals.

Conclusions: The atlas choice affects the estimated average RSFC in some networks, which highlights the impor-

tance of this methodological decision for future studies and calls for careful interpretation of already published results. 
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1. INTRODUCTION

The process of aging is accompanied by changes in the 

functional network architecture of the human brain. Over-

all, there is accumulating evidence for decreased within- 

network connectivity and increased between- network 

connectivity in old compared to young adulthood ( Deery 

 et al.,  2023). However, results have been less consistent in 

longitudinal studies with older adult samples ( Damoiseaux, 

 2017). Among others, methodological differences between 

studies hinder generalizable conclusions about aging- 

related changes ( Jockwitz  &  Caspers,  2021). Given that 

this field of research is still comparatively young, best 

practice guidelines or standards have not yet been estab-

lished. Results may, for example, depend on the spatial 

definition of the networks and their resolution.

Commonly used methods to estimate resting- state 

functional connectivity (RSFC) and to extract functional 

networks encompass seed- based analysis, independent 

component analysis (ICA), and application of graph the-

ory ( Lee  et al.,  2013;  Smitha  et al.,  2017;  van  den  Heuvel 

 &  Hulshoff  Pol,  2010). In addition, there are many other 

machine- learning techniques that can be used to pro-

cess RSFC data ( Khosla  et  al.,  2019). Based on these 

methods, several large- scale brain networks have been 

previously described. Some of the reported networks are 

publicly available in the form of predefined atlases that 

can be used to calculate the RSFC between voxels or 

brain regions (also called nodes or parcels). However, 

these atlases often vary with respect to three major 

aspects. First, there is variation in the number of pre-

defined networks. For example, atlases with 10 (  Smith 

 et al.,  2009), 12 ( Gordon  et al.,  2016), 13 ( Doucet  et al., 

 2018), or 14 ( Shirer  et al.,  2012) networks were reported. 

Some atlases even provide networks at different resolu-

tions, for example, seven and 17 networks ( Yeo  et  al., 

 2011) or 5 and 15 networks ( Doucet  et al.,  2021). Second, 

the topography of the networks differs. Although the 

atlases include networks with the same label, the actual 

network definitions differ with respect to the brain areas 

involved. For instance,  Doucet  et al.  (2019) compared six 

different atlases and found that the spatial overlap of net-

works with homonymous names ranged from 17% to 76%, 

depending on the network studied, with higher- order 

networks showing generally low inter- atlas similarity 

( Doucet  et al.,  2019). Third, the labeling of the networks is 

inconsistent. In their meta- analysis,  Witt  and  colleagues 

 (2021) reported nine different labels for networks that 

appear to be involved in executive functions, with spa-

tially similar networks sometimes being labeled differ-

ently and spatially different networks being labeled the 

same across studies ( Witt  et al.,  2021).

To provide some guidance and harmonization across 

the different atlases, parcellations, and labels,  Uddin  and 

 colleagues  (2019) proposed a standardization of the tax-

onomy, including six major networks that can be further 

divided into subnetworks: the occipital network (ON, 

“visual network”), the pericentral network (PN, “somato-

motor network”), the midcingulo- insular network (M- CIN, 

“salience network”), the dorsal frontoparietal network 

(D- FPN, “attention network”), the lateral frontoparietal 

network (L- FPN, “control network”), and the medial fron-

toparietal network (M- FPN, “default network”) ( Uddin 

 et al.,  2019). But even though these networks have been 

reliably detected in a variety of studies, there is no abso-

lute truth regarding the number of (sub)networks or the 

definition of the brain areas involved. Consequently, the 

use of brain atlases has both advantages and disadvan-

tages. On the one hand, they reduce the complexity of 

the data (e.g., by combining voxels into nodes and/or 

networks), and, therefore, greatly simplify the compari-

son of results with previously published findings ( Glasser 

 et  al.,  2016). On the other hand, the atlases may not 

explain the data very well because they are overfitted 

(e.g., due to small samples) or because they are based on 

a population that does not fit the data at hand ( Arslan 

 et al.,  2018;  Khosla  et al.,  2019;  Särelä  &  Vigário,  2003). 

The latter is particularly important in the context of aging, 

considering that most available atlases were created on 

the basis of young adult samples, typically between the 

ages of 18 and 35 ( Doucet  et al.,  2019) (see Supplemen-

tary Table 1 for an overview).

The application of these atlases to older cohorts 

implies the generalizability of network solutions to people 

of older age. However, given that old age is associated 

with a less segregated network architecture ( Deery  et al., 

 2023;  Jockwitz  &  Caspers,  2021), this assumption is not 

Ultimately, there is no standard about how to operationalize networks. However, future studies may use and com-

pare multiple atlases to assess the impact of network definition on outcomes. Ideally, the fit of the atlases to the 

data should be assessed, and heuristics such as “similar age range” or “frequently used” should be avoided when 

selecting atlases. Further, the validity of the networks should be evaluated by computing their associations with 

behavioral measures.

Keywords: brain networks, resting- state fMRI, brain atlases, healthy aging, longitudinal study
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necessarily valid. Indeed,  Malagurski  et  al.  (2020b) 

reported a moderate age effect on promiscuity in the 

M- FPN, suggesting a tendency for brain regions of the 

M- FPN to segregate from their “actual” network and con-

nect to other networks with increasing age ( Malagurski 

 et al.,  2020b). Further,  Doucet  et al.  (2021) reported spa-

tial differences when comparing older versus younger 

cohorts using an ICA approach. While the posterior 

medial temporal regions were assigned to the M- FPN in 

younger adults, these regions were assigned to the 

L- FPN in older individuals ( Doucet  et al.,  2021).

From our perspective, to better understand age- 

related changes in functional brain networks, it is import-

ant to assess the impact of differences in spatial network 

definition on the actual outcomes of interest. Therefore, 

besides the quantification of spatial overlap between dif-

ferent atlases and their variants, in the current study we 

primarily explore if and how the differences in network 

definitions affect the estimated trajectories and, thus, 

the conclusions about longitudinal changes in RSFC in 

healthy older adults. To do so, we use two atlases and 

variants thereof to extract RSFC in five different networks 

from five measurement occasions covering an observa-

tions period of 7 years in a sample of cognitively healthy 

older adults. On the one hand, we apply the network defi-

nitions as implemented in the Yeo- Krienen (YK) atlas ( Yeo 

 et al.,  2011), which have been the most widely used par-

cellations in the literature on aging effects on functional 

network architecture to date (see Supplementary Fig. 1). 

On the other hand, we apply the recently published 

Atlas55+ (A55), which is based on three cohorts of indi-

viduals aged 55- 95  years and therefore matches the 

present dataset in terms of age ( Doucet  et al.,  2021).

We expect to replicate smaller network overlaps for 

higher- order, as compared to primary processing net-

works. Furthermore, we hypothesize a larger network 

overlap between different variants of the same atlas 

compared to the cross- atlas comparisons. With respect 

to the aging- related changes, we expect that the differ-

ences in network definitions will entail differences in the 

estimated age and time effects, with the scale of differ-

ences being a function of spatial overlap of the net-

work definitions. The methodological procedure and the 

hypotheses were pre- registered before conducting any 

analyses (https://osf . io / 6vrmb). The additional analyses 

in this study (regional homogeneity, silhouette coeffi-

cient, and pooled age and time effects) are labeled as 

post- hoc analyses.

The results are intended to help estimate the influence 

of atlas choice on age and time effects and, with this, we 

hope to inspire the future development of guidelines on 

the selection of suitable parcellation in the context of net-

work neuroscience and aging.

2. METHODS

2.1. Participants

Data from five measurement occasions (i.e., baseline, 

1- year follow- up, 2- year follow- up, 4- year follow- up, 7- year 

follow- up) were taken from the Longitudinal Healthy 

Aging Brain Database Project (LHAB; Switzerland) con-

ducted at the University of Zürich (Zöllig et al., 2011). At 

each measurement occasion, participants underwent brain 

imaging and completed an extensive battery of neuro-

psychological, psychometric, and motor tests. Inclusion 

criteria for study participation at baseline were age ≥ 64, 

right- handedness, fluent German language proficiency, a 

score of ≥ 26 on the Mini Mental State Examination 

(MMSE;  Folstein  et al.,  1975), no self- reported neurologi-

cal disease of the central nervous system, and no contra-

indications to magnetic resonance imaging (MRI). The 

study was approved by the ethical committee of the can-

ton of Zurich, and all participants gave informed consent 

in accordance with the declaration of Helsinki.

The LHAB dataset includes 232 participants (age at 

baseline: M = 70.85, range = 64– 87; females: 114). Self- 

reported physical and mental health of the sample at 

baseline, as measured by the SF- 12 (  Ware  et al.,  1996), 

were 50.8 ±  7.4 (M ± SD) and 54.8 ±  6.2, respectively, 

which indicates above- average health compared to a 

normative population ( Ware  et  al.,  1995). As expected, 

these general SF- 12 health indicators declined slightly 

over time, but still indicated above- average health at 

7- year follow- up (physical health score: 48.4 ± 8.4, men-

tal health score: 52.9  ±  7.7). At 7- year follow- up, the 

dataset still comprised 53.88% of the baseline sample 

(n = 125), of which 95% had complete data for resting- 

state fMRI (n = 119). Selectivity analysis revealed that the 

sample of the 7- year follow- up did not substantially differ 

from the baseline sample in terms of age, sex, education, 

or physical and mental health (Supplementary Table 2).

We defined outliers based on the mean framewise 

displacement (FD) ( Power  et al.,  2012) to increase the 

quality of the data and to minimize the influence of 

motion on results. The fMRI data were excluded if the 

mean FD values at any time point were more than three 

absolute median deviations (MAD) above the median 

( Leys  et al.,  2013). A total of n = 40 observations were 

excluded across all subjects and time points (baseline: 

14, 1- year follow- up: 5, 2- year follow- up: 5, 4- year 

 follow- up: 5, 7- year follow- up: 11). This resulted in a 

sample of 228 participants (age at baseline: M = 70.79, 

range = 64- 87; females: 111) with at least one measure-

ment occasion (number of participants: baseline = 209, 

1- year follow- up = 201, 2- year follow- up = 185, 4- year 

follow- up  =  157, 7- year follow- up  =  108). Of the 228 

participants, 90 had five time points, 61 had four time 
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points, 34 had three time points, 22 had two time points, 

and 21 participants had only one time point.

2.2. MRI acquisition

MRI scans were acquired at the University Hospital of 

Zurich on a Philips Ingenia 3 T scanner (Philips Medical 

Systems, Best, The Netherlands) using the dsHead 15- 

 channel head coil. T1‐weighted (T1w) structural images 

were acquired using a gradient echo sequence (3D turbo 

field echo, 160 slices, TR  =  8.18  ms, TE  = 3.70  ms, 

FOV = 240 × 240 × 160 mm, flip angle = 8, isotropic voxel 

size = 1.0 × 0.938 × 0.938 mm3). Two hundred and twenty‐

five multislice T2*‐weighted volumes were retrieved within 

8 min with a gradient echo‐planar sequence using trans-

verse slice orientation (43 slices; voxel size: 3.5 × 3.44 × 

3.44  mm3; TR  =  2000 ms; TE  =  21 ms; flip angle  =  76; 

FOV = 220 × 220 × 150 mm).

2.3. MRI preprocessing

Preprocessing was performed with the fmriprep BIDS 

app (v.1.0.5) ( Esteban  et al.,  2019), a Nipype ( Gorgolewski 

 et al.,  2011,  2018) based tool. The T1w volume was cor-

rected for INU (intensity nonuniformity) applying the N4 

Bias Field Correction v.2.1.0 ( Tustison  et al.,  2010) and 

skull- stripped using Advanced Normalization Tools 

(ANTs) v.2.1.0 (OASIS template). Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template ver-

sion 2009c ( Fonov  et al.,  2009) was performed by non-

linear registration with the antsRegistration tool of ANTs 

v.2.1.0 ( Avants  et al.,  2008), using brain- extracted versions 

of both T1w volume and template. Segmentation of 

brain tissue into cerebrospinal fluid (CSF), white matter 

(WM), and gray matter (GM) was performed on brain- 

extracted T1w using FAST (  Zhang  et  al.,  2001) (FSL 

v5.0.9). Functional data were slice time corrected with 

3dTshift from AFNI v.16.2.07 ( Cox  &  Hyde,  1997) and 

motion corrected with mcflirt ( Jenkinson  et  al.,  2002). 

This was followed by co- registration to the correspond-

ing T1w using boundary- based registration ( Greve  & 

 Fischl,  2009) with nine degrees of freedom, using flirt 

(FSL). Motion correcting transformations, BOLD- to- T1w 

transformation, and T1w- to- template (MNI) warp were 

concatenated and applied in a single step using antsAp-

plyTransforms (ANTs v.2.1.0) using Lanczos interpolation.

Correlation matrices were estimated with the nilearn 

Python package (v. 0.7.0) ( Abraham  et  al.,  2014). The 

nuisance regressors were defined according to the 

36- parameter model ( Ciric  et  al.,  2017): six motion 

parameters, signals estimated from CSF and WM, global 

signal, their derivatives, quadratic terms, and squares of 

derivatives were regressed out from functional data sep-

arately for each run. The rs- fMRI data were temporally 

bandpass filtered in the 0.01– 0.1 Hz frequency range. We 

applied simultaneous filtering/nuisance regression, as it 

has been reported to reduce the correlation between 

time- series fluctuations and motion ( Hallquist  et  al., 

 2013). Global signal regression was performed in accor-

dance with previous studies on aging ( Chan  et al.,  2014; 

 Chong  et al.,  2019;  Malagurski  et  al.,  2020a;  Ng  et al., 

 2018), as this has been shown to be effective in the 

reduction of the effects of physiological signals and head 

motion ( Lydon- Staley  et al.,  2019).

2.4. Network definition and taxonomy

We used the following five networks according to the 

A55 ( Doucet  et al.,  2021) and the YK ( Yeo  et al.,  2011): 

ON, PN, M- FPN, L- FPN, and M- CIN. Note that these 

labels are in line with the taxonomy proposed by  Uddin 

 et al.  (2019), which aims to drive a unified labeling of net-

works. For information of core regions and equivalent 

network labels in the atlases, see Table 1.

We chose the A55 because it was generated based on 

three cohorts of older adults and consequently matches 

the sample used in the present analysis in terms of age. 

Furthermore, we chose the YK for comparison because it 

is the most used atlas in the field of network neurosci-

ence in healthy aging. Supplementary Text 1 and Supple-

mentary Figures 1- 3 provide an overview of a literature 

review we conducted on the topic of resting- state net-

works and healthy aging to illustrate the range of meth-

odologies used.

For A55, we used both available atlas variants: the 

five- network variant (A55- N5) comprising ON, PN, 

M- FPN, L- FPN, and M- CIN and the 15- network variant 

(A55- N15), in which the five networks are divided into 

subnetworks (see Table  2 and Supplementary Fig.  4). 

Note that we are referring to variants rather than resolu-

tion because with the A55- N15 we are not looking at the 

individual subnetworks. Instead, the subnetworks are 

combined to the five main networks. To calculate within- 

network RSFC, we used the division into nodes accord-

ing to the automated anatomical labeling 3 atlas (AAL3) 

( Rolls  et al.,  2020), which consists of 166 nodes in total. 

We therefore multiplied the binary masks of the networks 

by the AAL3 atlas to obtain distinct nodes. This resulted 

in a total number of 411 nodes for the A55- N5 and 294 

for the A55- N15.

Similarly, we used both the seven (YK- N7) and 17 net-

work (YK- N17) variants of the YK atlas. Besides ON, PN, 

M- FPN, L- FPN, and M- CIN, the 7- network variant addi-

tionally contains a dorsal attention and a limbic network. 
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The latter, however, were not considered in the current 

analyses. As for the A55- N15, networks are split- up into 

subnetworks in the 17- network variant (see Table  2). 

Here again, the subdivisions for each network have been 

combined into one network. To calculate the within- 

network RSFC, we applied the available divisions into 

400 nodes for the seven- network- solution (YK- N7- 400) 

and the division into 300 nodes for the 17- network- solution 

(YK- N17- 300) according to the Schaefer atlas ( Schaefer 

 et  al.,  2018). The number of nodes was chosen to be 

equal to the total number of nodes used in the A55. 

However, to additionally assess the impact of the num-

ber of nodes, we also computed within- network RSFC 

using the 100 (YK- N7- 100) and 200 (YK- N7- 200) nodes 

for the five- network resolution of the YK. A visualization 

of the networks and their overall overlap can be found in 

Figure 1. Supplementary Figure 4 shows an exemplary 

visualization of the occipital subnetworks of the A55- N15 

and YK- N17 and their nodes. Mean within- network RSFC 

was estimated by averaging the correlations between all 

nodes belonging to the network of interest and trans-

forming them into T- scores (M = 50, SD = 10 at baseline). 

This resulted in a total of six datasets (two for A55 and 

four for YK) for each of the five networks.

2.5. Statistical analysis

The spatial overlap of the networks was quantified based 

on the dice similarity coefficient (DSC) ( Dice,  1945). The 

DSC is defined as twice the union of the voxels (voxels 

Table 1. Anatomical network labels and corresponding core regions according to  Uddin  et al.  (2019), and labels 

according to the atlases used.

Anatomical label Core regions

Label in  

 Doucet  et al.  (2021)

Label in  

 Yeo  et al.  (2011)

Occipital Network (ON) Occipital Lobe, Striate Cortex, Extrastriate Cortex Visual Network Visual Network

Pericentral Network (PN) Motor and Somatomotor Cortices, Anterior and  

Posterior Central Sulcus, Juxtapositional Lobule

Sensorimotor 

Network

Somatomotor 

Network

Medial Frontoparietal 

Network (M- PFN)

Medial Prefrontal Cortex, Posterior Cingulate Cortex, 

Inferior Parietal Lobule, Inferior Frontal Gyrus,  

Middle Temporal Gyrus, Superior Temporal Sulcus,  

Parahippocampal Cortex

Default Mode 

Network

Default Mode 

Network

Lateral Frontoparietal 

Network (L- PFN)

Lateral Prefrontal Cortex, Middle Frontal Gyrus,  

Anterior Inferior Parietal Lobe, Midcingulate Gyrus

Executive Control 

Network

Frontoparietal 

Network

Midcingulo- insular  

Network (M- CIN)

Bilateral Anterior Insula, Anterior Midcingulate  

Cortex

Salience Network Ventral Attention 

Network

Table 2. Number and labels of subnetworks for Atlas55+ with 15 networks (A55- N15) and Yeo- Krienen atlas with  

17 networks (YK- N17- 300).

Atlas

Network A55- N15 YK- N17- 300

Occipital Network (ON) Subnetwork 1: Medial Visual 

Subnetwork 2: Posterior Visual

Subnetwork 1: Visual Central 

Subnetwork 2: Visual Peripheral

Pericentral Network (PN) Subnetwork 1: Ventral SMN 

Subnetwork 2: Supplementary Motor Area 

Subnetwork 3: Left SMN 

Subnetwork 4: Auditory

Subnetwork 1: Somatomotor A 

Subnetwork 2: Somatomotor B

Medial Frontoparietal Network (M- PFN) Subnetwork 1: Main DMN 

Subnetwork 2: Anterior DMN 

Subnetwork 3: Language 1 

Subnetwork 4: Language 2

Subnetwork 1: Default A 

Subnetwork 2: Default B 

Subnetwork 3: Default C

Lateral Frontoparietal Network (L- PFN) Subnetwork 1: Right ECN 

Subnetwork 2: Left ECN 

Subnetwork 3: Medial Temporal Lobe 

Subnetwork 4: Dorsal Attention

Subnetwork 1: Control A 

Subnetwork 2: Control B 

Subnetwork 3: Control C

Midcingulo- insular Network (M- CIN) Subnetwork 1: Salience Subnetwork 1: Ventral Attention A 

Subnetwork 2: Ventral Attention B

An exemplary visualization of the occipital subnetworks can be found in Supplementary Figure 4.



6

P.F. Deschwanden, A.L. Piñeiro, I. Hotz et al. Imaging Neuroscience, Volume 2, 2024

selected as belonging to the network in both atlases) 

divided by the sum of the voxels from the two atlases 

marked as belonging to the network. It provides informa-

tion about the extent to which the networks are spatially 

similar, with 0 indicating no overlap and 1 indicating per-

fect overlap. We calculated a Kruskall- Wallis test ( Kruskal 

 &  Wallis,  1952) to make comparisons between inter-  and 

intra- atlas DSC, and between the DSC of higher- order 

and primary processing networks. We also applied post- 

hoc Wilcoxon- Mann- Whitney tests ( Mann  &  Whitney, 

 1947;  Wilcoxon,  1947) with Bonferroni correction to com-

pare the networks individually.

The longitudinal data were analyzed with latent growth 

curve (LGC) models in R version 4.1.0 ( R  Core  Team, 

 2020) using the lavaan package version 0.6- 12 ( Rosseel, 

 2012). For each of the 30 datasets (5 networks * 6 opera-

tionalizations), we computed five models of varying com-

plexity (for Visualization, see Fig.  2). Our aim was to 

describe the data over time as simple as possible, but as 

complex as necessary. We therefore varied two factors 

that are relevant for longitudinal modeling: (1) Is the 

change over time linear or nonlinear? (2) Is there variabil-

ity between individuals (in the change over time), or is the 

main effect sufficient to describe the data? The first 

Fig. 1. The five binarized brain networks by atlas and overall overlap between the different atlases. The overlap 

corresponds to the combination of the binarized networks. Light yellow reflects high spatial overlap, whereas darker red 

represents low spatial overlap. ON = occipital network; PN = pericentral network; M- FPN = medial frontoparietal network; 

L- FPN = lateral frontoparietal network; M- CIN = midcingulo- insular network; A55 = Atlas55+; YK = Yeo- Krienen Atlas.
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model was the simplest, consisting of an intercept and a 

linear slope, with between- person variance and covari-

ance between intercept and slope set to zero (main 

effects only). The second model was an extension of the 

first, with between- person variance estimated only for 

the intercept (random effect). In addition, regressions of 

age at entry, sex, and education on the intercept were 

calculated to explain part of the potential variance in the 

intercept. In the third model, between- person variance 

was calculated for both the intercept and the linear slope 

(random effects), allowing the covariance between inter-

cept and linear slope to be estimated as well. Again, 

the regressions of age at entry, sex, and education on 

intercept and slope were calculated. The fourth model 

Fig. 2. Visualization of the five fitted models. Latent factors are shown as a circle and manifest variables as a square. 

Factor loadings for latent intercept were set to 1 and for latent slope to 0,1,2,4,7 (according to elapsed time since study 

start). Dashed lines for the latent variables mean that variance and the covariance were set to zero (models in the left 

column). Theta 1 refers to the error variance and was kept constant for each time point. FC = functional connectivity;  

Int = Intercept; Slo = linear Slope; Slo_q = quadratic Slope; FC = resting- state functional connectivity; tp = time point.
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consisted of an intercept and two slopes (linear and qua-

dratic), with between- person variance only allowed in the 

intercept, including the above- mentioned regressions on 

the intercept. The fifth model was the most complex, 

consisting of an intercept, a linear slope, and a quadratic 

slope. For all three factors, the between- person vari-

ances and the factor covariances were estimated, and 

regressions of the three covariates on the factors were 

included. The factor loadings for the latent variables were 

defined as follows: For the intercept, they were fixed at 

one (1,1,1,1,1); for the linear slope, they were fixed 

according to the time intervals (0,1,2,4,7); and for the 

quadratic slope, the factor loadings of the linear slopes 

were squared (0,1,4,16,49). The three time- invariant 

covariates were coded as follows: age at study entry 

(mean centered, 0  =  70.84  years), sex (0  =  female, 

1 = male), and education (0 = medium level). The residual 

means were fixed to zero, and the residual variance 

(theta) was held constant over time.

The evaluation of correspondence between different 

atlases followed a two- step approach. In the first step, 

we compared whether the same model best described 

the data. To find the best model, six goodness- of- fit cri-

teria were considered in each case. We used the ratio of 

the χ2- test to the respective degrees of freedom (χ
2

/df) 

( Jöreskog  &  Sörbom,  1993;  Marsh  &  Hocevar,  1985), the 

p- value of the Chi- Statistic, the Comparative Fit Index 

(CFI) ( Bentler,  1990), the root mean square error of 

approximation (RMSEA) ( Browne  &  Cudeck,  1992;  Steiger 

 &  Lind,  1984), the Bayesian Information Criterion (BIC) 

( Neath  &  Cavanaugh,  2012), and the occurrence of a 

Heywood case ( Kolenikov  &  Bollen,  2012).

The fit criteria were considered good when: χ
2

/ df ≤ 2, 

p- value > 0.05, CFI > 0.97, RMSEA ≤ 0.05, and accept-

able fit was defined as: χ
2

/df  ≤  3, p- value  >  0.01, 

CFI > 0.95, RMSEA ≤ 0.08 ( Hu  &  Bentler,  1998;  Jöreskog 

 &  Sörbom,  1993;  Schermelleh- Engel  et  al.,  2003). For 

each data set, the model that had the most indicators 

classified as good was chosen. If there were several 

models eligible, the one with the smallest BIC was cho-

sen, as BIC penalizes model complexity and therefore 

reduces overfitting ( Vrieze,  2012). Furthermore, model 

solutions with Heywood cases were considered as bad 

fit, as negative variances are not possible by definition 

and may be an indicator of model misspecification 

( Kolenikov  &  Bollen,  2012).

In the second step, we compared the 95% confidence 

intervals of the estimated parameters to see if estimates 

of intercepts, slopes, their potential correlations, and 

regressions overlapped between different atlases. The 

potential non- overlap may indicate that the estimation of 

a parameter differs systematically depending on the atlas 

used. Note that the procedure implies a p- value of 0.05 

and that no correction for multiple testing has been 

applied. So far, there is little consensus on how to correct 

p- values in complex structural equation models, which is 

why many researchers do not apply any correction 

( Cribbie,  2007;  C.  E.  Smith  &  Cribbie,  2013). The proposed 

adjusted Bonferroni correction by  Smith  and  Cribbie 

 (2013), which takes into account the covariance structure 

of the data, would lead to different thresholds of the  

p- values for each model, so that differences would no 

longer be attributable to the atlas choice alone, but also 

to the correction procedure of the p- values. Therefore, 

we decided to leave the p- value at 5%.

Because the selectivity analysis did not indicate a 

systematic drop- out, we assumed missing values to be 

missing at random (MAR) ( Little,  1995) and applied Full 

Information Maximum Likelihood Estimation (FIML) 

( Finkbeiner,  1979;  Schafer  &  Graham,  2002) to preserve 

as much data as possible.

2.6. Post- hoc analysis of atlas fit

To evaluate which atlas better suits our data, we addition-

ally calculated the widely used regional homogeneity 

(ReHo) coefficient ( Craddock  et al.,  2012;  Gordon  et al., 

 2016;  Zang  et  al.,  2004) and the silhouette coefficient 

( Rousseeuw,  1987;  Yeo  et  al.,  2011). For ReHo, the 

assumption is that a good parcellation is able to combine 

those voxels with similar BOLD signal over time into 

nodes, thus meaning that the BOLD signal in a voxel 

should behave similarly to the BOLD signal of the neigh-

boring voxels. We calculated the Kendall’s coefficient of 

concordance (KCC) ( Kendall,  1957;  Kendall  &  Smith, 

 1939) for the BOLD- signal fluctuations of each voxel with 

its 26 neighboring voxels using AFNI’s 3dReHo ( Taylor  & 

 Saad,  2013) command. The formula is defined as follows:

ReHo = W = 
∑ Ri( )

2 − n R( )
2

1

12
K

2
n
3 − n( )

where W is the KCC of an individual voxel with a range 

from 0 to 1, with 0 indicating no similarity and 1 indicating 

perfect coherence; R
i
 is the sum rank of the ith time point; 

R = (n+1)K/2 is the mean of the R
i
; K is the number of time 

series within a measured cluster (K) (here: K  =  27, the 

given voxel plus the 26 neighbors); and n is the number 

of ranks (here: 225, as 225 volumes were used).

Similarly, the silhouette coefficient (SICO) is a measure 

of how well a parcellation fits the data. In contrast to ReHo, 

however, it is not a quality measure for the local averaging 

of the BOLD signals (i.e., the definition of nodes), but con-

cerns the allocation of the nodes to the networks (or clus-

ters). We calculated the SICO as follows:
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SICOi = 
bi − ai

max ai, bi( )

where a
i
 represents the average dissimilarity of the ith 

node to the nodes assigned to the same network and b
i
 

represents the average dissimilarity of the ith node to the 

nodes assigned to the closest of the four other networks 

(i.e., to the network with the lowest dissimilarity). a
i
 and b

i
 

are defined as follows:

ai = 
1

nk −1 j∈Uk ,  i≠ j
∑ 1− r v i,v j( ), bi = 

1

M
j∈N(Uk )

∑ 1− r v i,v j( )

where r(v
i
, v

j
) is the functional connectivity between node 

i and node j, with 1 —  r(v
i
, v

j
) representing the dissimilarity 

between node i and node j, U
k
 is the set of nodes in net-

work k, and v
i
 is an element of the set U

k
. n

k
 is the number 

of nodes in the network k. N(U
k
) is the set of nodes in the 

closest network of network k, and M is the total number 

of nodes in this network. The silhouette coefficient ranges 

from - 1 to 1, where - 1 indicates that the node should be 

assigned to the other network, 0 means that the node fits 

both networks (ambiguous), and 1 means that the node is 

well assigned.

Null models to determine the ReHo and SICO under 

chance were created using the spin- test ( Alexander- Bloch 

 et al.,  2018). We therefore projected the volumetric atlases 

and the baseline data (rs- fMRI and ReHo maps) onto the 

Freesurfer ( Fischl,  2012) average surface with 10242 ver-

tices per hemisphere (i.e., 20482 vertices total). For this 

we used the command mni152_to_fsaverage ( Buckner 

 et al.,  2011;  Wu  et al.,  2018) from the neuromaps toolbox 

( Markello  et al.,  2022) in Python. For the atlases, nearest 

neighbor interpolation was used, whereas linear interpola-

tion was used for the MRI data. Next, we used the nulls.

alexander_bloch ( Alexander- Bloch  et al.,  2018) command 

to compute the rotated atlases. In short, the atlas pro-

jected to the surface is transformed to a sphere and then 

randomly rotated (in our case 100 times) so that an atlas 

with similar properties (shape and location of the nodes) is 

generated. The ReHo and SICO values using the actual 

atlases were then compared to the values given by the 

randomly rotated atlases to determine if the parcellation is 

significantly better than a random parcellation with similar 

spatial features as the original atlas. Note that the subcor-

tical and cerebellar structures of A55- N5 and A55- N15 

were omitted. For both, the ReHo and SICO, we averaged 

the values of the individual nodes for each of the five net-

works. We then calculated pairwise comparisons on the 

baseline sample using the Wilcoxon- Mann- Whitney test to 

estimate potential differences in the coefficients between 

the atlases and their variants. We further correlated the 

coefficients with age to test whether an atlas/variant tends 

to have higher values for older individuals. The p- values 

for comparisons and correlations were adjusted using 

the Bonferroni- correction.

Note that for the A55- N5 and A55- N15, we addition-

ally used the nodes by Schaefer (i.e., the nodes we used 

for the YK). This is because both ReHo and SICO depend 

on the node definition. As the Schaefer’s nodes are based 

on functional data, they tend to have a higher ReHo, 

which may also affect the SICO. For this purpose, we 

assigned Schaefer’s 400 nodes to the A55- N5 networks 

and Schaefer’s 300 nodes to the A55- N15 networks (to 

match the number of nodes with the number of AAL3 

nodes we used). We achieved this by calculating the DSC 

for each node to the five networks, and counting the 

node to the network where the DSC was highest. Finally, 

we calculated the DSC between the A55 networks as 

defined with the Schaefer nodes and the original A55 net-

works to see how much the spatial definition changes 

(see Supplementary Fig. 5). This spatial change is due to 

the fact that the Schaefer nodes do not cover subcortical 

and cerebellar parts. Furthermore, the nodes do not fol-

low the network boundaries of the A55, so that the net-

work boundaries shift to some extent.

2.7. Post- hoc analysis of pooled effects

Since the same trajectory was estimated for three net-

works across all atlases (e.g., linear change over time), 

we did post- hoc analyses to estimate a pooled effect of 

time for ON, PN, and M- FPN. Additionally, we estimated 

the pooled effects of age on the intercept and the slope 

(only for the ON, as it was the only network showing vari-

ance in the slope). We therefore weighted the estimate of 

the effects by the inverse of the squared variance of the 

effect ( Chang  et  al.,  2022). This method results in a 

weighting of the estimates according to their certainty, 

that is, the higher the standard error of the estimate, the 

lower the weighting for the pooled effect.

3. RESULTS

3.1. Spatial overlap between network definitions

Spatial overlap metrics (i.e., DSC) are summarized in 

Table  3 and Supplementary Figure  6. Median DSC 

across all comparisons was 0.67, ranging from 0.20 to 

0.93. The Kruskal- Wallis test revealed significant differ-

ences (χ2(4) = 8.520, p <  .001) between the networks. 

Pairwise post- hoc Wilcoxon rank- sum tests with Bon-

ferroni correction (α = 0.05/10 or p- value*10) indicated 

significant differences in DSC between L- FPN and 

PN  (W  =  182, p
adj

  =  .032), L- FPN and ON (W  =  198, 
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p
adj

 = .002), and M- CIN and ON (W = 191, p
adj

 = .007). 

Furthermore, there were significant differences in the 

inter-  and intra- atlas comparisons (W = 125, p <  .001) 

and between primary processing and higher- order net-

works (W = 259, p < .001) when grouped together.

3.2. Effect of network definition on model selection

Results of model selection are shown in Table 4. Detailed 

results, including model fit indices, occurrence of Hey-

wood cases, and model estimated including p- values 

can be found in Supplementary Tables  3 and 4. The 

model selection process revealed no differences in terms 

of the trajectory for the ON (linear), PN (quadratic), and 

M- FPN (linear). In contrast, the trajectories for L- FPN and 

M- CIN varied depending on the atlas used. When RSFC 

strength is extracted based on the A55 atlas, a quadratic 

change is assumed for the L- FPN and a linear change for 

the M- CIN, while it is the other way round when using the 

YK. Further, there was a difference for slope variance in 

the PN. Using the A55- N5, the quadratic model with 

slope variance showed the best fit, while the quadratic 

model without slope variance revealed better fit for other 

atlas variants.

3.3. Comparison of confidence intervals  

for trajectories and age effects

Estimates and 95% confidence intervals of intercepts, 

linear slopes, and quadratic slopes are displayed in 

Figure  3. Estimates of age effects on intercepts, linear 

slopes, and quadratic slopes are displayed in Figure 4. 

Effects of sex and education can be found in Supplemen-

tary Figures 7 and 8. Generally, the confidence intervals 

for the intercepts and the slopes, as well as for the age 

effects, overlapped except for the linear slope in the 

M- FPN. There is a non- significant increase in RSFC over 

time when using the A55- N5 (95% CI: - 0.127; 0.405), 

whereas there is a significant decrease when using the 

YK- N17- 300 (95% CI: - 0.596; - 0.136).

3.4. Post- hoc analysis of atlas fit

A visualization of the averaged ReHo map of the baseline 

data is shown in Figure  5. The mean ReHo value is 

M = 0.251 (SD = 0.040), with variability across the entire 

cortex, showing ReHo values up to 0.450 (especially in 

areas of the M- FPN). The p- values of ReHo and SICO val-

ues for each atlas based on the spin- test are summarized 

Table 3. Median dice similarity coefficient by network and in total.

Networks

Total

Primary processing Higher- order

ON PN M- FPN L- FPN M- CIN

Median 0.77a,b 0.70c 0.60 0.50a,c 0.41b 0.67

Range 0.63 – 0.93 0.60 – 0.91 0.53 – 0.83 0.34 – 0.78 0.20 – 0.80 0.20 – 0.93

Intra Atlas 0.92 0.87 0.81 0.72 0.72 0.80d

Inter Atlas 0.72 0.66 0.58 0.42 0.30 0.58d

Comparisons based on Kruskall- Wallis test and post- hoc test using Wilcoxon- Mann- Whitney- Test with Bonferroni correction. Significant 
differences in dice similarity coefficient between: aON and L- FPN (W = 198, p

adj
 = .002); bON and M- CIN (W = 191, p

adj
 = .007); cPN and 

L- FPN (W = 182, p
adj

 = .032); dIntra-  and Inter Atlas comparisons (W = 125, p < .001).

ON = occipital network; PN = pericentral network; M- FPN = medial frontoparietal network; L- FPN = lateral frontoparietal network;  
M- CIN = midcingulo- insular network.

Table 4. Model selection for each atlas and network.

Atlas

ON PN M- FPN L- FPN M- CIN

Slope

Slope  

variance Slope

Slope  

variance Slope

Slope  

variance Slope

Slope  

variance Slope

Slope  

variance

A55- N5 Linear Yes Nonlinear Yes Linear No Nonlinear No Linear No

A55- N15 Linear Yes Nonlinear No Linear No Nonlinear No Linear No

YK- N7- 100 Linear Yes Nonlinear No Linear No Nonlinear No Nonlinear No

YK- N7- 200 Linear Yes Nonlinear No Linear No Linear No Nonlinear No

YK- N7- 400 Linear Yes Nonlinear No Linear No Linear No Nonlinear No

YK- N17- 300 Linear Yes Nonlinear No Linear No Linear No Nonlinear No

ON = occipital network; PN = pericentral network; M- FPN = medial frontoparietal network; L- FPN = lateral frontoparietal network;  
M- CIN = midcingulo- insular network; A55 = Atlas55+; YK = Yeo- Krienen Atlas, N = network.
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in Table  5. The distributions and pairwise comparisons 

using Wilcoxon- Mann- Whitney test for ReHo and SICO 

are shown in Figure 6. Median and range for each network 

and correlations with age are summarized in Supplemen-

tary Tables 5 and 6.

The results of the spin test show that the four variants 

of the YK atlas have significantly higher ReHo values 

compared to the rotated atlases when averaged across all 

five networks, whereas the two variants of the A55 do not. 

At the network level, it is evident that the nodes of the 

M- FPN and L- FPN in particular are well defined, as these 

networks have significantly higher ReHo values than when 

applying the rotated atlases. This is also true for the L- FPN 

using the A55- N15. However, it should be noted that the 

interpretation at network level should be treated with cau-

tion, as there is variability of ReHo across the cortex. 

Hence, networks that tend to have below- average ReHo 

values (e.g., PN and ON, see Figs. 5 and 6) have only a 

small chance of becoming significant, as the random rota-

tion of the atlases increases the probability that brain 

regions with above- average ReHo values will be included 

for the null models (e.g., brain regions such as the medial 

frontal cortex or the precuneus). The reverse is also true, 

that is, the probability of networks with high empirical 

ReHo becoming significant is greater, since rotation 

increases the probability that brain areas with low ReHo 

are included in the null models. However, the results of the 

Wilcoxon- Mann- Whitney test show that the ReHo values 

for the three higher- order networks are significantly higher 

when using the YK variants compared to the A55 variants. 

Thus, there are differences in the fit of the atlases to the 

data, with the higher- order networks showing better fit for 

the YK variants than for the A55 variants, whereas there 

are no differences for the primary processing networks.

Fig. 3. Estimated intercept, linear and quadratic slope, and their 95% confidence intervals for each network by atlas. 

The unit of the values correspond to T- scores (M = 50, SD = 10). The grey line at 50 (on the left -  intercept estimate) marks 

the mean value of the T- score. The two grey lines at 0 (on the right -  slope estimates) mark the limit that the confidence 

intervals must exceed for the linear and/or quadratic slope estimate to be significant at the 5% alpha level. For example, 

the linear slope in the ON is not significant using the A55- N5, whereas a significant linear increase is estimated using the 

A55- N15 (grey line at 0 is not included in the interval). If the confidence intervals of the estimates do not overlap between 

the atlases, this indicates a significant difference in the estimate at the 5% alpha level. For example, when comparing 

the confidence intervals of the linear slopes in the ON, it is evident that all intervals overlap. Hence, there seem to be no 

systematic differences in the linear slope estimates depending on the atlas used. Note that depending on which model 

showed the best fit, certain effects and their confidence intervals are not present (e.g., if the linear model showed the best 

fit for a given network and atlas, no effects are shown for the quadratic change, as this was not estimated). ON = occipital 

network; PN = pericentral network; M- FPN = medial frontoparietal network; L- FPN = lateral frontoparietal network;  

M- CIN = midcingulo- insular network; A55 = Atlas55+; YK = Yeo- Krienen Atlas, N = network.
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For SICO, a significant value is obtained for all atlases 

when averaged across the five networks. That is, for all 

atlases, the allocation of the nodes to the networks is 

significantly better than a random allocation. At the net-

work level, it is evident that the nodes of the higher- order 

networks were allocated particularly well compared to 

the randomly rotated atlases. The exact median values of 

the SICO show that the higher- order networks in particu-

lar fluctuate around 0 for all atlases, whereas the primary 

processing networks tend to show higher SICO medians 

and also a larger range (see Supplementary Table 5). The 

Wilcoxon- Mann- Whitney test revealed that highest SICO 

values for the M- FPN are achieved using the A55- N15 or 

YK- N17- 300, as these two showed significantly higher 

values than the other atlases. For the other networks, the 

highest values were achieved using the YK- N7- 100, 

despite not always being significantly higher than the 

second- best atlas (e.g., ON). Using the Schaefer nodes 

for the two A55 variants slightly improved the ReHo and 

SICO values, but overall the YK variants still showed 

higher values than the A55.

The associations of ReHo and SICO with age revealed 

only one significant correlation between age and the 

ReHo in the M- FPN of the A55- N5 (r
s
 = 0.184, p

adj
 = 0.046) 

after Bonferroni correction. The additional analyses for 

the A55 with nodes by Schaefer can be found in Supple-

mentary Figure 9 and Supplementary Tables 7 and 8.

3.5. Post- hoc analysis of pooled effects

The post- hoc pooled effects for age and time are sum-

marized in Table  6. Significant changes in connectivity 

Fig. 4. Estimated age effect on intercept, linear and quadratic slope, and their 95% confidence intervals for each network 

by atlas. The unit of the values corresponds to T- scores (M = 50, SD = 10). The grey lines at 0 mark the limit that the 

confidence intervals must exceed for an age effect to be significant at the 5% alpha level. For example, the age effect on the 

intercept in the M- FPN is not significant using the A55- N5 (grey line is included in the interval), whereas a significant negative 

age effect is estimated using the A55- N15 (grey line at 0 is not included in the interval). That is, older individuals show lower 

baseline FC in the M- FPN using the A55- N15, but not when using the A55- N5. If the confidence intervals of the estimates 

do not overlap between the atlases, this indicates a significant difference in the estimate at the 5% alpha level. For example, 

when comparing the confidence intervals of the age effects on the intercept in the M- FPN, it is evident that all intervals 

overlap. Hence, there seem to be no systematic differences in the estimated age effects depending on the atlas used. Note 

that depending on which model showed the best fit, certain effects and their confidence intervals are not present (e.g., if the 

linear model showed the best fit for a given network and atlas, no effects are shown for the quadratic change, as this was 

not estimated). ON = occipital network; PN = pericentral network; M- FPN = medial frontoparietal network; L- FPN = lateral 

frontoparietal network; M- CIN = midcingulo- insular network; A55 = Atlas55+; YK = Yeo- Krienen Atlas, N = network.



13

P.F. Deschwanden, A.L. Piñeiro, I. Hotz et al. Imaging Neuroscience, Volume 2, 2024

over the 7  years were found in ON and PN, while the 

connectivity within the M- FPN remained stable. Further, 

significant age effects on the intercept were found for the 

PN, M- FPN, and M- CIN, while for the ON and L- FPN, the 

effects were not statistically significant.

4. DISCUSSION

The current study investigated the congruence of differ-

ent spatial definitions of five functional brain networks, 

which were adopted from the Yeo- Krienen atlas and the 

Atlas55+ ( Doucet  et al.,  2021;  Yeo  et al.,  2011). Secondly, 

using a longitudinal dataset, the study explored if the 

association between age and RSFC and the aging asso-

ciated RSFC trajectories vary as a function of network 

definition. In line with our hypotheses, we revealed that 

the spatial overlap is higher in primary processing net-

works and if one compares different variants of the same 

atlas as opposed to cross- atlas comparisons. Impor-

tantly, for some brain networks effects of age and aging 

trajectories were dependent on atlas choice.

4.1. Higher- order vs. primary processing networks

The comparisons of spatial overlap revealed a non- 

perfect equivalence of the network definition. The overlap 

of higher- order networks was significantly smaller than 

the overlap of the primary processing networks, which is 

in line with a previously published study ( Doucet  et al., 

 2019). One explanation could be the oversimplistic 

assumption of spatially independent and/or temporally 

Fig. 5. Mean regional homogeneity map of baseline data 

(N = 209) projected on Freesurfer average surface. The 

figure shows the averaged regional homogeneity maps 

of the baseline sample (N = 209). The mean of the overall 

ReHo values across the cortex is 0.251 with a standard 

deviation of 0.040. ReHo values can range from 0 to 1, 

where 0 means that on average there is no coherence of 

the BOLD signals between the voxels or vertices and 1 

means perfect coherence. The figure shows clear variability 

across the cortex. Particularly high values are observed 

in the medial frontal cortex, posterior cingulate cortex, 

precuneus, and parietal areas. Lower values can be found 

in the (left) motor and sensory cortex, orbito- frontal cortex, 

as well as in temporal regions.

Table 5. Summary of p- values obtained by spin test for regional homogeneity and silhouette coefficient by network.

Regional homogeneity

Atlas Mean ON PN M- FPN L- FPN M- CIN

A55- N5 p = .80 p = .65 p = .67 p = .61 p = .55 p = .78

A55- N15 p = .31 p = .58 p = .64 p = .35 p = .05 p = .51

YK- N7- 100 p = .00 p = .67 p = .65 p = .05 p = .01 p = .23

YK- N7- 200 p = .03 p = .61 p = .64 p = .02 p = .06 p = .20

YK- N7- 400 p = .01 p = .62 p = .63 p = .00 p = .00 p = .21

YK- N17- 300 p = .00 p = .60 p = .64 p = .00 p = .00 p = .19

Silhouette coefficient

Atlas Mean ON PN M- FPN L- FPN M- CIN

A55- N5 p = .01 p = .05 p = .17 p = .00 p = .00 p = .14

A55- N15 p = .02 p = .11 p = .13 p = .00 p = .00 p = .08

YK- N7- 100 p = .00 p = .09 p = .16 p = .01 p = .00 p = .00

YK- N7- 200 p = .00 p = .06 p = .13 p = .00 p = .02 p = .04

YK- N7- 400 p = .00 p = .10 p = .12 p = .00 p = .03 p = .00

YK- N17- 300 p = .00 p = .06 p = .11 p = .00 p = .00 p = .07

The mean refers to the averaged ReHo and SICO values across the networks, whereby the averaged empirical values were then compared 
with the averaged null model values.
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static networks, which is assumed when working with 

deterministic atlases (i.e., atlases in which each voxel is 

assigned only one value). For example, when using a prob-

abilistic approach, it was found that 44% of the nodes are 

involved in more than one network, with higher- order net-

works having an above average number of nodes involved 

in multiple networks (up to more than 80%) ( Yeo  et  al., 

 2014). This could indicate that spatial independence is 

particularly violated in brain regions of higher- order net-

works, which can then lead to variability in the atlases. It is 

also possible that these nodes do not belong to multiple 

networks simultaneously, but dynamically switch within a 

short period of time. The perspective of such dynamic 

connectivity is captured by the term chronnectome 

( Calhoun  et  al.,  2014). It implies a model in which node 

involvement and connectivity patterns change within a 

short period of time (within several seconds), such that 

brain networks and/or nodes can temporarily merge and 

separate, reflecting dynamic segregation and integration 

( Iraji  et al.,  2019). Previous results indicate that the nodes 

of higher- order networks tend to have higher flexibility, that 

is, they tend to interact more often with other networks 

than nodes of primary processing networks ( Cohen,  2018). 

This is especially true for nodes of the M- CIN, which have 

been reported to show the greatest flexibility ( Chen  et al., 

 2016). Consequently, the higher occurrence of these short- 

term RSFC changes in higher- order networks could be a 

cause of the lower spatial overlap in atlases.

However, even under the assumption that networks 

within individuals are spatially and temporally stable, the 

variability between individuals can influence the accu-

racy of the network definition. For example,  Mueller  et al. 

 (2013) have shown that inter- individual variability in func-

tional connectivity is heterogeneous across the cortex, 

with larger variability in higher- order networks than in 

primary processing networks. The variability was sig-

nificantly correlated with the evolutionary expansion of 

the cortex, indicating an evolutive cause of variability 

( Buckner  &  Krienen,  2013;  Mueller  et  al.,  2013). It was 

further shown that brain regions predictive of cognitive 

functioning were mainly regions with high interindividual 

variability in connectivity ( Mueller  et al.,  2013). In addi-

tion to variability in functional connectivity, interindivid-

ual spatial variability may also explain differences in the 

overlap of the networks.  Laumann  et al.  (2015) measured 

an individual subject 84 times to create an individual 

map of resting- state networks, which was then compared 

to an atlas created based on 120 subjects. Although 

most of the networks in the atlas were included in the 

individual map, the authors found that the brain regions 

of the individual- specific networks differed in size (i.e., 

areas of a network occupy more/less cortex in the indi-

vidual vs. in the atlas) and network membership (i.e., cer-

tain brain areas belong to a different network in the 

individual than in the atlas). Further, smaller subsystems/

networks were found in the individual that were not 

included in the atlas ( Laumann  et al.,  2015). These results 

were later replicated by comparing several individual- 

specific maps with a group map, showing that the same 

brain region can belong to different networks depending 

Table 6. Pooled estimates and 95% confidence intervals for time and age effects.

Network

Linear slope Quadratic slope Age on intercept Age on linear slope

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

ON 0.425 0.010; 0.841 - - 0.109 - 0.118; 0.336 - 0.008 - 0.068; 0.052

PN 0.938 0.108; 1.768 - 0.138 - 0.256; - 0.020 - 0.280 - 0.462; - 0.097 - - 

M- FPN - 0.157 - 0.398; 0.085 - - - 0.304 - 0.501; - 0.108 - - 

L- FPN - - - - - 0.012 - 0.189; 0.165 - - 

M- CIN - - - - - 0.259 - 0.465; - 0.052 - - 

The pooled effects were calculated by weighting the estimates by the inverse of the squared variance of the estimate. The values in 
bold indicate significance. Dashes indicate that the pooled effects could not be estimated (e.g., age effects on the linear slope were only 
possible for ON, as there was no variance in the slope for the remaining networks).

ON = occipital network; PN = pericentral network; M- FPN = medial frontoparietal network; L- FPN = lateral frontoparietal network;  
M- CIN = midcingulo- insular network; A55 = Atlas55+; YK = Yeo- Krienen Atlas, N = network, CI = confidence interval.

Fig. 6. Regional homogeneity and silhouette coefficient by network and atlas with Bonferroni corrected results of pairwise 

comparisons between atlases using Wilcoxon- Mann- Whitney test. The average regional homogeneity can range from 0 to 

1, where 0 means that on average there is no coherence of the BOLD signals between the voxels assigned to the network 

and 1 means perfect coherence. The silhouette coefficient can range from - 1 to 1, where - 1 means that the nodes should 

be better assigned to another network, 0 means that on average the nodes fit two networks equally well (ambiguous), and 

1 means that on average the nodes fit the assigned network very well. The red lines in the left plots (ReHo) indicate the 

average ReHo value across the cortex (M = 0.251). The red lines in the right plots (SICO) are placed at 0. Values above the 

line indicate an acceptable allocation of the nodes to the networks. A55 = Atlas55+; YK = Yeo- Krienen Atlas.
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on the individual, especially regions near the boundaries 

between networks ( Gordon  et al.,  2017).

In summary, intra-  and inter- individual variability 

appears to be unevenly distributed across the brain, 

which may explain our results. Therefore, the analyses 

support our hypothesis of lower spatial overlap in the 

higher- order networks.

4.2. Inter- atlas differences of networks

We further found significantly smaller inter- atlas over-

laps, which may indicate systematic differences in net-

work definition between the atlases. There are three 

main aspects to consider when interpreting this result. 

First, these differences may reflect real age effects in the 

network architecture, as the underlying population used 

for atlas creation differs in age (age range: YK = 18- 35, 

A55 = 55- 95). Indeed,  Doucet  et al.  (2021) reported dif-

ferences in spatial organization between the older 

cohorts and the younger cohort when creating the A55, 

again showing less spatial agreement in higher- order 

networks. For example, the posterior medial temporal 

regions in the A55 were assigned to the L- FPN, whereas 

in the younger cohort they were part of the M- FPN. 

According to the authors, this finding supports the 

default to executive coupling hypothesis (DECHA) 

( Turner  &  Spreng,  2015). The idea is that the change in 

cognitive architecture is reflected in the architecture of 

the networks. That is, the age- related shift from fluid 

abilities to crystalline abilities could be explained by a 

reduction in the suppression of M- FPN activity during 

cognitive tasks and consequently the increase in con-

nectivity between L- FPN and M- FPN ( Spreng  &  Turner, 

 2019). However, there are further differences, for exam-

ple, the superior temporal lobe was assigned to the PN 

in the younger cohort, whereas it was assigned to the 

M- FPN in the older cohort. The implications of these dif-

ferences are difficult to interpret at this stage, but they 

should certainly be further investigated and replicated in 

the future. Second, parts of the differences are due to 

the brain areas involved for network construction. While 

 Yeo  et al.  (2011) only considered cortical regions for the 

definition of the networks,  Doucet  et  al.  (2021) also 

included subcortical areas and the cerebellum. Thus, all 

five networks in A55 contain subcortical and/or cerebel-

lar brain structures that are not included in the YK. 

Whether or not subcortical and cerebellar areas should 

be included is still under debate. However, the cortico-

centric bias in cognitive neuroscience might be prob-

lematic ( Parvizi,  2009), as cortical, subcortical, and 

cerebellar systems are not completely different with 

respect to evolution, development, or function ( Chin 

 et al.,  2023). In fact, there is convincing evidence that 

subcortical and/or cerebellar regions are involved in 

higher cognitive functions, such as language ( Janacsek 

 et  al.,  2022), and the posterior lobe of the cerebellum 

reveals distinct patterns of activation depending on the 

cognitive task applied ( Schmahmann,  2019;  Stoodley  & 

 Schmahmann,  2018). Further, age- related increases in 

functional connectivity between cerebellar and cortical 

regions have already been reported ( Doucet  et al.,  2021; 

  Zhang  et al.,  2017), and this higher integration of cere-

bellar regions in cortical networks have been linked to 

successful working memory processes in the elderly 

population ( Luis  et al.,  2015). Therefore, the inclusion of 

subcortical and cerebellar regions could be meaningful 

and should be included in future studies if possible. 

Last, there are various degrees of freedom regarding the 

methodological rationale when creating an atlas. These 

degrees of freedom include the selection of the popula-

tion of interest, the measurement of the resting- state 

itself (eyes open vs. eyes closed) ( Patriat  et al.,  2013), 

the preprocessing of the imaging data ( Ciric  et al.,  2017), 

and the algorithm used to extract the networks (e.g., 

independent component analysis vs. clustering) ( Khosla 

 et al.,  2019). Several findings suggest that these degrees 

of freedom can be influential. For instance, comparisons 

of the five networks between the three older cohorts 

used to create the A55 show an average overlap of 

67%, with the M- CIN (46%) showing the lowest and the 

ON (83%) the largest overlap ( Doucet  et al.,  2021). This 

is surprising considering that the age ranges of the 

cohorts are very similar and that the preprocessing of 

the data as well as the algorithm to extract the networks 

were identical. Consequently, the spatial differences 

must be attributed to differences in data collection and 

other network- relevant characteristics of the cohorts 

besides age. Indeed, the data of the three cohorts differ, 

for example, regarding the duration of the rs- fMRI 

acquisition, the voxel size, and the measurement para-

digm (eyes closed vs. eyes open), which may contribute 

to spatial variability of the network solution. It is difficult 

to determine how much these individual factors should 

be weighted, but they do seem to be relevant, as even 

the ON, a well- defined primary sensory processing net-

work, merely achieves a DSC of 0.83 due to these fac-

tors. Further evidence for the influence of methodological 

degrees of freedom is provided by the study of  Doucet 

 et al.  (2019), in which the overlap of networks from dif-

ferent atlases was calculated. This demonstrated that 

the DSC between networks identified based on a train-

ing sample of younger participants of a similar age 

range is smaller than the DSC we report here (YK vs. 

A55). Explicitly, the comparison of the networks by YK 

(age range: 18- 35  years) with the networks defined in 

the Gordon atlas (age range: 18- 33 years) ( Gordon  et al., 
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 2016) yields the following DSC values: 0.56 for the ON, 

0.57 for PN, 0.42 for the M- FPN, 0.50 for the L- FPN, and 

0.46 for the M- CIN. Comparisons of YK with the Shirer 

atlas (age range: 18–30 years) ( Shirer  et al.,  2012) revealed 

even smaller DSCs with 0.25 for the ON, 0.29 for PN, 

0.35 for the M- FPN, 0.36 for the L- FPN, and 0.36 for the 

M- CIN. Consequently, the networks of YK and A55 seem 

to be more similar despite the age of the population used 

to create those two atlases being different.

Overall, the results are in line with our hypothesis: differ-

ent variants of the same atlas are more similar than vari-

ants of different atlases. However, it seems that this is not 

mainly due to age (or other characteristics of the samples) 

but rather due to methodological degrees of freedom in 

the rs- fMRI acquisition and extraction of the networks.

4.3. Trajectories & age effects

For L- FPN and M- CIN, the model selection process 

was affected by atlas choice (i.e., linear vs. quadratic 

slope). Those two networks also showed the smallest 

spatial overlap across atlases, indicating an essential 

influence of network definition on RSFC change trajec-

tories. Furthermore, despite convergent model selec-

tion, the analyses revealed a systematic difference in 

slope estimation between two atlases for the M- FPN. 

While a linear RSFC decrease was detected based on 

YK-N17-300, a non- significant increase over time was 

detected with A55-N5. While this finding is of concern, 

our analyses generally showed overlapping confidence 

intervals of the change trajectories for all other net-

works, thus, suggesting that atlas choice primarily 

changes the p- value without actually affecting the con-

clusion. A similar result emerged for the age effects. 

Here, too, all confidence intervals overlapped.

A closer look at the differences reveals that the solu-

tions differ mainly between the atlases (A55 vs. YK). For 

instance, for the M- CIN, a linear change is shown with 

both variants of the A55, and a nonlinear change with the 

four variants of the YK. Conversely, there is a nonlinear 

change in the L- FPN with the two variants of the A55, 

and a linear change with three of the four variants of the 

YK. Consequently, the choice of atlas can influence the 

shape of the trajectories in certain networks. Further-

more, significant associations between age and RSFC 

are mainly found using the YK, with one exception (A55- 

N15 in M- FPN). This pattern could reflect the actual age 

effects in the network definition. As the A55 is adapted 

to older populations, the networks are already corrected 

for age and thus no more variance in connectivity can be 

explained by age.

In conclusion, the results support our hypothesis that 

atlas choice can affect age and time effects. However, as 

the influence may depend on the similarity of network 

definition, the impact of atlas choice is dependent on the 

network of interest. Future studies should therefore 

examine possible associations of networks with other 

measures (e.g., cognitive abilities) for atlas dependence, 

especially in the case of associations with higher- order 

networks.

4.4. Regional homogeneity and silhouette 

coefficient

Note that we interpret the ReHo values relative to the 

other values rather than in absolute terms (e.g., “good fit” 

or “insufficient fit”), as regressors such as global signal 

regression lower the absolute ReHo value, while it has no 

influence on the spatial distribution of ReHo ( Qing  et al., 

 2015). The ReHo values for the higher- order networks are 

significantly lower when using the A55 variants compared 

to the YK atlas variants, indicating that on average, the 

BOLD- signals within the voxels (or vertices)— that are 

averaged to a node— tend to be less similar in the A55. 

That is, the node definition seems to be better specified 

for the YK variants. This is in line with findings by  Gordon 

 et  al.  (2016), where the YK atlas showed significantly 

higher ReHo values compared to the null models, 

whereas the AAL atlas did not ( Gordon  et al.,  2016). This 

is not surprising, given that the AAL is defined on struc-

tural MRI data as opposed to the YK that is based on 

functional MRI data.

The SICO values show clear differences between the 

networks across the atlases, with the values for ON and 

PN tending to be higher than for the M- FPN, L- FPN, and 

M- CIN. This indicates that node allocation is on average 

less ambiguous for the primary processing networks. 

This finding is consistent with the idea that there are 

greater inter- individual differences for higher- order net-

works, such that the node assignment fits very well for 

some individuals, whereas for other individuals the 

nodes should rather be allocated to a different (higher- 

order) network. Despite the rather ambiguous node 

 allocation for the higher- order networks, the pairwise 

comparisons of the SICO values at the baseline showed 

that the YK variants (especially the YK- N7- 100) tend to 

be higher than the A55 variants. The additional analy-

ses, in which the Schaefer nodes were assigned to the 

A55 networks, showed a slight improvement of ReHo 

and SICO in the individual A55 networks, but the major-

ity of the values were still worse than for the YK (see 

Supplementary Fig. 9).

Overall, only one age correlation was significant, that 

is, the ReHo values in the M- FPN when using the  

A55- N5. This indicates that the operationalization of the 

M- FPN using the A55- N5 gets slightly better for older 
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individuals. However, the effect is small and all other 

correlations for the A55 (and YK) networks were not sig-

nificant, both for ReHo and SICO. Consequently, there is 

no clear pattern that the atlas fit to the data improves as 

a function of age, which would be expected at least for 

the A55. This null finding is consistent with the idea that 

the fit of the data to the atlases remains equally good or 

poor regardless of the age of the individuals.

Altogether, the results indicate that the two variants of 

the A55 fit our dataset less well than the four variants of 

the YK, especially when comparing higher- order net-

works. These results emphasize that one should not rely 

on simple heuristics (e.g., similar age range or frequency 

of use) when choosing atlases. This is especially true 

when taking into account that the choice of atlas may 

impact age and/or time effects, as shown in this study. 

However, this does not mean that the networks in the 

A55 are poorly defined or do not match the older popula-

tion in general. And it is certainly important that future 

studies investigating the aging process in the brain con-

tinue to test different atlases (including the A55) and 

their fit to the data. However, it appears that the combi-

nation of the A55 networks with the AAL3 nodes is not a 

particularly good choice for network operationalization 

(especially for higher- order networks), and thus the YK 

networks with Schaefer nodes may be more accurate 

when working with samples of older individuals.

4.5. Pooled effects & previous research

Although it was not the main concern in this study, we 

decided to calculate pooled effects for the estimates to 

compare our results with previous publications. Note 

that there have been few longitudinal studies focusing 

on within- network functional connectivity ( Chong  et al., 

 2019;  Hafkemeijer  et al.,  2017;  Ng  et al.,  2016;  Oschmann 

 &  Gawryluk,  2020;  Staffaroni  et al.,  2018), and that most 

of these studies consider only 2- 3 measurement occa-

sions, hindering the assessment of nonlinearity within 

individuals. Therefore, we can only compare the age 

effects and the direction of change, but not the shape 

(linear vs. nonlinear) of the 7- year trajectories with the 

previous literature.

The model selection process yielded convergent 

results for the two primary processing networks. For the 

ON, a linear increase in functional connectivity over the 

7 years without additional effects of age on the intercept 

and the linear slope was evident. For the PN, we found a 

quadratic decrease of functional connectivity over the 

7 years with a significant negative effect of age on the 

baseline RSFC. Previous longitudinal studies reported 

no changes in primary processing networks in older indi-

viduals ( Chong  et  al.,  2019;  Hafkemeijer  et  al.,  2017); 

however, these studies only examined a 2- year time span. 

Previous cross- sectional results on age differences for 

primary processing networks show considerable vari-

ability: Although the majority of studies show a reduction 

of functional connectivity, around 42% of studies on ON, 

and 21% of studies on PN show no change or an 

increase in connectivity with age ( Deery  et  al.,  2023). 

One reason for these discrepancies may be rooted in the 

different methodological approaches. Some studies 

conduct group comparisons (younger vs. older), while 

others treat age as a continuous variable, with the age 

range varying across studies. However, the study by 

 Zonneveld  et al.  (2019) and  Stumme  et al.  (2020) included 

cognitively healthy older adults in a similar age range 

and yet came to different results. While  Stumme  and 

 colleagues  (2020) found a decrease of functional con-

nectivity in the ON with age,  Zonneveld  and  colleagues 

 (2019) reported increases. This suggests that factors 

other than age may be relevant and perhaps systematic 

differences in the samples studied may result in increased 

or decreased RSFC being reported. Indeed, it was shown 

that increased white matter hyperintensities (WMH) vol-

ume was associated with increased within- network con-

nectivity in ON, whereas the other networks showed 

decreased within- network connectivity with increased 

WMH volume (with the exception of L- FPN, which showed 

no association) ( Kantarovich  et  al.,  2022). WMH are 

strongly associated with age ( Brickman  et  al.,  2008; 

 Chowdhury  et al.,  2011) and can be detected in up to 

90% of MRI scans of people over 65  years of age 

( Schmidt  et al.,  2016), making WMH a relevant influenc-

ing factor in studies with older adults. However, this is 

only one possible factor among many, and no mecha-

nism is known so far that specifically explains increased 

connectivity in ON resulting from a larger WMH volume. 

It is therefore not yet possible to conclusively answer 

this question, but our results add to the literature and 

indicate a linear increase in functional connectivity in the 

ON and a quadratic decrease in functional connectivity 

in the PN over a time span of 7 years.

We further estimated the pooled effects for the M- FPN, 

revealing a non- significant linear decrease during the 

7 years with a significant negative age effect on baseline 

RSFC. Although not significant, the decrease of func-

tional connectivity over time is in line with recent longitu-

dinal studies, covering a time span of 2 to 4  years 

( Hafkemeijer  et al.,  2017;  Ng  et al.,  2016;  Oschmann  & 

 Gawryluk,  2020;  Staffaroni  et  al.,  2018), with only two 

reporting a significant decline ( Ng  et al.,  2016;  Staffaroni 

 et al.,  2018). Similarly, the negative age effect is in line 

with previous cross- sectional publications, with about 

96% reporting decreases with age and no study yet 

reporting an increase ( Deery  et al.,  2023).
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As there was no convergence between the atlases for 

the trajectories in the L- FPN and M- CIN, we did not eval-

uate the pooled trajectories. However, for both networks, 

we can derive the most plausible trajectories based on 

the ReHo and SICO values. For the L- FPN, the highest 

ReHo and SICO values were achieved using the YK- 

N7- 100, outperforming the other atlases in terms of pair-

wise comparisons. As seen in the model selection, using 

the YK- N7- 100, a non- significant quadratic change over 

time is the most likely. Similarly, all four YK variants out-

performed the A55 variants in the pairwise comparisons 

of the ReHo and SICO values. Using any of the four YK 

variants, a non- significant quadratic change over time is 

the most likely for the M- CIN.

The pooled age effects were negatively associated with 

functional connectivity at baseline, with the effect only 

becoming significant in the M- CIN. This suggests that 

functional connectivity in these two networks tends to be 

lower in older participants, which is consistent with previ-

ous research, pointing to decreases in functional conneci-

tivty with higher age in about 91% of the published studies 

( Deery  et al.,  2023). However, there are some exceptions. 

For example,  Jockwitz  et al.  (2017) studied a sample with 

an age range of 55- 85 years and reported an age- related 

increase in functional connectivity in three higher- order 

networks. According to the authors, such increases could 

be an indication of compensation mechanisms ( Jockwitz 

 et al.,  2017). It is therefore important to further explore age 

and time effects in order to better understand the condi-

tions under which increases or decreases are observed, as 

well as the potential behavioral consequences (e.g., on 

cognitive abilities).

4.6. Strengths and limitation

A major strength of this study is the longitudinal design 

over 7 years comprising five measurement time points. 

This allowed us to estimate the influence of atlas choice 

on real change over time and especially on the shape of 

trajectories. Previous longitudinal studies on functional 

connectivity in aging research are very rare and limited to 

two to three measurement occasions, making nonlinear 

trajectories within individuals difficult to demonstrate. 

Another strength of the study is the use of different vari-

ants of the same atlas. Thus, we were able to show that 

the networks are not only different between the two 

atlases, but also that there is no perfect spatial overlap 

between the variants of the atlases (e.g., 5 vs. 15 net-

works). Consequently, there may be partially different 

results with regard to age and time effects, depending on 

which variant is chosen.

There are also limitations in this study that should be 

mentioned. These mainly concern methodological aspects. 

First, there are many degrees of freedom in the method-

ological decisions, such as the preprocessing of the data 

or the choice of quality criteria for the model selection. 

Also, the selection of nodes in terms of type (functional or 

structural) and number to compute connectivity within 

networks is partially arbitrary, which is a fundamental 

problem in network neuroscience ( Zalesky  et al.,  2010). 

Hence, we cannot generalize our results across different 

preprocessing pipelines, statistical methods, and net-

work constructions. Second, we have only examined two 

atlases here, so we cannot determine whether the use of 

other atlases and their variants would have yielded simi-

lar results.

4.7. Practical implications and future directions

Overall, based on the literature and our reported findings, 

we recommend that previous results should be inter-

preted with caution and that future studies should 

increase their focus on atlas selection and its justification.

More specifically, first, it would be desirable to use 

more than one atlas when specifically studying networks, 

so that replicability between atlases can be assessed and 

pooled effects at the network level can be calculated. In 

order to guide the decision process for the primary atlas 

used in a study or to assess the quality of the results, 

determining how well an atlas fits the actual data may be 

helpful. To do so, we recommend determining the regional 

homogeneity of the nodes to evaluate which atlas best 

merges the BOLD signals at the voxel or vertices level. In 

a second step, the allocation of the nodes to the net-

works can be calculated, for example, using silhouette 

coefficients. This quality control procedure seems partic-

ularly important when studying higher- order networks, as 

higher- order networks have greater variability between 

atlases (less spatial overlap) and between individuals. If 

two atlases perform equally well, the frequency of atlas 

use could serve as a further decision criterion, as this 

increases comparability with previous studies. To limit 

arbitrary decisions in the use of atlases and the method-

ological approach in general, we recommend to pre- 

register the intended study design.

Second, to better understand demographic effects 

such as age on network definition, we would like to 

encourage authors who create an atlas to make it pub-

licly available. In doing so, it would be desirable that net-

works are ideally subdivided into meaningful nodes, 

preferably based on fMRI resting state data.

Third, in order to use intra-  and inter- network metrics 

as biomarkers in the long term, it would be beneficial to 

identify which network definitions can make particularly 

accurate predictions, for example, regarding cognitive 

abilities or the development of dementia.
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Above all, more longitudinal studies are needed to 

better understand changes of functional brain network 

characteristics within the individual.

5. CONCLUSION

The atlas choice affects the estimated average functional 

connectivity in various networks, which highlights the 

importance of this methodological decision for future 

studies and calls for careful interpretation of already 

published results. Ultimately, there is no standard about 

how to operationalize networks. However, future stud-

ies may use and compare multiple atlases to assess the 

impact of network definition on outcomes. Further-

more, the validity and predictive power of specific net-

work definitions could be assessed by calculating their 

associations with behavioral outcomes (e.g., cognitive 

ability).
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