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Review

Rationality, preferences, and emotions with
biological constraints: it all starts from
our senses

Rafael Polanía,1,* Denis Burdakov,2 and Todd A. Hare3

Is the role of our sensory systems to represent the physical world as accurately

as possible? If so, are our preferences and emotions, often deemed irrational,

decoupled from these 'ground-truth' sensory experiences?We showwhy the an-

swer to both questions is 'no'. Brain function is metabolically costly, and the

brain loses some fraction of the information that it encodes and transmits. There-

fore, if brains maximize objective functions that increase the fitness of their spe-

cies, they should adapt to the objective-maximizing rules of the environment at

the earliest stages of sensory processing. Consequently, observed 'irrational-

ities', preferences, and emotions stem from the necessity for our early sensory

systems to adapt and process information while considering the metabolic

costs and internal states of the organism.

What is the role of our senses?

Our subjective experiences, which arise from perceiving the world through our senses, are gen-

erally thought to be grounded in a faithful representation of the physical world. These percepts are

transmitted to downstream brain structures that interpret these signals and ultimately determine

how we act and learn. According to this view, the formation of our subjective values, preferences,

and emotional experiences should not be biased by our early sensory systems if they fulfill their

role – to represent the world as accurately as biological limitations allow.

Onemay think that this line of argumentationmakes sense, as a goodmeasurement instrument (a

sensor) must reliably measure the environmental variable that it was built for. For instance, if an

engineer builds a voltmeter, she would like the device to faithfully map the physical input

(i.e., the voltage) to the needle position indicating the measured value. The voltmeter does not

know or care to what end the engineer uses the measured voltage. Indeed, the engineer wants

the position of the needle on the measurement scale to reflect the physical unit as precisely as

possible, with an irreducible error tolerance given that the sensor cannot be infinitely precise.

This implies that the sensed measurements are only useful to the degree to which they are accu-

rate over a given measurement range (Figure 1). However, contrary to this example, in which the

engineer and sensor are considered as separate entities, sensory systems in living organisms are

fully integrated into one deeply interconnected structure – the brain. Thus, we pose the following

questions: (i) is it a reasonable goal of our sensory systems to invest their limited resources in rep-

resenting the world as accurately as possible irrespective of the organism's goals? (ii) Do these

early percepts play a role in determining our emotions, preferences, and behavior?

These questions have led to heated debates among scientists and philosophers across various

fields including neuroscience, psychology, economics, and evolutionary biology [1–4]. Some
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researchers support the idea that organisms should represent objects as they exist in the

world [5,6]. Others argue that our perceptual representations should generally be different from

the actual physical world and that these representations should be mapped to the utility they

offer to the agents [7–9], their action affordances [10], and their interoceptive signals and emo-

tional states [11].

Our goal is not to review this large and multidimensional debate. Instead, we focus on a premise

that has been largely missing in the previous discussions, which often ignore constraints of infor-

mation processing in biological systems from the formal point of view. Given that brain function is

metabolically costly, and the brain will always lose some fraction of the information it encodes and

transmits at each stage of information processing, sensory systems should adapt to the

objective-maximizing rules of a particular environment and internal states of the organism at the

earliest stages of sensory processing.

We start by highlighting advances in mathematical formalisms designed to study information pro-

cessing constraints in biological systems and machines. These developments have played a key

role in steering a research agenda across diverse disciplines, ultimately supporting our central

thesis. Subsequently, we discuss recent research where such formalisms yield explicit predic-

tions regarding the influence of adaptation of early sensory information processing on our goal-
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Figure 1. Sensor design.When designing a sensor, for instance, a voltmeter, the precision of the measurements made by

the engineer depends on her goals given that the voltage scale is limited. This can be exemplified with the following two

hypothetical scenarios, where we assume that the noise of the measurement needle is small but constant across the

measurement scale. On the one hand, if the engineer needs to be more precise at low voltage values, then the optimal

strategy is to design the voltmeter such that more of the available measurement space is dedicated to measuring small

voltage values. However, this comes at the cost of losing precision at higher voltage values (left). On the other hand, if the

engineer wishes to have equal precision across the voltage space, the measurement readouts should be equally spread

across the measurement space (right). This comes at the cost of losing precision at small voltage values relative to the

scenario depicted in the left panel. We argue here that similar optimization strategies are continuously at play in our

sensory systems which are also limited in their operation range and the amount of information processing resources that

can be dedicated to sensory encoding.
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oriented behavior. This, in turn, sheds light on what is often characterized as 'irrational' behavior

during decisions guided by rewards. While acknowledging that the formalism may not yet be

sufficiently tractable to be applied to all facets of our premise, we also demonstrate how recent

advances in neuroimaging techniques and data analysis tools are starting to reveal profound

connections between the neural representations of memories and emotions within our earliest

sensory systems and the consequential impact on our actions.

We are finite beings

When trying to understand how andwhywe perceive the world and behave in the waywe do, two

facts that hold for all living organisms must be considered. First, we are finite beings with a limited

metabolic budget for interacting with the environment, and thus with a restricted capacity to

process environmental and interoceptive signals. Second, sensing-output systems, such as

the brain, typically act as noisy communication channels that always lose information during

transmission along the way from the different stages of sensory processing to the generation of

motor outputs and further interpretation of feedback signals that guide learning.

One attempt to study the interaction between perception and behavior proposes that, over the

course of evolution, the nervous system has adopted computational strategies that incorporate

environmental statistics and sensory signal uncertainty. Under this framework, the brain learns

a statistical model of the world, and integrates this knowledge with imperfect sensory data for

optimal computations amid the uncertainty and unreliability of our sensors [12,13]. Although

this line of work has been instrumental in explainingmany of the biases and variability of behaviors

observed during sensory perception, this approach does not explicitly consider the biological

limitations of information processing in the nervous system or the significant cognitive burden

required to sense, learn, and act [14].

The incorporation of these concepts can be studied with the use of information-theoretical

methods which can be used as a formal tool to understand our resource-limited neurobiology.

The adoption of information theory in neurobiology led to the postulation of the efficient coding

hypothesis introduced by Attneave and Barlow in the late 1950s [15,16]. This hypothesis can

be summarized in the following sentence written by Horace Barlow: 'The hypothesis is that

sensory relays recode sensory messages so that their redundancy is reduced but comparatively

little information is lost' ([16], p. 225).

In other words, this entails that a sensor of the organismwill try its best to transmit information from

the environment as reliably as possible (also known as information maximization transmission),

given that the sensor will never be perfect owing to physical and metabolic constraints. Interest-

ingly, in the very same document, Horace Barlow also writes ([16], p. 219): 'The primary effect of

the sensory messages an animal receives is not to enrich its subjective experience of the world

but to modify its behavior in such a way that it and its species have a greater chance of survival'.

However, aspects of cognition and goal-oriented behavior were not directly considered in subse-

quent neurophysiological tests of the efficient coding hypothesis. This is critical, as it can be formally

shown that informationmaximization transmissionwill not necessarily maximize the chances of sur-

vival of the organism [17,18]. This already suggests that representing the world as accurately as

possible given our biological constraints is probably not the purpose of our sensory systems.

Nonetheless, the concepts andmethods of information theory are not solely restricted to informa-

tion maximization of sensory systems, as they can be extended to studying agents as processing

systems that interact with the environment through sensing action loops [14]. The primary
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advantage of this methodology lies in its capacity to generate universally applicable quantitative

statements that are valid for all systems, whether biological or artificial. This is achieved with

minimal assumptions regarding the specific realization and cognitive mechanisms underlying

such systems.

Initially, some forms of these proposals were formally incorporated in the study of how to under-

stand our resource-limited cognition which started with the influential work by Simon – interestingly

also in the 1950s –who argued that rational decision strategies must be adapted to both the struc-

ture of the environment and the cognitive limitations of the mind [19,20]. A large body of evidence

supports the idea that organisms optimize costs and benefits between the precisionwith which the

brain represents value signals and the biological costs of that precision [21–23]. Increasing repre-

sentational precision may reduce perceptual biases [24–26] and increase choice consistency

[27–32], but the metabolic cost of increased precision is significant [33–37]. However, modern

resource-rational analysis, known in economics as rational inattention (Box 1), often leaves it un-

clear at which level of the neural processing stream organisms adopt efficient adaptation and pro-

cessing of the incoming sensory information to guide their bounded-rational behavior.

Assuming that the goal of organisms is tomaximize some objective or utility function [38], we pos-

tulate the following hypotheses.

(i) Following the efficient coding and the bounded-rationality theoretical frameworks, we argue that

it is more efficient for the brain to adapt to the objective-maximizing rules of a particular environ-

ment at the earliest stages of sensory processing if the system has the ability to modify

information-processing strategies at this point in the information processing pipeline. One rea-

son is that biological transmission channels are imprecise, and information will be unavoidably

lost in the transmission pipeline in the brain [39]. A second reason is the key role that the adapt-

ability of sensory systems may play in evolution and the resulting behavior [40]. Although a sen-

sor may be minimally optimal for a specific environment, it could still function effectively in

different niches. This adaptability allows a somewhat independent evolution of sensor compo-

nents, and increases the likelihood of individual evolutionary steps. Even if a sensor is minimal for

achieving optimal performance in one scenario, it may still provide enough information for suc-

cessful operation in different contexts, thereby enabling similar levels of effectiveness [14].

(ii) When facing a series of decisions, organisms optimize their choice outcomes by limiting the

information they encode [21,22], which may generate apparently irrational behavior [23,41]

and idiosyncratic preferences due, at least in part, to early encoding limitations – for instance,

aversion to risk. Thus, our second hypothesis is that some of the often-observed behaviors

and statistical fallacies attributed to downstream processing might unavoidably originate

from the way our early sensory codes must operate to guarantee that the fitness objectives

of the organism are optimally achieved.

We provide here recent theoretical and empirical evidence that supports these hypotheses.

Formally studying resource limitations and early sensory processing

The first question we address here is how efficient neural adaptations are formally related to neu-

ral limitations and cognitive/metabolic costs. This formalism is often studied in the resource-

rational analysis framework [21,22]. In brief, this framework provides tools to study how cognitive

and computation constraints can be incorporated into rational principles of decision behavior by

determining the (constrained) optimal internal strategies that the organism must adopt to maxi-

mize the outcome of its choices. While the adoption of resource-rational frameworks is becoming

popular across domains in neuroscience [33,42,43], psychology [29,44–47], and economics
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[23,31,48–50], in many cases it remains silent as to in which level of the information processing

hierarchy in the brain the implementation of efficient information processing takes place, if at all,

and whether such optimal information processing codes are related to the idiosyncratic prefer-

ences of an organism and/or its adaptation to changes in the environment.

Box 1. Rational inattention: a cross-domain foundation

Rational inattention builds on the observation that, contrary to assumptions in classical approaches, decision-makers

cannot pay attention to all available information but can choose (or develop learning strategies) to pay more attention to

the most important pieces of information. There are well-established models that guide economists on how to deal

with imperfect information; however, these models assume that the source of imperfection is of an exogenously given

form. This is not what rational inattention deals with. Rational inattention acknowledges that (i) processing information

is costly, and (ii) there is a limit to the amount of resources that can be dedicated to acquiring and processing informa-

tion for decision-making purposes. Based on these constraints, the decision-maker chooses what costly signals to

process. Introduced about 20 years ago, rational inattention is considered to be one of the most influential theories de-

veloped in economics in the 21st century [48].

Standard applications of rational inattention follow the large literature of information theory. This was originally established

and developed by Clause Shannon in 1948 [91] to formally tackle the transmission of information over a communication

channel with limited capacity, via a concept known as rate-distortion theory. This theory explores the trade-off between

the rate at which information is sent and the fidelity with which it is reconstructed at the receiver. The relationship between

rational inattention and rate-distortion theory is twofold.

(i) Both rational inattention and rate-distortion theory involve optimizing the allocation of scarce resources. In the case of

rational inattention the resource is cognitive attention, while in rate-distortion theory it is the capacity of the communi-

cation channel (Figure I).

(ii) In rational inattention, the decision-maker selectively processes information tomaximize its utility given the costs of atten-

tion. This is analogous to the rate-distortion trade-off in which the sender aims to convey essential information within the

constraints of limited transmission capacity without exceeding an acceptable level of distortion at the receiver.

In the same way as economists adopted the concepts of information theory to develop the formal foundations of rational in-

attention theory about two decades ago, neuroscientists adopted the same concepts and principles to study how neural

systems process, generate, and evolve sensory coding signals to efficiently guide behavior considering the limited metabolic

resources of biological systems. In fact, neuroscientists started to investigate and apply information theoretical concepts rel-

atively early on, about a decade after information theory was formally introduced by Claude Shannon in 1948.
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Figure I. Information transmission in communication systems. (A) The communication channel is limited, in other

words it does not have infinite bandwidth and is corrupted by noise. (B) Steps to solve the information transmission

problem in engineering (left) were also adopted to study the efficiency of neural codes in neuroscience (middle) and also

inspired the rational inattention theory in economics (right).
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A recent study employed a formal approach to predict from first principles how a (neural) system

should allocate its limited information processing resources when agents face decisions in two of

the most studied problems in decision-making research [51]. First, accuracy maximization in per-

ceptual discrimination tasks, where organisms typically receive a fixed amount of reward for every

correct discrimination they make based on sensory information. Second, reward maximization in

economic problems where rewards are monotonically mapped to a given sensory feature

(Figure 2). A fundamental aspect to consider when studying these problems is how the typicality

of the sensory features that the agents encounter in each environment or context [i.e., the prior

distribution f(s) over all possible sensory inputs s] influences the way information processing re-

sources must be allocated. For a two-alternative forced choice (2AFC) task with sensory inputs

s1 and s2, the expression that the agent intends to minimize (generally speaking and omitting

details) is the penalty for every incorrect decision L(s1,s2), which formally can be written as follows:

minh ∬ f s1; s2ð Þ � P errorjh s1ð Þ; h s2ð Þð Þ � L s1; s2ð Þds1ds2; ½1�

where P errorjs1, s2ð Þ is the probability that the agent will be incorrect given that the choice prob-

lem occurs with probability f(s1,s2). Critically, the agent is restricted to allocating its limited neural

resources according to a biologically bounded encoding function h(s) (i.e., the mapping from the

environmental signal to the sensor must occur with limited precision because of both physical

constraints and metabolic costs, thus unavoidably leading to perceptual errors). Thus, the goal

of the agent is to find the function h(s) that allocates resources optimally such that the average

reward loss is minimized.

The results of the formal analyses applied to a sensory discrimination task reveal that, for both

problems (accuracy and rewardmaximization), the allocation of information processing resources
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Figure 2. Sensory reliability as a function of environmental priors and stimulus–reward contexts. In the accuracy

maximization context, organisms receive a fixed amount of reward for every correct discrimination that they make based on

sensory information (left). In the reward maximization context (i.e., a typical economics problem context), reward levels are

mapped to a given sensory feature (right). The typicality of the sensory features that the agents encounter in each environment

or context [i.e., the prior distribution f(s) over all possible sensory inputs s] influences the way in which information processing

resources must be allocated. The optimal internal representation of sensory information when agents aim at maximizing re-

ward in a two-alternative forced choice task reveals that, in the accuracy maximization problem, the agent dedicates more

resources to sensory features that occur more often in the environment, which are the features that have lower value in

this specific reward maximization problem (cardinal orientations in our example). Furthermore, in the reward maximization

context, the agent flattens the resource allocation curve such that it dedicates more resources to features that promise

more reward. Recent work has shown that these strategies are adopted by rodents [33], humans, and machines [51].
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is higher for sensory features that occur more often in the environment. However, there are also

differences in the allocation of such information processing resources. In the accuracy maximiza-

tion problem, the agent dedicates resources to sensory features based purely on how often it ex-

pects them to occur in the environment. By contrast, when sensory features map directly onto

levels of reward, the agent must take into account both the frequency with which a feature occurs

and the level of reward it yields when dedicating sensory resources. This often means that the

agent will dedicate more resources to rare sensory features in a reward maximizing compared

with an accuracy maximizing encoding scheme (Figure 2). We note that the solutions described

earlier hold for the case where the metabolic costs are nearly negligible; however, surprising re-

sults in the allocation of neural resources might be encountered when such costs are considered

[33]. When human participants were asked to make decisions in this type of behavioral paradigm

(where rewards were mapped to a low-level sensory feature: the orientation of a Gabor patch),

the results showed that sensory discrimination performance matched the normative predictions

of efficient sensory resource allocation in each context. Crucially, this efficient reorganization ap-

pears to occur at retinotopic-specific locations in humans, as inferred from psychophysical anal-

yses, and therefore in the very early stages of sensory processing.

Further tests were carried out with artificial agents to test whether agents must recode their sen-

sory representations to fitness-maximizing schemes to achieve the best decision-making perfor-

mance at the earliest stages of sensory processing. Interestingly, after training on the same tasks

that the humans performed, these neural networks revealed that the contents of sensory informa-

tion at early stagesmatch both the predictions of the formal mathematical models and the behav-

ior observed in humans [51].

A similar approach was adopted to investigate whether other organisms, in this case mice, also con-

form to the same class of efficient adaptations [33]. The investigators found that mice adaptively allo-

cate their sensory resources in a way that maximizes reward consumption in novel stimulus–reward

association environments. A surprising result, and apparently irrational behavior observed in this

study, is that the perception of mice of commonly occurring stimuli was relatively imprecise; however,

this apparent statistical fallacy implies 'awareness' and efficient adaptation to their neurocognitive lim-

itations. Taken together, the evidence provided by mice, humans, and machines strongly suggests

that information processing resources are flexibly and efficiently reallocated to maximize context-

specific objectives at the early stages of sensory processing (Figure 2). This is similar to the way the

engineer would design a voltmeter measurement scale according to her goals (Figure 1).

Is it possible to move beyond the single attribute/channel case discussed previously, and

introduce hierarchical structures into resource-constrained systems? The principles of rate-

distortion theory, of which rational inattention is one application (Box 1), can be extended to

network configurations. These networks can be configured to encompass nodes for perception,

intermediate processing, and action. By optimizing information flow in such resource-constrained

networks, we could gain insight into how information processing limitations affect various nodes,

including early sensing nodes [52]. While these approaches have been primarily applied to

machine learning [53], it is possible to extend them to brain processes, as has been shown in

other applications such as distributional reinforcement learning [54].

Sensory codes shape individual preferences

The next question we ask is whether our early sensory codes determine or at least partially influ-

ence our subjective preferences in terms of what we like. Recent neurocomputational accounts

suggest that the perceived appeal of an object is, at least in part, determined by the principles of

neural coding efficiency, possibly at the level of dedicated sensing processing structures [55,56].
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For instance, a recent study found that social impressions of the attractiveness and trustworthi-

ness of the facial features of a stranger are monotonically driven by a measure of the 'typicality'

of the face with respect to the face feature distribution to which the observer has adapted

(i.e., does the face look like the average person they have seen?) [56]. Strikingly, manipulation

of the likelihood of a face feature being present in each context (e.g., gender type) largely ex-

plained the attractiveness ratings of human participants. However, why should the brain have

an affect or attractiveness signal related to statistical typicality? The efficient coding hypothesis

tells us that to attain and maintain coding efficiency in the brain, inefficiently coded stimuli should

be aversive, on average, as dealing with unpredictability requires effort from the viewer. While this

study did not include brain imaging data to support these conclusions, previous work has shown

that energy expenditure across face-responsive (object-responsive) areas in the brain is nega-

tively related to the face (object) typicality [57,58]. This means that the ensuing rewarding effect

of observing an object can be derived from how rapidly the system transitions from a state of un-

certainty to a state of increased predictability according to its contextual expectations [55,59].

Our attitudes towards risk are another form of preference. A large body of empirical research in-

dicates that humans are generally risk-averse, and decision-makers tend to choose smaller but

certain options over larger risky ones. Classical explanations posit that risk aversion emerges

from how the brain assigns subjective values to objective monetary outcomes, which are typically

related to downstream processes of reward processing [60,61]. A common observation is that

there is considerable variability in the individual strength of this risk-aversiveness. However, a

more fundamental observation is that the processing of both symbolic and non-symbolic

numerosity values, which typically serve as value inputs during the evaluation of risky prospects,

are imprecise and biased [62,63], and are influenced by the environmental statistics [29], atten-

tional [64] and motivational levels [65], and time constraints [62,66]. Based on these observations

the question one may ask here is – do early sensory numerosity codes influence our risk-aversion

behavior? Recent theories on risky choices propose that risk attitudes may stem from imprecise

mental representations of numerical magnitudes [67,68]. Thesemodels assume logarithmic noisy

coding of numerosity values influenced by the prior beliefs of an individual. Consequently, estima-

tions become more variable and underestimated for larger magnitudes, leading to risk-averse

choices. Notably, recent findings link the degree of risk aversion of an individual to how precisely

the brain represents numerical magnitude information – a stable trait that influences perceptual

inferences and decision-making about risky prospects [69]. This suggests that individual eco-

nomic behavior patternsmight be partly shaped by neural processing limitations – or other coding

strategies such as divisive normalization [70] – that are implemented in low-level sensory per-

cepts, rather than by processes that assign subjective values to monetary rewards in down-

stream neural circuits.

Early sensory coding of emotion schemas and disentanglement of abstract

goal-oriented objectives

We have suggested that early sensory systems incorporate abstract structural information about

the environment while considering contextual objective functions and affordances of the system

[10,14,51], and that this might be simply because it could be beneficial to efficiently guide future

behavior by mitigating information loss. Interestingly, however, recent evidence also shows that

environmental feature coding in early sensory processing also occurs in the absence of action-

driven learning (Box 2). We propose that such early sensory codes serve to convey schemas

or situations that the organism must quickly react to.

To understandwhatwemean here, let us take the example of emotion processingwhich is thought

to be a canonical response to situations ancestrally linked to survival [71,72]. Neuroscientific views
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have historically suggested that emotion is driven by specialized brain regions, often in the so-called

limbic system [73,74]. It is also clear that sensory processing plays a prominent role in nearly every

treatment of emotion [75]. However, evidence for emotion schemas in neural patterns of early sen-

sory structures was lacking. A recent investigation addressed this, and revealed reliablemapping of

category-specific visual features to distinct emotions within the earliest human visual cortical pro-

cessing systems [76]. However, why do early sensory systems invest resources in encoding emo-

tion schemas? Perhaps sensory cues alone effectively convey situations that demand rapid

responses. If category-specific visual features reliably map to emotions in early visual structures,

swift appraisals of abstract features could occur rapidly (even subconsciously), therefore aiding

prompt decisions in critical situations. Thus, early sensory structures likely offer rapid and precise

emotion predictions that are crucial for efficient responses to imminent events, particularly in

high-stakes scenarios.

In real-life scenarios, the value of an action is closely linked to the behavioral goal of an agent [77].

However, it is uncertain whether survival-oriented actions prompt rapid reorganization of percep-

tual data at the earliest sensory processing stages. This would enable organisms to rapidly deci-

pher behavioral goals tied to physical objects before losing critical information in the transmission

pipeline of the brain. Conventionally, higher association areas such as the prefrontal cortex are

thought to handle this task, in contrast to the view that this occurs in early sensory regions. Re-

cent research explored this by having volunteers undergo fMRI while imagining that they were

using objects for survival-oriented goals [78]. As expected, initial analyses revealed object identity

representations in visual areas, whereas sensory information for novel goal-directed behavior was

found in prefrontal structures. However, closer examination revealed that the usefulness of the

objects in the survival scenario was not solely represented in downstream prefrontal regions

but also in early visual areas [51,78]. These findings strengthen the idea that efficient representa-

tion of sensory information linked to context-specific, goal-driven behavioral rules – aimed at max-

imizing organism fitness – is present early in cortical sensory processing.

Efficient sensing of internal body signals?

When we talk or write about sensory perception, we usually have in mind sensing the external

world through vision, hearing, olfaction, gustation, or touch. However, there is a 'sixth sense'

that is fundamental for survival and guiding optimal behavior: sensing the internal state of the

body – known as interoception. This form of sensing is the ability to perceive information from

within the body, such as hunger, nutrient levels, thirst, temperature, and pain. However, intero-

ceptive signals and their corresponding sensing systems are less accessible and more difficult

Box 2. Environmental feature coding in early sensory processing in the absence of action-driven learning

Recent advances in neural population imaging have led to the discovery that early sensory systems in the cortex can form

representations that go beyond physical sensory encoding [92], even in the absence of goal-oriented behavior. A good

example comes from a study where the investigators recorded from neurons in the auditory cortex of mice as they implicitly

learned sequences of sounds where the predictions of upcoming stimuli created interferences between the short-term

memory of recent stimuli and the sensory representation of new stimuli [93]. Analyses of the neural signals revealed that

the neural population represented both sensory inputs and the memory of recent stimuli in a contextual manner. Crucially,

the investigators found that the auditory cortex mitigates interference by dynamically rotating sensory representations into

an orthogonal memory representation. This evidence strongly suggests that, at the earliest sensory processing stages, the

brain already has mechanisms for generating efficient representations that protect past experiences (memories) from sen-

sory interference even in the absence of action-learning mechanisms – functions that are otherwise typically ascribed to

higher-level processing areas such as the prefrontal cortex [94]. We are not suggesting that the implementation of such

efficient coding strategies does not require the interaction between downstream and early sensory systems. Instead,

we wish to emphasize that – because the brain is a noisy communication channel that always loses information during

transmission – it is beneficial to make use of some of the limited neural and metabolic resources to incorporate abstract

structural representations of the environment at the earliest stages of sensory processing.
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to study relative to (external) environmental sensory signals. Therefore, it remains an open ques-

tion whether neural coding of our internal world exhibits efficient neural representations, as has

been established for the processing of sensory stimuli from the external world.

A key example of the fundamental importance of efficient and adaptive interoceptive processing

comes from glucose sensing. Glucose is constantly released into the blood and taken up by tis-

sues, resulting in complex minute-to-minute fluctuations of its concentration in the blood. This in-

ternal glucose variability is a fundamental determinant of brain function and disease states

[79–82]. Interpretation of glucose dynamics by the brain thus attracted much interest, especially

in relation to specialized 'glucose-sensing' neurons clustered in evolutionarily old brain areas such

as the hypothalamus [83]. One population of such blood glucose-sensing neurons was recently

identified as hypocretin/orexin neurons (HONs). These hypothalamic cells send efferent signals

widely throughout the brain and act as a cornerstone of brain and behavioral control acrossmam-

mals [84–87]. Interestingly, recent data indicate that, in relation to glucose, HONs operate as an

early sensory system that performs efficient feature extraction and represents arousal, emotional,

and behavioral rules, thus potentially conforming to our efficient coding postulates (Box 3).

Concluding remarks

We wish to emphasize that, with the evidence and opinions presented here, it is not our intention to

convey the radical idea that early sensory structures should completely discard veridical information

and instead represent only reward or fitness values. The idea we want to convey is that given that

noisy communication channels such as the brain always lose information during transmission, it is

more efficient for sensory systems to allocate neural resources that promote fitness maximization

at the earliest stages of sensory processing, although we support the idea that the veridicality of

our percepts might be compromised to some extent, simply because our resources are finite.

Box 3. Early sensory coding of sugar levels

Hypothalamic orexin neurons (HONs) meet the definition of an early sensory system for glucose because small physiolog-

ical changes in ambient extracellular glucose elicit direct electrical responses in isolated HONs in vitro [95]. Initial studies

demonstrate that glucose – but not other nutrients – causes electrical inhibition of isolated HONs, originally leading to as-

sumptions that HONs report absolute levels of extracellular glucose [95–97]. Recently, however, this was re-examined

through direct measurements of blood glucose dynamics (using arterial glucose sensors) performed simultaneously with

monitoring of HON activity (using genetically encoded fluorescent activity indicators) in freely behaving mice. These direct

comparisons of concurrently measured HON activation and blood glucose dynamics indicated that HONs do not relay the

'simple reality' of glucose level. Instead of encoding the absolute blood glucose level, the HON population output transmits

information about the speed of glucose change, specifically the inverted-sign first temporal derivative of blood glucose

[98]. Interestingly, some biophysical features of isolated HONs in earlier studies are consistent with their intrinsic ability

to implement such encoding [99]. Multivariate analysis of diverse behavioral and physiological variables confirmed special-

ized coding of the glucose derivative in the low-frequency activity regime of HONs. This early 'derivative encoding' of blood

glucose dynamics by HONs enables efficient physiological and behavioral responses that anticipate peak glucose devia-

tions by several minutes [98].

Importantly, this early coding of specific temporal features of blood glucose in the HON output may already contain

arousal, emotional, and behavioral information. Selective optogenetic manipulations of HON indicate that changes in their

electrical output are sufficient to alter arousal, anxiety, andmovement, and such brain state and behavioral information can

also be decoded from recordings of natural HON activity in behavingmice [100–105]. This implies that, in combination with

the glucose trend information, HON activity already contains rules for arousal, emotion, and behavior, thus usefully

avoiding expending brain resources on creating such rules in 'higher' brain structures. Anatomically, HONs are also well

positioned to implement these codes because they directly (monosynaptically) connect to subcortical arousal and emotion

regulators, as well as to primary motor systems of the spinal cord. The HONs can rapidly activate these regions by releas-

ing multiple neurotransmitters such as glutamate, dynorphin, and the orexin/hypocretin peptides [106–108]. Overall,

HONs can be viewed as a primary sensory system for our internal metabolic state that extracts temporal features about

blood glucose into an efficient representation of emotional and behavioral rules at the earliest sensory stage.
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Outstanding questions

How do systems efficiently reallocate

their limited coding resources via

trial-to-trial experience? What

neurocomputational mechanisms

guarantee that such dynamic realloca-

tion of neural resources in early sensory

systems is efficient? Are these learning

mechanisms universally applicable to

all sensory modalities?

What are the timescales of fitness

maximizing adaptation in early sensory

systems at each level of the sensory

hierarchy (e.g., in the retina or primary

sensory cortices)? Seconds? Minutes?

Days? Years? Generations? How,

when, and where are such efficient sen-

sory codes implemented?

How efficient is the sensing of our

internal body signals? There are many

unknowns regarding the efficiency of

our interoceptive 'world', and many

open questions are ahead.

Given the evidence that some of the

often-observed irrationalities (typically

attributed to downstream processing)

unavoidably originate from the way

that our early sensory systems adapt

to and process information, how can

this help us to guide policymaking?

For instance, to improve the diagnoses

and characterization of traits of various

neuropsychiatric disorders that have

been attributed to aberrant sensory

processing and learning. In addition,

how can this knowledge help to guide

applications emerging from artificial intel-

ligence, for example, by counteracting

discrimination and systemic biases.



Another aspect deserving consideration is that we have mostly focused on the advantages of uti-

lizing resources to adopt such early processing recoding strategies. However, it must be realized

that this also imposes challenges on the computational processes to achieve such early sensory-

stage adaptability. Continuously changing the encoding strategies via 'neural retuning' is not lim-

ited to only a subset of early sensory neurons. According to our premise, beyond well-controlled

laboratory environments, such retuning must occur across sensory modalities, temporal and hi-

erarchical scales, and a variety of contexts, which typically interact through complex covariance

structures. How should downstream circuits keep track of all these potentially valid 'retuning' op-

erations such that they know which one is relevant at any given point in time? This problem is

known as 'the coding catastrophe' [88] (Box 4).

The set of concepts and theoretical frameworks discussed here may have important clinical and

policymaking implications (see also Outstanding questions). In the clinical domain, recent inves-

tigations have developed theories that attempt to provide normative accounts of early sensory

coding in complex neuropsychiatric conditions [89]. Unfortunately, some of these theories gener-

ally ignore the normative foundation that organismsmust optimize behavioral processes because

of biological restrictions on information processing. A recent study provided hints at how these

resource-limitation concepts can be incorporated, where it was shown that autism spectrum dis-

order (ASD) can be reliably characterized by inflexible adaptation and allocation of sensory

encoding of resources which cannot be attributed solely to learning deficits [90]. This might ex-

plain the origins of the aberrant perceptual flexibility that is typically observed in ASD.

Finally, we reported how statistical regularities alongside resource limitations in information pro-

cessing systems can lead to biased preferences, for instance during appraisals of face features,

Box 4. We have a problem: the coding catastrophe

Constantly altering encoding strategies through 'neural retuning' extends beyond a specific subset of early sensory neu-

rons. Our premise suggests that, outside controlled laboratory settings, this adaptation occurs across sensory modalities,

various temporal and hierarchical scales, and diverse contexts that interact through complex covariance structures. How

can downstream circuits manage these diverse 'retuning' operations to discern their relevance at any moment? This di-

lemma is known as 'the coding catastrophe'. We discuss ways in which this problem might be tackled by the brain.

We posit that the stability of early sensory neural codes relies on contextual timescales and hierarchical sensory organization. Op-

timal sensory codes might exhibit more stability under relatively fixed environmental and behavioral conditions over evolutionary

timescales, as observed in efficient coding of low-level sensory features in the retina [109,110]. However, faster temporal scales

allow rapid efficient filtering of sensory data via attention mechanisms and top-down contextual modulation in early sensory pro-

cessing [33], which can be achieved, for instance, via mechanisms of reinforcement learning and top-down attentional normal-

ization [111]. Prominent examples supporting this notion come from studies in rodents showing that stimulus–reward

contingencies are rapidly implemented in primary cortical sensory structures [112,113]. In one such study, it was shown that

these stimulus–reward mapping rules are initially learned by prefrontal structures which continuously engage in 'teaching' early

sensory structures about these mapping rules [112]. Crucially, the implementation of these mappings in the early sensory struc-

tures is absent when the prefrontal cortex inputs are blocked. Hence, our thesis does not dismiss the development of efficient

coding strategies in downstream structures such as prefrontal areas [43]. Instead, it underscores their fundamental role in learning

and interpreting abstract environmental rules [112,114].

In dealing with the challenge of extracting crucial information encoded by early sensory systems amid numerous contex-

tual rules, recent investigations are shedding light on how the brain copes with aspects of the coding catastrophe. Thanks

to advances in large-scale neural population recordings, there is increasing evidence that our brains have developed strat-

egies to ensure that veridical information is not completely suppressed, for instance by disentangling distinct aspects of the

objective environmental information via orthogonalization [115,116]. Intriguingly, some studies indicate that environmental

feature coding beyond sensory accuracy occurs using these strategies, even without action-driven learning [93]. In addi-

tion, it has recently been shown that early sensory structures adopt coding strategies that reflect a balance between the

fraction of neural variance that is devoted to representing coarse and fine stimulus features via such 'orthogonalization'

by using a property known as power-law eigenspectral representations [117]. The authors formally established that adher-

ing to this principle enables the brain to generate highly efficient and flexible codes, thereby ensuring robust generalization

at the earliest stages of sensory processing.
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race, or gender. We argue that a formal study of how limitations in information processing lead to

constrained-optimal solutions that have potentially harmful types of biases will have deep implica-

tions for policymaking in statistical and taste-based discrimination. A formal study of these

constrained information processing phenomena can guide society in counteracting discrimina-

tion, for instance by guiding searches in the labor market of both firms and job applicants irre-

spective of whether the agents making the decisions are humans or machines.
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