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Abstract

Objectives To assess a deep learning-based reconstruction algorithm (DLRecon) in zero echo-time (ZTE) MRI of the 
shoulder at 1.5 Tesla for improved delineation of osseous findings.
Methods In this retrospective study, 63 consecutive exams of 52 patients (28 female) undergoing shoulder MRI at 1.5 
Tesla in clinical routine were included. Coronal 3D isotropic radial ZTE pulse sequences were acquired in the standard MR 
shoulder protocol. In addition to standard-of-care (SOC) image reconstruction, the same raw data was reconstructed with 
a vendor-supplied prototype DLRecon algorithm. Exams were classified into three subgroups: no pathological findings, 
degenerative changes, and posttraumatic changes, respectively. Two blinded readers performed bone assessment on a 4-point 
scale (0-poor, 3-perfect) by qualitatively grading image quality features and delineation of osseous pathologies including 
diagnostic confidence in the respective subgroups. Quantitatively, signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR) of bone were measured. Qualitative variables were compared using the Wilcoxon signed‐rank test for ordinal data 
and the McNemar test for dichotomous variables; quantitative measures were compared with Student’s t-testing.
Results DLRecon scored significantly higher than SOC in all visual metrics of image quality (all, p < 0.03), except in 
the artifact category (p = 0.37). DLRecon also received superior qualitative scores for delineation of osseous pathologies 
and diagnostic confidence (p ≤ 0.03). Quantitatively, DLRecon achieved superior CNR (95 CI [1.4–3.1]) and SNR (95 CI 
[15.3–21.5]) of bone than SOC (p < 0.001).
Conclusion DLRecon enhanced image quality in ZTE MRI and improved delineation of osseous pathologies, allowing for 
increased diagnostic confidence in bone assessment.
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Abbreviations

AI  Artificial intelligence
CNN  Convolutional neural network
CNR  Contrast-to-noise ratio
DL  Deep learning
MRI  Magnetic resonance imaging
PACS  Picture archiving and communication system
ROI  Region of interest
SD  Standard deviation

SI  Signal intensity
SNR  Signal-to-noise ratio
SOC  Standard-of-care
ZTE  Zero echo time
2D  Two-dimensional
3D  Three-dimensional

Introduction

Shoulder MRI is the preferred imaging modality for diag-
nostic workup of a wide spectrum of clinically suspected 
pathologies, e.g., degenerative disease or traumatic injuries 
[1]. In particular, MRI provides an excellent assessment of 
soft tissues and bone marrow. Additionally, even detailed 
evaluation of mineralized bone or other calcified structures 
with ultrashort T2 relaxation properties has become feasible 
through zero echo time (ZTE) MR imaging with “CT-like” 
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bone contrast [2–4]. Recent introduction of commercially 
available software has facilitated routine implementation 
of this technique into standard-of-care MR protocols [5–8]. 
Benefits of ZTE application in shoulder MRI were previ-
ously demonstrated, with strong inter-modality agreements 
between CT and ZTE images [9–11]. As an inherently 3D 
volume technique, ZTE also accommodates multiplanar 
reformations and maximum intensity projection renderings, 
like CT.

However, overall bone depiction quality with ZTE MRI 
is still inferior to that of CT, despite continued development. 
Optimization of ZTE sequences remains challenging as it 
entails a trade-off between spatial resolution, signal-to-noise 
ratio (SNR), and scan time [5]. Short-T2 imaging is gener-
ally more SNR-limited than conventional MRI due to its 
sub-millisecond and high-bandwidth acquisitions [12]. This 
also implies certain hardware requirements in terms of radi-
ofrequency chains and gradient performance [13]. Recent 
research to improve SNR efficiency within clinically reason-
able scan times has focused on methods for retrieving central 
k-space data missed during the dead-time gaps arising from 
radio-frequency excitation and switching in ZTE imaging 
[14]. However, inherent limitations of conventional image 
reconstruction persist.

The advent of artificial intelligence (AI) in image recon-
struction offers a novel approach to address these challenges 
in ZTE MRI [15]. Deep learning reconstruction (DLRecon) 
algorithms have been shown to be capable of decoupling 
the traditional SNR interdependence, i.e., to improve image 
quality and reduce scan time simultaneously [16]. Com-
mercial DLRecon implementations are being increasingly 
incorporated into clinical protocols across a growing range 
of MRI techniques, while promising results have also been 
reported in the shoulder [17, 18]. Applying DLRecon to 
ZTE shoulder MRI could further enhance its diagnostic 
yield in osseous findings within reasonable scan times. Con-
sequently, the AI-enhanced ZTE sequence could be more 
widely established as a routine component of shoulder MRI, 
which then may even serve as a one-stop modality for some 
patients, obviating additional CT together with its radiation 
exposure and further costs.

We hypothesized that DLRecon would enhance the over-
all image quality of ZTE sequence in the shoulder, enabling 
increased diagnostic confidence in the clinical evaluation 
of osseous structures including pathologies. The objective 
of our study was to assess the efficacy of a DLRecon algo-
rithm to improve both image quality and bone evaluation in 
ZTE shoulder MRI, compared to standard-of-care (SOC) 
reconstruction.

Material and methods

Study design

This study was approved by the institutional review board. 
Written general consent was obtained from all participants 
prior to imaging.

In this retrospective study, 67 consecutive shoulder exams 
of 56 patients were included between July and November 
2022. Three exams were not reconstructed with the DL 
algorithm by the scanner. Twelve patients had scans of both 
shoulders, one of them was analyzed in the same subgroup 
and therefore only the right-sided exam of that individual 
was included to avoid dependent data. This resulted in n = 63 
exams of 52 patients for final analysis. Fourteen exams were 
performed as MR arthrographies.

Clinical indications for MRI included a history of shoul-
der trauma (n = 21), chronic rotator cuff pathology (n = 14), 
glenohumeral instability (n = 10), unspecific shoulder pain 
(n = 9), postoperative setting (n = 4), frozen shoulder (n = 3), 
bursitis (n = 2), and rheumatoid arthritis (n = 1).

All exams were classified into three subgroups according 
to the written radiology report: (1) no pathology, (2) degen-
erative changes, and (3) posttraumatic changes. Demograph-
ics of each subgroup are shown in Table 1.

All patients who presented to our institution for clinically 
indicated MR shoulder were considered for study inclusion. 
Exclusion criteria were the inability to retrospectively recon-
struct with DLRecon due to incomplete local storage of the 
raw data at the time of acquisition and patient age < 18 years. 
Furthermore, exams with severely degraded overall image 

Table 1  Study subgroups

Characteristic No pathology Degenerative changes Posttraumatic changes

Examinations (n) 23 25 15

Age (years) 43 ± 14 57 ± 9 42 ± 16

Males/females 12/11 12/13 11/4

Osseous pathology (n) − Acromioclavicular osteoarthritis 
(14); glenohumeral osteoarthritis 
(11)

Hill-Sachs lesion (5); greater tuberosity fracture (3); osseous 
Bankart lesion (2); AC-joint injury (2); clavicle fracture 
(1); humeral head subchondral fracture (1); scapula frac-
ture (1)
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quality on the standard reconstruction due to hardware or 
motion artifacts would be excluded from the analysis.

Image acquisition

All examinations were performed on the same clinical 
1.5 Tesla MRI System (SIGNA™ Artist, GE HealthCare, 
Waukesha, WI, USA). Patients were scanned in a supine 
position using a dedicated 16-channel shoulder coil. Coronal 
3D isotropic radial ZTE pulse sequence was obtained as part 
of the institution’s standard MR shoulder protocol [19]. Scan 
parameters are listed in Table 2.

Deep learning image reconstruction

Standard reconstruction for the ZTE sequence by the scan-
ner’s native, inline reconstruction pipeline was performed 
in routine clinical practice and is termed standard-of-care 
(SOC) in this study [20]. Additionally, the acquired raw 
data was reconstructed with a vendor-supplied prototype 
of a deep learning-based reconstruction pipeline (AIR™ 
Recon DL, GE HealthCare, Waukesha, WI, USA). DLRecon 
includes a deep convolutional neural network (CNN) that 
operates on raw k-space data to provide sharp, low-noise 
images [21]. Specifically, DLRecon is designed to reduce 
image noise and truncation artifacts while improving edge 
sharpness to enhance image quality. The CNN was trained in 
a supervised learning approach using diverse pairs of near-
perfect MR images and synthesized lower-quality versions 
with more truncation artifacts and higher noise levels. The 
training database included four million unique image com-
binations spanning a broad range of image content to enable 
generalizability across all anatomies. The prototype allows 
a user-tunable noise reduction factor ranging from 0 to 
100%. In advance, a sample set of exams not included in the 
study was reconstructed with varying denoising levels and 
reviewed by the authors. For the present study, the highest 
denoising level (100%) was activated in order to investigate 
the biggest difference between the reconstruction methods 

and to detect potential blurring or thresholding of image 
details. Denoising is controlled independently of the ring-
ing reduction and does not affect edge sharpness to preserve 
image features [22]. The tested prototype is an extension of 
the commercially available version of DLRecon, making it 
compatible with 3D ZTE data.

Image analysis

Quantitative analysis

To quantitatively assess image quality, signal-to-noise ratio 
(SNR) and contrast-to-noise ratio (CNR) of bone were 
measured in both reconstruction methods. The subset with 
fractures was excluded from quantitative analysis to avoid 
potential distortion. Furthermore, to avoid dependent data, 
the left shoulder exam was excluded in five patients with 
scans of both shoulders, resulting in n = 43 exams for the 
final analysis.

Five-millimeter squared regions of interest (ROI) were 
placed on the same single axial slice at mid-glenoid level in 
the following locations: (1) central humeral head and gle-
noid as a reference for fine- and coarse-structured spongy 
bone, respectively, and (2) subscapular muscle next to the 
glenoid.

Additionally, the cortical bone of the proximal humeral 
shaft was measured in the first proximal slice that could 
accommodate a 3  mm2 ROI. Mean and standard deviation 
(SD) values of signal intensity (SI) were calculated for each 
ROI. The mean of both bone and muscle SD values was 
computed to obtain estimates of noise from different loca-
tions inside the anatomy.

The mean of both spongy and cortical bone measure-
ments served as bone signal for the SNR and CNR, which 
were calculated as follows:

Qualitative analysis

ZTE sequences were analyzed independently by two read-
ers (a board-certified radiologist with 8 years and a radiol-
ogy resident with 4 years of experience) on standard PACS 
workstations (DeepUnity Diagn, Dedalus, Bonn, Germany) 
with diagnostic quality monitors. Both readers were blinded 
to the reconstruction method, clinical information, and 
radiological report. All scans were randomized for evalua-
tion of the entire imaging volume in all three planes using 

SNR =

SI bone

mean SD of bone and muscle

CNR =

SI bone − SI muscle

mean SD of bone and muscle
Table 2  Parameters of ZTE MR sequence

Parameter Value

Echo time (ms)  ≅ 0

Repetition time (ms) 401.71

Flip angle (°) 1

Pixel bandwidth (kHz) 488

Number of excitations 4

Field of view (cm) 18

Slice thickness (mm, 0.6 mm gap) 1.2

Acquisition matrix 172 × 172

Scan time (min)  ~ 2:23
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a multiplanar reconstruction tool in PACS. Images were 
gray-scale inverted for CT-like visualization. To establish 
consistency, observers underwent a prior training session by 
jointly reviewing a separate practice set of 10 exams until 
consensus was reached.

The qualitative scoring system is summarized in Table 3. 
A 4-point scale (0-poor/non-diagnostic, 1-acceptable, 
2-good, 3-perfect) was used to visually score image quality 
attributes. In the subset without pathology, image quality 
was assessed by grading delineation of both cortical and 
trabecular bone, anatomic conspicuity, and overall image 
quality. In the group with degenerative changes, delineation 
of osteophytosis, subchondral cysts, subchondral sclerosis, 
and soft tissue calcifications were separately evaluated, if 
present. The subset with fractures was graded for delineation 
of fracture lines and osseous fragments, while displacement 
was scored dichotomously (yes/no). Additionally, reviewers 
rated their diagnostic confidence in visualizing degeneration 
and fractures in the respective subsets with pathology.

The presence of artifacts in the group without pathology 
was graded on a 4-point scale (0-none, 1-mild, 2-moderate, 
3-severe), regarding their detrimental effect on the depiction 
of osseous structures.

Statistical analysis

The Shapiro–Wilk test was used to assess the normal-
ity of data. Normally distributed variables are reported 
as mean ± SD and non-normally distributed variables are 
reported as median ± interquartile range (IQR). Reading 
scores of qualitative image analysis were compared using 
the non-parametric paired sample Wilcoxon signed‐rank test 
for ordinal data and the McNemar test for dichotomous vari-
ables. Quantitative analysis was evaluated by paired sample 
Student’s t-testing and reported with mean difference and 
95% confidence intervals (95 CI).

Inter-rater agreement was calculated through linearly 
weighted Cohen’s kappa with 95% confidence intervals 
(95 CI) and with values being interpreted as follows: 

0.00–0.20 = poor agreement, 0.21–0.40 = fair agreement, 
0.41–0.60 = moderate agreement, 0.61–0.80 = substantial 
agreement, 0.81–1.00 = (almost) perfect agreement.

p-values below 0.05 were considered significant. All cal-
culations were performed in SPSS (IBM SPSS Statistics, 
version 29.0; IBM, Armonk, NY, USA).

Results

The final study cohort consisted of 63 exams in 52 patients 
(mean age: 46 ± 14 years, 28 females). Detailed patient 
demographics are listed in Table 1.

Quantitative analysis

DLRecon achieved significantly higher CNR and SNR of 
bone compared to SOC, as illustrated in Fig. 1. Mean ± SD 
of CNR from SOC and DLRecon were 2.3 ± 1.4 and 
4.5 ± 3.2 (mean difference: 2.2); SNR were 19.6 ± 3.7 and 
38.0 ± 9.7 (mean difference: 18.4). The p-value for CNR (95 
CI [1.4–3.1]) and SNR (95 CI [15.3–21.5]) comparisons was 
less than 0.001. DLRecon showed greater variability of CNR 
and SNR measurements compared to SOC, which has also 
been observed in previous studies of the same underlying 
DLRecon method [23, 24].

Qualitative analysis

The distribution of image quality features evaluated on 
SOC and DLRecon by the senior reader is demonstrated 
in Fig. 2. Comparison of median scores (IQR) with associ-
ated p-values and inter-rater agreement for all subgroups 
is shown in Table 4. DLRecon scored significantly higher 
than SOC in all image quality features (p < 0.03), except 
in the artifact category, where there was no significant 
difference between the reconstruction methods (p = 0.37). 
Artifacts were overall scored slightly higher in DLRecon 
(1 (0–1)) than in SOC (0 (0–1)). Inter-rater agreement 

Table 3  Summary of 4-point qualitative scoring system for assessing image quality and pathologies

Score 0 1 2 3

Delineation of cortical 
and trabecular bone

Substantial obscuration of 
structures

Impaired delineation of 
structural detail

Mostly continuous and 
sharp visualization

Continuous and sharp 
visualization

Anatomic conspicuity Barely apparent Mostly discernible Well visible Very conspicuous

Overall image quality Poor SNR/CNR, non-defin-
able contours

Fair SNR/CNR, slightly 
blurred contours

Good SNR/CNR, mostly 
sharp contours

Perfect SNR/CNR, ubiqui-
tously sharp contours

Artifacts None No detrimental effect on 
diagnostic yield

Assessment partially lim-
ited, still diagnostic

Diagnostic evaluation not 
feasible

Delineation of pathology Non-diagnostic visualiza-
tion

Partial visualization Almost full visualization Detailed visualization

Diagnostic confidence None Low confidence Intermediate confidence High confidence
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for image quality categories ranged from moderate to 
substantial in both DLRecon (κ = 0.52–0.75) and SOC 
(κ = 0.54–0.74). Exemplary images of ZTE bone depiction 
with DLRecon and SOC are displayed in Fig. 3.

Degenerative changes

Table 5 provides a full summary of the scoring results in the 
subgroups with degenerative disease and fractures. Deline-
ation of osteophytes, subchondral cysts, and subchondral 

Fig. 1  Box and whisker plot 
comparing CNR and SNR of 
bone between standard-of-care 
(SOC) and deep learning recon-
struction (DLRecon) method 
(*mark: p < 0.001). Abbrevia-
tions: CNR, contrast-to-noise 
ratio; SNR, signal-to-noise ratio

Fig. 2  Graphic overview of visual scores regarding image quality in the subgroup with no pathology (n = 23). Abbreviations: DLRecon, deep 
learning reconstruction; SOC, standard-of-care
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sclerosis was scored significantly higher with DLRecon 
compared to SOC (p < 0.002). Statistical analysis of soft 
tissue calcifications was not possible, as it was only present 

in one exam. This single soft tissue calcification received a 
good score with SOC and an excellent score in DLRecon. 
Recently, 3D ZTE was shown to increase the identification 

Table 4  Comparison of median scores (interquartile range) with associated p-values and inter-rater agreement (95% confidence interval) for all 
subgroups

Metric Median (IQR) p-value Inter-rater agreement κ [95 CI]

SOC DLRecon SOC DLRecon

Image quality

  Delineation of cortical bone 2 (2–3) 3 (2.5–3)  < 0.001 0.61 [0.33–0.89] 0.66 [0.35–0.97]

  Delineation of trabecular bone 2 (1–2) 2 (2–3) 0.029 0.54 [0.25–0.83] 0.52 [0.24–0.80]

  Anatomic conspicuity 3 (2–3) 3 (3–3) 0.005 0.74 [0.51–0.97] 0.62 [0.21–1.00]

  Overall image quality 2 (2–3) 3 (2.5–3)  < 0.001 0.63 [0.35–0.91] 0.75 [0.44–1.00]

  Artifacts 0 (0–1) 1 (0–1) 0.366 0.60 [0.32–0.88] 0.60 [0.29–0.91]

Degenerative changes

  Delineation of osteophytosis 2 (1–2) 3 (2–3)  < 0.001 0.76 [0.55–0.97] 0.73 [0.45–1.00]

  Delineation of subchondral cysts 2 (1–3) 3 (3–3) 0.001 0.63 [0.35–0.91] 0.63 [0.30–0.96]

  Delineation of subchondral sclerosis 2 (2–2) 3 (3–3) 0.002 0.46 [0.04–0.88] 0.57 [0.12–1.00]

  Diagnostic confidence 2 (1–2) 3 (2–3)  < 0.001 0.69 [0.45–0.93] 0.61 [0.29–0.93]

Posttraumatic changes

  Delineation of fracture line 2 (2–3) 3 (2.5–3) 0.033 0.76 [0.49–1.00] 0.69 [0.31–1.00]

  Delineation of fragments 2 (2–2) 3 (2–3) 0.015 0.63 [0.29–0.97] 0.73 [0.40–1.00]

  Diagnostic confidence 2 (2–3) 3 (2.5–3) 0.023 0.56 [0.22–0.90] 0.71 [0.35–1.00]

Fig. 3  Twenty-nine-year-old male presenting after shoulder trauma. 
Axial, sagittal, and coronal reformats of the ZTE sequence processed 
with DLRecon (d, e, f) exhibit superior image quality due to denois-

ing and sharpening, compared to the same images from SOC recon-
struction (a, b, c). No osseous abnormality was identified on this 
exam
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of calcific deposits in rotator cuff compared to conventional 
MR sequences [25].

In nearly all exams, degenerative findings of DLRecon 
and SOC were concordant. In one exam, subchondral cysts 
were rated to be present with DLRecon, but not in SOC. 
Subchondral sclerosis was scored as present in one patient 
each with DLRecon and SOC, but not in the other corre-
sponding reconstruction method.

With regards to overall diagnostic confidence in evalu-
ating degeneration, DLRecon also received significantly 
higher scores than SOC (p < 0.001).

Inter-rater agreement for the delineation of degen-
erative changes was moderate to substantial for DLRecon 
(κ = 0.57–0.73) and SOC (κ = 0.46–0.76). Evaluation of 
diagnostic confidence demonstrated substantial inter-rater 
agreement for DLRecon (κ = 0.63) and SOC (κ = 0.68).

Posttraumatic changes

Delineation of fracture lines and fragments was significantly 
improved for DLRecon versus SOC (p ≤ 0.03) (Fig. 4). Diag-
nostic confidence in evaluating these fractures was also rated 
significantly higher in DLRecon images (p = 0.023).

With regard to dichotomous fracture displacement rat-
ings, there was no statistically significant difference between 
reconstruction methods (p = 1.00) (Fig. 5). Fractures were 
scored as displaced in 73% of SOC images vs. 80% of 
DLRecon images. In two patients, the fracture was seen as 
displaced with DLRecon but not with SOC. In contrast, one 
fracture was scored as displaced in SOC and non-displaced 
with DLRecon.

Inter-rater agreement for delineation of fracture lines and 
fragments was substantial for both DLRecon (κ = 0.69 and 
0.73) and SOC (κ = 0.76 and 0.63) (Fig. 6). Inter-rater agree-
ment for diagnostic confidence in evaluating posttraumatic 

changes was substantial for DLRecon (κ = 0.71) and moder-
ate for SOC (κ = 0.56).

Discussion

In this retrospective study, we qualitatively and quantita-
tively evaluated the efficacy of an AI-reconstruction algo-
rithm (DLRecon) to enhance bone assessment in ZTE MR 
imaging of the shoulder at 1.5 Tesla. Alongside improve-
ments in overall image quality, DLRecon may improve the 
delineation of bone including degenerative and posttrau-
matic changes, compared to SOC reconstruction. Confi-
dently assessing the presence and extent of such osseous 
findings can be of particular importance in shoulder MRI, 
e.g., in the setting of shoulder instability and osteoarthritis. 
DLRecon may also significantly improve diagnostic cer-
tainty in the evaluation of osseous abnormalities. These sub-
jective reader results were in line with the objective quantita-
tive metrics of image quality, which suggested superior CNR 
and SNR of bone.

Our findings, based on a rather small cohort of non-
pathological and pathological shoulders, may corrobo-
rate the notion that deep-learning reconstruction could 
add potential clinical value to the ZTE sequence in the 
shoulder. ZTE imaging provides an accurate depiction of 
osseous structures with CT-like contrast that is not avail-
able with traditional MR pulse sequences. Incorporating 
a ZTE sequence to the standard shoulder MRI protocol 
would allow to assess both soft tissue and bony structures 
precisely by a single MRI scan as an all-in-one diagnos-
tic solution. Such a holistic MRI protocol could further 
streamline the clinical workflow and may even obviate 
additional CT with its radiation burden in certain cases. 
This would be specifically useful in patients with shoul-
der instability, who often require comprehensive imaging 

Table 5  Distribution of scoring 
results assessing the delineation 
of pathologies and diagnostic 
confidence in standard-of-
care (SOC) and deep learning 
reconstruction (DLRecon)

Degenerative changes (n = 25) Posttraumatic changes (n = 15)

Grade Osteo-
phytes 
(n = 25)

Subchondral 
cysts (n = 21)

Subchondral 
sclerosis 
(n = 13)

Diagnostic 
confidence

Fracture line Fragments Diagnostic 
confidence

SOC

  0 1 1 0 1 0 0 0

  1 6 5 1 6 3 3 3

  2 12 9 12 12 7 9 6

  3 6 6 0 6 5 3 6

DLRecon

  0 1 1 0 1 0 0 0

  1 1 2 0 1 1 0 0

  2 6 2 3 5 3 5 4

  3 17 17 10 18 11 10 11
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to evaluate soft-tissue stabilizers and osseous support for 
diagnosis or preoperative planning. In our subset with 
posttraumatic changes of 15 cases, DLRecon enabled the 
readers to determine the extent of these osseous lesions 
more precisely and with greater certainty. These clinically 
relevant benefits can be attributed to the denoising and 
sharpening properties of the algorithm, which results in 
improved conspicuity of cortical bone morphology.

Moreover, DLRecon also improved the delineation of tra-
becular bone, albeit not to the same level as cortical bone. 
Visualizing fine trabecular bone structure remains a known 
shortcoming of ZTE imaging due to the inferior spatial res-
olution, compared to CT. However, discontinuities of the 
trabecular structure are clearly depicted, e.g., fracture lines. 
Further improvement of bone depiction in the deep learn-
ing reconstructed ZTE sequence should be achievable in the 

Fig. 4  Thirty-nine-year-old 
man with a history of recurrent 
shoulder dislocations. Sagit-
tal and coronal ZTE images 
processed using DLRecon (c, d) 
demonstrate improved deline-
ation of the osseous Bankart 
lesion (arrowheads), compared 
to the SOC reconstruction 
method (a, b). Note the small 
additional osseous fragment 
anterosuperior to the glenoid 
(arrow)

Fig. 5  Forty-three-year-old 
woman with facioscapulo-
humeral muscular dystrophy, 
no history of trauma. Coronal 
ZTE image reconstructed with 
the SOC method (a) shows 
sclerotic changes (arrows) in 
the subchondral bone of the 
humeral head. On the same 
image processed with DLRecon 
(b), the linear characteristic 
of sclerosis (arrows) becomes 
more conspicuous, consistent 
with a subchondral insufficiency 
fracture
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future with postprocessing by using a signal bias-correction 
algorithm to optimize bone contrast.

One concern of AI-based reconstruction is compromised 
image fidelity, i.e., loss of image details or hallucination 
of new features. However, the detection of clinical findings 
in the subgroups with degenerative and posttraumatic osse-
ous changes showed an almost perfect concordance between 
both reconstruction methods. This strong inter-reconstruc-
tion agreement descriptively indicates that clinical informa-
tion was preserved.

To our best knowledge, this is the first study that investi-
gated the clinical application of deep learning reconstruction 
in ZTE imaging of the shoulder. Our results are concord-
ant with previous research about the DLRecon algorithm in 
other MR techniques, which also reported superior image 
quality and enhanced assessment of soft tissue pathology in 
2D knee and shoulder MRI [17, 24] as well as 3D MR neu-
rography [23]. For future research, it would be desirable to 
evaluate the efficacy of DLRecon in ZTE imaging for further 
anatomic regions and additional osseous pathologies, e.g., 
erosions in inflammatory rheumatic diseases.

Study limitations include a moderate sample size, par-
ticularly in consideration of the individual subgroups. 
Second, there was no correlation of osseous abnormali-
ties with CT as a reference standard. Our study cohort 

included a consecutive series of patients in clinical prac-
tice, who did not undergo concomitant CT imaging. How-
ever, high intermodality agreement between ZTE imaging 
and CT was reported previously for bone assessment in 
the shoulder [9, 10]. Third, we applied DLRecon to ZTE 
MRI at 1.5 Tesla, while it is generally accepted that most 
MR sequences in musculoskeletal imaging achieve better 
results at 3 Tesla. Nevertheless, 1.5 Tesla is still widely 
used in musculoskeletal MRI and could particularly ben-
efit from DLRecon in the quest for shorter scan times and 
improved image quality. Finally, given the distinct image 
features of DLRecon, the blinding of readers was unlikely 
to be fully effective. Despite best precautions, this might 
have introduced a bias on the scoring, as changes in image 
smoothness with DLRecon were likely apparent. This 
effect is accentuated by choosing the highest denoising 
level of 100% for this study, which may lead to an artificial 
image impression for the readers. The impact of differ-
ent denoising levels on reader acceptance and confidence 
could be subject to further research in the future.

In conclusion, our findings demonstrate that DLRecon 
enhances bone depiction in ZTE MRI of the shoulder, ena-
bling increased diagnostic confidence in the assessment of 
osseous pathologies. These results suggest that DLRecon 

Fig. 6  Sixty-seven-year-
old woman presenting after 
shoulder dislocation. Sagittal 
(upper row) and axial (lower 
row) ZTE images demonstrate 
a Hill-Sachs lesion. DLRecon 
(b, d) improves visualiza-
tion of the depressed cortical 
fragment (arrows), compared 
to SOC reconstruction (a, c). 
As a result, the exact extent of 
the lesion can be assessed with 
higher diagnostic certainty
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could add further clinical value to ZTE sequences in 
shoulder MRI.
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