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Phenology and ecological role of aerobic 
anoxygenic phototrophs in freshwaters
Cristian Villena‑Alemany1,2*, Izabela Mujakić1, Livia K. Fecskeová3, Jason Woodhouse4, Adrià Auladell5, 
Jason Dean1, Martina Hanusová1, Magdalena Socha6, Carlota R. Gazulla7, Hans‑Joachim Ruscheweyh8, 
Shinichi Sunagawa8, Vinicius Silva Kavagutti2,9,10, Adrian‑Ştefan Andrei11, Hans‑Peter Grossart12,4, Rohit Ghai9, 
Michal Koblížek1,2 and Kasia Piwosz6* 

Abstract 

Background Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabo‑
lism with light energy harvested by bacteriochlorophyll‑a‑containing reaction centers. Despite their substantial 
contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains 
unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly 
across 3 years in a temperate, meso‑oligotrophic freshwater lake.

Results AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplank‑
ton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we 
followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accu‑
racy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled 
the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to con‑
tain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific 
phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community 
presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying 
conditions of the freshwater environment.

Conclusions Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological 
dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating 
this information with the indicator of primary production (Chlorophyll‑a) and existing ecological models, we show 
that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplank‑
ton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration 
in further ecological models.
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anoxygenic phototrophs, pufM gene, PEG model, Photoheterotrophs
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Introduction
Recurrent seasonal changes of aquatic microbial commu-

nities are among the best-studied phenomena in fresh-

water lakes and reservoirs. The Plankton Ecology Group 

(PEG) model initially described the dynamic interac-

tions between phytoplankton and zooplankton [1] and 

was later amended with the eutrophic and oligotrophic 

scenarios and role description of heterotrophic protists 

[2]. Subsequently, the importance of bacterioplankton 

was revealed, especially during the spring phytoplankton 

bloom [3–5], increasing our understanding of the con-

tribution of microorganisms to the functioning of lim-

nic ecosystems [6]. Bacteria represent an important part 

of aquatic microbial communities. They generate fresh 

particulate organic matter by utilizing dissolved organic 

carbon (DOC) and render it accessible to organisms at 

upper trophic levels [7]. However, the role of photohet-

erotrophic bacteria, which present a significant part of 

bacterial biomass and activity [8], remains overlooked.

Aerobic anoxygenic phototrophic (AAP) bacteria are 

a functional group of photoheterotrophs that rely upon 

external sources of organic carbon and supplement their 

metabolism with energy obtained from light through 

bacteriochlorophyll-a (BChl-a) type II reaction centers. 

The capacity to harvest light energy enables AAP bacteria 

to reduce their respiration and increase biomass yield [9, 

10]. Moreover, the AAP community shows higher growth 

rates, larger cell sizes, and greater activity than hetero-

trophic bacteria [11–16]. Photoheterotrophy by AAP 

bacteria increases carbon transfer efficiency, enlarging 

the availability of biomass for upper trophic levels and 

reducing  CO2 emitted to the atmosphere [17]. However, 

little is known about the phenology of the AAP com-

munity and the absence of exhaustive seasonal sampling 

hampers the understanding of their role in lakes. AAP 

bacteria peak during spring in lakes, when they may 

account for up to 22% of bacteria [18, 19]. Their abun-

dances and diversity dynamics correlate with irradiance, 

temperature, chlorophyll-a (Chl-a), oxygen, and DOC 

[18, 20–24].

One of the obstacles in the study of AAP bacteria is the 

fact that they do not represent a monophyletic group. 

On the contrary, phototrophic genes have been gained 

and lost multiple times in closely related species [25, 26]. 

Therefore, AAP species cannot be identified based on the 

most common marker used in community studies, the 

16S rRNA gene. Instead, the pufM gene, which encodes 

the subunit M of the anoxygenic type-II reaction center, 

has been widely employed to study AAP communities 

[15, 27–32]. However, these studies were unsuccess-

ful in providing a taxonomic assignment for abundant 

pufM phylotypes. This is caused by the low taxonomic 

resolution of the short amplicon sequences and the lack 

of a curated reference database. The increased availabil-

ity of metagenome-assembled and single-cell amplified 

genomes (MAGs and SAGs) has expanded our knowl-

edge of metabolic potential within multiple bacterial lin-

eages and should allow us to establish a comprehensive 

pufM database for amplicon assignment.

To improve the taxonomic assignment, we designed a 

novel primer set targeting a larger 450  bp region of the 

pufM gene and compiled an extensive database of 3633 

non-redundant pufM gene sequences from existing 

genome and metagenome sequence datasets. We applied 

this novel metabarcoding assay to 215 samples from 

3 years, collected from meso-oligotrophic freshwater Cep 

lake (Czechia) at biweekly intervals from multiple depths. 

We hypothesized that the AAP community would show 

a recurrent seasonal succession. Due to their specific 

metabolism, this succession would exhibit different abun-

dance patterns than overall heterotrophic bacteria. Spe-

cifically, we expected that AAP abundance would peak 

during the spring phytoplankton bloom. Additionally, 

since they are a functional, taxonomically diverse group, 

we surmise that the spring AAP peak is orchestrated by 

specific phylotypes, rather than the involvement of the 

entire AAP community.

Materials and methods
Sampling and measuring environmental variables

Samples were collected biweekly from April 2017 

to December 2019 from the freshwater Cep lake 

(48°92′49.24″N, 14°88′68.11″E). This meso-oligotrophic 

lake is located in the Třeboň Basin Protected Landscape 

Area, Czechia, and has an area of 130  ha and a maxi-

mum depth of 12  m. Five liters of water were collected 

from 0.5, 2, 5, and 8 m using a 3-L Ruttner water sam-

pler (KC Denmark A/S, Denmark) and transported to 

the laboratory in closed plastic containers in a cooler 

box, which were pre-rinsed three times with the sam-

pled water. Temperature and oxygen profiles were taken 

with an EXO1 multi-parameter probe (YSI Inc., Yellow 

Springs, USA). Total and AAP bacterial abundances were 

counted in Zeiss Axio Imager.D2 epifluorescence micro-

scope equipped with Collibri LED module illumination 

system (Carl Zeiss, Jena, Germany). Microscopic sam-

ples were excited at 325–370 nm, 450–490 nm, and 545–

565 nm and the AAP cells were detected by their BChl-a 

autofluorescence at wavelengths > 850  nm in epifluores-

cence. Since Chl-a autofluorescence spectra emission 

also encompasses the 890 nm wavelength, cells that show 

fluorescence emission at 690 and 573  nm, correspond-

ing with Chl-a and phycoerythrine, respectively, were 

not counted as AAP bacteria [17, 33, 34]. Concentrations 

of Chl-a and BChl-a were determined in organic sol-

vent extracts by reversed-phase high-performance liquid 
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chromatography [31]. The quantification of environmen-

tal nutrients was performed as described in Procházk-

ová, 1959 (nitrate); Murphy and Riley, 1962 (phosphate); 

Kopáček and Hejzlar, 1993 (total phosphorous); Kopáček 

and Procházková, 1993 (ammonia) and Shabarova et  al. 

2021 (DOC) [35–39].

pufM gene database

We collected 14,872 pufM nucleotide and protein 

sequences from representative genomes and MAGs 

available from Genome Taxonomy Database (GTDB) 

r207 [40], Tara Ocean [41], the LIMNOS database com-

piled from a set of ~ 1300 freshwater lake metagenomes 

(PRJEB47226), and from MAG collections publicly avail-

able in the NCBI [3, 42–46]. Bacterial genomes and 

MAGs taxonomy were determined using GTDB-Tk 

v2.1.1 [47]. pufM sequences in GTDB r207 were found 

using a hidden Markov model of pufM gene (K08929) 

from the KOFAM database [48] with a score threshold 

of 394.57, as described in  https:// github. com/ adria aula/ 

obtain_ gene_ GTDB.  pufM-containing non-redundant 

MAGs from Tara Oceans (https:// doi. org/ 10. 6084/ m9. 

figsh are. 49029 23. v1.) were selected using HMMER v3.3.2 

(http:// hmmer. org/) with a customized pufM database 

from pfam [49]. The pufM sequences were confirmed by 

Diamond v0.9.24 annotation [50]. Nucleotide pufM gene 

sequences from the LIMNOS database were obtained 

from open reading frames using Prodigal [51] and anno-

tated using a custom pipeline incorporating Diamond 

v0.9.24 [50] and the KEGG database [52]. PufM genes 

were compiled alongside the taxonomy of their associ-

ated MAG.

All pufM sequences were pooled and duplicated 

sequences were removed. Protein sequences were aligned 

with MAFFT v7.453 (–maxiterate 1000 –localpair) [53] 

and a maximum likelihood tree was calculated using 

iqtree2 [54] with automatic model selection performed 

by ModelFinder [55], and 1000 iterations of ultrafast 

bootstrapping with 1000 rounds of SH-aLRT testing 

(-alrt 1000 -B 1000) [56]. pufL sequences were identified 

as they formed a long branch. Bona-fide pufM sequences 

were retained (Supplementary file S1), and alignment 

and phylogenetic trees were redone and visualized using 

iTOL [57]. The environmental origin of each sequence 

was obtained manually from source databases (Supple-

mentary file S2).

AAP community analysis by pufM gene amplicon 

sequencing

Between 300 and 1460 ml of water was filtered through 

sterile 0.2  µm Nucleopore Track-Etch Membrane fil-

ters (Whatman®, Maidstone, United Kingdom) that 

were immediately placed inside sterile cryogenic vials 

(Biologix Group Limited, Jinan, Shandong China) con-

taining 0.55 g of sterile zirconium beads, flash-frozen in 

liquid nitrogen and stored at − 80  °C until DNA extrac-

tion (max. 6  months). Total nucleic acids were chemi-

cally extracted according to Griffiths et al. 2000 [58] with 

modifications [59], re-suspended in 35 µl of DNase and 

RNase-free water (MP Biomedicals, Solon, OH, USA), 

and stored at – 20  °C. Concentration and quality of the 

extracts were checked using NanoDrop (Thermo Fisher 

Scientific).

To improve the accuracy of the taxonomic assignation 

and reduce the number of unclassified amplicon sequence 

variants (ASVs), a new primer pair for pufM gene was 

designed. pufM_uniF primer [27] was used as a reverse 

(pufM_UniFRC in the current study, 5´-RAANGGR 

TTR TARWANARRTTNCC-3’) and pufM_longF was 

designed ~ 450 bp upstream (5’-YGGSCCG WTC TAYST-

SGG-3’) using a pre-existing database of 1500 sequences 

[31]. The specificity and coverage of the new primer pair 

were tested in comparison to the commonly used pufM 

primers [27, 32] against the new pufM database. The 

analysis was done in Geneious Prime (v2023.0.1) with up 

to three mismatches in the binding region and in both 

forward and reverse directions. The primers’ specificity 

was also tested separately for Pseudomonadota (formerly 

known as Proteobacteria), Alphaproteobacteria, Gam-

maproteobacteria, Gemmatimonadota, Chloroflexota, 

Myxococcota, and Eremiobacterota based on alignments 

done in Geneious Prime by MUSCLE alignment (v5.1.).

The PCR conditions were optimized using genomic 

DNA from Gemmatimonas phototrophica (Gemmati-

monadota), Sphingomonas glacialis (Alphaproteobacte-

ria) and Congregibacter litoralis (Gammaproteobacteria), 

and environmental DNA from the current sampling. The 

final conditions were as follows: initial denaturation for 

3 min at 98 °C, 35 cycles of 98 °C for 15 s, 52 °C for 30 s, 

72  °C for 18  s, and final elongation at 72  °C for 5  min. 

Triplicate PCR reactions (20  μL) using Phusion™ High-

Fidelity PCR MasterMix (Thermo Fisher Scientific, USA) 

were pooled and the amplicons of ~ 450 bp were purified 

from 1.5% agarose (MP Roche, Germany) gel using the 

Wizzard SV Gel and PCR clean system (Promega, USA) 

and quantified with Qubit dsDNA HS assay (Thermo 

Fisher Scientific, USA). Samples were randomly distrib-

uted within two runs to account for the batch effect and 

sequenced on Illumina Miseq 2 × 300 bp PE (Macrogen, 

South Korea).

Raw reads were quality-checked using FastQC v0.11.7 

(Babraham Bioinformatics, Cambridge, UK). The primer 

sequences were trimmed and read quality filtered using 

Cutadapt v1.16 maximum error (-e 0.1), quality cut-off (-q 

20), and minimum length (-m 250) [60]. Initial number 

of reads (average ± standard deviation; 81,788 ± 14,590) 

https://github.com/adriaaula/obtain_gene_GTDB
https://github.com/adriaaula/obtain_gene_GTDB
https://doi.org/10.6084/m9.figshare.4902923.v1
https://doi.org/10.6084/m9.figshare.4902923.v1
http://hmmer.org/
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were truncated using filterAndTrim (truncLen = c(220, 

220), maxEE = c(2,5), truncQ = 2) in the R/Bioconduc-

tor environment from DADA2 package v1.12.1 [61]. 

ASVs were constructed and chimeric sequences were 

removed using the method “consensus” [62]. ASVs pre-

sent only in one of the runs were removed from down-

stream analysis using intersect and subset. Subsequently, 

ASVs were aligned in Geneious Prime v2019.2.3 using 

ClustalW v2.1 [63]. Poorly aligned ASVs were confirmed 

to not be pufM with a blast against NCBI non-redundant 

database [64] and excluded from further analysis. The 

final dataset consisted of 1588 ASVs (Supplementary 

file  S3, Reference ASV sheet) and 62,729 ± 13,448 reads 

per sample (76.7% of the total number of initial reads, 

Supplementary file S3, ASV_table sheet). The sequences 

were deposited in the NCBI database under Biosamples 

SAMN38037304-SAMN38037518 as a part of BioProject 

PRJNA970655.

The taxonomic assignment was done through phylo-

genetic placement using The Evolutionary Placement 

Algorithm v0.3.5 [65] that placed the ASVs into the phy-

logenetic tree calculated from the new reference data-

base sequences that were back-translated from protein 

alignments using trimAl [66]. The taxonomic assignation 

was handled according to the ASV phylogenetic posi-

tion using Gappa [67] (Supplementary file S3, Taxonomy 

sheet).

Phytoplankton community analysis based on 16S rRNA 

gene amplicons

The V3-V4 region of the bacterial 16S rRNA gene 

was amplified using 341F and 785R primer pair [68] 

as described in Piwosz et  al. 2022 [17] The subset of 

sequences assigned to Chloroplast was extracted and 

their taxonomy was further affiliated using a curated 

reference database of the plastidial 16S rRNA gene: Phy-

toRef [69]. Bar plots were visualized using ggplot v3.4.3 

[70].

Data and statistical analysis

Unless stated otherwise, all analyses were done in R v3.6.1 

and were visualized using ggplot2 v3.3.6 [70]. Dynamics 

of environmental and biological variables were interpo-

lated using igraph v1.2.6 and lubridate v1.8.0 [71, 72]. For 

addressing the compositional bias of amplicon data [73], 

principal component analysis was done using centered 

log ratio (CLR) transformation [74] through transform 

from microbiome package v1.17.42. Community com-

position bar plots and Alphaproteobacteria, Gammapro-

teobacteria, and Gemmatimonadota bubble plots were 

done using Phyloseq v1.30.0 [75]. The 100 most abundant 

ASVs were selected and plotted using plot_heatmap [75]. 

The occurrence of specific ASVs in spring was tested 

using analysis of compositions of microbiomes with bias 

correction in ANCOMBC v2.3.2 [76, 77] and plotted 

using ggplot2 v3.4.3 [70].

Relationships between environmental data and AAP 

community were analyzed using distance-based linear 

models (DistML) [78, 79] in the PERMANOVA + add-on 

package of the PRIMER7 software [80] (Primer Ltd., Lut-

ton, UK). From strongly correlated environmental vari-

ables (correlation coefficient > 0.6) only one was selected 

for further analysis. The model was calculated on the 

CLR-transformed relative abundance data of AAP bac-

teria [74], using a stepwise selection procedure. The best 

model was selected based on statistical significance (9999 

permutations) and the value of Akaike’s Information Cri-

terion (AICc).

AAP core and network community analyses

ASVs present in more than 80% of the samples from the 

3  years and four depths, were considered the AAP lake 

core microbiome. The percent contribution of each core 

ASV to their respective maximum percent contribution 

was calculated and plotted with bubble plots using Phy-

loseq v1.30.0 [75] and ggplot2 v3.3.6 [70].

SparCC analysis was applied to calculate lake commu-

nity co-occurrence correlations from the compositional 

data [81]. Only correlations with pseudo p value < 0.02 

and stronger correlation than ± 0.7 were selected. The 

network was plotted using Cytoscape v3.9.1 [82].

Time series and trend lines

Interannual trend analysis was done in TTR package 

v0.24.3 (https:// github. com/ joshu aulri ch/ TTR) in R v 

4.3.0. Raw data on total and AAP bacterial abundances, 

temperature, and Chl-a concentrations were averaged 

for months and depths and transformed into time series 

assuming annual frequency. They were decomposed into 

trend, seasonal, and random components using decom-

pose with default settings. Spearman correlation between 

interannual trends of AAPs abundance and temperature 

and Chl-a concentrations was done for the extracted 

trend component.

Results
New database and longer amplicons enhance taxonomic 

assignments of pufM gene ASVs

In order to improve the taxonomic assignment of the 

pufM gene amplicons, we constructed a new reference 

database containing 3633 pufM sequences (> 646  bp) 

from Pseudomonadota (synonym for Proteobacteria), 

Gemmatimonadota, Chloroflexota, Eremiobacteriota, 

and Myxococcota (Supplementary file  S1). The data-

base includes 529 genera, 114 families, 53 orders, and 9 

https://github.com/joshuaulrich/TTR
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classes (Supplementary Figure S1) from cultured species 

and MAGs originating from a wide variety of habitats 

(Supplementary file  S2), mostly from freshwater (2140 

sequences) and marine environments (381 sequences).

The newly designed primer set covers 80.5% of the new 

database at maximum of three mismatches (Supplemen-

tary file S4). The older, highly degenerated primer pairs, 

UniF + UniR, pufMF + pufMR and UniF + pufM_WAW, 

cover 98.9%, 85% and 96.2%, respectively. However, the 

amplicon length of the novel primers is about two times 

longer (~ 450  bp) allowing for the proper taxonomic 

assignation of more than 95% of the alphaproteobacte-

rial and above 75% of the gammaproteobacterial reads at 

the order level. Additionally, 38 alphaproteobacterial, 36 

gammaproteobacterial, and 6 Gemmatimonadota genera 

were detected (Supplementary Figures S2, S3, and S4).

Seasonal changes in Cep lake

Environmental conditions in Cep Lake showed seasonal 

dynamics typical for a temperate freshwater lake (Sup-

plementary file  S5). In January and February, the lake 

was partially frozen and stratified from April/May until 

September with maximum temperatures around 24 °C in 

July and August. The metalimnion was located between 

5 and 8 m depth in 2017, and between 2 and 5 m in 2018 

and 2019. In all 3  years, the autumnal mixing, charac-

terized by higher values of dissolved oxygen and lower 

temperatures, was initiated in October (Supplementary 

Figure S5A–B).

Chlorophyll-a measurements varied throughout the 

year with seasonal maxima representing spring and 

autumn phytoplankton blooms (Supplementary Fig-

ure S5C). The spring phytoplankton bloom terminated at 

the onset of stratification, and was composed, according 

to 16S amplicons affiliated to plastids, mostly by Bacillar-

iophyta and Chrysophyceae (Supplementary Figure S6).

Seasonal dynamics of AAP community composition

The maximal AAP abundances (3.42–5.50 ×  105  cells 

 mL−1) corresponded to 15–20% of the total bacteria 

(Supplementary Figure  S5D–E) closely following the 

spring phytoplankton blooms. A second AAP bacte-

rial peak occurred towards the end of summer, before 

the autumn phytoplankton peak. Alpha diversity of the 

AAP community was lower during the spring abundance 

peaks and rose during the second part of the year (Sup-

plementary Figure S5F).

The AAP community followed an annual recurrent 

pattern during the three consecutive years, with a dis-

tinction between the epilimnion and hypolimnion com-

munities during the stratified period (Fig.  1A). Samples 

from the same season in different years were more similar 

to each other than samples from different seasons in the 

same year, indicating the persistent temporal succession 

of the community and similar interannual community 

Fig. 1 Development of AAP community structure. Principal component analysis of centered log‑ratio transformed AAP community composition. 
Each point represents a sample with 0.5 m (red circle), 2 m (orange triangle), 5 m (green square) and 8 m (blue cross) in PC1 and PC2 axis (A) 
and 0.5 m (circle), 2 m (triangle), 5 m (square) and 8 m (cross) coloured according to the date of sampling in PC1 and PC3 axis (B). Dashed line 
and arrows in panel A indicate AAP community succession following an annual chronological direction
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structure. Distance-based linear models (DistLM) and 

distance-based redundancy analysis (dbRDA) selected 

temperature, Chl-a, and total, Cyanobacterial, and AAP 

abundances, to best explain the variability (23.11%) 

of the AAP community composition (Supplementary 

file  S6). For 2018 and 2019, 2  years for which nutrient 

data is available (Supplementary file  S5), phosphorus 

and ammonia increased this explanation by 6.75%, up to 

29.86%.

Interestingly, in addition to a seasonal cycle, we 

observed an interannual variation in AAP community 

composition (Fig. 1B). The decomposition of time series 

on monthly averaged values for the whole water column 

showed increasing interannual trends in temperature 

and AAP abundance during 3  years of sampling, and a 

decreasing trend in Chl-a concentration (Supplementary 

Figure  S7). Trends of temperature and AAP abundance 

were significantly correlated (Spearman correlation coef-

ficient rho = 0.8, p value < 0.0001).

The AAP community was dominated by Gammapro-

teobacteria over the whole water column, with an aver-

age relative contribution exceeding 50% and reaching up 

to 90% during stratification (Supplementary Figure  S8). 

Alphaproteobacteria was the second most abundant 

class, showing the maxima contributions in spring and 

autumn, reaching over 50% in the spring of 2018. Classes 

Gemmatimonadetes (Gemmatimonadota) and Myxo-

coccia (Myxococcota) made up 5% and 2% of the AAP 

community, respectively. Unclassified Pseudomonadota 

and unclassified Myxococcota showed transient contri-

butions of < 9% and < 1% of the AAP community, respec-

tively. Chloroflexota and Eremiobacteriota were not 

detected.

The 100 most abundant ASVs (based on their average 

relative abundances) comprised 75% of the reads and 

exhibited seasonal recurrence, peaking every year at spe-

cific times of the year (Fig. 2). The majority of ASVs dem-

onstrated a transient contribution and were generally 

absent outside their maxima (e.g., ASV28 (Rhizobiales)), 

0.5 m

0

25

50

75

100

Relative 

abundance 

Winter

Spring

Summer

Autumn

8 m

2
1
/0

3

0
4
/0

4

2
0
/0

4

0
3
/0

5

1
7
/0

5

0
1
/0

6

1
4
/0

6

2
8
/0

6

1
3
/0

7

2
6
/0

7

0
9
/0

8

3
1
/0

8

1
4
/0

9

2
6
/0

9

2
8
/0

3

2
5
/0

4

0
9
/0

5

2
3
/0

5

0
6
/0

6

1
8
/0

6

0
2
/0

7

1
8
/0

7

0
1
/0

8

1
5
/0

8

2
9
/0

8

1
2
/0

9

2
4
/0

9

0
6
/0

3

1
0
/0

4

1
3
/0

5

2
9
/0

5

1
2
/0

6

2
7
/0

6

1
0
/0

7

2
4
/0

7

0
7
/0

8

2
2
/0

8

0
9
/0

9

2
5
/0

9

1
2
/1

0

2
6
/1

0

0
9
/1

1

2
3
/1

1

0
7
/1

2

1
1
/0

4

1
0
/1

0

2
5
/1

0

0
7
/1

1

0
6
/1

2

0
9
/1

0

2
2
/1

0

0
5
/1

1

2
7
/1

1

1
1
/1

2

2 m

2
1
/0

3

0
4
/0

4

2
0
/0

4

0
3
/0

5

1
7
/0

5

0
1
/0

6

1
4
/0

6

2
8
/0

6

1
3
/0

7

2
6
/0

7

0
9
/0

8

3
1
/0

8

1
4
/0

9

2
6
/0

9

2
8
/0

3

2
5
/0

4

0
9
/0

5

2
3
/0

5

0
6
/0

6

1
8
/0

6

0
2
/0

7

1
8
/0

7

0
1
/0

8

1
5
/0

8

2
9
/0

8

2
4
/0

9

0
6
/0

3

1
0
/0

4

1
3
/0

5

2
9
/0

5

1
2
/0

6

2
7
/0

6

1
0
/0

7

2
4
/0

7

0
7
/0

8

2
2
/0

8

0
9
/0

9

2
5
/0

9

1
2
/1

0

2
6
/1

0

0
9
/1

1

2
3
/1

1

0
7
/1

2

1
1
/0

4

2
5
/1

0

0
7
/1

1

0
6
/1

2

0
9
/1

0

2
2
/1

0

0
5
/1

1

2
7
/1

1

1
1
/1

2

1
2
/0

9

5 m

2
1
/0

3

0
4
/0

4

2
0
/0

4

0
3
/0

5

1
7
/0

5

0
1
/0

6

1
4
/0

6

2
8
/0

6

1
3
/0

7

2
6
/0

7

0
9
/0

8

3
1
/0

8

1
4
/0

9

2
6
/0

9

2
8
/0

3

2
5
/0

4

0
9
/0

5

2
3
/0

5

0
6
/0

6

1
8
/0

6

0
2
/0

7

1
8
/0

7

0
1
/0

8

1
5
/0

8

2
9
/0

8

1
2
/0

9

2
4
/0

9

0
6
/0

3

1
0
/0

4

1
3
/0

5

2
9
/0

5

1
2
/0

6

2
7
/0

6

1
0
/0

7

2
4
/0

7

0
7
/0

8

2
2
/0

8

0
9
/0

9

2
5
/0

9

1
2
/1

0

2
6
/1

0

0
9
/1

1

2
3
/1

1

0
7
/1

2

1
1
/0

4

1
0
/1

0

2
5
/1

0

0
7
/1

1

0
6
/1

2

0
9
/1

0

2
2
/1

0

0
5
/1

1

2
7
/1

1

1
1
/1

2

2
1
/0

3

0
4
/0

4

2
0
/0

4

0
3
/0

5

1
7
/0

5

0
1
/0

6

1
4
/0

6

2
8
/0

6

1
3
/0

7

2
6
/0

7

0
9
/0

8

3
1
/0

8

1
4
/0

9

2
6
/0

9

2
8
/0

3

2
5
/0

4

0
9
/0

5

2
3
/0

5

0
6
/0

6

1
8
/0

6

0
2
/0

7

1
8
/0

7

0
1
/0

8

1
5
/0

8

2
9
/0

8

1
2
/0

9

2
4
/0

9

0
6
/0

3

1
0
/0

4

1
3
/0

5

2
9
/0

5

1
2
/0

6

2
7
/0

6

1
0
/0

7

2
4
/0

7

0
7
/0

8

2
2
/0

8

0
9
/0

9

2
5
/0

9

1
2
/1

0

2
6
/1

0

0
9
/1

1

2
3
/1

1

0
7
/1

2

1
1
/0

4

1
0
/1

0

2
5
/1

0

0
7
/1

1

0
6
/1

2

0
9
/1

0

2
2
/1

0

0
5
/1

1

2
7
/1

1

1
1
/1

2

Season
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while a few showed pronounced relative abundance 

throughout the year (e.g., ASV4 (Rhodoferax)). Interest-

ingly, ASV67 (Limnohabitans), whose relative abundance 

was on average < 0.36%, was the sole ASV detected in 

every sample.

Out of 1588 pufM ASVs (Supplementary file S3, Refer-

ence ASV sheet), the stable part of the AAP community 

(defined here as ASVs present in > 80% of the samples) 

consisted of only 22 ASVs (Supplementary Figure S9): 8 

Rhodoferax, 4 Limnohabitans, 2 Aestuariivirga, 1 Methy-

lobacterium, 1 Rubrivivax, and 6 other Burkholderiales. 

These core ASVs varied largely in their contribution from 

the most abundant ASV2 (Aestuariivirga, with an average 

relative abundance of 4%) to the least abundant ASV237 

(unclassified Burkholderiales, with an average relative 

abundance of 0.06%). Their seasonal dynamics differed 

substantially throughout the year and distinct relative 

abundance patterns were observed even for ASVs from 

the same genus. For instance, ASV5 and ASV49, both 

Rhodoferax, peaked in autumn and spring, respectively. 

Similar differences were observed for two Aestuariivirga: 

ASV2 peaked during the spring mixing period (from 

March to May), while ASV62 showed its highest contri-

bution during the summer stratification. It is noticeable 

that the core AAP community also included ASVs out-

side the 100 most abundant, such as ASV115 (Rhodofe-

rax) and ASV237 (unclassified Burkholderiales), which 

had a low but steady contribution during the whole sam-

pling season. Furthermore, the dynamics of some core 

ASVs, such as ASV31, were different each year.

To identify phylotypes most contributing to the differ-

ence in AAP community composition during spring and 

autumn peaks, we carried out an analysis of compositions 

of microbiomes with bias correction (Supplementary 

file  S7). Composition of genera and orders contributing 

to the AAP bacterial peaks was different (Fig. 3). Spring 

peak consisted of a higher prevalence of Alphaproteobac-

teria versus Gammaproteobacteria genera (9 vs 5), while 

during autumn, the community was more diverse and 

included also Gemmatimonadota and Myxococcota. The 

highest genera contributors to the spring peak (log fold 

change > 2) were RFPW01, UBA1936, Cypionkella, and 

Rhodoferax, while UBA964 and UBA5518 (Gammapro-

teobacteria: Steroidobacterales and Pseudomonadales, 

respectively) contributed most to the late summer peak. 

The only genera substantially contributing to both peaks 

was Aestuariivirga.

Network analysis

To study possible interactions between AAP bacteria, 

we performed a network co-occurrence analysis. The 

network calculated for the entire lake concluded that 99 

ASVs presented 139 significant interactions (92% posi-

tive; Fig. 4). Thirteen highly connected nodes with more 

than six co-occurrence correlations were identified as 

hubs. They belonged to the genus UBA964, Steroidobac-

terales, Rubrivivax, and unclassified Burkholderiaceae 

from Gammaproteobacteria. The most connected nodes 

from Alphaproteobacteria belonged to Aestuariivirga and 

Rhodobacteraceae (4 edges each). The majority of corre-

lations (~ 60%) occurred between ASVs from the same 

genus, family, or order, creating groups of densely con-

nected nodes (e.g. genus UBA964). Furthermore, some 

ASVs peaking in spring correlated positively with each 

other (Aestuariviirga and unclassified Burkholderiaceae) 

in contrast to Rhodoferax and Cypionkella. A similar pat-

tern was observed for ASVs peaking in summer-autumn.
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Discussion
Seasonal succession of planktonic communities in tem-

perate lakes has been intensively studied [2]. The PEG 

model defines the key phases in the annual develop-

ment of ecological succession as well as the interactions 

between different organisms in aquatic ecosystems. 

The annually recurrent phenomena in freshwater 

lakes include a spring phytoplankton bloom followed 

by a zooplankton-induced clear-water phase in early 

summer, a late-summer phytoplankton bloom, and a 

period of low productivity in winter. Recently, seasonal 

dynamics of heterotrophic bacteria have been incorpo-

rated into the model [5], as they rapidly respond to the 

transitions in the lakes’ pelagic functioning, especially 

during the phytoplankton bloom [3, 5, 83]. Whilst AAP 

bacteria have been shown to substantially contribute 

to the bacterial abundance, biomass, and activity in 

freshwater lakes [13, 17], they are not considered in the 

PEG model [1, 2].

Dynamics of microbial communities are typically inves-

tigated by sequencing of the 16S rRNA gene and such 

analyses do not allow for disentangling the metabolic 

functionality of bacteria, especially when traits of inter-

est follow a heterogenic pattern of presence within the 

same taxonomic ranks. This is the case for AAP bacteria, 

where members from the same genus might or might not 

contain the ability to carry out anoxygenic photosynthesis 

[26]. Amplicon analysis of a functional gene may overcome 

this hindrance, but it requires a comprehensive database 

with taxonomically assigned reference sequences. Cur-

rently, some phylogenetic clades (A-L) cannot be assigned 

to the genus or even order level [84, 85]. Moreover, differ-

ent researchers assemble databases for their environment 

of interest, with different quality thresholds and criteria 

[17, 86], which hampers direct comparison between dif-

ferent studies. Finally, short amplicons obtained with the 
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most commonly used primer combinations, puf_UniF-puf_

UniR, puf_UniF–pufM_WAW, and pufMF–pufM_WAW 

[27, 32] often do not allow for taxonomic assignment below 

the class or order level, resulting in a substantial number of 

unclassified reads [18, 29, 86, 87].

Comprehensive database and longer amplicons allow 

for improved taxonomic assignments of pufM ASVs

We constructed the largest curated pufM database to 

date that includes sequences from essentially all environ-

ments, with a special high representation of freshwater 

lakes (Supplementary Figure  S1, Supplementary file  S1 

and S2). Phylogenetic trees based on pufM gene do not 

match 16S rRNA phylogeny due to horizontal gene trans-

fer events [88–90]. In contrast, the taxonomic assign-

ment of genomes and MAGs based on the whole genome 

or 120 selected marker genes is more accurate and con-

sistent [91]. Thus, we included only sequences originat-

ing from taxonomically assigned genomes and MAGs, 

excluding all environmental pufM sequences classified 

into phylogroups based on phylogenetic analysis [84]. 

During our quality control, sequences originating from 

Bdellovibrionota, Verrucomicrobiota, Omnitrophota, 

Planctomycetota, or Bacteroidota were excluded from 

the final database. Some members of these phyla were 

reported to encode pufM [87]. However, our manual 

inspection revealed that their pufM gene was present in 

short contigs and often found as the only phototrophic 

gene, which does not warrant phototrophic functional-

ity. Furthermore, pufM genes from these phyla did not 

form a monophyletic clade, suggesting dubious multi-

ple and independent events of horizontal gene transfer. 

Thus, only members of Pseudomonadota, Chloroflexota, 

Gemmatimonadota, Eremiobacteriota, and Myxococcota 

were included. Our choice of sequences ensures high 

quality and allows for future extensions of the database 

as more metagenomic data is produced and more AAP 

bacteria are cultured, enhancing its fidelity and function-

ality. Moreover, as our database contains entire or almost 

entire pufM gene sequences, it can be used for amplicon 

taxonomy assignment independently of the actual prim-

ers used.

The pufM gene is one of the most conserved genes 

from the puf operon which codifies the genes for the syn-

thesis of the anoxygenic photosynthesis apparatus [92, 

93]. Commonly used puf_UniF-puf_UniR, puf_UniF–

pufM_WAW, and pufMF–pufM_WAW primer pairs 

[27, 32] hybridize on the most conserved regions at the 

end of the gene, separated by ~ 110–160  bp. They show 

high coverages (Supplementary file S4) but produce short 

amplicons that hamper taxonomic assignation below 

the class or order level resulting in a high fraction of 

unclassified reads [18, 29, 86, 87]. Thus, we designed a 

new primer set producing longer amplicons to increase 

the taxonomic resolution, as has been shown for other 

genes [94]. The new primer pair has lower in silico cover-

age against our new database than puf_UniF—puf_UniR 

[27] (80.5 vs 98.9%). Some groups, such as Chloroflexota, 

Aquidulcibacter, and Polynucleobacter, were poorly cov-

ered, which may explain their absence in our amplicons. 

Nevertheless, the number of sequences identified at 

every taxonomic level increased compared to a previous 

study in the same lake [18]: 95% of the alphaproteobacte-

rial and above 75% of gammaproteobacterial reads were 

classified at the order level. Additionally, the number of 

newly detected genera was substantially higher (80 vs 12) 

and the Shannon index showed a wider range of diver-

sity (Supplementary Figure  S5F) since longer amplicons 

enable us to detect more nucleotide variations, and thus 

revealing higher diversity, advancing our knowledge on 

AAP community composition.

Phenology of AAP bacteria and consideration of the PEG 

model

The seasonal succession of the AAP community revealed 

differential strategies of adaptation to environmental 

conditions, unveiling generalist AAP bacteria appear-

ing most of the time, whereas specialists or opportunists 

showed a transient contribution to the AAP community 

(Fig.  2). Within the generalists, we identified the core 

AAP community that consistently contributed through-

out the seasons for three consecutive years and across all 

depths (Supplementary Figure S9). The coexistence of the 

core AAP community, the dominance of positive corre-

lations in the networks, and the numerous correlations 

between ASVs of similar taxonomic ranks (Fig.  4) sug-

gest partial metabolic redundancy within some closely 

related AAP bacteria that maintain functional kinship. 

In contrast, the complex seasonal succession pattern 

indicates that the lake’s AAP community is extremely 

diverse, with over 100 reported genera of AAP bacteria 

(Supplementary Figure S1, S2, and S3). AAP communi-

ties represent a large functional repertoire (even within 

the same genus) allowing for niche speciation via tempo-

ral succession, facilitating their geographical coexistence. 

Finally, the 3-year recurrence of the AAP community 

(Fig.  1A) documents its indigenous character in this 

freshwater lake and the higher importance of selection 

over the environmental drift and dispersal processes at 

a short temporal scale [95]. Changes in the AAP abun-

dance coincided with shifts in their community compo-

sition indicating that abundance peaks were caused by 

specific phylotypes. These phylotypes differed between 

both abundance peaks (Fig. 3). Generally, the AAP com-

munity was dominated by Gammaproteobacteria except 



Page 10 of 14Villena‑Alemany et al. Microbiome           (2024) 12:65 

for spring abundance peaks, when Alphaproteobacteria, 

which already have shown higher phototrophic activities 

in spring [31], increased their contribution. Additionally, 

the directional interannual variation of the AAP commu-

nity (Fig. 1B) signifies the evolution of AAP populations, 

potentially influenced by changes in environmental and 

biological variables such as temperature or Chl-a (Sup-

plementary Figure S7).

While the PEG model has enhanced our understand-

ing of seasonal patterns, it still does not encompass all 

aquatic components, such as viruses or specific func-

tional bacterial groups. This includes AAP bacteria, 

which are characterized by a heterogenic behavior but 

still represent an important functional group, fulfill-

ing valuable ecological and biochemical processes in the 

aquatic environment. For that reason, amending them 

into the present PEG model will certainly improve our 

understanding of aquatic community functioning.

Cep Lake is representative of a meso-oligotrophic tem-

perate lake in the northern hemisphere [96], thus our 

conclusions might be applied to other similar lakes. AAP 

bacteria played an important role during and shortly after 

the spring bloom when their abundance and contribu-

tion to the total bacterial community were recurrently 

the highest. This spring AAP abundance peak preceded 

that of the overall heterotrophic bacteria (Fig.  5). These 

results are consistent with the previous study in the same 

lake [18]. The faster response of AAP bacteria high-

lights that photoheterotrophy confers a distinct meta-

bolic importance as food for bacterivores in microbial 

food webs is well documented [97–99] and due to their, 

on average, larger cell size and higher activity than other 

heterotrophic bacteria [13, 14], they might contribute 

disproportionally to the carbon cycling despite their rela-

tively low abundances [19, 99]. Additionally, Chl-a con-

centration has been identified as a variable explaining the 

dynamics of the AAP bacterial community and it is plau-

sible to assume that the spring abundance peaks of AAP 

bacteria are triggered by the excess of carbon released 

by the phytoplankton bloom (mostly diatoms; Supple-

mentary Figure S6) and the lack of grazing pressure after 

winter. Moreover, AAPs have a highly efficient photohet-

erotrophic metabolism [17] increasing secondary bacte-

rial production and disposing of more carbon to higher 

trophic levels via the microbial loop. This emphasizes the 

urgent need for more quantitative studies to further deci-

pher carbon transfers along microbial and classical food 

webs. The AAP bacterial peak is terminated by selective 
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Fig. 5 Proposed inclusion of AAP bacteria in the PEG model. Annual succession patterns of microbial communities for (A) Phytoplankton 
and zooplankton according to original PEG model in oligotrophic scenario (Sommer et al., 1986), and (B) monthly averaged annual succession 
pattern of AAP abundance in CEP lake, phytoplankton dynamics through Chl‑a, and of bacterial abundance. Trend lines are normalized to maxima 
and minima values for each variable, light transparent areas indicate 95% confidence interval
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and extensive grazing of bacterivorous protists and meso-

zooplankton that are also present in summer [83, 98, 100]. 

The absence of a pronounced AAPs peak following the 

phytoplankton bloom in autumn (Fig. 5) could be attrib-

uted to the higher grazing pressure, distinct phytoplank-

ton composition (Supplementary Figure  S6), decreasing 

temperatures (Supplementary file S6), and/or the decreas-

ing light availability at shorter day length [2, 18, 30, 101]. 

Altogether, we propose for the first time the inclusion of 

the AAP bacteria into the PEG model, encouraging other 

microbial ecologist to account for their role in other lakes 

of different trophic status.

Finally, our study provides novel insight into the ecol-

ogy of phototrophic Myxococcota. While their average 

contribution was low, they were detected during strati-

fication over three consecutive years (Supplementary 

Figure  S8) and constituted a member of the summer-

autumn AAPs peak, emphasizing their potential signifi-

cance in microbial communities during summer as they 

showed a potentially predatory and photoheterotrophic 

metabolism [102].

Conclusions
Our study revealed annual recurrent seasonal patterns of 

AAP bacteria in a freshwater lake, supporting the poten-

tial inclusion of this important functional group into the 

PEG model. The high abundance of AAP bacteria during 

the spring phytoplankton bloom highlights their cru-

cial role in recycling phytoplankton-derived dissolved 

organic matter and their role in aquatic food webs, which 

needs to be further quantified and better understood. 

Differential contribution patterns of the core community 

and temporal succession of the AAP community indicate 

strong competition within AAP bacteria communities, 

which forces them to conduct temporal niche partition-

ing in order to geographically coexist. In contrast, posi-

tive co-occurrence correlations between closely related 

AAP bacteria indicated their functional redundancy. Our  

findings provide unprecedented insights into the phenology  

of AAP bacteria in a temperate freshwater lake, blazing  

a trail for future studies to verify the proposed role in other 

types of lakes.
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