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Freshwater genome-reducedbacteria exhibit
pervasive episodes of adaptive stasis

LucasSerraMoncadas1, Cyrill Hofer 1, Paul-AdrianBulzu 2, JakobPernthaler1&

Adrian-Stefan Andrei 1

The emergence of bacterial species is rooted in their inherent potential for

continuous evolution and adaptation to an ever-changing ecological land-

scape. The adaptive capacity of most species frequently resides within the

repertoire of genes encoding the secreted proteome (SP), as it serves as a

primary interface used to regulate survival/reproduction strategies. Here, by

applying evolutionary genomics approaches to metagenomics data, we show

that abundant freshwater bacteria exhibit biphasic adaptation states linked to

the eco-evolutionary processes governing their genome sizes. While species

with average to large genomes adhere to the dominant paradigm of evolution

through niche adaptation by reducing the evolutionary pressure on their SPs

(via the augmentation of functionally redundant genes that buffer mutational

fitness loss) and increasing thephylogenetic distanceof recombination events,

most of the genome-reduced species exhibit a nonconforming state. In con-

trast, their SPs reflect a combination of low functional redundancy and high

selection pressure, resulting in significantly higher levels of conservation and

invariance. Our findings indicate that although niche adaptation is the prin-

cipal mechanism driving speciation, freshwater genome-reduced bacteria

often experience extended periods of adaptive stasis. Understanding the

adaptive state ofmicrobial species will lead to a better comprehension of their

spatiotemporal dynamics, biogeography, and resilience to global change.

Bacteria display remarkable adaptability, thriving in a wide spectrum
of environments ranging from themundane to the extreme1. They can
survive anywhere, from icy poles and scorching geysers to the depths
of the ocean or the heights of the atmosphere2–5. This ability to flourish
across large physicochemical gradients largely hinges not on the
diversity of their metabolic machinery6 but on their capacity to use a
wide range of substrates to power a conserved array of biochemical
reactions7. In this context, extant chemical diversity fosters the coex-
istence of metabolically concurrent bacteria and significantly con-
tributes to their constant diversification. Consequently, genetically
identical populations gradually diverge andundergo speciation as they
adapt to distinct niche facets by accumulating fitness-enhancing
variations8.

While the diversity within species is fine-tuned by ongoing pro-
cesses of variation generation, natural selection, and genetic drift,
variability is introduced into populations through mutation and gene
flow. Genetic drift operates randomly, leading to the elimination of
genetic variation within a population, while natural selection selec-
tively preserves or eliminates variations based on their fitness advan-
tages or disadvantages9.

Several evolutionary frameworks have been developed to eluci-
date the origin of bacterial species and their intrapopulation diversity,
with adaptive models being the most accepted and widespread8,10,11.
Although these models may vary in their proposed equilibrium
betweenmutation/recombination and selection forces, they are united
by their shared aim of explaining bacterial diversity through niche
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adaptation (i.e., periodic selection or phage predation dynamics)8,11.
Though certain predictions of these models have been confirmed in
environmental microbial communities (genome-wide selective
sweeps12,13 and genomic islands11), there has been limited exploration
of the process underlying bacterial adaptation to their natural niche.

Bacteria sense and respond to the surrounding physiochemical
environment via proteins that are secreted into the extracellular
milieu, confined to periplasmic space, or tethered to their plasma
membrane/cell wall14. These proteins collectively referred to as the
secreted proteome, play essential roles in bacterial niche adaptation
by enabling recognition and uptake of nutrients, communication with
other bacteria, surface attachment, and signal transduction15.
According to the adaptive models of bacterial speciation, the SP is
expected to evolve faster16 than the corresponding cytoplasmic pro-
teome (CP) as it represents themain interface used by bacteria to fine-
tune survival/reproduction strategies (i.e., phage evasion and nutrient
acquisition). Henceforth, we will employ the term secreted proteome
(SP) to encompass all proteins that undergo translocation across the
membrane. This includes proteins localized in the periplasmic space,
associated with the membrane/cell wall, and those ultimately released
into the external environment. In this study, proteins containing a
signal peptide were designated as belonging to the SP, while those
lacking this feature were assigned to the CP. Consequently, we will use
the term secreted proteome to denote proteins computationally
identified to possess a signal peptide, and cytoplasmic proteome for
the remainder. It is important to note that within the scope of this
study, the term proteomes refers to the entirety of proteins encoded
by a specific bacterial species cluster. It is crucial to emphasize that
these designations do not reflect a physiological state, as additional
mass spectrometry-based experimental techniques were not
employed.

In this work, we utilize metagenomic time-series to characterize
the diversity of dominant freshwater bacterial species and elucidate
the eco-evolutionary factors driving their diversification. By employing
ecogenomics approaches on genome-resolved metagenomic data, we
reveal the evolutionary strategies and forces shaping bacterial life-
styles. Our analyses underscore niche adaptation as the principal dri-
ver of speciation, while also revealing the widespread occurrence of
extended periods of adaptive stasis among abundant freshwater spe-
cies with small genome sizes.

Results and discussion
pdCEL-prokaryotic diversity in central European lakes
An extensive database of ~5500 prokaryotic metagenome-assembled
genomes (MAGs) was constructed by applying genome-resolved
metagenomics techniques. This involved analysing 52 independent
shotgun-sequenced samples, collectively comprising around 11 billion
reads and 3.31 Tb (Fig. 1). The datasets were obtained from time-series
samples collected from five freshwater lakes (Fig. 2) spanning a range
of trophic states, from oligotrophic to dystrophic (see “Methods”). We
will henceforth refer to this database as pdCEL (prokaryoticdiversity in
Central European Lakes). pdCEL was further divided into small and
large genome species based on previous observations that bacteria
with reduced genome sizes often exhibit specific lifestyle strategies17.
Species with estimated genome sizes ≤2.1Mbpwere classified as small,
consistent with previous size limits utilised to refer to genome-
reduced bacteria18. This threshold represents the lower quartile of the
genome size distribution in the GTDB R05-RS95 database19 (Supple-
mentary Fig. S1). For simplicity of data presentation, all species with
predicted genome sizes >2.1Mbp were included in the large category.
The redundancy of pdCEL was utilised to identify MAGs that belonged
to the same species. Thus, the MAGs were grouped using the estab-
lished criterion for prokaryotic species definition, which relies on
ensuring that the average nucleotide identity values between genomes
exceed 95%20. In order to have a representative sample of

intrapopulation diversity, our downstream analyses focused on spe-
cies that containednineormoreMAGs (n = 30 species clusters;median
completeness = 77.03%).

Contrasting intraspecific amino acid diversity patterns
The analysis of amino acid similarity values among proteomes
belonging to the same species cluster led to intriguing findings. While
some species aligned with the predictions of the adaptive models,
displaying greater dissimilarity in their SPs than in CPs, others exhib-
ited unexpectedly conserved SPs (Fig. 3a). This unanticipated dis-
crepancy challenges the assumptions of ecological speciation models
and was observed across multiple species from a variety of taxonomic
groups (Fig. 3a). Further investigation revealed that coding density,
which was used as a surrogate for genome size (Supplementary
Fig. S2), was the primary explanatory variable of the observed
dichotomy (ρ =0.77, P value = 2.1e-06; Fig. 3b). As a result, a con-
spicuous pattern emerged regarding the level of evolutionary con-
servation observed between SPs and CPs: the larger genome species
exhibited SPs characterised by comparatively lower evolutionary
conservation, whereas the smaller genome species displayed a diver-
gent pattern, showcasing highly conserved SPs (Fig. 3a, b). After nor-
malising the intraspecific amino acid identity values with the within-
species genetic distance, it became evident that the level of dissim-
ilarity in CPs is comparable between species with large and small
genomes, whereas that of SPs is not (Fig. 3c). One possible inter-
pretationof this observation is that the SPs, whichdifferentiate the two
categories, are involved in lifestyle strategies and undergo selection at
the niche level, while the similarity in CPs across categories reflects the
selection for function. Thus, it becomes apparent that while genetic
drift acts uniformly across populations (purging both CP and SP
diversity simultaneously), selection can operate at different levels and
may be driven by different factors: niche adaptation in the case of SPs
and the conservation of core metabolic functions in the case of CPs.

Dynamics of intraspecific variation generation
Subsequent analyses revealed that within-species variation is intri-
cately influenced by the interplay between mutation and recombina-
tion (Fig. 4). The results indicate that, although recombination occurs
less frequently than mutation, its impact is more significant than pre-
viously thought21. Particularly noteworthy is the striking contrast in the
ν values, representing the average length of imports (i.e., DNA frag-
ments introduced through recombination) for the SPs of large-
genome bacteria (Fig. 4). This observation not only suggests that
large-genome bacteria engage in recombination with more phylo-
genetically distant groups but also underscores that, despite its
infrequency, recombination introduces sequence novelty. Remark-
ably, this novel sequence diversity is preferentially preserved in the SP
of large-genome species where it likely contributes to proteome
variability.

Gene selection force analyses revealed that species with large
genomes experience comparable levels of negative selection pressure
in both their SPs and CPs (~61% of protein-coding genes; Fig. 5a), with
most of their adaptive potential located in the former (~1.7% of protein-
coding genes under positive selection) (Fig. 5a). In contrast, the SPs of
species with small genomes are characterised by the near absence of
positive selectionpressure and a reduction in the number of genes and
sites evolving under negative selection when compared with the CPs
(Pearson’s Chi-squared test: χ2 = 44.71, df = 2, P < 0.001; Fig. 5a). Given
that genes coding for SPs and CPs typically evolve under similar
mutational rates (as they are located on the same bacterial chromo-
some) and are therefore subjected to similar recombination effects, a
reduction in the number of genes under negative selection compen-
sated by the increase in the invariable genes indicates enhanced
selection pressure22. This suggests that even mutations that do not
impact the amino acid identity within the SPs incur a fitness cost. This
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interpretation aligns with the recent observations of Shen and colab.
who showed that even synonymous mutations decrease fitness by
altering the transcription levels of themutated genes in yeasts23. If this
also holds true for small genome species, it would indicate that the
expression levels of genes encoding SPs are of greater significance for
their survival than those encoding CPs. Nonetheless, it is crucial to
acknowledge that in some bacterial species, themutation rate exhibits
symmetry around the origin of replication24,25.

Protein length disparities and functional redundancy
Protein length comparisons showed that the CPs of both large and
small genome species were of similar size, but that their SPs showed
notable length disparities (Fig. 5c). The subsequent analysis of protein
segment subcellular localisation revealed that the non-cytoplasmic

and transmembrane regions of SPs in small genome species were
significantly shorter, accounting for most of the observed differences
(Fig. 5d). While identifying the exact cause of length reduction in SPs
compared to CPs remains elusive, it is plausible that small genome
species undergomore frequent SP turnover, involving the removal and
degradation of existing proteins, along with a dynamic renewal pro-
cess, where new proteins are synthesized to replace those removed.
Consequently, the reduction in length could potentially alleviate some
of the energetic expenses associated with the translation and tran-
scription processes.

To understand the emergence of contrasting conservation pat-
terns between the SPs and CPs of species with different genome sizes,
we further looked at theproportion of functionally redundant proteins
(Fig. 6b). Interestingly, we found that larger genome species tend to
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have a higher proportion of functionally redundant proteins in their
SPs rather than in their CPs (Fig. 6b). In contrast, small genome species
exhibited an inverse pattern with a higher proportion of functionally
unique proteins present in their SPs (Fig. 6b). Thus, larger genome
species enhance their niche adaptability through the maintenance of
duplicated SPs coding genes/functions, proving an evolutionary play-
ground for their SPs to adapt and diversify without the inconveniences
caused by loss of fitness mutations26. Conversely, the limited func-
tional redundancy within the SPs of small genome species poses a
potential obstacle to evolutionary innovation. Any variation (causedby
mutation or recombination) occurring in a single-copy gene has the
capacity to impact the organism’s fitness and is likely to be eliminated
by selection. This mutational cost may be further exacerbated in
genome-reduced species bearingminimal physiological redundancies.
Thus, while the secreted proteomes of large genome species typically
harboured a diverse set of proteins that were functionally identical yet

divergent in sequence, the SPs of small genome species showed the
opposite (Fig. 6a, c).

Similar interspecific amino acid diversity patterns
Our finding that small genome species display adaptive stasis implies
that their populations might progressively differentiate at the level of
CPs, eventually giving rise to novel species featuring an SP that ismore
conserved than the corresponding CP. However, intra-genus (n = 7
genera) amino acid similarity analyses showed that both small and
large genome species diverge through SP alterations (Fig. 7). This
indicates that adaptive stasis as observed here is not an evolutionary
lobster trap and that small genome species only transiently halt the
evolution of their secretedproteomes. This conclusion is supportedby
the small genome species Planktophila sp.6 which does not seem to
experience adaptive stasis and displays a more conserved CP (Fig. 1a).
It is worth noting that this species demonstrated the widest
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Chloroflexota sp.2: CP n = 91, SP n = 91; (C) Chloroflexota sp.3: CP n = 45, SPn = 45; (P)

Alphaprot. sp.1: CP n = 55, SP n = 55; (P) Burkholderiaceae sp.4: CP n = 36, SP n = 36;

(P) Limnohabitans sp.6: CP n = 45, SP n = 45; (P) Polynucleobacter sp.3: CP n = 171, SP

n = 171; (P) Polynucleobacter sp.5: CP n = 36, SP n = 36; (P) Rhodoferax sp.2: CP n = 45,

SP n = 45; (Pl) Phycisphaerales sp.1: CP n = 136, SP n = 136; (V) Lacunisphaera sp.3: CP

n = 55, SP n = 55; (V) Opitutaceae sp.2: CP n = 66, SP n = 66; (V) Opitutales sp.4: CP

n = 36, SPn = 36; (V)Opitutales sp.5: CP n = 66, SP n = 66; (V)Opitutus sp.1: CP n = 36,

SP n = 36). Species clusters are ordered basedon their coding density (bottomblack

arrow). Stars indicate statistical differences as determined by two-sided Pairwise

Wilcoxon rank-sum tests ((A) Nanopelagicaceae sp.5: P value = 3.089104e-22, (A)

Planktophila sp.9: P value = 1.220085e-10, (A) Planktophila sp.6: P value = 2.372142e-

03, (A) Planktophila sp.10: P value = 3.843260e-19, (P) Polynucleobacter sp.3: P

value = 1.379306e-30, (P) Polynucleobacter sp.5: P value = 3.037072e-13, (P) Rhodo-

ferax sp.2: P value = 1.700911e-01, (P) Burkholderiaceae sp.4: P value = 3.754924e-05,

(V) Opitutaceae sp.2: P value = 2.539766e-21, (C) Chloroflexota sp.2: P value =

1.046075e-08, (C) Chloroflexota sp.3: P value = 1.006413e-03, (A) Nanopelagicaceae

sp.3: P value = 2.787598e-18, (C) Chloroflexota sp.1: P value = 6.095921e-13, (B) Bac-

teroidia sp.1: P value = 2.917558e-27, (A) Illumatobacteraceae sp.7: P value =

2.133974e-16, (A) Illumatobacteraceae sp.11: P value = 2.060721e-11, (A) Nanopela-

gicales sp.1: P value = 6.234337e-10, (P) Alphaprot. sp.1: P value = 5.805572e-04, (B)

Chitinophagaceae sp.3: P value = 9.695927e-10, (B) Chitinophagaceae sp.2: P

value = 9.251429e-01, (B) Chitinophagaceae sp.4: P value = 5.272749e-02, (V) Opitu-

tales sp.4: P value = 1.833335e-07, (A) Nanopelagicaceae sp.2: P value = 2.962116e-15,

(V) Opitutales sp.5: P value = 1.328782e-08, (Pl) Phycisphaerales sp.1: P value =

2.016058e-03, (A) Illumatobacteraceae sp.4: P value = 8.537497e-15, (V) Lacuni-

sphaera sp.3: P value = 1.173421e-02, (P) Limnohabitans sp.6: P value = 8.110538e-04,

(V) Opitutus sp.1: P value = 2.284776e-02, (A) Nanopelagicaceae sp.8: P value =

1.028353e-09). The bottom label displays species identifiers. A stacked barplot

depicts species abundances. Small genomes are depicted in blue color, while the

large ones are in yellow. b The relationship between the SP/CP similarity index

(intraspecific index obtained by dividing median amino acid similarity values of

secreted and cytoplasmatic proteomes) and genome coding density assessed by

Spearman’s correlation test (ρ =0.7730; S = 1020; P value = 2.086e-06). Small MAGs

are depicted in blue, while large ones are shown in yellow (Large genome species

n = 16, Small genome species n = 14). c SPs and CPs normalized to species average

nucleotide identity (ANI) values (Large genome species SP/ANIn = 16, CP/ANIn = 16;

Small genome species SP/ANI n = 14, CP/ANI n = 14). Statistical difference between

categories was determined through two-sided Pairwise Wilcoxon rank-sum tests

(SP/ANI P value = 6.987e-06; CP/ANI P value = 0.6374). The central line across the

boxplots identifies the median, marking the dataset’s midpoint. The box itself

demarcates the interquartile range, extending from the first quartile to the third

quartile, encapsulating the central 50% of the data. The whiskers project from

the box to the furthest data points not categorized as outliers and show

the spread of the main body of the dataset. Raw data is provided as a Source

Data file.
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geographic distribution among the smaller genome species (Fig. 3),
showcasing increased niche adaptability. Therefore, the evolution of
SPs emerges as a pivotal factor driving freshwater bacteria differ-
entiation in both the analysed small and large genome species.

Bacterial lifestyle strategies and ecophysiological traits
To evaluate the alignment of the observed SP conservation pattern
with specific bacterial lifestyle strategies, we inferred ecophysiological
characteristics by leveraging processes such as replication and geno-
mic features, including codon usage27–29. Additional technical details
about these approaches are provided in “Methods”. The findings
suggest that, during the sampling period, all species with large gen-
omes were actively undergoing replication, as evidenced by elevated
Growth Rate Index values (GRiD >2), indicative of rapid growth facili-
tated bymulti-fork replication27 (Fig. 8). It is important to note that in a
population where the majority of bacteria are replicating, the Growth
Rate Index would be equal to 2. In contrast, small-genome species
generally exhibited slower replication rates, with exceptions like
Nanopelagicaceae sp.1, which achieved a median value of 1.97, chal-
lenging the observed trend in other small-genome species. Addition-
ally, the analysis of codon usage bias suggested that the majority of
species have the potential for high growth rates (CUBHE>0.6), even
though these rates were not realized in situ, at least during our sam-
pling collection times (Fig. 8).

Considering species genome sizes, in situ replication rates, and
aligning taxonomy with known ecophysiological traits (when
possible)17,30, it appears that larger genome species tend towards a
copiotrophic lifestyle, while their small genome counterparts exhibit
characteristics indicative of an oligotrophic one. Copiotrophic bac-
teria,whether free-living or associatedwith lake snowparticles, display
substantial cell and genome sizes, providing metabolic and regulatory
flexibility. This increased physiological adaptability allows nuanced
responses to rapid nutrient changes through motility and chemotaxis
(Supplementary Fig. 7), leading topeak growth rates during favourable
conditions. In contrast, genome-reduced oligotrophic bacteria, with
smaller cell and genome sizes, thrive in stable, nutrient-scarce, oligo-
trophic waters. Their growth strategy prioritizes efficiency over speed,
maintaining a slow yet consistent pace17. Viewing the within-species
diversity from an eco-evolutionary perspective it is likely that the
upsurge in positively selected genes and heightened sequence diver-
sity in the SPs of large genome species contributes to the copiotrophic
lifestyle by broadening the potential range of utilizable substrates. In
contrast, the restricted SP diversity in small genome species implies

enhanced substrate fidelity. Diversifying the substrate range may not
confer an advantage for oligotrophic bacteria, which rely on a reduced
set of core metabolic pathways30.

The eco-evolutionary landscape of bacterial diversity
Our findings indicate that genes experiencing positive selectionwithin
the SPs of small genome species are remarkably scarce, and even the
proportion of sites under negative selection is significantly diminished
(Fig. 5b). These observations suggest that these bacteria likely
achieved transient fitness peaks by attaining optimal protein topolo-
gies and preserving unaltered expression levels. The ecological suc-
cess of genome-reduced bacterial species31–33 is thus likely attributed
to their exceptional efficiency in assimilating a limited number of
substrates through a rather undiversified metabolic circuitry. The
observed lack of significant evolutionary changes in the secreted
proteomes of these organisms can be likely attributed to the notion
that these proteomes have already reached an optimal state through
the course of evolution, where further major alterations are neither
advantageous nor necessary for the organisms’ survival and adapta-
tion to their current niches. However, the mechanisms underlying the
evolutionary process that would allow these species to transition into
and out of periods of adaptive stasis require further investigation.

The recovery of bacterial genomes from dominant freshwater
populations has enabled the exploration of the evolutionary strategies
and forces that govern bacterial lifestyles. While niche adaptation
serves as the primary driving force behind the speciation process, our
findings shed light on the prevalence of prolonged periods of adaptive
stasis in abundant freshwater species characterised by small genome
sizes18,33. During these phases, intrapopulation divergence in terms of
genomic similarity is chiefly driven bymutation/recombination events
and heightened positive selection acting on CP-encoding genes. The
absence of functional redundancy and the increased elimination of
diversity within the SPs of small genome species impede the emer-
gence of evolutionary innovation. The inherent inflexibilitywithin their
SPs thus restricts the capacity of these organisms to explore novel
genetic variations and effectively adapt to dynamic environmental
conditions. Although we discovered the presence of adaptive stasis in
several genome-reduced species (Supplementary Fig. 8 and Supple-
mentary Data 7), further investigation is required to determine its
prevalence among genome-reduced bacteria in diverse microbiomes.

The emergence of bacterial species is intricately linked to their
capacity for ongoing evolution and adaptation within a dynamic eco-
logical landscape. The SP plays a pivotal role in niche adaptation,

Fig. 4 | Recombination to mutation rates measurements. a The right panel

depicts recombination to mutation rates for both large and small genomes

(Large genomes SP n = 16, Large genomes CP n = 16; Small genomes SP n = 14;

Small genomes CP n = 14). Two boxplots are presented for each category, dis-

tinguishing the secreted proteome (SP) in yellow and the cytoplasmatic pro-

teome (CP) in blue. The red line serves as an indicator representing a ratio where

recombination equals mutation. No statistical differences were found (SP

Kruskal–Wallis chi-squared = 3.3456, df = 1, P value = 0.06738; CP Kruskal–Wallis

chi-squared = 1.6607, df = 1, P value = 0.1975). b The left panel showcases the

average distance of imports for the SP and CP of both large and small genomes

species. Statistical differences are highlighted by stars (SP Kruskal–Wallis chi-

squared = 13.382, df = 1, P value = 0.000254; CP Kruskal–Wallis chi-squared =

0.33871, df = 1, P value = 0.5606). The central line across the boxplots identifies

the median, marking the dataset’s midpoint. The box itself demarcates the

interquartile range, extending from the first quartile to the third quartile,

encapsulating the central 50% of the data. The whiskers project from the box to

the furthest data points not categorized as outliers and show the spread of the

main body of the dataset. Raw data is provided as a Source Data file.
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facilitating crucial functions such as nutrient recognition and uptake,
inter-bacterial communication, surface attachment, and signal trans-
duction. Given that adaptation predominantly occurs through the
fixation of nonsynonymous mutations34, the conspicuous absence of
such variations in the SPs of genome-reduced freshwater species
implies a stalling of the adaptive processes. Delving into the nuanced
mechanisms governing SP diversity has provided profound insights
into the eco-evolutionary processes shaping copiotrophic and oligo-
trophic lifestyle strategies. Rather than constraining these strategies to
a rigid dichotomy, it is crucial to perceive them along a continuum,
accommodating a spectrum of adaptations and behaviours. Despite
these insights, it is vital to acknowledge the constraints associatedwith

capturing the diversity of uncultured bacterial species, as discussed in
the manuscript’s Limitations section.

Considering that bacterial species with small genome sizes fre-
quently form substantial components of freshwater environments and
fulfil vital ecological functions, comprehending their adaptability to
changing climatic conditions is of paramount importance for ecosys-
tem resilience and sustainable resource management.

Limitations
While our sampling efforts spanned the samehabitat types, freshwater
lakes, and encompassed multiple time points, we acknowledge the
inherent challenge of capturing the entirety of genomic diversity

Fig. 5 | Dynamicsof selection forces. a,bGenome-widequantification of selection

force for genes coding for SPs andCPs.a Percentagesof genesunder negative (red)

and positive (orange) selection within the SPs and CPs. b Number of sites per gene

under negative selection. The statistical difference within the predefined species

categories (i.e., small and large species) (Large genomes SPn = 1512, Large genomes

CP n = 9390; Small genomes SP n = 512; Small genomes CP n = 6805) was deter-

mined by Pairwise Wilcoxon rank-sum tests (Large genomes W= 7,774,646, P

value = 2.437e-09; Small genomes W= 2,090,672, P value = 2.976e-14). c SPs and

CPs length (aa). Average protein length was calculated for both SPs and CPs and

comparedwithin and between groups (Large genomes SP n = 9147, Large genomes

CP n = 32,288; Small genomes SPn = 12,602; Small genomesCPn = 1652). Statistical

significance within and between categories was determined through Pairwise Wil-

coxon rank-sum tests (P values < 2.2e-16 across all). d Protein subcellular localiza-

tion fragments length for the SPs and CPs (Large genomes SP: Cytoplasmic n = 916,

Non-cytoplasmic n = 7313, Transmembrane n = 918; CP: Cytoplasmic n = 6185, Non-

cytoplasmic n = 21,129, Transmembrane n = 4974; Small genomes SP: Cytoplasmic

n = 319, Non-cytoplasmic n = 1011, Transmembrane n = 322; CP: Cytoplasmic

n = 2220, Non-cytoplasmic n = 8573, Transmembrane n = 1809). The overall differ-

ence was determined by Pairwise Wilcoxon rank-sum tests (Small genomes Cyto-

plasmic P value = 6.353e-15, Small genomes Transmembrane P value = 0.0035,

Small genomesNon-cytoplasmic P value = 7.805e-11; Large genomesCytoplasmic P

value = 7.585e-10, Large genomes Transmembrane P value = 0.0002306, Large

genome Non-cytoplasmic P value < 2.2e-16; Large and Small genome Non-

cytoplasmic P value < 2.2e-16). The central line across the boxplots identifies the

median, marking the dataset’s midpoint. The box itself demarcates the inter-

quartile range, extending from the first quartile to the third quartile, encapsulating

the central 50% of the data. The whiskers project from the box to the furthest data

points not categorized as outliers and show the spread of the main body of the

dataset. Raw data is provided as a Source Data file.
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within species. The impediments stem from methodological limita-
tions that are exacerbated by the continuous evolution of bacterial
populations over time. To address some of the mentioned challenges,
our study employed a strategic approach that entailed repeated sam-
pling campaigns in the selected environments. This iterative sampling
method significantly bolstered our capacity to capture some of the
species flexible genomes. To enhance our capability to investigate the
flexible genome, we have meticulously curated our pdCEL database,

prioritising species clusters with a minimum of 9 representatives.
However, it is important to acknowledge that the recovery of partial
genomes (median completeness = 77.03%) may impose limitations on
the extent ofwithin-species diversity thatwas recovered. Furthermore,
it is important to note that the metagenome-assembled genomes
employed in this study serve as ‘genomicpools’ representing abundant
populations with high sequence identity. However, they may not pre-
cisely capture the genomic constitution of specific clonal lineages, nor
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Fig. 7 | Investigation of proteome similarity within genus-level classifications.

The upper panel displays the taxonomic labels of seven identified genera con-

taining at least two species (out of the 30 analyzed species clusters), where species

with small and large genomes are shown in blue and yellow, respectively. The Y axis

shows the average amino acid similarity values for SPs (in orange), CPs (in green),

and whole proteomes (in grey) within each genus (g.Nanopelagicales n = 110;

g.Planktophila n = 379; g.Polynucleobacter n = 171; g.UBA10416 n = 404;

g-UBA3006 n = 99; g.UBA8137 n = 455; g.UBA953 n = 108). The blue line represents

the average amino acid similarity value of 65% used to define genus-level cate-

gories. The central line across the boxplots identifies the median, marking the

dataset’s midpoint. The box itself demarcates the interquartile range, extending

from the first quartile to the third quartile, encapsulating the central 50% of the

data. The whiskers project from the box to the furthest data points not categorized

as outliers and show the spread of the main body of the dataset. Raw data is

provided as a Source Data file.

Fig. 6 | Proteome functional redundancy. a, c Structural alignments of the sub-

strate binding protein (K02051) belonging to the NitT/TaUt family transport sys-

tem. Each colour corresponds to one protein. These panels illustrate the levels of

functional redundancy observed in the SPs of large (a) and small (c) genome spe-

cies. The degree of structural similarity is quantified using the Q-score, while the

number of overlaps indicates the aligned proteins (seven in (a), and two in (c)).

Burkholderiaceae sp. 4 and Ilumatobacteraceae sp. 4 were selected as repre-

sentatives of the large and small genomes species, respectively, due to their max-

imum number of NitT/TaUt substrate-binding proteins per species. b Analysis of

functional redundancy ratios in CPs and SPs (Large CP n = 192; SP n = 192; Small CP

n = 150; SP n = 150). Wilcoxon rank-sum tests were conducted to compare values

within the SP category (P value < 2.2e-16). The central line across the boxplots

identifies the median, marking the dataset’s midpoint. The box itself demarcates

the interquartile range, extending from the first quartile to the third quartile,

encapsulating the central 50% of the data. Thewhiskers project from the box to the

furthest data points not categorized as outliers and show the spread of the main

body of the dataset. Raw data is provided as a Source Data file.
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Fig. 8 | Genome-based ecophysiological inferences. a The upper panel displays

Growth Rate Index (GRiD) values of the obtained 30 species clusters ((A) Ilumato-

bacteraceae sp.11 n = 9; (A) Ilumatobacteraceae sp.4 n = 10; (A) Ilumatobacteraceae

sp.7 n = 11; (A) Nanopelagicaceae sp.2 n = 10; (A) Nanopelagicaceae sp.3 n = 11; (A)

Nanopelagicaceae sp.5 n = 12; (A) Nanopelagicaceae sp.8 n = 9; (A) Nanopelagicales

sp.1 n = 9; (A) Planktophila sp.10 n = 9; (A) Planktophila sp.6 n = 14; (A) Planktophila

sp.9 n = 11; (B) Bacteroidia sp.1 n = 17; (B) Chitinophagaceae sp.2 n = 13; (B) Chit-

inophagaceae sp.3 n = 13; (B) Chitinophagaceae sp.4 n = 11; (C) Chloroflexota sp.1

n = 11; (C) Chloroflexota sp.2 n = 14; (C) Chloroflexota sp.3 n = 10; (P) Alphaprot. sp.1

n = 11; (P) Burkholderiaceae sp.4 n = 9; (P) Limnohabitans sp.6 n = 10; (P) Poly-

nucleobacter sp.3 n = 19; (P) Polynucleobacter sp.5 n = 9; (P) Rhodoferax sp.2 n = 10;

(Pl) Phycisphaerales sp.1 n = 17; (V) Lacunisphaera sp.3 n = 11; (V) Opitutaceae sp.2

n = 12; (V) Opitutales sp.4 n = 9; (V) Opitutales sp.5 n = 12; (V) Opitutus sp.1 n = 9),

where species with large and small genomes are represented with orange and light

blue colors, respectively. The grey line serves as an indicator for GRiD values sur-

passing 2. b The bottom panel shows codon usage bias of highly expressed genes

(CUBHE). As for the upper panel, species containing large genomes are depicted in

orange, while species containing small genomes are in light blue ((A)

Ilumatobacteraceae sp.11 n = 9; (A) Ilumatobacteraceae sp.4 n = 10; (A) Ilumato-

bacteraceae sp.7 n = 11; (A)Nanopelagicaceae sp.2 n = 10; (A)Nanopelagicaceae sp.3

n = 11; (A) Nanopelagicaceae sp.5 n = 12; (A) Nanopelagicaceae sp.8 n = 9; (A) Nano-

pelagicales sp.1 n = 9; (A) Planktophila sp.10 n = 9; (A) Planktophila sp.6 n = 14; (A)

Planktophila sp.9 n = 11; (B) Bacteroidia sp.1 n = 17; (B) Chitinophagaceae sp.2 n = 13;

(B) Chitinophagaceae sp.3 n = 13; (B) Chitinophagaceae sp.4 n = 11; (C) Chloroflexota

sp.1 n = 11; (C) Chloroflexota sp.2 n = 14; (C) Chloroflexota sp.3 n = 10; (P) Alphaprot.

sp.1 n = 11; (P) Burkholderiaceae sp.4 n = 9; (P) Limnohabitans sp.6 n = 10; (P) Poly-

nucleobacter sp.3 n = 19; (P) Polynucleobacter sp.5 n = 9; (P) Rhodoferax sp.2 n = 10;

(Pl) Phycisphaerales sp.1 n = 17; (V) Lacunisphaera sp.3 n = 11; (V) Opitutaceae sp.2

n = 12; (V) Opitutales sp.4 n = 9; (V) Opitutales sp.5 n = 12; (V) Opitutus sp.1 n = 9).

The grey threshold line is positioned at a CUBHE value of 0.6. The central line

across the boxplots identifies the median, marking the dataset’s midpoint. The

box itself demarcates the interquartile range, extending from the first quartile

to the third quartile, encapsulating the central 50% of the data. The whiskers

project from the box to the furthest data points not categorized as outliers and

show the spread of the main body of the dataset. Raw data is provided as a

Source Data file.
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fully represent the genetic diversity within populations that are highly
similar yet of low abundance. An additional limitation to consider is
that MAGs generated from short-read sequencing may potentially
overlook variable genomic regions and mobile genetic elements, fur-
ther complicating the comprehensive capture of microbial diversity.

Phobius, a bioinformatics tool utilised in this study, employs a
combination of algorithms to predict signal peptides in bacterial
proteins by analysing the N-terminus regions. While this approach
offers significant value, especially in terms of ease of use and scal-
ability, it has inherent limitations, as not all the cytoplasmic and signal
peptide-bearing proteins may be correctly identified. In our bench-
mark analysis, Phobius correctly identified approximately 94.17% of
the proteins used for testing. It is crucial to acknowledge, however,
that the classification of proteomes and their sequences as secreted or
cytoplasmic was based solely on computational predictions without
confirmation from additional mass spectrometry-based experimental
techniques.

Functional redundancy analysis involved the identification of
proteins sharing identical functions. In this study, we opted for an
annotation-based approach that is less sensitive to protein similarity
levels or their phylogeny. The percentage of annotated proteins, as per
the KEGG database, was 51.19% for SP and 69.36% for CP in large
genome species, while in small genome species, itwas 62.3% for SP and
76.26% for CP.

Methods
Sampling sites and DNA isolation
Samples from five freshwater lakes (that range in trophic status from
oligotrophic to eutrophic; the Czech Republic and Switzerland) were
used to recover genomic information from prokaryotes colonising
diverse freshwater niches.

ŘímovReservoir (470ma.s.l., 48°50’N, 14°29’E, CzechRepublic) is
a meso-eutrophic, canyon-shaped dimictic water body with an area of
2.0 km2 (length of 13.5 km, volume of 34.5 × 106m3, mean water
retention time of 77 days, maximum depth of 43m) that was built
during 1974–1979 by damming a 13.5 km long section of the River
Malše. The sampling was performed between June 2015 and August
2017, above the deepest point of the reservoir by using a Friedinger
sampler. In all, 20 L of water were collected from 0.5 (n = 10) and 30m
(n = 8) depths and subjected to sequential peristaltic filtration through
a series of 20, 5, and 0.2-μm-pore-size polycarbonatemembrane filters
(⌀ 142mm) (Sterlitech Corporation, USA). The sample collection and
filtration steps were similar for the rest of the lakes/pools unless
otherwise stated. Jiřická pond (892m a.s.l., 48°36.96’N 14°40.59’E,
Czech Republic) is a dystrophic humic water body with an area of
0.035 km2 (volume of 6.59 × 103m3, mean water retention time of
9 days, maximum depth of 3.7m), located in the Novohradské
mountains of Southern Bohemia. Fifteen epilimnia (0.5mdepth) water
samples were collected between May 2016 and August 2017. Lake
Zurich (406m a.s.l., 47°18’N, 8°34’E, Switzerland) is an oligomeso-
trophic, perialpine monomictic water body, with an area of 67.3 km2

(length of 40 km, volume of 3.3 km3, mean water retention time of 1.4
years, maximum depth of 136m). Thirteen samples were collected
between 2013 and 2019 from the epilimnion (5m depth, n = 8) and
hypolimnion (80/120m depth, n = 5) layers, and processed as descri-
bed above. Lake Thun (558m a.s.l., 46°41’N, 7°43’E, Switzerland) is an
oligotrophic, alpine water body with an area of 48.3 km2 (length of
17.5 km, volume of 6.5 km3, mean water retention time of 1.8 years,
maximum depth of 217m). Two water samples were collected in
June 2018 from 5 and 180m depths. Lake Constance (395m a.s.l.,
47°32’N, 9°31’E, Swiss Confederation) is an oligotrophic perialpine lake
with an area of 473 km2 (length of 63 km, volume of 48 km3, mean
water retention time of 5 years, maximum depth of 252m). Four
samples were collected in July and October 2018 from 5m and 200m
depths.

DNAwas extracted from the 0.22-μm filters (0.2- to 5-μm fraction)
using the ZR Soil Microbe DNA MiniPrep kit (Zymo Research, Irvine,
CA, USA; cat # D6010) following the manufacturer’s instructions. The
total quantity of DNA was estimated using the Qubit dsDNA BR assay
kit (Thermo Scientific, Waltham, MA, USA; cat # Q32850) on a Qubit
2.0 fluorometer (Life Technologies). DNA integrity was assessed by
agarose gel (1%) electrophoresis and SYBR green I stain (Thermo Sci-
entific, Waltham, MA, USA; cat # S7563. Shotgun sequencing was
performed using the Novaseq 6000 sequencing platform (2 × 150bp)
(Novogene, Hong Kong, China).

Assembly, binning, and MAG designation
Raw Illumina metagenomic reads were pre-processed to remove low-
quality bases/reads and adaptor sequences using the BBMap35 v36.1
package. Briefly, PE readswere interleavedby reformat.sh36 andquality
trimmedbybbduk.sh37 (qtri =rl trimq=18). Subsequently, bbduk.shwas
used for adapter trimming and identification/removal of possible PhiX
and p-Fosil2 contamination (k = 21 ref=vectorfile ordered cardinality).
Additional inspections (i.e., de novo adapter identification with
bbmerge.sh38 were performed to ensure that the datasets met
the quality threshold necessary for assembly. The pre-processed
reads were assembled independently with MEGAHIT39 v1.1.5 using the
k-mer sizes: 39 49,69,89,109,129,149, and default settings. The pre-
processed metagenomic datasets were mapped using bbwrap.sh40

(kfilter=31 subfilter=15 maxindel=80) against the assembled contigs
(longer than 3 Kbp) in a sample-dependent fashion, ensuring that each
metagenomic dataset was specifically mapped against all assemblies.
The resulting BAM files were utilised to generate contig abundance
profiles with jgi_summarize_bam_contig_depths41 (--percentIdentity
97). The contigs and their abundance files were subsequently used for
hybridbinningwithMetaBAT241 (based on tetranucleotide frequencies
and coverage data; default settings). MetaBAT2 was selected based on
its performance as the best-performing single binner in independent
benchmarks42 and its efficiency, being 10 to 50 times faster than other
commonly used binners43.

Post-binning curation was achieved by applying a taxonomy-
based approach coupled with a GC cut-off. Briefly, the predicted pro-
teomes (PRODIGAL44 v2.6.3) of individual bins were queried (using
mmseqs45 search) against the curated prokaryotic GTDB database
(R05-RS95)46. The obtained results were further converted into a
BLAST-tab formatted file (using mmseqs convertalis) from which
individual top hits (cut-offs: E-value 1e-3, identity 10%, coverage 10%,
bitscore 50) were extracted, and their taxonomic labels used to
annotate the queried proteomes. Taxonomic information was then
used to classify each bin at the class level and discard individual con-
stituent contigs for which taxonomic homogeneity was not achieved
(more than 30% of the taxonomic labels belonged to a different class).
Contigs without taxonomy information or those for which the GC
content deviated by more than 15% from the bin median value, were
discarded as well. Bin completeness, contamination, and strain het-
erogeneity were estimated by CheckM47 v1.1.3 (using the lineage_wf
workflow). Bins with estimated completeness above 40% and con-
tamination below 5% were denominated as metagenome-assembled
genomes (MAGs). All the obtainedMAGswere taxonomically classified
with GTDB-Tk48 v1.4.0 (database release R05-RS95) using default
settings.

To determine the estimated genome size, the MAG length was
divided by its estimated completeness, and the resulting figure was
multiplied by the difference between 100 and the MAG
contamination value.

Species denomination and intraspecific similarity comparisons
To establish species clusters, we used the previously obtained classi-
fication information to create groups that were taxonomically-
homogenous. We further compared genome-wide nucleotide
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identities within each pre-established group and identified MAG clus-
ters that shared over 95% sequence similarity (with over 70% con-
served DNA). These clusters were considered to belong to the same
species, in line with accepted species delineation criteria for
bacteria20,49. To calculate average nucleotide identities (ANI), we
employed a previously describedmethod50. This involved fragmenting
the MAGs into 1 200bp nucleotide fragments and performing reci-
procal nucleotide BLAST searches (blastn) (for additional information
see Goris and colab50). We set the maximum allowed gap size to 150
nucleotides and turned off low complexity sequence filtering (-F F) to
identify reciprocal best hits. Species clusters that had ≥9 MAGs and
≥95% ANI (n = 30), were used for downstream analyses.

The identification of protein-coding genes was carried out using
PRODIGAL44 v2.6.3, employing its default settings. Phobius51 v1.01
(-long option) was utilised to determine the presence of signal pep-
tides in obtained proteomes. Proteins containing a signal peptidewere
assigned to the secreted proteome (SP), whereas the remaining pro-
teins were assigned to the cytoplasmic one (CP). Further, the pro-
teomes of every species group (n = 30) were partitioned into
cytoplasmic and secreted subsets.

Phobius, a bioinformatics tool applied in this study, employs a
combination of algorithms to predict signal peptides in bacterial
proteins by recognizing and analysing the N-terminus regions. This
methodology is commonly employed to predict protein localizations
not only in well-known bacterial species52,53 but also in uncultured
microbial dark matter54. It is worth mentioning that Phobius is fre-
quently integrated into prominent protein annotation databases and
toolkits55,56, underscoring its established reliability in predicting pro-
tein subcellular localisation.Webenchmarkedour approach for SP and
CP identification, by analysing 120,300 cytoplasmic proteins,
10,189 signal peptide-bearing proteins, and 3156 periplasmic proteins
from the reviewed UniProtKB/Swiss-Prot protein database. We took
rigorous steps to ensure that the proteins selected had a clear asso-
ciation with bacteria in this curated, high-quality database. Phobius
software, employing default parameters, was utilised for predicting
signal peptides in all the aforementioned categories. By quantifying
the number of sequences with incorrect predictions, the accuracy rate
can be calculated using the following equation: Phobius accuracy = (N
of correct predictions)/(N of total predictions) × 100. The software
demonstrated high accuracy, correctly identifying 97.66% of cyto-
plasmicproteins (CPs), 93.61%of signal peptide-bearingproteins (SPs),
and 91.25% of periplasmic proteins (SPs) (Supplementary Data 9).
These findings align with the accuracies reported in previous studies57,
reinforcing our confidence in the software’s performance.

Average amino acid identity values were computed for the cyto-
plasmic and secreted proteomes of each species, employing the
methodology detailed by Konstantinidis and Tiedje58. This approach
involves performing reciprocal whole-proteome blastP comparisons,
where a protein dataset (i.e., the SP andCP of a genome) is compre-
hensively compared against another within a species cluster. Thus,
each proteome will be compared against all other proteomes present
in the designated species, capturing pairwise similarities. Our imple-
mentation specifically utilised the blastP algorithm for bidirectional
protein sequence comparisons. The percentage of proteins utilised for
all-versus-all proteome comparisons is detailed for each species in
Supplementary Information. It is noteworthy that the median per-
centage of proteins compared is 73.13% for SP and 75.46% for CP,
aligning with the species pangenome concept, accounting for the
anticipated presence of some genome-specific proteins.

Genome annotations
Protein-coding genes were predicted with PRODIGAL44 v2.6.3. Protein
domains were annotated by querying the obtained proteomes (using
the hmmscan-based ‘pfam_scan.pl’ script) against the HMM database
present in Pfam59 release 32. Additional domain architectures and

protein annotations were performed by running InterProScan55 (v5.24-
63.0) with the databases CDD (v3.14), SMART (v7.1), and HAMAP
(v201701.18), respectively. Protein annotation space was further
enlarged by running hmmsearch (-evalue 1E-7 -prcov 70 -hmcov 70)
against COGs60 and TIGRFAM61 HMM databases. BlastKOALA62 was
used to assign KO identifiers to orthologous genes. Inferences of
complete secretion systems and flagella were conducted with the
online KEGG mapping tools using summarised KO numbers, in a
presence-absence fashion.

Within-species diversity generation
To evaluate recombination andmutation rateswithin the secreted (SP)
and cytoplasmic proteomes (CP) of the 30 species clusters, we
employed a methodology previously delineated by Didelot and Wil-
son, 201563. In summary, gene sequences from both SP and CP were
extracted inDNA space, concatenated, and subsequently aligned using
progressiveMauve64 v2.3.1 with default settings. Core alignments
longer than 500bp were then extracted using the stripSubsetLCB
script. The obtained core alignments were utilised to construct
maximum-likelihood trees with PhyML65 v3.3.3, utilising the options
--datatype nt -p --bootstrap 100 --model HYK85 -fm -t e --alpha e --quiet
--leave_duplicates. The resulting phylogeny, along with transition/
transversion ratios, was employed to assess recombination/mutation
rates with ClonalFrameML63 v1.12 (-kappa transition/transversion
ratio). To enhance the robustness of the analysis, 100 replicates per
alignment were conducted using the --emsim 100 option (Supple-
mentary Data 10). The method was validated using three Pro-
chlorococcus and one Pelagibacter species, for which Metagenome-
assembled genomes (MAGs), single-amplified genomes (SAGs), and
isolates (in the case of Prochlorococcus) were accessible (Supple-
mentary Data 11). Our findings demonstrated concordance in the data
obtained from MAGs when compared to SAGs and isolates (available
for one analysed Prochlorococcus species). These results are con-
sistent with a recent study that utilised ClonalFrameML to evaluate
recombination effects in MAGs recovered from ammonia-oxidizing
archaea66.

Protein fragments length
Orthologous protein groups were determined using the OrthoFinder
v.2.5.267 software (-I 3 -S blast). Subsequently, groups containing a
minimum of eight sequences were chosen for further analysis to
identify the subcellular localization of protein fragments (i.e., cyto-
plasmic, non-cytoplasmic, and transmembrane regions). The identifi-
cation of specific protein regions was accomplished by utilising the
output from Phobius software with a custom R script68. Following this,
the bedtools v2.27.1 software69 was employed to extract the identified
specific regions of the proteins. These retrieved regions were then
concatenated based on their subcellular localisation and used for
length determination.

Selection force
The identified orthologous protein groups (342 MAGs grouped in
30 species) were further scrutinized using HMMER70 hmmscan v3.1b2
with an E-value threshold of 1E-7, and -prcov 70 and -hmcov 70 against
a locally installed TIGRFAMs61 v15.0 database. The resulting annotation
data was then used to refine the orthologous groups. The recovered
orthologous gene sequences in nucleotide space were further sub-
jected to within-species codon alignments using prank71 v.170427
(-codon -F). For downstream analyses, only species-level homologous
gene groups containing three or more sequences were considered.
The alignments obtained were employed to construct phylogenetic
trees utilising IQ-TREE72 v 2.1.3. (-st CODON). Site-specific selection
pressure was inferred using the codon alignments and phylogenetic
trees in a maximum-likelihood framework (P value threshold 0.05)
through FEL73 v2.1 software implemented in HYPHY 2.5.32. Overall,
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around 29,000 homologous genes within the 30 species clusters
underwent an assessment of selection pressure.

Functional redundancy ratios and protein structural alignments
The Functional Redundancy Ratio (FRR) was computed as a quantita-
tive measure to evaluate the percentage of genes encoding redundant
functionality within the previously identified SPs and CPs of selected
bacterial species. The calculations involved several steps: (i) deter-
mining the total count of KEGGannotations perMAG, (ii) obtaining the
unique counts of KEGG74 annotations perMAG, (iii) calculating the FRR
by dividing the number obtained in step (ii) by the total obtained on
step (i) and iv) implementing a one-minus-ratio transformation to
enhance the intuitiveness of the interpretation. A FER closer to 0
indicates a very low occurrence of duplicated functional annotations,
while one close to 1 suggests very high functional redundancy. The
percentage of utilised KEGG annotations for large-genome species was
51.19% for SP and 69.36% for CP, while for small-genome species, it was
62.3% for SP and 76.26% for CP67.

A protein structural analysis was carried out on the NitT/TauT
family transport system substrate-binding proteins (K02051) as they
were found present in most studied species groups. Protein structures
and complex prediction were carried out using ColabFold v1.5.275 with
default settings. Predicted protein structure model accuracy was
assessed using the percentage of the Inter-residue Distance Difference
Test (pIDDT). The pIDDT measures the inter-residue distances in the
predicted model deviating from the experimentally determined
reference structure. The models with the highest pIDDT values were
selected for subsequent analysis. Protein structural alignments and
overlaps were conducted with the MatchMaker function within Chi-
mera 1.17.1 software76 with default settings. Overlap similarity quanti-
fication was performed with the Match -> Align function, where
Q-score values were selected as a measurement of similarity. Briefly,
the Q-score estimates the degree of structural similarity between
protein structures by comparing the internal distances, specifically the
positions of the Cα atoms. A higher Q-score value indicates greater
similarity between the compared structures and ranges between 0
and 177.

Bacterial growth rate estimates
To correlate species with general lifestyle strategies, we employed
GRiD27 v1.3 and the gRodon228 R package (in R v4.1.1) for estimating
in situ growth and maximal growth rates, respectively.

GRiD, a versatile tool designed for precise estimation ofmicrobial
growth rates, excels in analysing both complete/draft genomes and
metagenomic bins, especially under ultra-low sequencing coverage
(> 0.2×). Its adaptability is underscored by its ability to function with-
out requiring prior knowledge ofmicrobial composition and coverage.
GRiD operates by calculating contig coverage, organising them to
simulate a circular genome, and refining growth values through sta-
tistical filters. The resulting GRiD values serve as indicators of micro-
bial growth rates, where a higher ratio denotes faster growth. In this
study, GRiD was executed in ‘single’ mode with default settings27,78.

gRodon is a powerful package designed for predicting the max-
imal growth rate of prokaryotic organisms based on genomic data.
Leveraging codon usage statistics, gRodon identifies the optimisation
of highly expressed genes, serving as a robust indicator of selection for
rapid growth. Prokka79 v.1.13 (default options) was used to predict
coding DNA sequences from the 342 MAGs within the 30 species
clusters. Obtained untranslated coding sequences (CDS) within the.ffn
files as well as the CDS names from the.gff files (extracted as follows:
sed -n ‘/##FASTA/q;p’my_genome/my_genome.gff | awk ‘$3 = = “CDS”’ |
awk ‘{print $9’} | awk ‘gsub(“;.*“,””)’ | awk ‘gsub(“ID = “,””)’ > CDS_na-
mes.txt) were used as input within the gRodon2 script. Codon pair bias
(CPB) as well as the codon usage bias of highly expressed genes
(CUBHE) were used as a unit of measure for growth potential.

Pan-genome analysis
To assess the pan-genome of the 30 analysed species-clusters, the
rapid large-scale prokaryote pan genome pipeline Roary80 v.3.13.0 was
used. More specifically, the MAGs in each species cluster were anno-
tated using Prokka v.1.13 enabling the --metagenomes flag. The
resulting annotations were supplied to Roary as a set of.gff (general
feature format) files per species cluster. Roary generated a core
alignment using themafft81 aligner with 10 iterations to assess the core
(present in 99% - 100%of the strains) and thepangenes (present in0% -
100% of the strains) within each species cluster using default options.
For each species, two R plots were created based on the ‘number_-
of_new_genes.Rtab’ and the ‘number_of_genes_in_pan_genome.Rtab’
output files created by the ‘roary-create_pan_genome_plots.R’ script
from the Roary tool, showing the number of new genes and the total
number of genes per added MAG to the pangenome.

Microdiversity analyses
Considering the expected microdiversity within most species, we
intentionally chose one metagenome, namely RH-22June17, to inves-
tigate the species-level microdiversity of the metagenome-assembled
genomes (MAGs) derived from this metagenome. This sample allowed
us to investigate themicrodiversity of 23 out of the 30 species clusters
discussed in the manuscript. From the resulting 7 species clusters, no
MAG could be recovered from this respective sample.

inStrain78 is an advanced program crafted for profiling intrapo-
pulation genetic diversity, commonly referred to as microdiversity,
across complete genomes. This tool leverages metagenomic paired
reads to conduct a thorough analysis of microbial populations,
adopting a microdiversity-aware methodology. The standard use
involves the generation of a BAM file by mapping metagenomic reads
to a bacterial genome within the sample, with inStrain then employed
for a comprehensive characterisation of the microdiversity present.
We utilised the inStrain software to unravel population microdiversity
and perform comparisons at both secreted proteomes (SPs) and
cytoplasmic proteomes (CPs) levels, following established protocols78.
In brief, quality-filtered Illumina shotgun reads were mapped against
the metagenome-assembled genomes (MAGs) using the bbmap35

software. Subsequently, a scaffold-to-bin file was generated using the
‘parse_stb.py‘ script recommended by the dRep82 software. Gene pre-
diction was executed with PRODIGAL, utilising default settings (Sup-
plementary Data 12).

To identify distinct populations within the same species, we
subsampled one metagenome (i.e., RH-22June17) to 100 million
sequences and exclusively utilised MAGs derived from same dataset
(belonging to 23 species). Establishing a one-to-one correspondence
between MAGs and contigs through concatenation, we employed
blastn to compare the subsampled dataset (100 million sequences)
against MAGs. Criteria included an alignment length of at least 100
nucleotides and an E value ≤ 1e-5, generating output files formatted to
‘-m 8‘. The results of this approach were utilised to create metage-
nomic recruitment plots, taking advantage of the best-hit distributions
across the MAGs.

Benchmarking
We conducted an SP/CP benchmark analysis using an abundant
environmental marine species, Prochlorococcus_B marinus_B (Supple-
mentary Fig. S3). This species was chosen due to the availability of
cultured representatives, single-cell amplified genomes (SAGs), and
metagenome-assembled genomes (MAGs). By comparing the SPs/CPs
ratio among genomes from cultures, SAGs, and MAGs, it becomes
evident that the results are indeed comparable, with cultures and
MAGs yielding highly similar outcomes. These results were further
supported by the absence of statistical difference (ANOVA; df = 2; f-
value = 0.3852; P value = 0.6811) in the SPs/CPs ratio among the three
groups (i.e., culture, SAGs andMAGs). The small deviation observed in

Article https://doi.org/10.1038/s41467-024-47767-7

Nature Communications |         (2024) 15:3421 12



the SAGs can likely be attributed to errors introduced during the
single-cell amplification steps.

Statistics and reproducibility
All statistics were performed within the R83 v4.0.3 and RStudio84

v1.3.1093, Apricot Nasturtium software. Data normality was assessed
by the Shapiro–Wilk test, followed by residues distribution visuali-
sation. Simple comparisons between twodatasetswere performedby
student t-test for normal distributed data and Wilcoxon rank-sum
test for non-normal datasets. Parametric analysis of variance
(ANOVA) was performed for normally distributed datasets followed
by multiple pairwise comparisons with Tukey’s test. Non-parametric
datasets analysis of variance was performed by using the
Kruskal–Wallis test followed by pairwise comparisons with pairwise
Wilcoxon rank-sum tests. For non-normal samples, the correlation
index was assessed using the Pearson-rank correlation test. Variable
interaction as well as multiple correlations were assessed bymultiple
regression models. Discussed tests were performed using the cor-
responding functions within the stats v.4.1.3 package. The stats
package is part of R.

In an attempt to assess the effect of the lake diversity on the SPs/
CPs ratio within each species cluster, we investigated the relationship
between the SPs/CPs ratio and the different predictor variables (i.e.,
Coding density and lake diversity). Linear models were fitted to the
data using the lm functionwithin R. Threemodels (i.e.,M1,M2 andM3)
were formulated as follows, (i) simple linear regression with coding
density as sole predictor (M1), (ii) simple linear regression with lake
diversity as sole predictor (M2) and (iii) interaction model between
coding density and lake diversity (M3). Models were evaluated using a
dual approach, considering both the Akaike Information Criterion
(AIC) and the significance predictor within the model.

No statistical method was used to predetermine sample size. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequence data generated during this study have been deposited in
the EBI/NCBI (Bioprojects: PRJEB35770, PRJEB35640, PRJNA428721,
PRJNA429145). The accession numbers for the 52 raw metagenomic
datasets are listed in Supplementary Data 1. The 5519 MAG IDs, their
accession numbers, Bioproject IDs, and Sample IDs, along with addi-
tional metadata, are provided in Supplementary Data 2. Data sup-
porting the conclusions of this study was deposited in Figshare under
the following link https://doi.org/10.6084/m9.figshare.23546067. All
additional important data supporting the study’s conclusions are
included in this publication and its Supplementary Data 3–13. Source
data are provided with this paper.
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