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A B S T R A C T   

Forests substantially mediate the water and carbon dioxide exchanges between terrestrial ecosystems and the 
atmosphere. The rate of this exchange, including evapotranspiration (ET) and gross primary production (GPP), 
depends mainly on the underlying vegetation type, health state, and the composition of abiotic environmental 
drivers. However, the complex 3D structure of forest canopies and the inherent top-view perspective of optical 
and thermal remote sensing complicate remote sensing-based retrievals of biotic and abiotic factors that even-
tually determine ET and GPP. This study investigates the sensitivity of remote sensing approaches to 3D variation 
of abiotic and biotic environmental drivers. We use 3D virtual scenes of two structurally different Swiss forests 
and the radiative transfer model DART to simulate the 3D distribution of solar irradiance and reflected radiance 
in the forest canopy. These simulations, in combination with LiDAR data, are used to derive the absorbed 
photosynthetic active radiation (APAR) and the leaf area index (LAI) in 3D space. The 3D variation of both 
parameters was quantified and analyzed. We then simulated images of the top-of-canopy bi-directional reflec-
tance factor (BRF) and compared them with the hemispheric-conical reflectance factor (HCRF) data derived from 
HyPlant airborne imaging spectrometer measurements. The simulated BRF data was used to derive APAR and 
LAI, and the results were compared to their respective 3D representations. We unravel considerable spatial 
differences between both representations. We discuss possible reasons for the disagreement, including a potential 
insensitivity of the inherent top-of-canopy view for the real 3D product dynamics and limitations of the pro-
cessing of remote sensing data, especially the approximation of effective surface irradiance. Our results can help 
understanding sources of uncertainties in remote sensing based gas exchange products and defining mitigation 
strategies.   

1. Introduction 

Vegetation mediates the exchange of water and carbon dioxide (CO2) 
with the atmosphere through transpiration and photosynthesis. The rate 
of this gas exchange depends on numerous biotic and abiotic variables 
specific to the underlying vegetation composition and ecosystem (Etzold 
et al., 2011; Tenhunen et al., 1998). Climate change caused temporal 
and spatial variation of abiotic factors, including temperature and pre-
cipitation, can enhance the naturally occurring variability of gas ex-
change processes in forests (Baldocchi et al., 2002; Fisher et al., 2017). 
Detailed assessments of forest carbon and water exchange are vital to 

understanding and quantifying the consequences of climate change on 
these abundant and valuable ecosystems (Hatfield and Dold, 2019; 
Mkaouar et al., 2021). 

The 3D spatial heterogeneity of forest canopies challenges the 
assessment of ecosystem gross primary production (GPP) and evapo-
transpiration (ET) (Lin et al., 2018; Paul-Limoges et al., 2020; Staudt 
et al., 2011). Notably, the dependence of both exchange processes on 
vegetation state and type and the composition of abiotic environmental 
drivers causes large horizontal and vertical variability that must be 
appropriately resolved in observational and model-based assessments. 
Added complexity comes from the fact that leaves at the top of the 
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canopy are exposed to harsher conditions (i.e., high solar radiation, 
wind, temperature). This circumstance determines specific biochemical 
(e.g., pigments, water content), structural (e.g., size and shape), and 
functional (e.g., transpiration) differences of such exposed leaves 
compared to those protected in the canopy (Grzesiak et al., 2010; 
Hagemeier and Leuschner, 2019). Consequently, the assumption that 
the whole canopy has leaf properties similar to those at the top layer is 
incorrect. Further, solar radiation, temperature, and wind profiles 
largely depend on the vertical canopy structure and partly the 
biochemical and functional state of leaves (Baldocchi et al., 2002). 

Modeling approaches allow accounting for this 3D spatial variation 
at different levels of complexity (Wang and Frankenberg, 2022), ranging 
from relatively simple big-leaf to multilayer canopy approximations 
(Bonan et al., 2021), with varying estimates of GPP or ET depending on 
the implementation (Sprintsin et al., 2012; Zhang et al., 2016). In situ 
observations required for the parameterization, calibration, and vali-
dation of modeling approaches also allow vertically stratified assess-
ments. In particular, the eddy covariance technique is an established 
technique to estimate forest abiotic factors and gas exchange on a local 
scale (Baldocchi et al., 2001). At several sites, sensors are vertically 
distributed in the ecosystem to measure variations of atmospheric CO2 
and water vapor as proxies for gas exchange on a canopy scale (Bal-
docchi, 2003). Remote sensing (RS) is a proven alternative to provide 
information about the horizontal dynamic of abiotic and biotic factors to 
estimate vegetation gas exchange across spatial scales (Paul-Limoges 
et al., 2018). In fact, airborne and satellite-based approaches were 
successfully applied to quantify GPP (Braun et al., 2017; Chen et al., 
2022; Junttila et al., 2023) and ET (Anderson et al., 2012; Burchard- 
Levine et al., 2021; Running et al., 2019) by implicitly following the big- 
leaf paradigm. Despite the valuable insight provided by past studies, the 
latest knowledge derived from spatial high-resolution data and simula-
tion experiments (Damm et al., 2020) increased our understanding of 
additional challenges that must be tackled to overcome the inherent 
limitations of RS and advance the reliability of RS-based estimates of 
GPP and ET. 

One notable challenge is the inherent top-view perspective of 
airborne and satellite RS that limits the sensitivity of optical and thermal 
observations for the vertical distribution of abiotic and biotic factors in 
vegetation canopies (Elsherif et al., 2019). It is obvious that leaves of the 
outer canopy are exposed to more harsh environmental conditions and 
are mostly visible by RS sensors. How vegetation information and 
environmental factors derived from such an RS perspective represent the 
vertical dynamics of these factors across forest types is largely unknown 
(Damm et al., 2020). Another challenge relates to the preprocessing of 
RS data. Particularly, the retrieval of reflectance is subject to uncertainty 
caused by the assumption that all pixels in a forest canopy are fully 
illuminated. For high resolution data, geometric optical scattering cau-
ses shadows that complicate the description of the radiative transfer 
(Fawcett et al., 2018) and can cause uncertainties in reflectance data and 
subsequently derived products (Kükenbrink et al., 2019). The assess-
ment of uncertainties in retrieved vegetation information and environ-
mental factors caused by data processing is understudied. 

This study aims to quantify the sensitivity and reliability of RS- 
derived vegetation information considering i) 3D canopy variation and 
ii) the effects of shading in two structurally different forest ecosystems. 
We construct 3D virtual scenes of two contrasting forests in Switzerland 
(i.e., a temperate mixed deciduous forest and an alpine coniferous for-
est) using both LiDAR and in situ spectroscopy data. We focus on two 
environmental factors that largely drive vegetation gas exchange: i) 
absorbed photosynthetic active radiation (APAR) as a highly dynamic 
factor largely determined by illumination angles, atmospheric proper-
ties, and canopy structure, and ii) the leaf area index (LAI) as a less 
dynamic factor representing canopy structure. The distribution of both 
factors was modeled in 3D using the LiDAR-derived forest structure and 
the radiative transfer model DART (Discrete Anisotropic Radiative 
Transfer) (Gastellu-Etchegorry et al., 2015). The 3D representation is 

then compared and contrasted with simulated top-of-canopy RS repre-
sentations. We finalize our assessment by comparing the simulated bi- 
directional reflectance with measured airborne imaging spectroscopy 
data. We conclude on the challenges of representing complex ecosystem 
processes and underlying factors like LAI and APAR via RS measure-
ments and indicate mitigation strategies. 

2. Materials and methods 

2.1. Study areas 

Our analysis includes study sites of 50 m × 60 m in two structurally 
different forest types in two contrasting climatic regions in Switzerland. 
The Seehornwald in Davos (Fig. 1, top row) is a coniferous forest located 
in the Eastern Swiss Alps (46◦ 48′ 55.2″ N 9◦ 51′ 21.3″ E) at an elevation 
of 1639 m a.s.l. The site is dominated by Norway spruce, with an average 
canopy height of approximately 25 m (Etzold et al., 2011). The Laegern 
forest (Fig. 1, bottom row) is situated on a south-facing slope northwest 
of the city of Zurich (47◦ 28′ 40.8” N 8◦ 21′ 55.2″ E) at an elevation of 
682 m a.s.l. (Paul-Limoges et al., 2018). It is a mixed deciduous forest 
dominated by beech trees with an average canopy height of 30.6 m 
(Etzold et al., 2011). 

2.2. Data 

2.2.1. Airborne imagery 
Airborne imaging spectroscopy data acquired with the HyPlant 

DUAL sensor on 15th June 2021 was used to validate the DART simu-
lated top-of-canopy reflectance at both study sites. The HyPlant sensor 
system was developed by the Forschungszentrum Jülich in 2012. Used 
DUAL data cover the 380-2500 nm wavelength range with a spectral 
resolution of 3.65 nm in the visible to near infrared and 10.55 nm in the 
shortwave infrared (Siegmann et al., 2021). After acquiring the data, the 
software CaliGeoPro was used for the radiometric and geometric 
correction, and ATCOR-4 for the atmospheric correction (Siegmann 
et al., 2019). This project used a mosaic of corrected top-of-canopy 
reflectance data. Detailed data acquisition information for both study 
sites can be found in Table 1. 

2.2.2. LiDAR data acquisition and processing 
The terrestrial LiDAR data in the coniferous forest was acquired in 

June 2021 using a Leica blk360 terrestrial laser scanner (TLS). For the 
deciduous forest, two existing data sets were used: i) A TLS point cloud 
acquired with a Leica blk360 in 2018 in leaf-on condition was used for 
the stem extraction. ii) The data set for the plant area density combines 
both TLS scans from a Riegl VZ-1000 and a UAV LiDAR system con-
sisting of a RIEGL VUX-1UAV laser scanner mounted on the industrial 
Scout B1–100 UAV helicopter measured in 2017 (leaf-on) (for the 
acquisition and processing of the UAV data see Morsdorf et al. (2017)). 
The resulting LiDAR point clouds are used to generate the 3D virtual 
scenes. In this process, tree stem and foliage points need to be separated. 
The separation was achieved using a sequence of empirically optimized 
working steps to yield the best results for both forest types. First, the 
geometrical feature “verticality” (Hackel et al., 2016) was computed 
with a local neighborhood radius of 0.1. After filtering elements with 
verticality smaller than 0.9 for the coniferous and 0.6 in the deciduous 
forest, one is left with only the vertical elements in the point cloud. 
Second, the remaining foliage was removed using filters and thresholds. 
The noise filter (with neighborhood radius of 0.02) removed isolated 
points, and the result was further improved by applying a statistical 
outlier removal filter (30 neighboring points). As the last filter step, the 
point number per 5 cm voxel was used, assuming the point number is 
higher on tree stems than on the foliage. When inspecting visually, a 
threshold of 5 points per voxel for the coniferous and 10 points per voxel 
for the deciduous forests yielded the best results. Third, the RANSAC 
shape detection algorithm (Schnabel et al., 2007) using only cylinder 
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and cone shapes allowed the separation of the tree stem entities from the 
remaining point cloud (for parameter selection, see Table A1). After the 
semi-automatic separation of the point clouds, clear outliers were 
removed by hand in a final separation step. Poisson surface recon-
struction transformed the remaining tree stem points into object ele-
ments (Kazhdan and Hoppe, 2013). The processing was done with R 
(v4.0.5) using the packages TreeLS (de Conto et al., 2017) and lidR 
(Roussel et al., 2020) and the point cloud tool CloudCompare (Cloud-
Compare, 2021) with the PoissonRecon plugin (Kazhdan, 2021). The 
plant area density was calculated from the original point cloud 
(including all the wood elements) using the software AMAPVox (v1.8.1) 
(Vincent et al., 2017). In AMAPVox, the plant area density per voxel is 
derived from the optical density of a related cell of the gridded point 
cloud (de Boissieu et al., 2023; Kükenbrink et al., 2019). In detail, laser 
pulses are traced through the gridded point cloud to the last recorded 
hit. With the laser beam direction and distance, the software can 
calculate the local transmittance in each 3D cell the beam passes and 
infer the local plant area density (Nunes et al., 2022). The previously 
derived wood elements were subtracted to obtain the leaf area density. 
Because a complete separation between leaves and wood is difficult, we 
use the term estimated leaf area density (LAD*) for this product to 
indicate that small wood elements could still be present. The estimated 
leaf area index (LAI*) in 3D space was calculated by multiplying the 
LAD* per voxel by the voxel height (0.25 m). We defined the top-of- 
canopy LAI* representation as the cumulated LAI* values per voxel 
column. 

2.2.3. Leaf and ground spectroscopy data 
The reflectance of tree bark, understory, and ground in the conif-

erous forest was measured with an ASD FieldSpec 3 field spectrometer 
on 15th June 2021 between 12:30 and 14:55. The bark of three different 
spruce trees was measured, two directly on the tree and one on the 
ground from a recently harvested tree. Spectra of the understory vege-
tation of mosses, blueberries, and Spruce cones were acquired in mul-
tiple suitable locations (i.e., randomly distributed with no shadow due to 
large trees) in the study plot and used as ground optical property. 
Measured radiance and irradiance (via a Spectralon white reference 
panel) were used to calculate surface reflectance. The retrieved reflec-
tance spectra were post-processed to remove two well-known artifacts in 
the overlapping region of the three detectors caused by the different 
fields of view of the detectors and to reduce noise for low signal in-
tensities, particularly in the short-wave infrared. The pre-processed 
single spectra were mixed into one bark and one ground spectrum. 
The weighting of each single measured spectrum in the overall spectrum 
is proportional to the occurrence on the study site, which was assessed 
by visual inspection of the site. All three bark spectra were assigned the 
same weight, and the ground spectrum consists of 49% blueberry, 49% 
moss, and 2% Spruce cones. The leaf and needle optical properties 
(LOP), for simplicity both are called LOP here, include reflectance and 
transmittance measurements. At the coniferous site, the LOP were 
measured with an SVC spectroradiometer and the corresponding inte-
grating sphere on 8th September 2021 between 10:50 and 16:20 local 
time. Five Norway spruce trees were sampled at a height of 6 m. Access 
to the upper crown was not possible. The collected needles were taped to 
a 3D-printed sample holder. From each needle sample, reflectance and 

Fig. 1. Top row: coniferous forest site in Davos. Bottom row: deciduous forest site at Laegern. From left to right: top of canopy view true-color composite (RGB 640/ 
550/460 nm) of the HyPlant airborne sensor with the study area marked as black square and the position of the eddy flux towers in blue; near canopy view as seen 
from the eddy flux tower platforms at the respective sites; vertical structure as seen from the forest floor. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Acquisition details of the used HyPlant images over both study sites.  

Parameter Coniferous forest Deciduous forest 
No. of flight lines 2 5 
Acquisition time [local] 13:04–13:09 13:49–14:21 
Solar zenith [deg] 23.6–23.7 24.6–26.6 
Solar azimuth [deg] 171.1–173.6 193–209.7 
Flight height [m] 1200 1800 
Pixel size [m] 1.75 × 1.75 3 × 3  
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transmittance for three needle age groups were measured four times to 
cover biophysical traits variation that can vary strongly depending on 
age (Lhotáková et al., 2021), making it a total of 24 reflectance and 24 
transmittance measurements per selected tree. The ratio between the 
needle area and the whole field-of-view area was extracted from photos 
of the samples by hand masking the needles (using Affinity Photo). This 
area ratio was then used to correct the too low reflectance and too high 
transmittance values, respectively, due to the gaps between the needles. 
At the deciduous site, no optical field measurements were made as the 
canopy is very dense, and access to the upper crowns was not possible. 
However, predefined spectra from the DART spectral library for the 
three optical categories mixed deciduous leaves, deciduous bark, and 
litter were used for the model. Even if the LOP are an important 
component of the radiative transfer simulation, Kükenbrink et al. (2021) 
showed that the canopy structure impacts the results to a much higher 
degree. For this reason, we devoted most of our resources to honing the 
structural representation of the two forest sites. 

2.3. Methods 

2.3.1. Construction of 3D virtual scenes 
The Discrete Anisotropic Radiative Transfer model (DART) (Gastellu- 

Etchegorry et al., 2015) was used to simulate radiation interaction in the 
3D vegetation canopies, including irradiance, radiance, and the radia-
tive budget (RB) (i.e., voxel-wise absorbed, scattered, and transmitted 
radiance fraction) and subsequent data products such as APAR or RS- 
based bi-directional reflectance factors (BRF). DART was benchmarked 
in the RAMI4 model comparison and shown to result in comparable 
simulations of canopy optical properties (Widlowski et al., 2015). We 
use a voxel-based approach to generate the two 3D virtual scenes in the 
DART-FT (flux-tracking) (v.5.8.1) mode. The voxel size was set to 0.25 
× 0.25 × 0.25 m. For the parameterization of the voxels, we followed the 
approach by Kükenbrink et al. (2019). The plant area density per voxel 
was directly derived from LiDAR data using the AMAPVox software. 
Concerning the LOP, it is known that the needle fraction per age class 
varies with height (Malenovský et al., 2008). However, since we did not 
have samples from different heights, we assumed a homogeneous 
mixture of measured LOP for all voxels representing trees. The leaf 
inclination distribution function (LIDF) was assumed to be spherical for 
the Norway Spruce trees (Janoutová et al., 2019; Schneider et al., 2014). 
For the broadleaf forest, a plagiophile distribution has been selected 
(Damm et al., 2020; Schneider et al., 2014). The topography of the 
resulting 3D scene was normalized using a digital elevation model 
generated from the TLS data using the R package lidR (Roussel et al., 
2020). The terrain normalization comes at the cost of a more realistic 
representation of the simulated forest and may introduce artifacts due to 
the absence of topographical features. As both study sites are situated in 
flatter parts of the respective mountainous forests, introduced artifacts 
were minimal. Due to the normalization, further processing and inter-
pretation are more straightforward, and the results are still comparable 
to the airborne spectroscopy data. 

2.3.2. Simulation of airborne imagery 
We used the virtual scene and simulated top-of-canopy airborne RS- 

based BRF images with DART to quantify the differences between 3D 
LAI and APAR dynamics and their RS-based representations. The BRF 
simulation considered HyPlant sensor characteristics and an 
illumination-observation geometry to represent the conditions during 
HyPlant data acquisition (Table 1). Atmospheric effects were considered 
using the middle latitude summer gas model (MIDLATSUM) and a rural 
aerosol concentration with 23 km visibility (USSTD76_RURALV23) for 
both sites. We reduced the number of simulated spectral bands to ten: 
one broadband 400–700 nm for the PAR region and nine narrower bands 
from the green to near-infrared (i.e., 528–532 nm, 547–554 nm, 
569–573 nm, 644–679 nm, 667–674 nm, 795–810 nm, 797–804 nm, 
890–905 nm, and 955–970 nm) (cf. also Fig. 3 for band visualization). 
The isolated scene mode was selected because there was no information 
on the forest geometry outside the 50 m × 60 m research plot. This 
increased the realism of the simulation scene boundaries as no artificial 
shadow of non-existing trees was added to the scene (important at the 
coniferous site as the plot borders a gravel road). For the convolution of 
the 0.25 m DART image to the respective HyPlant resolution, bigger 
kernel sizes (9 × 9 DART pixels for the coniferous and 15 × 15 for the 
deciduous forest) were combined via a weighted mean to simulate a 
HyPlant DUAL pixel (Siegmann et al., 2019). The resulting BRF images 
were compared against the HCRF data derived from HyPlant airborne 
measurements to check if the simulated BRF data are in a realistic value 
range. 

2.3.3. Calculation of APAR and LAI from simulated remote sensing data 
APAR and LAI are only calculated from DART-simulated BRF data, 

not the airborne HCRF data. This allows a pixel-wise comparison be-
tween simulated 3D and top-of-canopy view representations without 
introducing uncertainty by the co-registration with real airborne RS 
data. APAR is defined as the absorbed energy in the 400–700 nm 
wavelength region and is essential in determining gross primary pro-
duction (Wei et al., 2017) and transpiration (Damm et al., 2020). 
Therefore, a broadband channel (400-700 nm) was simulated as radia-
tive budget in DART to derive the 3D APAR information. Multiple ap-
proaches were tested for calculating APAR with simulated remote 
sensing images, but the method of Liu et al. (2004) resulted in the most 
consistent values compared to the 3D simulated data. This method es-
timates APAR (Eq. (2)) by multiplying the modified triangular vegeta-
tion index 2 (MTVI2, Eq. (1), initially introduced by Haboudane et al. 
(2004)) with the incident PAR. 

MTVI2 = 1.5[1.2(R800 − R550) − 2.5(R670 − R550) ]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2 −
(

6R800 − 5
̅̅̅̅̅̅̅̅

R670

√ )

− 0.5

√ (1)  

APAR = MTVI2 • PAR (2) 
The reflectance at specific wavelengths (Rx) as used in Eq. (1) was 

approximated by the DART simulated narrow bands (see above). The 
incident PAR was calculated using the ratio of the radiance and 

Table 2 
Threshold values were used to classify the 795–810 nm simulated bi-directional reflectance images into shaded, mixed, and illuminated pixels. Values are in the unit of 
reflectance for both the original DART resolution (0.25 m) and the convolved to HyPlant resolution (1.75 and 3.0 m) images across both forest sites.  

Threshold value [reflectance] Coniferous forest Deciduous forest  
Shaded Mixed Illum. Shaded Mixed Illum. 

Original DART resolution < 4% 4–29.5% > 29.5% < 15% 15–52% > 52% 
Convolved to HyPlant resolution < 5% 5–29.5% > 29.5% < 20% 20–45% > 45%  
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reflectance of the simulated TOC image, resulting in a constant value 
over the whole scene (coniferous: 453 W/m2, deciduous: 444 W/m2). 
The LAI was approximated using the known relationship with the MTVI2 
spectral index described in Haboudane et al. (2004) (Eq. (3)). For a vi-
sual overview of all data and methods used, see Fig. A1 in the Appendix. 
LAI = 0.2227e

3.6566MTVI2 (3)  

2.3.4. Illumination classification 
The simulated BRF images were classified according to their 

brightness into shaded, mixed, and illuminated pixels to analyze the 
calculated LAI and APAR maps in more detail (cf. Appendix Fig. A6 for 
the classified images). As shadows are more dominant in the near 
infrared (Rufenacht et al., 2013), we used multiple thresholds (Table 2) 
on the simulated 795–810 nm band in both the original DART resolution 
and convolved images to classify the pixels. 

3. Results 

3.1. 3D distribution of DART simulated radiance fields in both forest sites 

3D virtual scenes were used to simulate the BRF and the RB with 
DART-FT for both forest sites. The BRF image is a top-of-canopy repre-
sentation of the scene as observed by a RS sensor (Fig. 2 left) and was 
simulated for comparison with an real RS-derived reflectance product. 
The RB allows tracking different radiation components, including scat-
tered and absorbed radiation per voxel (Fig. 2 right). 

In the coniferous forest, some of the individual tree crowns can be 
distinguished from the top view, whereas the deciduous forest canopy is 
closed and more homogeneous. This is also reflected in the side view 
(Fig. 2), with recognizable tree crowns in the coniferous forest but a 
closed canopy layer in the deciduous forest. A vertical profile of the 
scattered radiance for the ten simulated spectral bands is shown in 
Fig. 3. The scattered radiance represents the amount of light scattered in 
all directions in the respective band. The values are generally higher in 
the upper tree crowns of the deciduous forest (up to 5.75 W/m2 in the 
NIR band [797–804 nm]) compared to the coniferous forest (up to 0.75 
W/m2 in the NIR band). In contrast, the scattered radiance is vertically 
more evenly distributed in the coniferous forest compared to the rapid 
decrease after roughly 30 m height in the deciduous forest. As expected, 
light in longer wavelengths is scattered more than in shorter 
wavelengths. 

3.2. 3D distribution of simulated LAI* and APAR across forest sites 

The horizontal and vertical distribution of LAI* across both forest 
sites is shown in Fig. 4 and indicates large differences. Coniferous trees 
have the highest LAI* in the middle of the tree, with a conical decrease to 
the edge of the tree. Some larger trees can be recognized in the decid-
uous forest since they have a higher LAI* in a rounded pattern. The LAI* 
is generally more homogeneously distributed within the broadleaf 
canopy. The mean LAI* per study plot reflects the canopy openness 
visible in the top-view with 2.37 m2/m2 in the coniferous and 14.07 m2/ 
m2 in the deciduous forest. Vertically, the coniferous forest shows a bell 
shape with the highest mean LAI* (per 0.25 m high layer) values in the 
middle of the canopy (0.035 m2/m2), mainly due to the shape of the 
spruce trees and lack of understory vegetation. The deciduous forest 
generally has a denser canopy, with the highest values at the top of the 
canopy (0.15 m2/m2) and moderate, homogenous LAI* from the middle 
to bottom (0.085–0.1 m2/m2). 

The difference in forest structure affects the distribution of APAR. 
The top view panels in Fig. 5 indicate a more heterogeneous APAR 
distribution in the coniferous forest, with several sun-facing canopy 
areas showing high APAR of up to 1572 W/m2 (mean 126 W/m2). The 
deciduous forest canopy shows a relatively homogenous APAR distri-
bution with values reaching 1366 W/m2 (mean 115 W/m2). The middle 
and right panels of Fig. 5 illustrate that most APAR occurs in the top 
third of the deciduous canopy (19.4 W/m2), with very low APAR values 
in the lower canopy (1.5 W/m2), except for understory vegetation (3.5 
W/m2). The coniferous forest also shows the highest APAR in the top 
third of the canopy (8.1 W/m2) but a steadier decrease towards the 
bottom of the canopy. The side view panel additionally shows high 
APAR in the clearing of the coniferous forest (20 W/m2). These values 

Fig. 2. False color infrared composite of the broadband bi-directional reflec-
tance factor (BRF, left) and radiative budget (RB) averaged over the entire 
horizontal extent of the scene as side view (right) using DART-FT (RGB 802.5/ 
672.5/550.5 nm) after applying a 5% linear contrast stretch for all bands. North 
is at the top of the top view images. The side view is shown in south-north 
direction, with the sun at an azimuth angle of 171◦ (coniferous) and 168◦

(deciduous). The top row shows the sub-alpine Norway Spruce forest in Davos, 
and the bottom row the temperate mixed forest Laegern. 

Fig. 3. DART-FT simulated vertical distribution of scattered radiance in all 
directions in ten spectral bands represented as the mean of the scattered radi-
ance per voxel layer. The total height of the simulated canopies is 35.75 m for 
the coniferous forest and 44 m for the deciduous forest. 
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Fig. 4. 3D distribution of estimated leaf area index (LAI*) obtained from LiDAR measurements using AMAPVox. Left: Top view of the cumulative LAI*. North is at the 
top of the top view images. Middle: Side view of the mean layer LAI* in south-north direction. Right: LAI* distribution displayed as a height profile using the mean for 
each voxel layer (0.25 m). LAI* < 0.01 m2/m2 is colored grey. 
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are filtered out in the profile panels to simplify readability. 

3.3. Correspondence of LAI and APAR derived from 3D and remote 
sensing imagery simulations 

The DART simulated top-of-canopy BRF images were used to calcu-
late RS-based APAR and LAI products for comparison with those derived 
from the detailed 3D data (cf. Fig. 6). The RS-based LAI in the deciduous 
forest shows a 9.5 m2/m2 underestimate (median absolute difference; cf. 
Table 3). The RS-based LAI of the coniferous forest overestimates by 0.2 
m2/m2 compared to the 3D-based LAI* (Table 3). While the LAI* shows 
a conical distribution around single spruce trees, the RS-derived LAI 
seems to reflect illumination and shadow patterns instead of the 3D 
observed LAI dynamics. This pattern is also reflected in the spatial dis-
tribution of the relative differences. In fact, it appears that the crowns 
are split into two parts with high RS-based LAI values (coniferous: 2–2.5 
m2/m2, deciduous: 6–7 m2/m2) on the sun-facing crown and a low LAI 
(coniferous: <1 m2/m2, deciduous: <2.5 m2/m2) on the shaded crown 
areas. 

Fig. 7 illustrates the agreement between 3D and RS-based APAR 
estimates. We observe a general agreement between APAR derived from 
the 3D representation and the simulated BRF image with high APAR in 

the sun-facing direction and low APAR in shadows. We found a median 
absolute difference of 12.4 W/m2 for the coniferous forest. For the de-
ciduous forest, median values differed by as much as 210.3 W/m2 

(Table 3). Crown parts with a complex vertical structure and exposed to 
the sun show exceptionally high APAR when derived from the 3D 
radiative budget (coniferous: 1572 W/m2, deciduous: 1366 W/m2). This 
happens when several canopy layers receive total PAR that accumulates 
to very high numbers, even exceeding the incident PAR value at the top- 
of-canopy (coniferous: 453 W/m2, deciduous: 444 W/m2) (Widlowski 
et al., 2006). This phenomenon is clearly visible in the coniferous forest 
where the canopy is open, and therefore, more radiation can reach the 
sides of the trees. 

3.4. Impact of shade on APAR and LAI derived from remote sensing data 

The above analysis on the agreement between 3D and RS-based LAI 
and APAR indicates that differences largely depend on canopy shading. 
For both forest types, we found a strong gradient of the median absolute 
difference between 3D-based LAI* and RS-based LAI with a large un-
derestimation in shaded areas in the deciduous forest (−11.3 m2/m2) to 
overestimates in fully illuminated areas in the coniferous forest (0.7 m2/ 
m2) (Table 3). The agreement of APAR products across illumination 

Fig. 5. 3D distribution of absorbed photosynthetic active radiation (APAR). Left: The top view represents the integral of the APAR for the whole vertical voxel 
column. Middle: The side view shows the mean layer APAR in south-north direction. Right: APAR distribution displayed as a height profile using the mean for each 
voxel layer (0.25 m). APAR < 0.01 W/m2 is colored grey. 
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Fig. 6. Comparison of the estimated leaf area index (LAI*) obtained from LiDAR measurements using AMAPVox (left) and the leaf area index (LAI) derived from 
simulated remote sensing data (middle) for the coniferous and deciduous forest sites. The relative difference map with 2D data linearly stretched to have the same 
mean as the 3D data for better visibility (right) colors pixels where LAI* > LAI in blue and LAI* < LAI in red. A value of 0 indicates no relative difference between the 
two products. LAI or LAI* < 0.01 m2/m2 is colored grey. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 7. Comparison of the absorbed photosynthetic active radiation (APAR) calculated from the 3D simulated radiative budget absorbed light per vertical voxel 
column (left) and using simulated remote sensing top of canopy images (middle) calculated from the modified triangular vegetation index 2 (MTVI2) and incident 
photosynthetic active radiation (PAR). The relative difference map with 2D data linearly stretched to have the same mean as the 3D data for better visibility (right) 
colors pixels where Canopy APAR > TOC APAR in blue and Canopy APAR < TOC APAR in red. A value of 0 indicates no relative difference between the two products. 
APAR < 1 W/m2 or NaN is colored grey. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Statistics for absorbed photosynthetic active radiation (APAR), leaf area index (LAI), and estimated leaf area index (LAI*) for the top-of-canopy 2D and canopy 3D 
cases. Median/mean values for the whole scenes (2D and 3D) and the absolute (2D-3D) and relative ((2D-3D/3D*100%)) pixel-wise differences between the 3D LAI* 
and TOC 2D LAI, and 3D APAR and TOC 2D APAR.  

Parameter Coniferous forest Deciduous forest  
Total Shaded Mixed Illum. Total Shaded Mixed Illum. 

3D APAR [W m−2] 87.7/136.7 6.4/16.4 112.9/169.0 190.9/257.9 100.7/153.4 97.1/114.8 99.2/154.5 109.6/210.1 
2D APAR [W m−2] 139.9/125.4 13.6/15.6 179.2/164.3 251.9/218.1 345.4/303.5 345.0/304.0 342.8/300.7 350.0/308.1 
Abs. diff. APAR [W m−2] 12.4/−11.3 4.1/−0.8 42.8/−4.7 47.6/−39.8 210.3/150.1 84.7/189.2 221.7/146.2 229.7/98.0 
Rel. diff. APAR [%] 53.6/−8.3 96.7/−4.9 55.6/−2.8 33.7/−15.4 239.0/97.8 878.5/164.8 280.1/94.6 136.4/46.6 
3D LAI* [m2 m−2] 1.0/2.4 0.0/1.1 2.0/3.3 0.0/2.5 13.1/14.1 13.1/14.1 13.1/14.2 12.9/13.9 
2D LAI [m2 m−2] 0.7/0.8 0.2/0.3 0.9/0.9 1.7/1.4 3.8/3.5 3.8/3.5 3.7/3.5 4.0/3.6 
Abs. diff. LAI [m2 m−2] 0.2/−1.6 0.2/−0.8 −1.0/−2.4 0.7/−1.1 −9.5/−10.6 −11.3/−10.6 −9.9/−10.7 −7.7/−10.3 
Rel. diff. LAI [%] −111.0/−66.7 −74.4/−72.7 −112.2/−72.7 −97.8/−44.0 −73.5/−75.2 −95.6/−75.2 −75.8/−75.4 −56.8/−74.1  
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conditions differs largely as well. For both forest types, APAR was 
overestimated in all illumination classes of the RS product, with an 
increasing overestimation with increasing illumination (up to 229.7 W/ 
m2 in the illuminated deciduous class) (Table 3). 

3.5. Comparison of simulated vs. measured airborne imagery 

We compared the DART simulated BRF data (cf. Section 2.3.2) 
against measured HyPlant HCRF data to investigate the general agree-
ment of both and judge the impact of applied simplifications during the 
simulation. Table 4 illustrates that the differences vary depending on the 
wavelength and study site. The BRF overestimates as much as 19.6% and 
underestimates up to 45.2%. The observed differences can be related to 
the physical units represented in the BRF and HCRF images and sim-
plifications applied during the simulation (cf. Figs. A2, A3 in the Ap-
pendix for map representation). 

The 3D-based BRF values are strongly underestimated in the visible 
wavelengths across both study sites, which is reflected in the negative 
median relative difference values (coniferous: −45.2% to −21.9%, de-
ciduous: −42.8% to −30.4%) and high nRMSE values (coniferous: 
71.2% to 109.8%, deciduous: 59.8% to 89.7%). The difference between 
the two products is much smaller in the NIR part of the spectrum. In the 
coniferous forest, an underestimation is still present, except for the 
955–970 nm band, which shows an overestimation of 11.3% in the 
simulated 3D product (Table 4). The NIR bands for the deciduous forest 
all overestimated the 3D-based BRF data, with the 955–970 nm band 
performing the best with a 0.2% median relative difference. The un-
derlying Pearson's correlation coefficients per spectral band are very low 
in the deciduous site (Pearson's R = 0.05–0.16) and moderate in the 
coniferous site (Pearson's R = 0.35–0.59) (Table 4; cf. Figs. A2–A5 in the 
Appendix for visual representation). 

4. Discussion 

4.1. Dynamics of LAI and APAR derived from simulations and remote 
sensing 

We observed contrasting 3D forest structures represented here via 
the LAI*. Tree crowns in the deciduous forest are much denser at the top 
and overlap, resulting in a more homogeneous LAI* distribution from a 
top view perspective. In contrast, the LAI* distribution in the coniferous 
forest with more considerable distances between individual trees is more 
heterogeneous. This corresponds well with the results of multiple studies 
(Hagemeier and Leuschner, 2019; Lalic et al., 2013; Lalic and Mihai-
lovic, 2004). At the individual tree scale, LAI* in the coniferous crowns 
is also known to be influenced by needle clumping and, thus, occlusion 
within the top of the crowns (Schraik et al., 2021, 2023). Béland and 
Kobayashi (2024) showed that clumping is one of the main drivers for 
the canopy reflectance, especially in the NIR wavelength range. The 
structural variation also largely influences the retrieval of APAR infor-
mation (Lin et al., 2018). We observe the highest absorption in the 

deciduous forest directly above the densest canopy part. The lower 
density in the coniferous forest with its triangular-shaped crowns allows 
the light to reach deeper canopy layers, resulting in an increased vertical 
distribution of APAR (Guillevic and Gastellu-Etchegorry, 1999; Küken-
brink et al., 2021). Results indicate that simplified assumptions on the 
vertical distribution of LAI and APAR can cause uncertainties in related 
RS-based estimates and subsequently derived gas exchange products 
(Damm et al., 2020; Firanj et al., 2015; Kükenbrink et al., 2019). 

The comparison of both forest types reveals substantial differences in 
LAI and APAR in 3D but also in the simulated RS BRF images repre-
senting the outer canopy layer. This difference can be related to a limited 
vertical sensitivity of RS. Particularly the contrasting spatial patterns of 
LAI and APAR derived from 3D simulations and RS imply that the pa-
rameters calculated from RS data depend not only on the structure of the 
forests, as shown in Zeng et al. (2023), but also on other effects. In fact, 
several studies indicate that inherent assumptions during the retrieval of 
surface reflectance (i.e., the assumption that the composition of diffuse 
and direct irradiance is relatively constant over the entire canopy) can 
cause large artifacts in retrieved RS products (Damm et al., 2015; 
Fawcett et al., 2018; Kükenbrink et al., 2019). This can be explained by 
the sometimes large difference between the assumption of a relatively 
homogenous top-of-canopy irradiance (note the dependence of diffuse 
irradiance on surface reflectance) and the effective irradiance at the 
surface level (i.e., a leaf or tree crown). This difference is wavelength- 
dependent and changes with observation and illumination angle, at-
mospheric state, and tree geometry (via cast shadows of trees on 
neighboring trees, shadowing of individual tree crowns, and multiple 
scattering between neighboring trees). Particularly, the wavelength 
dependency causes large artifacts in retrieved RS products and problems 
in interpreting insufficiently corrected data (Damm et al., 2015; Fawcett 
et al., 2018; Kükenbrink et al., 2019). Our findings confirm that such 
assumptions during atmospheric correction procedures can lead to 
considerable differences between the top-of-canopy RS products and 
their 3D representations. 

4.2. Agreement of simulated BRF and measured HCRF values 

The observed patterns in the simulated BRF and the acquired HCRF 
data of the coniferous forest agree, considering the many assumptions 
made during the simulation process (i.e., constant leaf optical proper-
ties, LIDF). In addition, BRF and HCRF represent different physical units. 
While BRF considers directional irradiance only along the direct path of 
sunrays, HCRF considers hemispheric irradiance with particularly the 
diffuse irradiance component from the entire hemisphere (cf. Schaep-
man-Strub et al. (2006) or Schunke et al. (2023) for more details about 
BRF and HCRF differences). Pixels representing sunlit canopy areas 
show the highest agreement between BRF simulation and HCRF mea-
surement at both sites, mainly since the assumption of full illumination 
is least violated in such areas. This finding agrees with another study by 
Janoutová et al. (2019), where an overestimation of simulated reflec-
tance in the visible region of the spectrum was found, possibly 

Table 4 
Normalized (by 3D simulation mean) relative root mean square error [%], the median relative difference [%], and the Pearson correlation coefficient for the com-
parison between DART simulated bi-directional reflectance and HyPlant measured hemispherical-conical reflectance factor in nine different bands.  

Simulated band [nm] Coniferous forest Deciduous forest  
nRMSE [%] Rel. diff. [%] Pearson's R nRMSE [%] Rel. diff. [%] Pearson's R 

528–532 71.2 −21.9 0.47 59.8 −30.8 0.09 
547–554 74.8 −25.7 0.48 79.5 −39.5 0.1 
569–573 82.2 −32.5 0.51 89.7 −42.8 0.09 
644–679 109 −44.9 0.59 61.4 −29.8 0.05 
667–674 109.8 −45.2 0.59 63.2 −30.4 0.05 
795–810 64.7 −19.3 0.35 30.8 5.6 0.16 
797–804 64.5 −19.2 0.35 30.8 5.8 0.16 
890–905 67.7 −22.8 0.36 32.1 19.6 0.16 
955–970 70.3 11.3 0.36 31.0 0.2 0.16  
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accountable to the accuracy of the LOP and the atmospheric compen-
sation applied in the simulation (Morsdorf et al., 2020). In contrast, 
Schneider et al. (2014) found an underestimation in the NIR region 
when simulating airborne imagery, primarily due to an insufficient 
structural representation of the forest (Morsdorf et al., 2020). 

For shaded areas, we found a general underestimation of simulated 
BRF in almost all spectral bands compared to the measured HCRF values 
(Table 4), which was expected. The theoretical difference between BRF 
and HCRF can again explain this divergence. In the DART simulated BRF 
values, the considered amount of diffuse irradiance is lower compared to 
the measurement case (HCRF), as only diffuse irradiance along the 
direct sun rays is considered, and the diffuse irradiance from the 
remaining hemisphere is missing. One can interpret the BRF as an 
extreme case of HCRF for very clear sky conditions with no aerosols; in 
fact, observed BRF values close to 0% indicate a substantially reduced 
amount of scattered light due to hemispheric irradiance and multiple 
scattering. A recent study quantified the effect and reported more than 
10% differences between BRF and HCRF for larger view zenith angles 
and aerosol-rich atmospheres (Schunke et al., 2023). Still, another 
contribution could be an overestimation of LAD. If the canopy density is 
too high, light scattered through leaf gaps or transmitted light is small, 
resulting in a low irradiance and reflected radiance. Thus, calculated 
BRF is error-prone when assuming a constant irradiance over the entire 
scene. Consequently, the BRF simulation underestimates the reflectance, 
and APAR and LAI derived from this data contrast more between shaded 
and illuminated canopy areas. 

Concerning the processing of the used HyPlant airborne imaging 
spectroscopy data: The data were corrected for topographic effects 
(modified Minnaerd method) and nadir adjusted in ATCOR-4 to obtain 
HCRF values. In this process, the atmosphere and related irradiance are 
approximated with a set of best-guessed parameters (e.g., aerosol model, 
vertical stratification), image-derived parameters (e.g., aerosol load, 
water vapor content), and auxiliary topography information via digital 
elevation models. The applied assumptions possibly yield uncertainties 
in the retrieved HCRF image, but the even larger effect is the above- 
mentioned assumption of almost constant irradiance over the entire 
scene (except for irradiance variations accounted for by the standard 
processing). The advancement of atmospheric correction schemes that 
consider the effective irradiance at the canopy level could open new 
possibilities to compensate for this illumination problem. Ideas in this 
direction were already presented, for example, the use of p-theory based 
approaches (as demonstrated for VNIR in Ihalainen et al. (2023)) to 
accurately estimate irradiance at the pixel level. The use of additional 
data such as 3D object models is interesting, while several complications 
(e.g., lack of detailed 3D object models, geometric misalignment of 
optical and 3D data for elevated objects with increasing distance from 
nadir, the inability of atmospheric correction tools to simulate multiple 
scattering due to neighboring trees, etc.) were reported in Fawcett et al. 
(2018) making such a correction practically impossible. A yet different 
approach is shifting the retrieval of RS products from top-of-canopy to 
top-of-atmosphere using coupled atmosphere and surface radiative 
transfer models. The combination of these models theoretically allows 
the retrieval of the actual composition of diffuse and direct irradiance 
together with vegetation information and even improves the represen-
tation of the sequence of light interactions with the atmosphere and the 
canopy. Laurent et al. (2011a, 2011b, 2013) already tested this 
approach with promising results. 

4.3. Limitations of our approach and possible ways forward 

4.3.1. Data acquisition 
One limitation of our study lies in the sub-optimal data acquisition 

for both sites since LOP, LiDAR, and airborne data could not be acquired 
simultaneously. The LiDAR and HyPlant data were collected the same 
week in June 2021 at the coniferous forest site, whereas the LOP were 
measured in September. The differences in simulated BRF and measured 
HCRF could partly originate from this fact since the leaf or needle optical 
properties vary during the year (Lukeš et al., 2020; Morsdorf et al., 
2009). At the deciduous site, the time between LiDAR and optical 
airborne data acquisition is up to seven years. This time difference im-
plies that the structural information used for the simulation could be 
outdated in the sense that trees might not exist anymore or have 
changed height and shape. This discontinuity may be one of the reasons 
that the correlation between simulated BRF and airborne-based HCRF is 
much lower in this study site. The last in situ measured LOP date back to 
2009, so we opted for database spectra for this site. Using data acquired 
at the same time of year is recommended for such simulations. In 
addition, a sensitivity analysis on the effect of temporal dynamics in the 
LOP and canopy structure on the simulated BRF would be helpful to 
quantify the implications of the presented results. Additionally, using 
different LiDAR sensor setups in both sites can also lead to uncertainties 
in the result. Using a voxel-based approach, we partly compensate for 
the distribution of different point cloud densities, potentially reducing 
the impact of combining different LiDAR sensors. We recommend using 
the same sensor and survey configurations whenever possible for future 
studies. 

4.3.2. Challenges in creating 3D virtual forest scenes for radiative transfer 
simulations 

Another limitation of our approach is using various assumptions and 
simplifications to generate the 3D virtual scene and the possible un-
certainties introduced. Separating the point cloud into wood and foliage 
was particularly challenging (Wang et al., 2020). Although the method 
used in our study worked well, it only recognized big tree trunks as 
wood, while smaller branches were classified as leaves or needles. This 
may have overestimated the retrieved vegetation density and mixed 
voxels, especially in the tree crowns, influencing the simulated canopy 
reflectance. Malenovský et al. (2008) found that canopy reflectance can 
increase up to 2% in the red part of the spectrum in the presence of 
mixed pixels, while this overestimation can affect the calculation of 
additional parameters using indices like the normalized difference 
vegetation index (NDVI) (Leblanc et al., 1997). Reconstructing the 
woody surface from the separated point clouds worked better in the 
coniferous forest, mainly because the Norway spruce trunks are mostly 
straight compared to the curved trunks of deciduous trees. The Poisson 
surface reconstruction showed limitations in reconstructing branching 
trees, mainly due to the need for more data points in the denser canopy 
(Eysn et al., 2013). Quantitative structure models could be used to 
reconstruct the woody elements from classified point clouds (Lau et al., 
2018). However, analyzing a whole forest canopy instead of single tree 
point clouds makes this process more complex and time-consuming 
(Disney et al., 2018). 

The canopy structure and related LAD dynamics substantially impact 
the simulated reflectance images as the 3D distribution of this parameter 
largely determines the crown topography and, thus, the geometric op-
tical scattering (Ollinger, 2011). Further, quantifying the LAD using the 
AMAPVox software is subject to uncertainty as an assumption about the 
LIDF, describing the volumetric scattering, must be made to track those 
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laser beams that drive the voxel density. Due to the large complexity of 
natural forests and the lack of spatial LIDF information, it is challenging 
to reproduce forest sites 1:1. Consequently, we decided to use only one 
LIDF value from previous studies for the entire study plot per forest even 
if the LIDF is known to largely differ within the forest and even within a 
tree (Liu et al., 2019). 

The virtual scenes were normalized for topography to allow better 
comparability between the two forest sites, as they have very different 
slopes (Kükenbrink et al., 2021). This process, however, causes differ-
ences in the simulated illumination pattern within the crowns compared 
to its airborne measured counterpart, which images the real world with 
topography. Further, edge effects in the direction of the sun are prom-
inent as the trees outside the simulated plot are excluded and, therefore, 
do not shade trees and surfaces in the DART scene. Increasing the area of 
the TLS acquisition by a buffer zone would be a strategy to compensate 
for this problem. 

However, the created virtual scenes and simulations are consistent in 
that they share the same underlying assumptions. This allows us to 
address the key aspect of our paper: demonstrating that RS and 3D 
products largely differ due to geometric optical scattering and the 
limited vertical sensitivity of optical RS data. 

4.3.3. Forest site selection 
Lastly, we only evaluated two specific forest ecosystem sites in 

Switzerland, which limits the representativity of our findings. Including 
more vegetation types in such an analysis would be essential in gener-
alizing our findings on the influence of forest structure on RS estimates 
of HCRF and derived LAI and APAR. 

5. Conclusions 

Our findings demonstrate a complex divergence between RS 
reflectance-based estimates of LAI and APAR compared to their modeled 
3D variation in complex structured forest canopies. We conclude that 
the diverging pattern can be attributed to i) an insensitivity of optical RS 
measurements for the vertical distribution of LAI and APAR and ii) as-
sumptions about irradiance dynamics over heterogeneous forest can-
opies made during the process of reflectance retrievals. The latter effect 
was found to dominate the disagreement between 3D and RS-derived 
information. We recommend future research to explore the limitations 
and options of optical RS in capturing the 3D dynamics of forest infor-
mation, such as LAI and APAR. This includes i) a thorough examination 

of the wavelength-dependent light interaction with the canopy, ii) the 
advancement of analytical strategies to account for shadowing effects 
and vertical insensitivity, and iii) the exploration of scale dependencies 
of shadowing across spatial resolution provided by RS systems. We 
suggest considering insights derived from our study for the interpreta-
tion of RS products and for the advancement of approaches that build 
upon such RS-derived information for estimates of higher-level products 
like gas exchange estimates. 
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Appendix  
Table A1 
Parameter settings used for the RANSAC shape detection algorithm in CloudCompare.  

Parameter Coniferous forest Deciduous forest 
Max. distance to primitive 0.15 0.169 
Sampling resolution 0.3 0.336 
Max. normal deviation 10◦ 25 
Overlooking probability 0.01 0.01  
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Fig. A1. Overview of data, methods, and products. LiDAR-derived data in blue, optical data in orange, airborne imagery in green and all products derived from the 
DART simulation in grey. The comparison between two products is depicted as a dashed arrow. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)  

J. Kesselring et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 306 (2024) 114116

14

5
3

0
 n

m

0.25m DART 1.75m DART 1.75m HyPlant Difference

6
7

0
 n

m
9

6
2

 n
m

0

2

4

6

8

10

12

R
e

fl
e

c
ta

n
c

e
 [

%
]

0

1

2

3

4

5

6

7

0

10

20

30

40

50

D
if

fe
re

n
c

e
 [

%
]

D
if

fe
re

n
c

e
 [

%
]

R
e

fl
e

c
ta

n
c

e
 [

%
]

R
e

fl
e

c
ta

n
c

e
 [

%
]

D
if

fe
re

n
c

e
 [

%
]

100

50

0

50

100

100

50

0

50

100

100

50

0

50

100

Fig. A2. Coniferous site: simulated top of canopy bi-directional reflectance (BRF) images of three bands (530 nm, 670 nm, 962 nm) and HyPlant hemispherical- 
conical reflectance factors (HCRF) at their corresponding bands. Columns from left to right: original resolution of the DART simulation (0.25 m), DART output 
convolved to the HyPlant sensor resolution (1.75 m) using a 9 × 9 kernel and a weighted average, original HyPlant image clipped to the study site, and the relative 
difference between real HyPlant and the simulated top of canopy reflectance. A value of 0 indicates no difference between the two products, red colors indicate a 
higher reflectance value in the DART simulation than in the HyPlant pixel, and blue lower values in the simulated product than in the actual image. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A3. Deciduous site: simulated top of canopy bi-directional reflectance (BRF) images of three bands (530 nm, 670 nm, 962 nm) and HyPlant hemispherical- 
conical reflectance factors (HCRF) at their corresponding bands. Columns from left to right: original resolution of the DART simulation (0.25 m), DART output 
convolved to the HyPlant sensor resolution (3 m) using a 15 × 15 kernel and a weighted average, original HyPlant image clipped to the study site, and the relative 
difference between real HyPlant and the simulated top of canopy reflectance. A value of 0 indicates no difference between the two products, red colors indicate a 
higher reflectance value in the DART simulation than in the HyPlant pixel, and blue lower values in the simulated product than in the actual image. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A4. Coniferous site: comparison of the DART simulated bi-directional reflectance (BRF) and HyPlant measured hemispheric-conical reflectance factor (HCRF) 
values of three bands (530 nm, 670 nm, 962 nm). Columns from left to right: histogram of BRF (blue) and HCRF (red) values. Scatterplot of DART-based BRF data on 
the x-axis and HyPlant-based HCRF values on the y-axis, the 1:1 line is superimposed as a dotted line, Pearson's R stands for the Pearson correlation coefficient, and 
the RMSE for the root mean standard error of the two data sets. Difference image between simulated top-of-canopy BRF and measured HCRF reflectance classified 
according to their mean and standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)  
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Fig. A5. Deciduous site: comparison of the DART simulated bi-directional reflectance (BRF) and HyPlant measured hemispheric-conical reflectance factor (HCRF) 
values of three bands (530 nm, 670 nm, 962 nm). Columns from left to right: histogram of BRF (blue) and HCRF (red) values. Scatterplot of DART-based BRF data on 
the x-axis and HyPlant-based HCRF values on the y-axis, the 1:1 line is superimposed as a dotted line, Pearson's R stands for the Pearson correlation coefficient, and 
the RMSE for the root mean standard error of the two data sets. Difference image between simulated top-of-canopy BRF and measured HCRF reflectance classified 
according to their mean and standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)  
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Fig. A6. NIR band (795–810 nm) classified into shaded, mixed, and illuminated pixels in both the coniferous and deciduous forests. Left: original DART resolution 
BRF image (0.25 m) classified with reflectance < 4% as shaded pixels and > 29.5% as illuminated pixels in the coniferous case and reflectance < 15% as shaded 
pixels and > 52% as illuminated pixels in the deciduous case. Right: convolved to HyPlant resolution DART BRF image (coniferous: 1.75 m, deciduous: 3 m) classified 
with reflectance < 5% as shaded pixels and > 29.5% as illuminated pixels in the coniferous case and reflectance < 20% as shaded pixels and > 45% as illuminated 
pixels in the deciduous case. 
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