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Habits pose a fundamental puzzle for those aiming to understand human behavior. They 

pervade our everyday lives and dominate some forms of psychopathology but are 

extremely hard to elicit in the lab. In this Registered Report, we developed novel 

experimental paradigms grounded in computational models, which suggest that habit 

strength should be proportional to the frequency of behavior and, in contrast to previous 

research, independent of value. Specifically, we manipulated how often participants 

performed responses in two tasks varying action repetition without, or separately from, 

variations in value. Moreover, we asked how this frequency-based habitization related to 

value-based operationalizations of habit and self-reported propensities for habitual 

behavior in real life. We find that choice frequency during training increases habit 

strength at test and that this form of habit shows little relation to value-based 

operationalizations of habit. Our findings empirically ground a novel perspective on the 

constituents of habits and suggest that habits may arise in the absence of external 

reinforcement. We further find no evidence for an overlap between different experimental 

approaches to measuring habits and no associations with self-reported real-life habits. 

Thus, our findings call for a rigorous reassessment of our understanding and 

measurement of human habitual behavior in the lab. 

“So far as we are thus mere bundles of habit, we are 

stereotyped creatures, imitators and copiers of our past 

selves” (James, 1899, p. 66). 

We often think of our behavior as goal-directed and pur-

poseful. Yet, research suggests that a large part of our 

everyday behavior is habitual rather than goal-directed 

(Verplanken & Orbell, 2003). Habits are slowly and incre-

mentally learned stimulus-response associations. They are 

inflexible and insensitive to sudden changes in the envi-

ronment like the devaluation of reinforcers or the degra-

dation of response-outcome contingencies (Dickinson & 

Pérez, 2018; Seger & Spiering, 2011; Verplanken, 2018). 

Of course, most habits can eventually be modified after 

changing the contingencies between actions and their out-

comes or the values of these outcomes, but these adap-

tations again need time to evolve (Carden & Wood, 2018; 

De Houwer, 2019; Gardner, 2015; Kruglanski & Szumowska, 

2020). Capitalizing on the slow adaptation of learned habits 

and their automatic triggering by contextual factors, pre-

vious research has associated habitual control with a wide 

range of health-relevant processes and behaviors that are 

repeated frequently, such as dietary decisions (Carels et al., 

2014; Gardner et al., 2014; Lally et al., 2008), physical ex-

ercise (Fleig et al., 2013; Kaushal & Rhodes, 2015; Ver-

planken & Melkevik, 2008), and social network website use 

(Lindström et al., 2021; Turel & Bechara, 2016). Moreover, 

mounting evidence suggests that pathologically habitual 

decision making characterizes substance use and obsessive-

compulsive disorders (Gillan et al., 2016; Lüscher et al., 

2020; Voon et al., 2014), although there is also conflicting 

evidence regarding this relationship (Gillan, 2021; Nebe et 

al., 2018; Sebold et al., 2017). However, habits are not mal-

adaptive as such. They free cognitive resources for other 

tasks because stimuli trigger behavior in a computationally 

simple and effortless manner. Moreover, habitization can 

also be used to gradually shape advantageous human be-

havior over time, for example brushing teeth after a meal, 

recycling waste, or quitting smoking (Baldwin et al., 2006; 

Gardner et al., 2019; Marteau et al., 2012; Rothman et al., 

2009). Thus, it is crucial to know how habits develop and to 

obtain a handle on how to promote the evolution of benefi-

cial habits and change detrimental ones. 

Unfortunately, it has proven surprisingly difficult to 

study habits in the lab, at least with humans (de Wit et 

al., 2018). Given their definition as stimulus-response as-

sociations, habits are blind to changes in the value of the 
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outcomes they produce. Therefore, classical examinations 

of habitual control used experimental paradigms that ex-

tensively trained an instrumental response in stable con-

ditions. Such (over)training leads to a shift from goal-di-

rected (flexible but cognitively demanding) to habitual 

control and reduced sensitivity to reductions in the out-

come’s value or the contingency between action and out-

come (Adams & Dickinson, 1981; Dickinson, 1985). Over 

the last decades, animal research used satiation on specific 

food rewards, paired the rewards with illness-inducing in-

jections after learning, or provided additional outcomes 

without requiring an action and showed a reduced capacity 

of these outcome devaluation or contingency degradation 

tests to change habitual responding (Adams & Dickinson, 

1981; Dickinson & de Wit, 2003; but see Garr et al., 2020, 

2021; Thrailkill et al., 2018 for recent conflicting findings). 

In contrast, only one study was able to show habitization of 

behavior via overtraining in a human laboratory paradigm 

(Tricomi et al., 2009). However, this finding could not be 

replicated in two studies with larger sample sizes, question-

ing the validity of the original findings and arguing that the 

classic paradigms with human participants show at best a 

moderate role of habits in behavioral control (de Wit et al., 

2018; but see Pool et al., 2021). In fact, when these classic 

paradigms and their variants are used to investigate habits 

in humans they arguably tap primarily into goal-directed 

control as the test procedures are too salient and the train-

ing is usually not extensive enough to form habits (de Wit 

et al., 2018; Watson & de Wit, 2018). These issues raise the 

question whether we can induce habits in the lab at all. 

In recent years, some lines of research have increasingly 

focused on an alternative approach to studying habits in 

humans that circumvents the difficulties of inducing habits 

experimentally and instead relies on computational mod-

elling of choices in sequential Markov decision tasks (Daw 

et al., 2011; Decker et al., 2016; Gläscher et al., 2010; Kool 

et al., 2016). In this approach, habitual and goal-directed 

behavioral control are operationalized as model-free and 

model-based reinforcement learning, respectively (Daw et 

al., 2005). In essence, model-free reinforcement learning 

works by summing up previously received rewards and in-

creasing the probability of selecting actions that have led 

to (more) reward, with the aim of maximizing rewards in 

the long run (Dolan & Dayan, 2013; Sutton & Barto, 1998). 

Model-free learning can capture behavior change well. For 

example, giving a dog a treat every time it obeys an order 

increases the probability that it will follow the order in 

the future, even when the treats will be withheld at some 

point. However, as can be seen from this example, model-

free reinforcement learning is entirely driven by the incen-

tive value of outcomes associated with behavior (Kruglanski 

& Szumowska, 2020). Thus, although this approach aims to 

operationalize habitual behavior, model-free learning con-

cerns reinforcement and therefore fails to capture the out-

come-independent nature of habits (Miller et al., 2019). 

By extension, although model-free reinforcement learning 

might constitute one candidate process to develop habits, 

habitual behavior has little in common with model-free re-

inforcement learning once habits are established. 

It is worth noting that the sequential Markov decision 

tasks used to assess model-based and model-free learning 

feature a permanently changing task environment (because 

reinforcement probabilities follow random walks over the 

course of the task), which is thought to counter the devel-

opment of habits (e.g., Gardner, 2015; Ouellette & Wood, 

1998; Verplanken & Wood, 2006). Indeed, previous studies 

investigating the overlap of model-free reinforcement 

learning and insensitivity to reinforcer devaluation after 

training found only statistically non-significant small to 

very small associations, which refutes the notion that they 

both operationalize habitual behavior (Friedel et al., 2014; 

Gillan et al., 2015; Sjoerds et al., 2016). Yet, model-free re-

inforcement learning is still portrayed as a valid approxi-

mation of habitual behavior (e.g., Drummond & Niv, 2020; 

Patzelt et al., 2018; Wyckmans et al., 2019) calling for an 

adequately powered empirical test of the validity of this 

task for measuring habits. 

Using computational simulations, Miller and colleagues 

(2019) recently proposed that a frequency-based habitiza-

tion process could reproduce hallmark findings of choice 

and perseveration in the experimental literature on habits 

(Guthrie, 1959; see also Schwöbel et al., 2021, for a 

Bayesian implementation of repetition-based habit learn-

ing). This view converges with evidence for frequency-re-

lated processes playing a role in various psychological 

processes. Examples include the Hebb effect in working 

memory (Oberauer et al., 2015), choice history bias in per-

ceptual decision making (Abrahamyan et al., 2016; Braun 

et al., 2018; Urai et al., 2019), the mere-(repeated-)expo-

sure effect (Zajonc, 2001), and choice-induced preference 

changes in value-based decision making (Brehm, 1956; 

Izuma & Murayama, 2013; Sharot et al., 2009). Some stud-

ies on choice-induced preference change (Izuma et al., 

2015; Izuma & Murayama, 2013; Sharot et al., 2010) sug-

gest that selecting a stimulus may change its value even 

if decision makers did not perceive the outcome of their 

choice. This raises the question whether the experience of 

an outcome following an action is indeed necessary to in-

duce habits or whether habits can arise simply from fre-

quently performing an action. More generally, independent 

lines of research substantiate the hypothesis that there is 

a basic learning process based on the frequency of behav-

ior, which can mechanistically change psychological vari-

ables (e.g., memory representations, subjective values) and 

that such a frequency-based process might be independent 

of reinforcement. By consequence it is conceivable that 

processes induced by frequently repeated choice contribute 

to habitual behavior. 

Mounting evidence (Hardwick et al., 2019; Luque et al., 

2020) suggests that with fast response times (up to about 

600 ms) habitual response tendencies cannot be overruled 

by goal-directed processes and by extension that time pres-

sure is important to unmask habits. However, it remains an 

open empirical question whether a frequency-based learn-

ing process changes an underlying psychological variable 

driving behavior (such as the subjective value of the stimuli 

which trigger responses) and whether the process is com-

pletely independent of reinforcement. Here, we aim to in-
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vestigate frequency-based habitization both with explicit 

reinforcement of behavior and without because it is unclear 

whether external reinforcement is necessary for habits to 

form. Furthermore, we examine the validity of various ex-

perimental approaches to habits using six different behav-

ioral paradigms – two newly developed and piloted para-

digms and four previously used tasks including traditionally 

used outcome devaluation (Luque et al., 2020; Tricomi et 

al., 2009) and contingency degradation tasks (Vaghi et al., 

2019) as well as a modified version of the sequential Markov 

decision task (Kool et al., 2016). Our study addresses the is-

sue that most previous research neglected to train partic-

ipants extensively enough to induce habits, as habits are 

supposed to grow stronger with repetition. Specifically, we 

extend training to four or five days for all tasks except the 

sequential Markov decision task, which has been shown to 

lead to stronger model-based choice tendencies with ex-

tended training (Economides et al., 2015) and one of the 

outcome devaluation paradigms (Tricomi et al., 2009), in 

which there seems to be no increase of habitual behavior 

with extended training (Pool et al., 2021). Our two tasks 

apply design features thought to favor the development 

of habitual behavior, that is, stability of the task environ-

ment, responding under time pressure, and extended train-

ing over several days (de Wit et al., 2018; Luque et al., 2020; 

Watson & de Wit, 2018; Wood & Neal, 2009). Finally, to 

externally validate the previously established tasks we col-

lect reports of habitual behavior in real-life. This aspect of 

our study advances the field independently of the question 

whether frequency-based habit formation exists. Specifi-

cally, our study strives to answer the following Research 

Questions (RQ). 

RQ1: Does a frequency-based habitization process exist? 

As outlined, the mere frequency of behavior might be the 

driving force of habitization, leading to a gradual change 

of subjective value proportional to choice frequency. How-

ever, current experimental paradigms do not allow separat-

ing the influence of behavioral frequency from subjective 

value. In these tasks, choice frequency typically correlates 

with outcome value, impeding differentiation of their re-

spective effects. Thus, we designed a reinforcement learn-

ing paradigm that manipulates the value of options and 

their choice frequency during training independently (Re-

ward Pairs task). This feature of the task allows us to dis-

entangle the influence of value-based and frequency-based 

processes during learning and decision making in the re-

inforced training sessions and a subsequent non-reinforced 

test phase. 

Hypothesis 1: Higher frequency of choosing stimuli dur-

ing the training of the Reward Pairs task is associated with 

more strongly habitual behavior during the test phase 

(Table 1 for the operational specifications of all hypothe-

ses). 

RQ2: Is external reinforcement of behavior necessary for 

frequency-based habitization or can the process arise also in 

a context without external reinforcement? According to the 

notion that the frequency-based habitization process is not 

dependent on reinforcement, we should be able to elicit 

habits in an experimental task without any external re-

inforcement of behavior. This would constitute a proof of 

concept that choice frequency alone can drive habitiza-

tion of behavior. Conversely, if frequency-based habits de-

velop only in externally reinforced contexts, their under-

lying function might be to enhance reinforcement value 

learning instead of being a process completely divorced 

from reinforcement. To address this issue, we designed a 

novel paradigm that manipulates instructed choice fre-

quency but is completely free from external reinforcement 

(Unrewarded Habit task). 

Hypothesis 2: Higher frequency of choosing stimuli dur-

ing the training of the Unrewarded Habit task is associated 

with more strongly habitual behavior during the test phase. 

RQ3: Is there a universal (i.e., paradigm independent) 

habitization process? As pointed out previously (Friedel et 

al., 2014), different paradigms to study habits are consid-

ered equivalent, but there is almost no empirical evidence 

for this assumption. If anything, the few studies that have 

addressed the topic suggested that findings are rather de-

pendent on the operationalizations used (Friedel et al., 

2014; Gillan et al., 2015; Sjoerds et al., 2016), which makes 

it impossible to generalize to other paradigms or to draw 

generally valid conclusions regarding the habitization 

process (construct validity; Cronbach & Meehl, 1955). 

Therefore, we investigate the association of frequency-

based habitization as measured in our two tasks with pre-

viously used paradigms of habitual behavior, that is, de-

valuation insensitivity in two outcome devaluation tasks 

(Luque et al., 2020; Tricomi et al., 2009) and insensitivity 

to changes in the action-outcome contingency in a contin-

gency degradation task (Vaghi et al., 2019). We also asses 

model-free reinforcement learning in a sequential Markov 

decision task (2-Step; Kool et al., 2016). Investigating the 

relations between six different paradigms allows us to draw 

conclusions about the generality of the habitization 

processes (i.e., the extent to which the paradigms measure 

a similar form of habit formation). As outlined above, in-

sensitivity to outcome devaluation and model-free rein-

forcement learning in sequential decision tasks might rely 

too heavily on goal-directed control and representation of 

reinforcement values, respectively, to be a pure measure of 

habitual behavior (de Wit et al., 2018; Miller et al., 2019; 

Watson & de Wit, 2018). It is yet unclear whether con-

tingency degradation tasks have the same drawback. One 

may argue that delivering unexpected outcomes indepen-

dent from actions to degrade the contingency between ac-

tion and outcome might be a similarly salient manipulation 

as the devaluation of outcomes in other experimental par-

adigms. We test the assumption that the different opera-

tionalizations of habits in the different paradigms capture 

the same habitization process, which is what the current 

literature implies by using all experimental tasks inter-

changeably to examine habit formation. Additionally, we 

test the discriminant validity of the habitization process 

by exploring its association with working memory capacity. 

Working memory is an executive function, which may play 

a fundamental role for employing goal-directed behavior. 

Because habitual behavioral control has been opposed to 

goal-directed behavior (Dolan & Dayan, 2013) and has low 
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cognitive demand, we expect a relatively weak association 

between working memory capacity and habitual behavior. 

Using the modified version of the Markov decision task 

(Kool et al., 2016) instead of the original 2-Step task for this 

Research Question also enables us to conceptually replicate 

previous studies of the overlap between devaluation insen-

sitivity and model-free reinforcement learning (Friedel et 

al., 2014; Gillan et al., 2015; Sjoerds et al., 2016) and extend 

it to a wider range of experimental operationalizations. 

Hypothesis 3.1: The measures of habitual behavior in all 

six habit paradigms (i.e., Reward Pairs, Unrewarded Habit, 

outcome devaluation (Tricomi and Luque), contingency 

degradation, and 2-Step task) are positively associated with 

each other (i.e., convergent validity) and, thus, the corre-

sponding data fits a one-dimensional measurement model. 

Hypothesis 3.2: The measures of habitual behavior in 

the habit paradigms are more strongly correlated with each 

other than with working memory (i.e., discriminant valid-

ity) and, thus, the data fits a two-dimensional measure-

ment model significantly better than a one-dimensional 

measurement model. 

RQ4: How does the habitization process measured with 

the experimental paradigms relate to real-life habitual behav-

ior? The concordance between experimentally induced and 

real-life habits is often overlooked but essential to provide 

practical meaning to laboratory findings (criterion validity; 

Cronbach & Meehl, 1955). To the best of our knowledge, 

there are only two studies that have empirically investi-

gated the relation between habits measured in experimen-

tal paradigms in the laboratory and those from everyday 

life. One study showed an association between action slips 

after outcome devaluation and decreased attention during 

(but no association with mistakes made, time or effort 

spent in) real-life habitual behavior (Linnebank et al., 

2018). Another study recently reported a negative associ-

ation between sensitivity to contingency degradation and 

self-reported automaticity (Ersche et al., 2021). To add to 

this, we test the associations of all six habit paradigms with 

self-reported real-life habitual behavior as measured with 

validated self-report questionnaires of real-life habits. For 

this purpose, we use the Self-Report Habit Index (SRHI; 

Verplanken & Orbell, 2003), the Creature of Habit Scale 

(COHS; Ersche et al., 2017), and the Habitual Tendencies 

Questionnaire (HTQ; Ramakrishnan et al., 2021). Re-

sponses to the SRHI revealed relations with actual observa-

tions of real-life habits in previous studies (Gardner et al., 

2012; Lally et al., 2010). Thus, we investigate to what extent 

a universal habitization process is related to real-life habit-

ual behavior. In addition, we explore and compare the crite-

rion validity of each employed experimental paradigm. Our 

analyses enable us to quantify the degree of criterion va-

lidity of each paradigm. Comparing them to each other al-

lows us to make an empirically grounded recommendation 

for future studies aiming to use the most appropriate ex-

perimental operationalization of habits. In case of conflict-

ing results regarding the associations of experimental mea-

sures with the three questionnaires, the association with 

the SRHI are regarded most valid, as this questionnaire has 

the most extensive empirical evidence for its validity of the 

three. 

Hypothesis 4: The habitization process measured in the 

experimental paradigms is positively associated with self-

reported real-life habitual behavior. 

Research Questions 3 and 4 focus on the generalizability 

and construct validity of different habit paradigms, that is, 

whether the habitization process is independent of spe-

cific paradigms used in laboratory research as well as the 

significance of this process for everyday behavior. Hence, 

these findings provide a complete picture of the validity of 

our approaches to measure human habits in the lab. How-

ever, the use of several newly developed as well as previ-

ously used paradigms provides the possibility to tackle an-

other exploratory Research Question, which is concerned 

with the most appropriate operationalization of habits in 

laboratory research. 

RQ5: Is there a difference in validity with regard to various 

behavioral measures of habitual behavior? From a clinical 

perspective, overt choices constitute the most relevant 

measure of task performance. We also analyze response 

times (RTs), stimulus ratings, and computational model pa-

rameters as potential expressions of habits. We expect the 

habitization process to be reflected to some extent in all 

of these behavioral measures. Recent research (Luque et 

al., 2020) suggested RTs to be a more sensitive measure of 

habits than overt choices in an outcome devaluation para-

digm. Our final Research Question thus intersects all previ-

ous hypotheses insofar as we examine possible differences 

in the results for each Research Question depending on 

different behavioral measures of habitization (i.e., choices, 

RTs, ratings, and parameters of computational models). 

Therefore, all the analyses of the previously mentioned hy-

potheses are performed separately for each applicable be-

havioral measure (see Table S2 for an overview of avail-

able behavioral measures per paradigm). For example, as all 

four behavioral measures are available for the Reward Pairs 

task, the analysis of Hypothesis 1 is done four times, each 

time with a different behavioral measure. While we con-

sider positive evidence for one of the hypotheses nested in 

RQ1 and RQ2 sufficient to support it, we examine system-

atic patterns in the findings in RQ5. As previous findings 

do not provide a consistent picture regarding the validity 

of the behavioral measures, we have no explicit expecta-

tions, but consider this Research Question to be purely ex-

ploratory. The results are used to provide best practice rec-

ommendations for the operationalization of habits in the 

laboratory for future research. 

Methods  

Ethics information and participant compensation      

Participants were informed about the study procedure, 

their right to withdraw their consent at any time, data secu-

rity and the use of their anonymized data (including public 

data sharing upon study completion). They then gave writ-

ten informed consent. The study was approved by the local 

ethics committee (Human Subjects Committee of the Fac-
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Table 1. Design table.   

Question Operational Hypothesis Sampling plan (e.g., power analysis) Analysis Plan Interpretation given to different outcomes 

RQ1: Does a 

frequency-

based 

habitization 

process exist? 

H1a: Reward Pairs task: Stimuli 

chosen more frequently in training 

are preferred in choice tests after 

training over stimuli less 

frequently chosen in training. 

Testing the difference in the magnitude of 

correlations in H4.2 yielded the highest 

demands on our sample size (n=138, see 

below). We thus used simulations to 

calculate the statistical power for a small 

effect (equivalent to Cohen’s d=0.2) in the 

(generalized) linear mixed effects models 

used for H1a, H1b, H2a, and H2b 

representative for the remaining analyses 

of RQ1 and RQ2, yielding a power of >99% 

for the analyses with this sample size. 

GLMM regressing 

choice (left vs. right) 

on value difference of 

the left and right 

stimuli, difference in 

previous choice 

frequency, and their 

interaction. 

Main effect of difference in previous choice frequency 

statistically significant with higher choice probability for 

previously frequently chosen stimuli interpreted as evidence 

for frequency-based habit. Otherwise: No evidence for a 

frequency-based habitization process in this task based on 

this specific behavioral measure of habitization. 

H1b: Reward Pairs task: Stimuli 

chosen more frequently in training 

elicit faster responses in choice 

tests after training than stimuli less 

frequently chosen in training. 

LMM regressing RT 

on value difference of 

chosen and unchosen 

options, difference in 

choice frequency 

during training, their 

interaction, and the 

EHI score (controlling 

for hand preference). 

Main effect of difference in previous choice frequency 

statistically significant with faster RTs for previously 

frequently chosen stimuli interpreted as evidence for 

frequency-based habit. Otherwise: No evidence for a 

frequency-based habitization process in this task based on 

this specific behavioral measure of habitization. 

H1c: Reward Pairs task: Stimuli 

chosen more frequently in training 

elicit a stronger increase in liking 

ratings from the beginning to the 

end of the study than less 

frequently chosen stimuli. 

LMM regressing post-

study stimulus ratings 

on pre-study ratings, 

reward levels, relative 

choice frequency 

during training, and 

their interactions. 

Main effect of previous choice frequency statistically 

significant with higher ratings for previously frequently 

chosen stimuli interpreted as evidence for frequency-based 

habit. Otherwise: No evidence for a frequency-based 

habitization process in this task based on this specific 

behavioral measure of habitization. 

H1d: Reward Pairs task: 

Comparison of computational 

models capturing participants’ 

choices favor a model with a choice 

kernel over models without such a 

kernel. 

Comparison on group 

level based on 

exceedance 

probabilities between 

models of 

reinforcement 

learning, choice 

kernel, both, and 

random choice 

explaining 

participants’ choices. 

Selection of model combining reinforcement learning and 

choice kernel as best-explaining model (i.e., greatest 

exceedance probability) interpreted as evidence for 

frequency-based habit. Otherwise: No evidence for a 

frequency-based habitization process in this task based on 

this specific behavioral measure of habitization. 

RQ2: Is 

external 

reinforcement 

of behavior 

necessary for 

frequency-

H2a: Unrewarded Habit task: 

Stimuli chosen more frequently in 

training are preferred in choice 

tests after training over stimuli less 

frequently chosen in training. 

GLMM regressing 

choice (left vs. right) 

on difference in 

previous choice 

frequency of the left 

and right stimuli. 

Main effect of difference in previous choice frequency 

statistically significant with higher choice probability for 

previously frequently chosen stimuli in the same location 

interpreted as evidence for frequency-based habit 

independent from reinforcement. Otherwise: No evidence for 

a frequency-based habitization process independent from 
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Question Operational Hypothesis Sampling plan (e.g., power analysis) Analysis Plan Interpretation given to different outcomes 

based 

habitization or 

can the 

process arise 

also in a 

context 

without 

external 

reinforcement? 

reinforcement in this task based on this specific behavioral 

measure of habitization. 

H2b: Unrewarded Habit task: 

Stimuli chosen more frequently in 

training elicit faster responses in 

choice tests after training than 

stimuli less frequently chosen in 

training. 

LMM regressing RT 

on stimulus 

presentation location, 

difference in choice 

frequency during 

training of chosen and 

unchosen options, 

their interaction, and 

the EHI score. 

Interaction effect of difference in previous choice frequency 

and stimulus location statistically significant with faster RTs 

for previously frequently chosen stimuli interpreted as 

evidence for frequency-based habit independent from 

reinforcement. Otherwise: No evidence for a frequency-

based habitization process independent from reinforcement 

in this task based on this specific behavioral measure of 

habitization. 

H2c: Unrewarded Habit task: 

Stimuli chosen more frequently in 

training elicit a stronger increase in 

liking ratings from the beginning to 

the end of the study than less 

frequently chosen stimuli. 

LMM regressing post-

study stimulus ratings 

on pre-study ratings 

and relative choice 

frequency during 

training. 

Main effect of previous choice frequency statistically 

significant with higher ratings for previously frequently 

chosen stimuli interpreted as evidence for frequency-based 

habit independent from reinforcement. Otherwise: No 

evidence for a frequency-based habitization process 

independent from reinforcement in this task based on this 

specific behavioral measure of habitization. 

RQ3: Is there a 

universal (i.e., 

paradigm 

independent) 

habitization 

process? 

H3.1: The data of the measures of 

habitual behavior from all six habit 

paradigms (i.e., Reward Pairs, 

Unrewarded Habit, outcome 

devaluation (Tricomi, Luque), 

contingency degradation, and 

2-Step task) fit a one-dimensional 

measurement model. In addition, 

the correlations between all six 

habit paradigms are statistically 

significant and larger than .50 

(convergent validity). 

As statistically significant correlations are 

a prerequisite for confirmatory factor 

analyses, we require a sample size of 138 

participants to achieve 95% power for a 

correlation of at least r=.3 (bivariate 

normal model, α=.05, two-tailed; G*Power 

3.1.9.2; Faul et al., 2009)). 

In addition, we ran Monte Carlo 

simulations (Muthén & Muthén, 2002) to 

determine the required sample size of the 

most complex measurement model (i.e., 3 

to 6 indicators per latent factor; 2 latent 

factors; factor loadings ≥ .50; factor 

correlation ≥ .35). A sample size of 190 is 

needed to achieve a 95% power. 

Confirmatory factor 

analysis (CFA) and 

bootstrapped 

Pearson correlations 

based on behavioral 

scores of all habit 

paradigms (i.e., 

Reward Pairs, 

Unrewarded Habit, 

outcome devaluation, 

contingency 

degradation, and 

2-Step task). 

Evaluation of model 

fit according to 

Schermelleh-Engel et 

al. (2003): χ2 

goodness-of-fit 

statistic, CFI ≥ .95, 

RMSEA ≤ .08, and 

SRMR ≤ .10. 

Comparing different 

models: Satorra-

Bentler-scaled χ2 

difference test (i.e., 

Statistically significant and positive correlations as well as an 

empirically well-fitting one-dimensional measurement model 

are interpreted as evidence for a frequency-based habit 

process involved in all six tasks. Otherwise: There is no 

common habitization process involved in all six tasks and, 

thus, the six paradigms are not equally suitable for measuring 

the same habitization process. In this case, we will investigate 

in an exploratory approach which habit paradigms measure a 

common underlying habitization process (RQ3) and which 

paradigms are most strongly associated with real-life habitual 

behavior (RQ4). 

H3.2: The data of all six habit 

paradigms and the three working 

memory tasks will fit a two-

dimensional measurement model 

(i.e., each a latent factor for 

habitization and for working 

memory) significantly better than a 

one-dimensional measurement 

model (discriminant validity). 

A two-dimensional measurement model is interpreted as 

evidence that habitization is (partly) independent of working 

memory. Otherwise: Habit paradigms and working memory 

task measure the same underlying process. 
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Question Operational Hypothesis Sampling plan (e.g., power analysis) Analysis Plan Interpretation given to different outcomes 

nonsignificance 

indicates equal model 

fit). 

RQ4: How 

does the 

habitization 

process 

measured with 

the 

experimental 

paradigms 

relate to real-

life habitual 

behavior? 

H4: The correlations between the 

latent habitization process and 

self-report questionnaire scores of 

real-life habitual behavior (i.e., 

COHS, SRHI, HTQ) are statistically 

significant and larger than .3. 

To achieve 95% power for a latent 

correlation of at least r=.3, we require a 

sample size of 200 participants based on 

Monte Carlo simulations of the theorized 

structural equation model (i.e., 5-6 

indicators per latent factor; 2 latent 

factors; factor loadings ≥ .50; factor 

correlation ≥ .30; Muthén & Muthén, 

2002). 

SEM to investigate 

the relation between 

latent factors. 

Evaluation of model 

fit according to 

Schermelleh-Engel et 

al. (2003): χ2 

goodness-of-fit 

statistic, CFI ≥ .95, 

RMSEA ≤ .08, and 

SRMR ≤ .10. 

Statistically significant correlations with r ≥ .3 interpreted as 

evidence for criterion validity. In case of conflicting results 

regarding the association with the three questionnaires, the 

association with the SRHI will be regarded most valid. 

Otherwise: No evidence for criterion validity. 

CFA, Confirmatory Factor Analysis. CFI, Comparative Fit Index. COHS, Creature of habit Scale. EHI, Edinburgh Handedness Inventory. (G)LMM, (generalized) linear mixed effects model. HTQ, Habitual Tendencies Questionnaire. RMSEA, Root Mean Square Error. RQ, Re-

search Question. RT, response time. SEM, Structural Equation Modeling. SRHI, Self-Report Habit Index. SRMR, Standardized Root Mean Square Residual. 
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ulty of Economics, Business Administration, and Informa-

tion Technology; OEC IRB # 2020-072). 

The participants received CHF 20 (at the time of testing, 

CHF 1 ~ US$ 1.10 ~ € 1) per hour of testing for each session. 

In addition, they received money from their performance 

in the monetarily reinforced tasks (Reward Pairs task: CHF 

0.50-4.50 each day plus CHF 1-9 for the test phase on the 

last day; Contingency Degradation task: CHF 0-6.84 each 

day; Outcome Devaluation taskLuque: CHF 0.15-5.00 each 

day; 2-step task: CHF 10-13). This amounted to a pay-

out of CHF 194-272 with an expected average payment of 

CHF 235 according to pilot data. Participants who withdrew 

from the study were compensated with CHF 25 for each day 

they attended fully and CHF 10 for every hour started on 

days they did not complete. 

Design  

The study included one week of data collection. It 

started with an invitation email with a sign-up link, fol-

lowed by participants receiving a study description and giv-

ing informed consent. They then filled in a sociodemo-

graphic questionnaire, the German versions of the Creature 

of Habit Questionnaire (COHS; Ersche et al., 2017), Self-Re-

port Habit Index (SRHI; Verplanken & Orbell, 2003), Ha-

bitual Tendencies Questionnaire (HTQ; Ramakrishnan et 

al., 2021), Edinburgh Handedness Inventory (EHI; Oldfield, 

1971), and Social Desirability Scale (SDS-17; Stöber, 1999, 

2001). In addition, they completed a version of a sequential 

Markov decision paradigm assessing model-free and 

model-based behavior (2-Step; Kool et al., 2016). Within 

one week before the training of the habit tasks began, par-

ticipants had to fill in these questionnaires and perform 

the 2-Step task online to reduce the amount of time spent 

in the lab. The COHS, SRHI, and HTQ were used as real-

life habit measures to validate the experimental measures 

of habitual behavior. The handedness score of the EHI was 

used in analyses of RTs to control for generally faster re-

sponses with the preferred hand. The SDS-17 was used to 

control for tendencies to respond in a socially desirable 

manner in the test phase of the Unrewarded Habit task 

if necessary. The sociodemographic information was only 

used to characterize our sample. 

As the study procedure was quite extensive, we applied 

a planned-missing design (Graham et al., 2006; Little et al., 

2014; Rhemtulla & Hancock, 2016). In these designs, the 

complete sample is randomly split into several subgroups. 

Each subgroup performs one set of experimental tasks and 

questionnaires, which is common to all participants, and 

leaves out one task. For each participant, the left-out task 

is random. Hence, the missing data is missing completely 

at random (MCAR) and can be imputed for analyses across 

tasks on the basis of the data acquired from each partic-

ipant (see Analysis plan). In our case, we randomly as-

signed participants to one of two subgroups. Each subgroup 

performed all questionnaires and tasks except for one (ei-

ther the outcome devaluation taskLuque (Luque et al., 2020) 

or the contingency degradation (Vaghi et al., 2019) task). 

Therefore, the required assessment time for each partici-

pant was reduced, decreasing their individual workload. 

The first on-site assessment started with three working 

memory tasks (Lewandowsky et al., 2010), which took ap-

proximately 25 min to perform, followed by the first out-

come devaluation task (45 min; Pool et al., 2021; Tricomi et 

al., 2009). Next, all participants performed the Unrewarded 

Habit task (21 min) and Reward Pairs task (18 min) in ran-

dom order. These two tasks were repeated daily until and 

including the fifth day (see Table S1 for an overview of the 

study procedure). In addition, each participant performed 

one of the two remaining tasks, that is, either the contin-

gency degradation task (35min; Vaghi et al., 2019) or the 

second outcome devaluation paradigm (35min; Luque et 

al., 2017, 2020). Training of the contingency degradation or 

the second outcome devaluation task started on the second 

day of on-site assessment and proceeded daily until and in-

cluding the fifth day. A short break of 1-3 min was included 

between the tasks. On the fifth day, the training phases of 

the tasks were followed or replaced by the respective test 

phases. The fifth day closed with a debriefing questionnaire 

asking for choice strategies during the test phases of the 

habit paradigms and paying out the participants. The first 

session lasted around 110 min, the second to fourth ses-

sion around 65 min, the fifth session around 85 min, and 

the online assessment prior to the first assessment around 

90 min. 

The tasks were trained over several days (Table S1) with 

order randomized across participants but constant within 

participants to control for effects of motivation changes 

within a training session. All tasks and questionnaires were 

applied in German. For the following description of the ma-

terials, the wording was translated into English. 

Tasks  

Selection of Stimuli for Reward Pairs and        

Unrewarded Habit Task    

Change in subjective value ratings was an outcome vari-

able of interest for the Reward Pairs and the Unrewarded 

Habits tasks. We used pre-training ratings also to select 

stimuli for these tasks. Specifically, participants rated a set 

of 15 geometric shapes (Reward Pairs task) and 15 abstract 

figures (Unrewarded Habit task) twice before the first train-

ing session. They were asked “How do you like the symbol 

on this box?” and used a slider to respond on a continuous 

visual analogue scale ranging from 0 to 100 with the ver-

bal anchor points of “not at all” (0), “neutral” (50), and “ex-

tremely well” (100). The eight (Reward Pairs task) or four 

(Unrewarded Habit task) individually most neutrally rated 

stimuli (averaged over the two ratings per stimulus) were 

used for the experiment. Using an individual set of stim-

uli for the tasks served two purposes. First, it controlled for 

pre-experiment preferences between the given stimuli. Sec-

ond, it limited stimulus-specific effects (Clark, 1973; Judd 

et al., 2012). We controlled for remaining stimulus-specific 

variance (Baayen et al., 2008) by using a random-effects 

model (see Analysis plan). 
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Reward Pairs Task    

The first task was an instrumental learning paradigm, in 

which we manipulated the reward value of stimuli and their 

choice frequency during training independently from each 

other. Each trial showed one stimulus on the left side of 

the screen and one on the right side (Figure 1A). Crucially, 

the task comprised pairs of stimuli, not presented together 

during training, where both stimuli had the same objec-

tive value but one of them had been presented often with 

a less valuable stimulus and therefore chosen more often 

during training. Conversely, the other stimulus of the pair 

had been presented primarily with a more valuable stimu-

lus and therefore chosen less often during training. When 

the two same-reward stimuli were presented together dur-

ing test, we examined whether the difference in choice fre-

quency during training had an effect on choice during test. 

Participants had a response window of 800 ms to choose 

one of them by pressing either “X” or “M” on the keyboard. 

A purple frame indicated the chosen stimulus for 500 ms, 

before both stimuli with their respective outcomes ap-

peared for 1000 ms. A purple frame indicated the chosen 

stimulus and the reward associated with it. The subsequent 

inter-trial interval (ITI; 1000-3000 ms) was exponentially 

jittered and the remainder of the response window was 

added to it to hold the length of each trial constant. Train-

ing took place on each of five consecutive days with 160 tri-

als per session. 

There were eight stimuli in the Reward Pairs task. Each 

stimulus deterministically yielded a reward of 1, 3, 5, 7, or 

9 points (Figure 1B). Participants learned the contingencies 

between stimuli and rewards through trial-and-error. To fa-

cilitate learning and reduce uncertainty about the rewards 

associated with rarely chosen stimuli, participants received 

feedback about the outcomes of both the chosen and un-

chosen stimulus after each decision in the training phase 

(but not in the test phase, see below). Delivering rewards 

deterministically instead of stochastically should increase 

the transparency and stability of the task environment and 

thereby facilitate the development of habits. 

For three stimulus pairs, the stimuli yielded the same 

amount of reward (3, 5, or 7 points), and these same-reward 

pairs never appeared together during training. For each 

same-reward pair, reward maximizing decision makers 

should choose one stimulus more often than the other be-

cause during training, one stimulus was frequently paired 

with a stimulus providing two points less or a stimulus 

providing two points more. Specifically, each stimulus was 

shown 40 times in one training session – either 10 times 

with a less valuable stimulus and 30 times with a more 

valuable stimulus or vice versa (see Table S4 for a list of 

all stimulus pairings during one training session). In con-

sequence, stimuli within pairs were chosen either more or 

less frequently as long as participants adhered to the in-

struction to maximize points earned. For example, within 

say the 5 points pair, one stimulus was paired 30 times with 

a stimulus worth 3 points and 10 times with a stimulus 

worth 7 points and the other way around for the other 

stimulus (Figure 1B). Hence, for the three intermediate re-

ward levels (i.e., 3, 5, and 7 points), there was one stimulus 

chosen frequently during training and the other chosen 

rarely, which disentangles stimulus value and choice fre-

quency. Stimulus-to-position assignments were matched 

for left and right positions across stimuli, such that the 

number of choices at each position was similar. In total, 

participants could earn between 640 and 960 points in one 

training session, and they were instructed that one trial was 

randomly selected each day and the reward associated with 

their choice added to the final pay-out with 1 point being 

worth CHF 0.5. 

The trial sequence of the test phase immediately after 

the fifth training session was similar to the training phase: 

each trial started with the presentation of two stimuli, giv-

ing participants 800 ms to make a selection via button 

press. Left and right presentation was balanced for each 

stimulus within participants. The chosen stimulus was 

framed for 500 ms. The reward was not shown to prevent 

further learning. Each stimulus was presented with each 

other stimulus four times. Together with an additional 

eight trials for each of the three same-reward pairs, the test 

phase comprised 136 trials. The remainder of the response 

window was again added to the ITI to keep the duration of 

each trial constant. 

Note that the test phase presented the stimuli of the 

same-reward pairs together for the first time since partic-

ipants associated them with reward. Both stimuli of the 

same-reward pairs should have identical cached values af-

ter the prolonged training and based on value participants 

should be indifferent between them. However, if habitual 

behavior can develop from repeating one action more of-

ten, then stimuli chosen more frequently during training 

should be preferred during test. Between 248 and 424 

points could be earned in the test phase. Participants were 

instructed to keep on maximizing the points earned and 

that two trials of the test phase would be chosen randomly 

at the end and paid out, with 1 point worth CHF 0.5. 

After the first rating, participants completed a free-

choice phase without outcome presentation for both tasks. 

Participants were instructed to choose the stimuli they 

liked better, and that their choices in this phase had no 

consequences but served to familiarize them with the test 

situation and to experience the short decision time win-

dows that would be used in the real experiments. With this 

procedure, we could test whether value and frequency dif-

ferences experienced in training affected choices. Choices 

in this phase revealed pre-experiment preferences between 

the stimuli, which can be existent even if the stimuli have 

been rated similarly before (Chen & Risen, 2010). Note that 

we used the most neutrally rated stimuli per participant, 

but these did not have to be exactly neutral. Participants 

were not excluded from the study for not rating enough 

stimuli in the neutral middle region of the rating scale, but 

the analyses of choice data were corrected for pre-exper-

iment stimulus preferences including both the rating and 

the choice in the free-choice phase. A second rating of all 

30 (i.e., used and unused) stimuli (also twice per stimu-

lus) after the test phase on the last day allowed us to test 

whether choice frequency during training changed the sub-
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jective value of stimuli. Furthermore, participants rated 10 

additional abstract stimuli at the beginning and end of the 

study, which were not used in any task for any participant. 

We used these to estimate how reliable stimulus ratings 

were in general. 

After the test phase and the second stimulus rating, par-

ticipants completed debriefing questions. These questions 

concerned the reward value of each stimulus and how con-

fident participants were about their answers. Most partic-

ipants of the pilot study revealed perfect knowledge about 

the reward value for each stimulus. This finding is a prereq-

uisite to interpret differences in choice frequency of stim-

uli within the same reward level as resulting from differ-

ent previous choice proportions during training rather than 

from larger uncertainty about the value of less frequently 

chosen stimuli. Therefore, we excluded participants from 

our analyses with less than 50% accuracy in the debriefing 

question about stimulus-reward associations. 

The outcome measures of interest were the observed 

choice frequencies and RTs during the test phase and the 

change of the liking ratings from before the training to 

after the test phase. A frequency-based habit supposedly 

acquired during training would decrease RTs and increase 

preferences for, and ratings of, more frequently chosen 

stimuli. In addition, computational models of choices dur-

ing the training and test phases including a choice kernel 

(see Analysis plan) should be favored over models based 

solely on the reinforcement value of stimuli or random 

choices. With this, we deviated from the traditional ap-

proach of using outcome devaluation or contingency degra-

dation to directly test the absence of the goal and/or in-

strumental criterion of goal-directed behavior (Dickinson 

& Balleine, 1994), as these direct tests might be too salient 

for many human participants. Instead, we tested the poten-

tial effect of choice frequency during training on behavior 

during test. 

To associate behavior in the Reward Pairs task to behav-

ior in other tasks and answer RQs 3 and 4, we computed 

an individual score of frequency-based habitual choice from 

the test phase (Reward Pairs choice score). This procedure 

was similar to scores computed from choices in sequential 

decision and outcome devaluation paradigms (e.g., Lin-

nebank et al., 2018; Luque et al., 2020; Nebe et al., 2018). 

The score captured the propensity of participants to choose 

stimuli during test which they chose more (rather than 

less) frequently during training, for each of the same-re-

ward pairs. Reward Pairs choice scores closer to the maxi-

mum value of 1 reflected stronger preference for the more 

frequently chosen stimuli, scores around zero corresponded 

to no preference, and scores closer to the minimum value of 

-1 represented a preference for more rarely chosen stimuli. 

Similar to the choice data, we computed an individual score 

of frequency-based habit-related RT acceleration (Reward 

Pairs RT score), corresponding to the decrease in median 

RTs when choosing a previously frequently chosen stimulus 

relative to a previously less frequently chosen stimulus, for 

each same-reward pair. Reward Pairs RT scores closer to 

the maximum value of 0.8 represented relative RT accel-

eration for stimuli that participants chose more frequently 

in training, scores around zero corresponded to little effect 

of choice frequency during training, and scores closer to 

the minimum value of -0.8 represented faster responses for 

stimuli that participants chose more rarely in training. 

We computed an individual score of frequency-based rating 

changes (Reward Pairs rating score) corresponding to the 

average increase in liking ratings for previously more fre-

quently chosen stimuli relative to previously less frequently 

chosen stimuli. Reward Pairs rating scores closer to the 

maximum value of 100 represented stronger increases in 

liking ratings for previously more frequently chosen stim-

uli, scores around zero signified no differential rating 

changes between more and less frequently chosen stimuli, 

and scores closer to the minimum value of -100 represented 

greater increases in ratings for previously more rarely cho-

sen stimuli. 

In addition to these three measures and the learning rate 

parameter of the choice kernel in the computational model, 

we calculated the magnitude of the effect of training for 

the choices and RTs. To do so, we calculated the Reward 

Pairs choice score and Reward Pairs RT score for the first 

test phase on Day 1 and subtracted this from the respective 

scores of the test phase on the last day and divided the re-

sult by two. Therefore, there were six scores of participants’ 

behavior potentially reflecting habitization, which entered 

the factor analyses and structural equation models of Re-

search Questions 3 and 4. 

Unrewarded Habit Task    

This task studied the effect of differences in behavioral 

frequency in the absence of external reinforcement during 

training on unrewarded free choice during test. At the be-

ginning of each training trial of this instructed-choice par-

adigm (Figure 1C), two stimuli appeared on the screen. Af-

ter a uniformly jittered interval of 150-300 ms, one of the 

stimuli received a blue frame indicating that participants 

should select this stimulus as quickly and accurately as pos-

sible by pressing either “F” or “J” on the keyboard. Partic-

ipants had 500 ms to respond. Time pressure supposedly 

facilitates habit development (Luque et al., 2020). If they 

pressed a button before the onset of the blue frame, the 

phrase “Pushed too early” appeared for 1300 ms, no further 

response in this trial was recorded, and the trial counted as 

missing. If participants failed to respond within 500 ms, the 

words “Too slow” appeared for 800 ms and the trial counted 

as missing. If participants responded within the given time 

window, a brown frame appeared around both the chosen 

and unchosen stimulus for 800 ms. Thus, all stimuli were 

presented with the same duration and participants received 

feedback that their response was recorded, but the feedback 

was the same for either action, limiting outcome-related 

learning to a minimum. The ITI was exponentially jittered 
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Figure 1. Reward Pairs [  A,  B] and Unrewarded Habit [    C,  D] tasks.   

A Trial sequence of the training phase of the Reward Pairs task. Each trial started with the presentation of two stimuli. The selected stimulus was indicated by a purple frame. Then 

both stimuli and their respective rewards were shown. A fixation cross was presented in the center of the screen during the exponentially jittered inter-trial-interval, which also in-

cluded the remainder of the response time window. The trial sequence and timing of the test phase (not shown) was similar but did not display the rewards. B Example stimulus-to-

reward assignment of the Reward Pairs task, showing eight stimuli (geometric shapes), five reward levels (1, 3, 5, 7, and 9 points; yellow points), and the respective number of training 

trials per training session. For example, the pentagon and circle were both worth five points, while the triangle was worth seven points. The circle was presented with the square in 

ten trials and with the triangle in 30 trials during training. Thus, stimuli of the same reward level (e.g., 5 points) were chosen with different frequencies (e.g., 30 times for the penta-

gon and ten times for the circle) for reward maximizing decision makers. C Trial sequence of the training phase of the Unrewarded Habit task. Each trial of the training phase started 

with the presentation of two stimuli. A blue frame appeared around one of the stimuli instructing participants to select this stimulus. A brown frame indicated both the chosen and 

unchosen stimulus. During the exponentially jittered inter-trial-interval, which also included the remainder of the response time window, a fixation cross was presented in the center 

of the screen. D Test phase of the Unrewarded Habit task. Trials followed a similar sequence as the training trials but lacked the blue frame to instruct participants which stimulus to 

choose. Thus, when the two stimuli appeared on the screen, participants selected one of them freely. RT – response time. 

between 1000 and 3000 ms and included also the remainder 

of the response time window. 

There were two stimulus pairs in the Unrewarded Habit 

task, which differed in the instructed choice proportions. 

In one pair, one stimulus was indicated to be chosen in 

80% of the training trials, the other stimulus in the re-

maining 20% of training trials. In the other pair, the in-

structed choice proportion of both stimuli was 50%. Stimuli 

were shown left and right of the center of the screen. To 

reduce cognitive demand and maximize the stability of the 

task environment, the presentation location of each stim-

ulus remained fixed within but varied across participants. 

Participants completed one training session on each day. 

Each training session consisted of six blocks of 20 trials for 

each of the two stimulus pairs, amounting to 600 training 

trials per pair. 

The test phase (Figure 1D) followed immediately after 

the fifth training session. During the test phase, we first 

presented ten trials of each of the two trained stimulus 

pairs in the same presentation locations as during training. 

Then each of the four stimuli was presented with each 

other stimulus four times with balanced presentation loca-

tions of stimuli (Supplementary Information section 3.2.1 

for analysis of the effect of same vs. reversed location of 

stimuli in test and training). These trials were randomly 

interspersed with an additional ten trials of each of the 

trained stimulus pairs where stimuli appeared in switched 

locations compared to training. Starting with the same 

stimulus pairs and presentation locations aimed at post-

poning the cognitive conflict participants might experience 

when stimuli were paired with other stimuli than during 

training or when locations were switched, which might in 

turn lead them to invest cognitive control masking habitual 
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responding. The instructions informed participants to 

choose one of the two presented stimuli intuitively. Neither 

should they think much about the choice nor should they 

decide which button to press before the stimuli appear. 

They had to decide within a response time window of 500 

ms to limit the elaboration of decision strategies and facil-

itate the expression of potential habitual responses. With 

no obvious values guiding choice, we could expect random 

choices or simple choice strategies like alternating re-

sponse sides irrespective of the presented stimuli. Alterna-

tively, participants could have developed a preference for 

previously more frequently chosen stimuli over less fre-

quently chosen stimuli, which would reflect the develop-

ment of a habit induced by choice frequency. Similar to the 

procedure in the Reward Pairs task, participants performed 

the same test phase before the very first training session as 

simple check for pre-existing sensory preferences and to al-

low investigating training-induced changes in choices. 

The test phase was followed by a second stimulus rating. 

The outcome measures of interest were the observed choice 

frequencies and RTs during the test phase and the change 

of liking of the stimuli from the rating before training to 

the rating after the test phase as a function of the previous 

choice frequency during training. A frequency-based habit 

would decrease RTs and increase preferences and liking rat-

ings for more frequently chosen stimuli. 

Similar to the Reward Pairs task, we computed an in-

dividual score of frequency-based habitual choices during 

test (Unrewarded Habit choice score) capturing the relative 

preference for the more frequently chosen stimulus during 

training over the less frequently chosen stimulus. Positive 

Unrewarded Habit choice scores corresponded to a prefer-

ence for the previously more frequently chosen stimulus, 

scores around zero reflected no preference, and negative 

scores represented a preference for the less frequently cho-

sen stimulus. 

In addition, we computed an individual score of frequency-

based habit-related RT acceleration (Unrewarded Habit RT 

scores) corresponding to a decrease in median RTs when 

choosing the previously more frequently chosen stimulus 

relative to the previously less frequently chosen stimulus. 

More positive Unrewarded Habit RT scores represented 

faster responses for the previously more frequently chosen 

stimulus, scores around zero corresponded to little effect of 

choice frequency during training, and more negative scores 

reflected faster responses for the previously more rarely 

chosen stimulus. 

Finally, we computed an individual score of frequency-

based habit-related rating changes (Unrewarded Habit rat-

ing score) capturing the increase in the liking rating of the 

previously more frequently chosen stimulus relative to the 

less frequently chosen stimulus. More positive Unrewarded 

Habit rating scores represented stronger increases in liking 

ratings for the previously more frequently chosen stimu-

lus, scores around zero corresponded to no differential rat-

ing changes between more and less frequently chosen stim-

uli, and more negative scores reflected stronger increases in 

ratings for the previously more rarely chosen stimulus. 

As with the Reward Pairs task, we computed the magnitude 

of the effect of training for choices and RTs and used them 

in the analyses of Research Questions 3 and 4. 

Outcome Devaluation Task  Tricomi  

As a benchmark paradigm of habit induction, the first 

outcome devaluation task (Tricomi et al., 2009) used actual 

snack foods as outcomes and a specific satiation procedure 

for devaluation (for a multi-lab replication study: (Pool et 

al., 2021); for the MATLAB code: https://perma.cc/

E323-BK9F) We closely followed the procedure described by 

Pool and colleagues (2021). In this paradigm, participants 

first rated their level of hunger on a 10-point Likert scale 

from “very full” (1) to “very hungry” (10), then tasted and 

rated the pleasantness of six different snacks (three salty 

and three savory) on an 11-point Likert scale from “very 

unpleasant” (-5) to “very pleasant” (5). The favorite snack 

in each of the two categories was selected as outcomes in 

the task. A free-operant training phase followed, consisting 

of two sessions. This amount of training was equivalent to 

the moderate training group of Pool and colleagues (2021), 

who have shown no statistically significant difference in 

devaluation sensitivity between a participant group with 

two sessions in one day and a group with twelve training 

sessions equally distributed over three consecutive days. 

They concluded that most participants developed habitual 

responding within two training sessions and found no evi-

dence to support the hypothesis that longer training makes 

participants more habitual in this task. Thus, we included 

this task with two training sessions only on the first day of 

the study. 

Each of the two free-operant training sessions consisted 

of twelve task and eight rest blocks. One of three fractal 

images and a schematic indicating the response button ap-

peared on the screen for the whole duration of a block 

(20 or 40 s). Participants could press the response button 

self-paced. If they pressed the button, they might receive 

a reward (either the sweet or savory snack, which was pre-

sented on the screen for 1000 ms) or nothing, in which case 

a grey circle was presented for 50 ms on the screen. Reward 

delivery followed a variable-interval schedule with a mean 

of 10 s (VI-10 s). The VI-10 s was implemented such that 

in each second there was a 10% chance that a button press 

within this second would deliver a reward. Thus, a reward 

became available on average every ten seconds and deliv-

ery was triggered by the first response after it became avail-

able. Each of the three fractals was associated with one of 

the two selected snacks or the rest block, in which partic-

ipants were instructed not to respond. The order of blocks 

was pseudo-randomized within each participant so that no 

block type (sweet snack, savory snack, rest) occurred more 

than twice in a row. 
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After the second training session on the first day of 

assessment, one of the snacks was devalued by satiation 

(sweet or savory, balanced across participants). To induce 

satiation, the participants were presented with a bowl of 

the respective snack, which had been weighed beforehand. 

Participants could then eat as much as they wanted (and 

the amount served as a control variable). Next, participants 

again rated their level of hunger and the pleasantness of 

the two snacks used in the training sessions. 

The devaluation procedure was followed by the test 

phase, which consisted of six task blocks (three for each of 

the two snacks) and three rest blocks, presented in pseudo-

randomized order. Exactly as in the training sessions, the 

previously trained fractals and response schematic were 

presented but no reward was delivered. However, partici-

pants were instructed that they were nevertheless accumu-

lating the respective snack outcomes associated with the 

presented fractal. Each block had a duration of 20 s. Each 

response was followed by presentation of a grey circle for 

50 ms, but without food (i.e., in extinction). 

To compute the behavioral measure of interest for this 

task, we calculated the average number of button presses 

per second in the second training session (i.e., six blocks 

per snack, pre devaluation) and in the test phase (i.e., three 

blocks per snack; post devaluation). If participants did not 

adapt their level of responding in the test session compared 

to the training for the devalued snack outcome, behavior 

was defined to be habitual for this task. Thus, we calculated 

a “behavioral adaptation index” (BAI; Pool et al., 2021) by 

determining the change in button presses per second (bp/

s) before vs. after devaluation for the valued snack and sub-

tracting it from the change for the devalued snack: 

We related this index to behavior in the other tasks (RQ3) 

and to real-life habitual behavior (RQ4). 

Outcome Devaluation Task  Luque  

A second previously published outcome devaluation task 

(Luque et al., 2017, 2020) provided another benchmark 

measure of habit. This paradigm (available at 

https://perma.cc/UY4C-ZAJF) operationalized habits as RT 

switch costs without affecting choice (Luque et al., 2020). 

Participants learned to associate different visual stimuli 

and button presses with different outcomes. The task in-

cluded four types of stimuli in the form of cookies, two re-

sponses in the form of selecting one of two aliens, and three 

outcomes in the form of diamonds. In each trial, one of the 

cookies appeared and participants gave it to one of the two 

aliens by button presses in order to receive one of three di-

amonds, which were worth five, ten, or 100 points, respec-

tively. Aliens differed in the type of diamond they traded 

for the different cookies. Thus, participants learned which 

cookie-alien combination (i.e., stimulus-response associa-

tion) led to the best outcomes. Interleaved consumption 

trials, in which participants chose between different dia-

monds, tested whether participants had learned the differ-

ent outcome values. 

Participants performed eight training blocks with 52 tri-

als each (12 trials with each of four cookie stimuli and 

four consumption trials) each day on four consecutive days 

starting on the second day of the study (Table S1). In test 

phases on the first and last training day, specific outcome 

types were devalued. Specifically, at the beginning of each 

test block, one type of diamond was announced to yield no 

points in this block and participants had to react by switch-

ing their responses to a diamond that had been worth fewer 

points during training but was now the only valuable out-

come. These response switches supposedly led to a con-

flict between perseverative habitual and flexible goal-di-

rected behavioral control. Such conflict was not necessarily 

evident in the choices (even though the animal literature 

clearly shows that habitization affects choices; Balleine & 

O’Doherty, 2010) but associated with an increase in RTs in 

switch trials (Luque et al., 2020). Hence, the RT switch cost 

was the outcome measure of interest in this task. As an in-

crease in habit strength occurred only under time pressure 

in previous studies, we used the time-constrained task ver-

sions of Experiments 2a and 2b of Luque and colleagues 

(2020) and expanded the training from three to four days to 

increase the probability of inducing habits not only in RT 

but also in choice. 

For the analyses regarding RQs 3 and 4, we calculated 

two scores similar to the original study (Luque et al., 2020). 

First, the difference of the proportion of responses leading 

to the devalued outcome in the test phase minus the same 

responses during the last training block before devaluation 

separately for the high and low valued outcome. 

This resulted in the DVAL choice score, which ranged from 

-1 to 1, with -1 reflecting perfect goal-directed switching 

after devaluation, 0 corresponding to habitual persevera-

tion of the now-devalued response, and (the very unlikely 

score of) 1 indicating that participants did not choose the 

valued outcome during training but did so after devalua-

tion. We included the choice score to test whether addi-

tional training facilitated habitual behavior not only with 

regard to RT but also choice in this task. 

Second, the DVAL RT switch costs in test trials were cal-

culated as the median RTs in switch trials after devaluation 

(separately for previously high and low valued outcome tri-

als) minus the median RTs in the respective trials in the last 

training block before devaluation. Switch trials referred to 

the trials in which participants successfully switched away 

from the devalued to the non-devalued stimulus during the 

test phase. RTs in switch trials were contrasted with the RTs 

for choosing the same stimulus before its devaluation. For 

example, in trials comparing a stimulus worth five points to 

a stimulus worth 100 points, the median RT of choosing the 

100-point stimulus before devaluation was subtracted from 

the median RT of switching to the five-point stimulus after 

devaluating the 100-point stimulus. 

The DVAL RT switch costs were stronger if responses to de-

valued stimuli were slower during test than training. These 
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costs presumably arose from the cognitive conflict of hav-

ing to overcome habitual choice tendencies and switch to 

the previously less valued choice. 

As with the Reward Pairs and Unrewarded Habit tasks, 

we computed the magnitude of the effect of training for 

choices and RT switch costs to use them in the analyses of 

Research Questions 3 and 4. 

Contingency Degradation Task    

We used a modified version of the contingency degrada-

tion task designed by Vaghi and colleagues (2019) to cap-

ture the second criterion of the traditional habit defini-

tion. This free-operant task was presented in several 120 s 

blocks. In each block, participants viewed a white triangle 

on the screen and were free to press the response key as of-

ten as they wished. Unbeknownst to them, each 1 s-bin was 

associated with a probability of monetary reward if the par-

ticipant responded and a probability of reward if the partic-

ipant did not respond during the bin. The contingency, i.e., 

the relation between the two probabilities varied between 

blocks but stayed constant within each block. At the end of 

each block, participants were asked to rate on a visual ana-

logue scale how causal they thought their responses were 

for the reward to materialize. The scale ranged from -100 to 

100 indicating the continuum from “Responses always pre-

vented rewards” to “Responses always caused rewards”. 

In blocks with positive contingency, the probability of 

receiving a reward in each 1 s-bin if at least one response 

had been made (P(O|A)) was positive (e.g., constantly 60%), 

while the probability of receiving a reward without having 

made a response (P(O|~A)) was zero. In negative contin-

gency blocks, the probability of receiving a reward upon 

having produced a response was zero and the probability of 

receiving it without having made a response was positive. 

In blocks with degraded contingency, both the probability 

of receiving reward contingent on having produced a re-

sponse and the probability of reward in the absence of a re-

sponse were positive (but not necessarily of the same mag-

nitude), that is, rewards could be caused by a response but 

might have also appeared without it. Behavior was deemed 

habitual in this task if participants with prior training on 

the positive contingency schedule did not adapt their re-

sponse rates in blocks with degraded or negative contin-

gency. 

We used a modified version of the task that included 

blocks with positive contingency of P(O|A)=0.6 and 

P(O|A)=0.3 (both block types having P(O|~A)=0; Table S3 for 

an overview of all block types and how often they were pre-

sented on each assessment day). The positive contingencies 

were varied between blocks to keep participants engaged in 

the task. In addition, blocks with degraded contingencies 

were interspersed. Training on this task was done on each 

of four consecutive days from the second day of the study 

(Table S1). 

The outcome measure of interest in this task was a ratio 

score of the number of responses in the (fully and partially) 

degraded blocks relative to the sum of responses in both 

the (fully and partially) degraded and contingent (non-de-

graded) blocks of the last day (Ersche et al., 2021; Vaghi et 

al., 2019). 

Thus, this variable was close to 0.5 if participants re-

sponded to a similar degree in both contingent and de-

graded blocks, reflecting habitual behavior, i.e., an insensi-

tivity to changes in contingencies. The score was close to 

zero the more participants responded during the contin-

gent blocks and the less they responded during degraded 

blocks, that is, if participants were highly sensitive to 

changes in action-outcome contingencies. Values between 

0.5 and one corresponded to more responses during de-

graded than contingent blocks, which may reflect misun-

derstanding of task instructions or lack of attention or mo-

tivation. In addition, the causal judgements at the end of 

each block were used as an outcome measure of interest. 

We further computed the magnitude of the effect of 

training for the ratio score as with the previous tasks by 

subtracting the score of the first day of training from the 

score of the last day to use them in the analyses of Research 

Questions 3 and 4. 

Sequential Markov Decision Task (2-Step)      

The sequential Markov decision task (Kool et al., 2016) 

used model-free (as opposed to model-based) reinforce-

ment learning to operationalize habitual (as opposed to 

goal-directed) behavioral control. This task version is freely 

available (https://perma.cc/56SV-DA2Y) and takes into ac-

count several limitations (Akam et al., 2015; Kool et al., 

2016, 2017) of the original task (Daw et al., 2011). 

Participants started each trial in one of two possible 

states (Figure S4). Each of these two initial states had the 

same representation of planet earth in the background but 

contained two different stimuli in the form of spaceships 

(i.e., spaceships A vs B in one initial state and spaceships C 

vs D in the other). Participants needed to choose one of the 

two spaceships. This choice led to a second state, in which 

participants faced one of two aliens. The second state did 

not require a choice but only a press of the space bar in re-

sponse to seeing the alien, which yielded space treasure (if 

positive), antimatter (if negative), or nothing. These out-

comes, representing points, varied according to a Gaussian 

random walk with a mean of zero points, a standard devi-

ation of two points, and reflecting boundaries at the mini-

mum of minus four and maximum of five points. Crucially, 

in each of the two initial states, one spaceship determin-

istically flew to one alien and the other spaceship to the 

other alien (i.e., spaceships A and C flew to alien 1 and 

spaceships B and D to alien 2). Thus, the two states were 

essentially equivalent. This feature was important to dis-

sociate model-free from model-based control. Model-based 

control “knew” about the equivalence because it represents 

the full state space including the transitions between states 

and can use the outcome in a specific second state to make 

inferences about the other initial state. In contrast, model-

free control had no state representation and could guide 
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choice only by the value of outcomes. Hence, model-free 

and model-based control made qualitatively different pre-

dictions about decisions when the initial state of the trial 

differed from the one on the previous trial. 

Analysis of 2-Step data was based on the computational 

model provided by Wouter Kool (https://perma.cc/56SV-

DA2Y) and the mfit toolbox for Matlab provided by Sam 

Gershman (https://perma.cc/S2J8-MUVE). This model com-

bined model-free and model-based reinforcement learning. 

The behavioral data of each participant was fit to this hy-

brid model, yielding an individual best-fitting estimate of 

all free parameters (α, β, λ, π, ρ, ω; Supplementary Infor-

mation section 2.3 for details). For the present study, the ω 

parameter was the outcome measure of interest as it cap-

tures the relative weight of model-based and model-free 

reinforcement learning in computing the subjective value 

of options to guide behavior. For our analyses, we inverted 

this parameter so that larger values (closer to the maximum 

of 1) corresponded to more model-free (i.e., presumed ha-

bitual) control and smaller values (closer to the minimum 

of 0) to more model-based control. 

Working Memory Capacity Tasks     

We used three tasks of a working memory test battery 

(Lewandowsky et al., 2010) to control for the effects of cog-

nitive abilities in our analyses of habitual behavior: nu-

meric memory updating (NMU), spatial short-term memory 

(SSTM), and sentence span (SS). By using three different 

tasks assessing the two processes entailed in working mem-

ory (storage in the context of processing and relational 

integration) with two different content types (verbal, in-

cluding numeric, and spatial) we aimed to achieve a more 

construct-representative measure of working memory ca-

pacity. These three tasks have been shown to correlate 

highly with a construct-representative measure of working 

memory capacity (Lewandowsky et al., 2010) and, thus, can 

be considered as working memory marker tasks. 

In the NMU task, participants had to memorize numbers 

and update them according to mathematical operations. 

Each trial started with the presentation of a set of three, 

four or five frames. A number from one to nine then ap-

peared in each frame, one by one, for one second. Next, 

arithmetic operations ranging from -7 to +7, excluding 0, 

could appear randomly in any frame. Participants had to 

memorize the result of the operation for each frame. After 

two to six updating operations, the trial ended, a question 

mark appeared consecutively in each frame and partici-

pants had to type in the respective current digit for that 

particular frame. The outcome measure was the partici-

pant-specific total proportion of items recalled correctly, 

ranging from 0 to 1. 

In the SSTM, participants had to memorize the position 

of several dots in a 10x10 grid. In each trial, two to six dots 

appeared one by one for 900 ms each with 100 ms inter-

stimulus interval. After presentation of the last dot, a cue 

prompted the participants to reproduce the relative pattern 

of dots, that is, the location relative to each other. Nei-

ther the exact absolute position of the individual dots in the 

grid nor the sequence of the dots mattered. Participants re-

ceived 2 points for an exact match, one point for recalling 

a dot with a deviation of one cell and zero points for higher 

deviations. The participant-specific total sum of points was 

divided by the maximum possible score to yield a propor-

tion of correct answers ranging from 0 to 1 similar to the 

NMU task (see Lewandowsky et al., 2010, p. 573f). 

The SS task was a complex-span paradigm comprising 

a memory component and a secondary processing task 

(Lewandowsky et al., 2010). The present version of the task 

used verbal material for both components. For the sec-

ondary processing component, participants read a sentence 

consisting of three to six words for 5 s and had to judge 

and indicate within this time window whether this sentence 

was meaningful or not. Examples for a meaningful and 

meaningless sentence are “All bumblebees can fly.” and “All 

birds live in the city.”. After the meaningfulness response, 

a consonant was presented on the screen for 1 s before a 

100 ms inter-trial interval and the beginning of the next 

trial. Participants had to memorize the consonants shown 

in the order they have been presented and report them 

back after the end of each list. Lists had a length of three 

to seven sentences and consonants. The task began with 

three practice trials containing two, three, and four sen-

tences and consonants, respectively. The outcome measure 

was the participant-specific total proportion of correctly re-

called consonants (including the correct position in the list) 

ranging from 0 to 1 similar to the other working memory 

capacity tasks. Participants were instructed to categorize 

the meaningfulness of the sentences and report the memo-

rized consonants as accurately as possible. Thus, they were 

not aware that only the correct reporting of consonants was 

used as a measure of their working memory capacity. 

Questionnaires  

All questionnaires were performed by the participants 

online before the first training session. They were pro-

grammed so as not to produce missing responses, that is, 

participants were not allowed to proceed to the next page if 

an item had not been answered. 

Self-Report Habit Index (SRHI)     

The Self-Report Habit Index (SRHI; Thurn, 2014; Thurn 

et al., 2014; Verplanken & Orbell, 2003) is a self-report 

questionnaire used to measure the habit strength of real-

life behaviors. These behaviors were freely definable (e.g., 

“Taking the car to go to work is something …” or “Drinking 

alcohol is something …”) and participants completed 

twelve items (e.g., “I do frequently”, “that makes me feel 

weird if I do not do it”, or “I would find hard not to do”) for 

each of them. We assessed the habit strength of eleven dif-

ferent real-life behaviors: brushing teeth, eating meat, hav-

ing breakfast, drinking coffee, drinking alcohol, smoking, 

going to school/university/work by bike, going to school/

university/work by bus/tram/train, doing sport/exercises, 

eating snacks/candy, and watching TV/online streaming 

services (items partly taken from Gardner et al., 2011, 2012; 

Rees et al., 2018). In line with previous research, we used 

a 7-point Likert scale (i.e., from 0=“disagree” to 6=“agree”). 
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The response for each item was recoded so that higher 

numbers corresponded to stronger habits. All twelve re-

sponses regarding a particular behavior were summed up 

and divided by the maximum possible points (i.e., 72) to ob-

tain a value between zero (lowest possible habit strength) 

and one (highest possible habit strength). These maximally 

eleven behavior-specific scores were then averaged to a 

final habit strength score. Because we focused on habits 

as frequently expressed behavioral routines, we considered 

only those of the eleven behavior-specific scores for the cal-

culation of the final mean habit score for which partici-

pants had indicated that they show the behavior frequently 

(i.e., response category three or higher in response to the 

item “I do frequently”). If not at least three of the eleven 

behaviors were performed frequently, then the final habit 

strength score was coded as missing to ensure that the final 

score represented general habitual behavior. 

Creature of Habit Scale (COHS)      

The Creature of Habit Scale (COHS; Ersche et al., 2017; 

Overmeyer et al., 2020) consists of 27 items comprising a 

statement about behavioral routines, automatic responses, 

and habits. Answers were given on a 5-point Likert scale 

ranging from 1=“strongly disagree” to 5=“strongly agree”. 

Example items are “I like to park my car or bike always 

in the same place”, “I tend to do things in the same order 

every morning (e.g., get up, go to the toilet, have a cof-

fee…)”, and “I tend to like routine”. The final scores for the 

two distinct subscales of automaticity (11 items) and rou-

tine (16 items) were calculated by averaging the respective 

item scores. Correlation between these subscales is rather 

low (r=.154; Ersche et al., 2017). Therefore, they were not 

combined to an overall score but used as separate measures 

of habitual behavior. 

Habitual Tendencies Questionnaires (HTQ)     

The Habitual Tendencies Questionnaire (HTQ; Ramakr-

ishnan et al., 2021) is an eleven-item self-report question-

naire assessing the subscales Compulsivity, Regularity, and 

Aversion to Novelty. Example items are “The same thoughts 

often keep going through my mind over and over again”, 

“There is comfort in regularity”, and “I look forward to 

new experiences” (reverse scored). Answers were given on 

a 7-point Likert scale ranging from 0=“strongly disagree” 

to 6=“strongly agree”. The final score in this questionnaire 

was the result of summing up the values of all eleven items. 

In addition, the scores of the three subscales were formed 

by summing up the four or three items belonging to each 

scale, respectively. Both the total score and the subscale 

scores were used for further analyses. 

Trier Inventory for Chronic Stress (TICS)       

As previous research has indicated a link between ha-

bitual behavior and some measures of stress and anxiety 

(Friedel, 2017; Pool et al., 2021; Wirz et al., 2018), we as-

sessed chronic stress, trait anxiety, and impulsiveness with 

established questionnaires and explored the associations 

between these measures and measures of habitual control. 

However, this was only a side issue for our study to allow 

future research to examine the relationships between stress 

and habit formation more closely. 

The Trier Inventory for Chronic Stress (TICS; Petrowski 

et al., 2012; Schulz et al., 2004) is a self-report question-

naire containing 57 items, which assesses chronic stress 

on nine factors: work overload, social overload, pressure to 

perform, work discontent, excessive demands at work, lack 

of social recognition, social tension, social isolation, and 

chronic worrying. Example items are “I have too many tasks 

to perform.”, “Although I try, I do not fulfill my duties as 

I should.”, and “I have unnecessary conflicts with others.” 

Responses were given to the question, how often partici-

pants have experienced an item or felt that way in the last 

three months, on a 5-point Likert scale with verbal anchors 

for each point (0 = “never”, 1 = “rarely”, 2 = “sometimes”, 3 

= “often”, 4 = “very often”). Based on the item-factor map-

ping reported by Petrowski and colleagues (2012), the raw 

item scores of each scale were summed up to calculate the 

nine scale scores for further analyses. 

State/Trait Anxiety Inventory (STAI)     

We implemented the trait version of the State/Trait Anx-

iety Inventory (STAI; Spielberger et al., 1999). This version 

of the STAI consists of 20 items assessing general feelings 

of anxiousness, worry, and sadness. Example items are “I 

feel nervous and restless”, “I feel like a failure”, and “I feel 

inadequate”. Responses to the items are given on a 4-point 

Likert scale with verbal anchors for each point (1 = “almost 

never”, 2 = “sometimes”, 3 = “often”, 4 = “almost always”). 

Raw item scores were summed up to generate a trait anxi-

ety score for further analyses. 

Barratt Impulsiveness Scale (BIS-15)     

The Barratt Impulsiveness Scale short form (BIS-15; 

Meule et al., 2011; Spinella, 2007) is a 15-item self-report 

questionnaire used to measure impulsive behavior. An-

swers were given on a 4-point Likert scale with verbal an-

chors (1 = “rarely/never”, 2 = “occasionally”, 3 = “often”, 4 

= “almost always/always”). Example items are “I act on im-

pulse”, “I say things without thinking”, and “I plan tasks 

carefully”. The items were grouped into three subscales 

– motor, non-planning, and attentional impulsiveness – 

comprising five items each and a sum score of the raw item 

values for each subscale was calculated for further analyses. 

Edinburgh Handedness Inventory (EHI)     

The Edinburgh Handedness Inventory (EHI; Oldfield, 

1971) is a questionnaire giving participants eight behav-

ioral routines (e.g., brushing teeth, writing with a pen, or 

using scissors) and asking them which hand they prefer to 

use for performing these tasks. The answers were indicated 

on a 5-point Likert scale with verbal anchors of “always 

left”, “usually left”, “both equally”, “usually right”, and “al-

ways right”. Answers were coded on an integer scale from 0 

(corresponding to “always left”) to 4 (corresponding to “al-
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ways right”). Thus, sum scores close to the maximum (i.e., 

32) represented strong right-handedness, while sum scores 

close to zero represented strong left-handedness. 

Social Desirability Scale (SDS-17)     

Social desirability is an answer tendency, which might 

influence choices during the test phase of the Unrewarded 

Habit task. In the test phase of this task, there was no ob-

vious stimulus feature guiding choices, because the stim-

uli were not associated with reward and no information 

told participants what to choose. Therefore, we could have 

expected random choices or simple choice strategies like 

always choosing the left stimulus or alternating between 

stimuli in a pattern. Alternatively, participants could have 

deduced for the test phase that the experimenters expected 

them to prefer the stimulus previously instructed to be se-

lected more often. If a participant was likely to respond in 

a socially desirable manner, they might have preferred this 

stimulus to supposedly satisfy the experimenter. For this 

reason, we included the Social Desirability Scale (SDS-17; 

Stöber, 1999, 2001) in our assessment. This is a 16-item 

self-report questionnaire to measure social desirability in 

general. Answers were forced binary decisions between 

“yes” or “no”. Example items are “I always stay friendly and 

courteous with other people, even when I am stressed out”, 

“I occasionally speak badly of others behind their back”, 

and “I take out my bad moods on others now and then”. 

A mean score of all items with “yes” responses coded as 1 

and “no” responses as 0 (and reversed for six items) was the 

outcome measure of this questionnaire. Higher scores indi-

cated a stronger tendency to answer in a socially desirable 

manner. If this mean score showed a statistically significant 

correlation with the choices in the Unrewarded Habits task, 

we would use it as a covariate in the analyses of hypothesis 

H2a to control for tendencies to answer in a socially desir-

able manner. 

Sociodemographic Questionnaire   

Participant age, gender, education level, socioeconomic 

status, and ethnicity was assessed to characterize the sam-

ple. 

Sampling Plan   

There were no previously published studies that exam-

ined related research questions, leaving us with no base 

for an estimation of the expected effect sizes and of the 

required sample size. Furthermore, the generalized linear 

mixed effects models (GLMMs) used to analyze the pilot 

data did not converge with the full random effects struc-

ture, because of the insufficient sample size, preventing us 

from using these analyses as basis for our power analyses. 

Therefore, we simulated data with an assumed effect size 

that would be of interest (Cohen’s d=0.2 as a typical effect 

according to Gignac & Szodorai, 2016) and calculated an 

appropriate sample size to achieve 95% power for this effect 

size given our analytical approach. We simulated data based 

on the GLMMs used for the pilot data with the simr package 

(version 1.0.5; Green & MacLeod, 2016) in R (R Core Team, 

2019). We added simulated participants to our pilot sample 

to reach a sample size of 200, then used subsamples of dif-

ferent size to calculate the observed power with the given 

sample size, resulting in a power curve for one fixed effect 

of the GLMM over a range of sample sizes. These analyses 

showed the strength of our mixed-effects within-subject 

design: we needed relatively small sample sizes to achieve 

adequate statistical power, because we model individual 

choices and RTs on a trial-by-trial level using more infor-

mation than when using aggregated measures of behavior. 

For example, the simulation approach yielded a minimum 

sample size of 20 to achieve 98.20% (CI: 97.17%, 98.93%) 

power for the small effect of previous choice frequency in 

the Reward Pairs task. The same procedure for the GLMM 

of the choice frequencies during the test phase of the Un-

rewarded Habit task with a small effect of previous choice 

frequency yielded a minimum sample size of 55 to achieve 

96.10% (CI: 94.71%, 97.21%) power for this effect. 

In the contingency degradation task, habitual behavior 

corresponds classically to the absence of an effect of the 

degradation on response rates. Thus, there was no effect 

size for this effect to base a power calculation on. However, 

Vaghi and colleagues (2019) found the hypothesized 

stronger habitual behavior in patients with obsessive-com-

pulsive disorder compared to control participants, with Co-

hen’s d=0.912. If we were to replicate their effect, we would 

need a sample size of 66 to reach 95% power (t test, inde-

pendent groups, α=.05, two-tailed; G*Power 3.1.9.2; Faul et 

al., 2009). A similar issue held for the outcome devaluation 

taskLuque, in which the absence of an effect of the deval-

uation indicates habitual choices. Following the rationale 

for the contingency degradation task, if we were to repli-

cate Luque and colleagues’ (2019) effect (Cohen’s d=0.789) 

of the amount of training on responding with 95% power, 

we would require a sample of 86 participants (t test, inde-

pendent groups, α=.05, two-tailed; G*Power 3.1.9.2; Faul et 

al., 2009). Thus, a bigger concern for the required sample 

size was the correlational approach used in Research Ques-

tions 3 and 4. 

Regarding the correlational analyses between different 

tasks measuring habitual behavior (Research Questions 3), 

we considered a correlation of r≥.5 and a well-fitting unidi-

mensional measurement model as the criterion for a com-

mon habit process involved in all six tasks. Our reasoning 

was based on previous findings with regard to typical asso-

ciations of different cognitive and behavioral tasks in indi-

vidual differences research (e.g., Kretzschmar et al., 2016) 

as well as research on habitual behavior (Friedel et al., 

2014; Gillan et al., 2015; Sjoerds et al., 2016). As there were 

no studies reporting correlations between self-reported 

habits in questionnaires and experimental data (Research 

Question 4), we grounded our expectation of such a relation 

in previous research on the associations between test per-

formance in cognitive tasks and the self-estimate of these 

cognitive abilities (r=.34-.55; von Stumm, 2014), and rela-

tions between SRHI scores and real-life behavior in a meta-

analysis (r=.46; Gardner et al., 2011). However, in order to 

have a more conservative estimate of the required sample 
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size, we decreased the expected size of the correlation to 

r=.3 (corresponding to a large effect according to Gignac 

& Szodorai, 2016) between experimental and real-life ha-

bitual behavior. Thus, to achieve 95% power, we required 

a sample size between 190 (RQ3) and 200 (RQ4) partici-

pants based on Monte Carlos simulations and the theorized 

measurement und structural equation models (Muthén & 

Muthén, 2002; Table 1). 

To account for possible dropout during the successive 

training sessions, we increased the necessary sample size 

to 220 participants to be able to compensate up to 10% 

dropout (pilot study: 5.6%). As we used a planned missing 

design (see the Design section), 110 participants would en-

ter the analyses of outcome devaluation taskLuque and the 

contingency degradation task, respectively. For the analy-

ses across tasks (Research Questions 3 and 4), we used mul-

tiple imputation of the missing data of each participant 

(van Buuren, 2018). Hence, the sample size for these analy-

ses would be 220. In addition, this sample size gave us suffi-

cient statistical power (i.e., >99%) to identify a small effect 

(Cohen’s d=0.2) in all (G)LMMs used in RQs 1 and 2. 

Participants were sampled from the database of the 

Zurich Center for Neuroeconomics and the Social and 

Neural Systems Laboratory. The behavioral lab allowed for 

the testing of 36 participants simultaneously. Exclusion cri-

teria were not having performed the online questionnaires 

and 2-Step at the beginning of the first training session. To 

be included in the study, participants must not have par-

taken in the pilot study, be capable of understanding the 

German language for task instructions, and have normal or 

corrected-to-normal vision. Furthermore, we only included 

participants aged 18 to 40 years to avoid age effects and ex-

cluded participants with prior diagnosis of neurological or 

psychiatric disorders. 

Analysis Plan   

For the analyses of RQs 1 and 2, we used (G)LMMs 

(Baayen et al., 2008; Bates et al., 2015). These mixed-ef-

fects models have the advantage of enabling the combina-

tion of continuous and categorical responses and allowing 

to model heteroskedasticity (Baayen et al., 2008). Further-

more, these analyses aimed to increase the precision of 

estimated group (fixed) effects by explicitly modelling the 

variance of the dependent variable associated with specific 

participants or items (random effects). 

All (G)LMMs were initially set up with the maximal ran-

dom effects structure (Barr et al., 2013). That is, each fixed 

effect (main effects and interactions) was included as a ran-

dom effect with random intercept and slope nested in indi-

vidual participants. In addition, the stimulus identity (i.e., 

the specific stimulus irrespective of the condition in which 

it was used) was included as a random effect (intercept 

only) controlling for the used subset of the 15 stimuli rated 

at the beginning of the study. In case of convergence fail-

ures or singular model solutions with all appropriate opti-

mizers allowed by the lmercontrol function (package lme4, 

version1.1-21; Bates et al., 2015), the random effects struc-

ture was iteratively reduced starting with the random effect 

accounting for the smallest share of variance (Baayen et al., 

2008; Barr et al., 2013). For this and all following tasks, 

analyses of binary outcome measures (i.e., choice in Reward 

Pairs and Unrewarded Habit tasks) were conducted as bino-

mial GLMMs. Where the dependent variable was continu-

ous (i.e., ratings, log-transformed RTs), we fit an LMM. All 

(G)LMMs were bootstrapped to estimate confidence inter-

vals for the regression coefficients and all predictor vari-

ables that were not categorical were scaled so that each 

variable had a mean of zero and a standard deviation of one 

to enable comparisons of the size of their respective regres-

sion coefficients. 

The level of statistical significance for all frequentist 

analyses was set to α=.05, two-tailed, unless stated other-

wise. All bootstrapped analyses were based on 5,000 draws. 

RQ1: Does a frequency-based habitization process       

exist?  

Choices. For the Reward Pairs task data, we used a 

GLMM to analyze trial-wise left vs. right choice. Included 

predictors of choices were the difference in the values of 

the left and right stimuli (fixed effect, continuous) and the 

difference in previous choice frequency (fixed effect, con-

tinuous). We did not expect these effects to interact but 

explored their interaction because it may be relevant for 

future research on addiction. In analogy to value, we as-

sumed that not the absolute choice frequency during train-

ing drove choice during test, but the relative frequency 

compared to the alternative option. We hypothesized that 

relative previous choice frequency predicted choice during 

test in addition to relative reward values. Such a predictive 

relation would support a frequency-based habit process. 

Response times . An LMM was fit to RTs in the test 

phase. Specifically, log-transformed RTs were regressed on 

the value difference between the chosen and unchosen op-

tion (fixed effect, continuous), their difference in choice 

frequency during training (fixed effect, continuous), and 

the interaction of these effects. We used the difference be-

tween chosen and unchosen stimulus in RT analyses (in 

contrast to left vs. right in analyses of choices) to reduce 

the number of required regressors and simplify the analy-

sis. If higher frequency of choice during training gave rise 

to stronger habits during test, then larger differences in 

choice frequency should be associated with faster responses 

as well. Hence, we hypothesized to find main effects of 

value and choice frequency difference, with faster re-

sponses for larger, positive differences. The main effect of 

previous choice frequency would again indicate frequency-

based habitual behavior. In addition, we included the score 

of the EHI as a covariate (fixed effect, continuous) in this 

analysis to control for generally faster responses with the 

preferred hand. 

Stimulus ratings . An additional LMM regressed the rat-

ings of the stimuli used in the Reward Pairs task after the 

test phase on the ratings before the training (fixed effect, 

continuous), the reward levels associated with the stimuli 

(fixed effect, ordinal), the relative choice frequency during 

training (fixed effect, continuous), and the interactions be-

tween these effects. If choice repetition enhanced the sub-

jective value of chosen stimuli, then post-study ratings 
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should be higher for stimuli the participants chose more 

frequently during training than for stimuli they chose less 

frequently while controlling for pre-study ratings and re-

ward value, that is, we hypothesized a statistically signifi-

cant main effect of choice frequency during training. 

Computational model parameters  . We fit the choice 

data with computational models, aiming to obtain a more 

detailed understanding of the mechanisms that underlie 

choices. The computational model consisted of temporal 

difference reinforcement learning and a kernel capturing 

choice frequency (see Supplementary Information 2.1 for 

details about the computational models) thus combining 

value-based reinforcement learning and frequency-based 

habit learning. To investigate whether frequency-based 

learning had a significant role for choices during training 

and test sessions, we compared models including either re-

inforcement learning, a choice kernel, or both (or random 

choices independent of all kinds of stimulus values) with 

regard to their fit to the data. We hypothesized that model 

comparison and selection over the whole group based on 

the exceedance probability (Daunizeau et al., 2014; Rigoux 

et al., 2014; Stephan et al., 2009) would favor a model in-

cluding the choice kernel for the training and test choice 

data over models without a choice kernel, which would sup-

port the assumption that a frequency-based habit process 

contributes to behavioral control in our task. In addition, 

we explored model selection for individual participants 

based on the Bayesian Information Criterion (BIC; Schwarz, 

1978). For this, we used the criteria described by Raftery 

(1995) interpreting BIC differences of 6-10 as strong, and 

>10 as very strong evidence for the model with the smaller 

BIC. Thus, we did not assume that all participants neces-

sarily adopt the same strategies in performing the task but 

might have shown inter-individual differences. Moreover, 

we explored the fit of additional models (e.g., rate correla-

tion theory; Perez & Dickinson, 2020). 

Participants with more than 50% missing trials in any 

training or test session were excluded from these analyses. 

They were also excluded from the analyses of the Reward 

Pairs task if they chose the worse of two stimuli during one 

training or the test session in at least 50% of trials. In ad-

dition, trials with RTs less than 50 ms were discarded, be-

cause such fast responses could not be induced by perceived 

stimulus features. 

RQ2: Is external reinforcement of behavior       

necessary for frequency-based habitization or can       

the process arise also in a context without external          

reinforcement?  

Choices. All choices made during the test phase were 

modelled with a GLMM. Specifically, left versus right choice 

was regressed on the relative frequency of making these 

choices during training (fixed effect, continuous) in a hi-

erarchical binomial model. We hypothesized that relative 

choice frequency during training significantly predicts rel-

ative choice frequency in the test phase. Given that be-

havior in the Unrewarded Habit task was not reinforced, 

it may be more susceptible to researcher demand effects 

than the Reward Pairs task. To control for such effects, 

we would include the mean score of the Social Desirability 

Scale (SDS-17; Stöber, 1999, 2001; see Questionnaires) in 

the model as covariate of no interest (fixed effect, contin-

uous) if the SDS-17 score would show a statistically signif-

icant correlation with choices. The covariate would be z-

transformed (i.e., standardized) aiding convergence of the 

GLMM (Harrison et al., 2018) and making the correspond-

ing regression coefficients interpretable as a standardized 

effect size (Schielzeth, 2010). 

Response times . The log-transformed RTs in the test 

phase were analyzed in an LMM as a function of previous 

choice frequency and stimulus presentation location. Thus, 

RTs were regressed on the stimulus presentation location of 

the chosen stimulus in relation to training (fixed effect, di-

chotomous, same vs. reversed location) and the difference 

in previous choice frequencies of the chosen and uncho-

sen option (fixed effect, continuous). If a frequency-based 

habit had emerged, participants should respond faster in 

trials with the same stimulus presentation locations as in 

the training sessions compared to switched locations when 

choosing the stimulus with a higher choice frequency. 

Thus, we hypothesized that we would observe an interac-

tion between stimulus presentation location and previous 

choice frequency with fastest (slowest) RTs for presenta-

tions at the same (reversed) locations and high (low) pre-

vious choice frequency. Again, we included the EHI score 

(fixed effect, continuous) in this analysis to control for ef-

fects of handedness on RTs. 

Stimulus ratings . Another LMM regressed the ratings of 

the used stimuli after the test session on the ratings before 

trainings (fixed effect, continuous) and the relative choice 

frequency during training (fixed effect, continuous). Again, 

we hypothesized that the relative choice frequency affects 

post-training ratings, with higher ratings of the stimulus 

chosen more frequently during training compared to those 

stimuli chosen less frequently, while controlling for pre-

training ratings. 

Participants were excluded from analyses with the Unre-

warded Habits task if they failed to respond in more than 

50% of trials in any training or test session or if they chose 

the wrong stimulus during one of the training sessions in 

50% or more of the trials. In addition and similar to the Re-

ward Pairs task, trials with RTs less than 50 ms were dis-

carded. 

RQ3: Is there a universal (i.e., paradigm        

independent) habitization process?    

To analyze associations between experimental para-

digms assessing habitual behavior, we used the previously 

described scores of choices, RTs, stimulus ratings, and free 

parameters of computational models. The associations be-

tween the different paradigms were investigated based on 

bootstrapped Pearson correlations and their bootstrapped 

95% confidence intervals. In case of more than two scores 

(i.e., choices and RTs, Table S2), we applied confirmatory 

factor analysis (CFA) to test whether a measurement model 

with one (Hypothesis 3.1) or two (Hypothesis 3.2) latent 

factors would fit the data. Model fit was evaluated according 
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to the criteria proposed by Schermelleh-Engel and col-

leagues (2003). In detail, we investigated the χ2 goodness-

of-fit statistic, Comparative Fit Index (CFI ≥ .95), Root Mean 

Square Error of Approximation (RMSEA ≤ .08), and Stan-

dardized Root Mean Square Residual (SRMR ≤ .10). Compar-

ison of different measurement models (Hypothesis 3.2) was 

based on Satorra-Bentler-scaled χ2 difference tests (i.e., 

non-significance indicated equal model fit). 

For the analyses of Research Question 3 and the fol-

lowing Research Questions, we imputed missing data of 

the one task not performed by each participant (see Sam-

pling plan) based on multivariate imputation by chained 

equations (van Buuren & Groothuis-Oudshoorn, 2011). The 

imputation procedure takes advantage of the correlational 

patterns in the dataset, estimating the values of missing 

data for each participant several times. Since the propor-

tion of missing values in one variable was maximally 50%, 

50 imputed data sets were created (White et al., 2011). The 

resulting statistical parameters of each data set (e.g., cor-

relation coefficients) were pooled based on Rubin’s (1987) 

rules to answer the Research Question. 

RQ4: How does the habitization process relate to         

real-life habitual behavior?    

Based on the measurement model investigated in Re-

search Question 3, we examined the association between 

the latent habitization process and self-reported habitual 

behavior according to the COHS, SRHI, and HTQ question-

naires. In case of just two available scores (i.e., stimulus 

ratings; computational parameters, see Table S2), the mea-

surement model would be empirically under-identified and, 

therefore, we examined the association based on boot-

strapped Pearson correlations and their bootstrapped 95% 

confidence intervals for each paradigm. In case of conflict-

ing results regarding the association with the three ques-

tionnaires, the association with the SRHI was regarded 

most valid. 

RQ5: Is there a difference in validity with regard to           

various behavioral measures of habitual behavior?       

To evaluate the hypotheses of the previous four Research 

Questions, it was sufficient if the results for at least one 

behavioral measure provided evidence for an effect of fre-

quency-based behavior for each Research Question. How-

ever, to evaluate the validity of the different behavioral 

measures, we examined the result pattern across all Re-

search Questions with a focus on criterion validity (i.e., 

real-life habitual behavior; RQ4). If, for example, the results 

for RQ3 based on RTs and choices provided evidence for a 

universal habitization process but the results for RQ4 pro-

vided evidence for criterion validity only for RTs but not 

for choices, then RTs should be considered a more valid 

behavioral measure of habitual behavior than choices. As 

outlined above, we considered this Research Question as 

exploratory (and future research may want to revisit this 

question from a clinical perspective). 

Results  

Participants  

257 participants showed up for the first on-site assess-

ment, of which 26 dropped out over the course of the five 

days of assessment. Further 10 participants were excluded 

because of a prior diagnosis of neurological or psychiatric 

disorders and one because of being older than 40 years 

(see Sampling plan for ex-/inclusion criteria). Thus, the 

full sample consisted of 220 participants. For all analyses 

including data of the Reward Pairs or Unrewarded Habits 

task, there were additional a-priori defined exclusion crite-

ria (see Analysis plan of RQs 1 and 2 and Supplementary 

Analyses) resulting in further exclusion of seven and six 

participants, respectively. One participant was excluded in 

both Reward Pairs and Unrewarded Habits tasks, the re-

maining exclusions concerned only one or the other task. 

For one additional participant, test data of the Unrewarded 

Habits task was lost due to a technical error. Therefore, the 

final sample size for analyses of RQ1 and RQ2 was 213; for 

RQs 3-5 it was 208. 

Participants of the full sample (N=220) were on average 

23.25 years old (SD=3.35, range 18-39 years). 109 partici-

pants reported a female gender, 110 male, and one diverse. 

215 participants were currently living in Switzerland, two 

in Germany, one in Austria, and two did not specify their 

current residency. For 156 participants (70.9%), German 

was their mother tongue. Of the remaining 62 participants, 

13 reported elementary proficiency, 24 intermediate pro-

ficiency, and 27 advanced proficiency in German. No par-

ticipant indicated having only basic knowledge of German. 

Asked for their educational level, one participant indicated 

still going to school, one had completed secondary school, 

127 participants (57.7%) had a diploma that would allow 

them to attend a tertiary education institution, and 91 par-

ticipants (41.4%) had a degree from a tertiary education in-

stitution (e.g., a university or a university of applied sci-

ences). Asked for their current occupation (for which we 

allowed multiple responses), 206 participants (93.6%) indi-

cated being a student, five participants were unemployed, 

six participants were in an apprenticeship, 26 participants 

were employees, and three participants were self-em-

ployed. 

RQ1: Does a frequency-based habitization      

process exist?   

The purpose of the Reward Pairs task was to investigate 

whether mere frequency of behavior would drive habitiza-

tion, leading to a gradual change in behavior during test 

proportional to choice frequency during training. The Re-

ward Pairs task is unique in that it manipulates option val-

ues and choice frequency independently, allowing us to dis-

entangle the influence of value-based and frequency-based 

processes underlying habitization. The subsequent sections 

present findings relating choices, response times, and stim-

ulus ratings in the Reward Pairs task to frequency-based 

learning and decision making. For these analyses, 1 partic-

ipant was excluded for having more than 50% missing tri-

als in at least one training session; 3 participants were ex-
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Box 1. Hierarchical logistic mixed effects regression of choices during the test phase of the Reward Pairs task.                 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

Family: binomial (logit) 

Formula: action ~ diff_value * diff_choice_frequency + (diff_value + diff_choice_frequency | ID) 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.048 0.22 

diff_value 0.472 0.687 0.04 

diff_choice_frequency 0.183 0.034 -0.09 -0.44 

Number of observations: 28,320; groups: ID, 213 

Fixed effects: 

Estimate 95% CI OR z value Pr(>|z|) 

Intercept 0.023 
[-0.021, 

0.068] 
- 1.028 0.304 

diff_value 2.258 
[2.146, 

2.367] 
9.565 40.364 <.001 *** 

diff_choice_frequency 0.222 
[0.155, 

0.288] 
1.248 6.497 <.001 *** 

diff_value:diff_choice_frequency -0.031 
[-0.086, 

0.025] 
0.97 -1.075 0.282 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples. 

Correlation of Fixed Effects: 

Intercept -1 -2 

(1) diff_value 0.026 

(2) diff_choice_frequency -0.057 -0.359 

(3) 

diff_value:diff_choice_frequency 
-0.105 -0.009 0.001 

Participants’ choices were regressed on the difference in reward values (diff_value) and previous choice frequency (diff_choice_frequency) as well as their interaction. Both variables 

were z-transformed to facilitate model fitting and both main effects and the interaction effect were treated as random effects for both intercepts and slopes per subject. We also in-

cluded a random effect for the identity of the chosen stimulus (stim_rawID_chosen) to control for stimulus-specific effects independent of reward value and choice frequency. As an-

ticipated (see Analysis plan), we encountered issues with non-convergence or singular analysis results and iteratively reduced the random-effects structure starting with the random 

effect explaining the least variance. Specifically, we eliminated the random effects of the identity of the chosen stimulus and the interaction between value and choice frequency dif-

ferences. The fixed effects entail both the unstandardized regression coefficients (Estimate) and standardized odds ratios (OR). 

cluded for choosing the less valuable of two stimuli during 

at least one training or the test session in at least 50% of 

trials; and 3 participants were excluded for having less than 

50% accuracy in the explicit knowledge test about stimu-

lus values at the end of the experiment. This resulted in a 

final sample size of n=213 participants for the analyses of 

RQ1. Additional analyses and information can be found in 

the Supplementary Information 3.1. 

Choices. We tested the effect of choice frequency during 

training on choice frequency in the test phase (hypothesis 

H1a; Figure 2). Therefore, we fit a GLMM regressing choices 

during the test phase (left vs. right) on the difference in re-

ward levels between the left and right option and the dif-

ference in choice frequencies between the left and right 

option during training sessions. Random effects of all re-

gressors and their interaction per participant were included 

in the model. The difference in reward levels between the 

two options had a statistically significant effect on choice 

during the test phase (b=2.258, z=40.364, p<.001; Box 1) 

as did the difference in choice frequency during training 

(b=0.222, z=6.497, p<.001). There was no statistically sig-

nificant interaction between value and choice frequency 

(b=-0.031, z=-1.075, p=.282). Thus, as one would expect, 

during the test phase participants chose higher-value op-

tions more often than lower-value options (which, inciden-

tally, excludes the possibility that choice was based only 

on relative value, both for frequently chosen stimuli and 

for infrequently chosen stimuli). More importantly, partic-

ipants also chose options more frequently that they had 

chosen more frequently during training. The results point 

toward both value-based and frequency-based processes 

underlying choices in our paradigm. Thus, hypothesis H1a 

was confirmed. 

Response times.  We tested whether choice frequency 

during the training session would affect RTs in the test 

phase (hypothesis H1b). Thus, we fit a LMM regressing log-

transformed RTs on the difference in reward levels between 

the left and right option and the difference in choice fre-

quencies between the left and right option during train-

ing sessions. Test phase RTs were statistically significantly 
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Box 2. Hierarchical linear mixed effects regression of response times during the test phase of the Reward Pairs task.                  

Linear mixed model fit by REML. t-tests use Satterthwaite's method 

Formula: log(RT)~diff_value_chosen*diff_choice_frequency_chosen+score_EHI + (diff_value_chosen+diff_choice_frequency_chosen | ID) 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.007 0.084 

diff_value_chosen 2.54E-04 0.016 -0.08 

diff_choice_frequency_chosen 2.84E-04 0.017 -0.05 -0.3 

Residual 0.021 0.145 

Number of observations: 28,320; groups: ID, 213 

 

Fixed effects: 

Estimate 95% CI β df t value Pr(>|t|) 

Intercept 6.311 [6.259, 6.361] - 2.12E+02 245.871 <.001 *** 

diff_value_chosen -0.024 [-0.027, -0.022] -0.14 2.17E+02 -16.861 <.001 *** 

diff_choice_frequency_chosen -0.02 [-0.023, -0.017] -0.115 1.96E+02 -13.298 <.001 *** 

diff_value_chosen: diff_choice_frequency_chosen -0.012 [-0.013, -0.010] -0.038 2.76E+04 -12.79 <.001 *** 

score_EHI -0.001 [-0.003, 0.001] -0.066 2.11E+02 -1.125 0.262 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples. 

 

Correlation of Fixed Effects: 

Intercept -1 -2 -3 

(1) diff_value_chosen -0.014 

(2) diff_choice_frequency_chosen -0.009 -0.312 

(3) diff_value_chosen: diff_choice_frequency_chosen -0.01 -0.115 0.053 

(4) score_EHI -0.974 0.001 -0.001 -0.001 

Participants’ response times (RT) in ms were regressed on the differences in reward values between the chosen and unchosen options (diff_value_chosen) and the differences in previous choice frequencies (diff_choice_frequency_chosen). Both variables were z-transformed to facilitate model fitting. We 

also included a random effect for the identity of the chosen stimulus (stim_rawID_chosen) to control for stimulus-specific effects independent of reward value and choice frequency and a fixed-effect of no interest of the Edinburgh Handedness Inventory (EHI) to control for response time differences due 

to faster responding with the dominant hand. We eliminated the random effects of the identity of the chosen stimulus and the interaction between value and choice frequency differences to avoid issues of non-convergence and singular results. The fixed effects entail both the unstandardized (Estimate) 

and standardized (β) regression coefficients. 
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Figure 2. Choices during the test phase of the Reward Pairs task.           

(A) Displayed is the proportion of choice during test as a function of reward value and choice frequency during training for all trials of the test phase. (B) The association of choice 

proportions between training and test becomes more apparent when only focusing on trials in which participants chose between two stimuli with the same reward level. Error bars 

depict standard errors. N=213. 

shorter if the chosen option had a higher value than the 

unchosen option (b=-0.024, t(217)=-16.861, p<.001; Box 2) 

and if the chosen option was chosen more frequently dur-

ing training (b=-0.020, t(196)=-13.298, p<.001). Moreover, 

there was a statistically significant interaction between the 

difference in reward level and the difference in choice fre-

quencies during training (b=-0.012, t(27640)=-12.790, 

p<.001). The decrease in RTs was particularly prominent 

when the chosen option had a high reward level and a 

high previous choice frequency (Figure 3). In contrast, there 

was virtually no change in RTs over different reward values 

when previous choice frequency of the chosen stimulus was 

lower than that of the unchosen stimulus (negative values 

of the difference in choice frequency; Figure 3). Taken to-

gether, these results indicate that RTs become faster when 

choosing more valuable and previously more frequently 

chosen options. The results point toward both value-based 

and frequency-based processes underlying RTs in our para-

digm. Thus, hypothesis H1b was confirmed. 

Stimulus ratings.  We tested whether choice frequency 

during the training session would affect stimulus ratings af-

ter the test phase (hypothesis H1c). Hence, we fit a LMM 

regressing the stimulus ratings after the test phase on re-

ward value, choice frequency during training, and stimulus 

ratings before the training. Random effects of all regressors 

and their interaction per participant and per stimulus iden-

tity were included in the model. Stimulus ratings before 

the training had a statistically significant effect in stimulus 

ratings after the test phase (b=0.175, t(248)=5.393, p<.001; 

Box 3) as did reward value (b=0.593, t(406)=17.271, p<.001). 

In contrast, choice frequency during training did not have 

a statistically significant effect (b=-0.029, t(1238)=-0.667, 

p=.505). The results point toward value-based but not fre-

quency-based processes underlying changes in stimulus 

valuation in our paradigm. Thus, hypothesis H1c was re-

jected. 

Computational modeling.  To address hypothesis H1d, 

we fit four choice models to participants’ behavioral data: 

reinforcement learning only, choice kernel only, combined 

reinforcement learning and choice kernel, and random 

choice (for details see Supplementary Information). The re-

inforcement learning (RL) model learns stimulus values by 

repeated experience of the outcomes following each choice. 

In contrast, the choice kernel (CK) learns the value of 

choosing one stimulus simply by counting how often this 

stimulus is chosen. Thus, it operationalizes the idea that 

habit strength is proportional to choice frequency. We hy-

pothesized the combination of RL and CK to fit partici-

pants’ behavioral data best as their choice behavior should 

be guided by the overt reinforcement value of stimuli (be-

cause participants’ goal in the RP task is to maximize the 

points earned) but also by previous choice frequency (i.e., 

habit strength). The random choice model served as a 

benchmark without learning to test the other models 

against. 

First, we compared model fits over the whole group of 

participants. Exceedance probabilities based on AIC scores 

yielded very strong evidence favoring the RL model without 

choice kernel (model 2 in Figure 4A). Thus, hypothesis H1d 

was rejected on the group level. Note though that according 

to our model recovery analyses (see Supplementary Infor-

mation 2.2.1), we had a chance of around 25% to misclassify 

data generated by the combined RL and CK model as being 

generated by the RL model. This could have biased the es-

timated model frequencies and exceedance probability to-

wards the RL model. Second, we explored individual model 

fits to get a more nuanced picture (Figure 4B): 7 partici-

pants showed very strong evidence (absolute BIC difference 

greater than 10) for the model combining RL and CK (red 
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Figure 3. Response times during the test phase of the Reward Pairs task.            

(A). Distribution of median response times for the test phase of the Reward Pairs task dependent on reward value as well as choice frequency during training. (B) Reward value and 

choice frequency also interacted in the corresponding linear mixed effects model (Box 2). Presented are the average effects of the difference in stimulus value between chosen and 

unchosen stimulus for the difference in previous choice frequency between chosen and unchosen stimulus. For illustration, the difference in previous choice frequency of the chosen 

and unchosen option is split into terciles. We find that RTs decrease with increasing value difference and do so more steeply for stimuli chosen more frequently during training. (C) 

shows the same data as (B) but with the two variables switched. Response times were less dependent on previous choice frequency when participants chose low-valued stimuli than 

when they chose high-valued stimuli. N=213. 

bars in Figure 4B); 11 participants showed strong evidence 

(absolute BIC difference between 6 and 10) for the com-

bined model (ocher bars); for 36 participants, the absolute 

difference of BIC scores between the RL model and the 

combined model was between 0 and 6 meaning that there 

was insufficient evidence for either model and both were 

equally likely (green bars); 19 participants showed strong 

evidence for the RL only model (blue bars); and 140 partici-

pants had very strong evidence for the RL only model (pink 

bars). In summary, model comparisons on the group level 

did not favor the model combining RL and CK, providing lit-

tle evidence for a habit process driven solely by choice fre-

quency. However, on an individual level, the model combin-

ing RL and CK explained behavior best for a portion (about 

8%) of participants, suggesting that some participants may 

be particularly sensitive to previous choice frequency. 

Post-hoc analyses of computational models. We had pre-

registered the analysis of an additional model in which 

the inverse temperature parameter weighting the reinforce-

ment learning value βq is not free but determined by the 

weight for the choice kernel by βq=10-βh. Thus, a greater 

weight of the choice kernel automatically implied a lower 

weight of reinforcement learning values and vice versa. We 

included the parameter βh in the analyses for RQs 3 and 4 

to obtain an estimation of the weight participants gave to 

CK in their choices (see Supplementary Information 2.1.5; 

in the following, we call this model the fifth model or the 

reduced model combining RL and CK). In an additional ex-

ploratory, non-registered analysis, we repeated the model 

comparison including this fifth model. Including it showed 

strong evidence for the reduced model combining RL and 

CK over the whole group (Figure 5A). On an individual 

level, BIC score comparisons revealed evidence favoring the 

RL model for only one participant and indifference between 

the RL and the reduced model combining RL and CK for one 

participant. For the remaining 211 participants, BIC score 

differences greater than ten indicated very strong evidence 

in favor of the reduced model combining RL and CK. The 

parameter βh had a mean value of 6.78 (Figure 5B) indi-

cating a shift in balance between RL and CK towards CK (a 

value of 5 corresponds to equivalent weighting of RL and 

CK). Mean βh was significantly larger than 5 (t(207)=26.512, 

p<.001). Therefore, these exploratory analyses revealed 

very strong evidence that our participants indeed took pre-

vious choice frequency into account for current choices and 

that RL and CK values complement each other instead of 

having just an additive effect. 
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Box 3. Hierarchical linear mixed effects regression of stimulus ratings in the Reward Pairs task.              

Linear mixed model fit by REML. t-tests use Satterthwaite's method 

Formula: rating_post ~ rating_pre * value * frequency + (rating_pre + value | ID) + (1 | stim_rawID) 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.083 0.288 

rating_pre 0.03 0.174 -0.77 

value 0.124 0.353 0.11 -0.67 

stim_rawID Intercept 0.027 0.166 

Residual 0.408 0.638 

Number of obs: 1,688; groups: ID, 211; stim_rawID, 15 

 

Fixed effects: 

Estimate 95% CI β df t value Pr(>|t|) 

Intercept 0.034 
[-0.073, 

0.141] 
- 2.37E+01 0.628 0.536 

rating_pre 0.175 
[0.112, 

0.240] 
0.171 2.48E+02 5.393 <.001 *** 

value 0.593 
[0.526, 

0.660] 
0.588 4.06E+02 17.271 <.001 *** 

frequency -0.029 
[-0.090, 

0.045] 
-0.011 1.24E+03 -0.667 0.505 

rating_pre:value 0.015 
[-0.045, 

0.073] 
0.014 8.30E+02 0.478 0.633 

rating_pre:frequency -0.009 
[-0.080, 

0.061] 
-0.006 1.28E+03 -0.263 0.792 

value:frequency -0.022 
[-0.090, 

0.045] 
-0.015 1.24E+03 -0.631 0.528 

rating_pre:value:frequency 0.059 
[-0.011, 

0.130] 
0.041 1.30E+03 1.652 0.099 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples. 

 

Correlation of Fixed Effects: 

Intercept -1 -2 -3 -4 -5 -6 

(1) rating_pre -0.173 

(2) value 0.161 -0.201 

(3) frequency -0.322 0.037 -0.206 

(4) rating_pre:value -0.06 0.23 -0.03 0.029 

(5) rating_pre:frequency 0.016 -0.528 0.019 -0.044 -0.239 

(6) value:frequency -0.131 0.028 -0.5 0.002 0.021 -0.014 

(7) rating_pre: 

value:frequency 
0.015 -0.222 0.018 -0.011 -0.574 -0.014 -0.034 

Ratings at the beginning (rating_pre) and end of the study (rating_post) as well as stimulus values (value) and choice frequency during training (frequency) were z-transformed to fa-

cilitate model fitting. Ratings after the study were regressed on ratings before the study, value of stimuli, choice frequency during training, and their two- and three-way interactions. 

All effects were added as random effects on intercepts and slopes by participant as well as the raw stimulus identity (stim_rawID). We had to eliminate some random effects to avoid 

issues of non-convergence and singular results. Specifically, the effects with least variance explained and, thus, excluded were all interaction terms and the random effect of previous 

choice frequency. The fixed effects entail both the unstandardized (Estimate) and standardized (β) regression coefficients. Note that n=211 in this analysis, as two participants en-

countered technical errors during the stimulus ratings at the end of the study. 

Summary. Results of the analyses of choices and RTs 

provided support for the hypothesis that previous choice 

frequency on its own has an effect on later behavior in ac-

cordance with the assumption that habit strength might be 

proportional to behavioral frequency. In contrast, analyses 

of stimulus ratings did not support the hypothesis. The reg-

istered comparisons of different computational models of 

choice behavior during test did not support the hypothe-
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Figure 4. Exceedance probabilities and estimated model frequencies for choice data of the test phase of the                

Reward Pairs task.    

Over the group of participants (A), the exceedence probabilities for the RL model was close to 1 signifying a very strong belief that this model was more likely generating the ob-

served data than the other models in the comparison set. Models: 1 – random choice, 2 – reinforcement learning, 3 – choice kernel, 4 – reinforcement learning and choice kernel. On 

an individual level (B), evidence was strongly or very strongly in favor of the combined RL and CK model for 18 participants; there was insufficient evidence for either model for 36 

participants; and evidence favored the RL only model strongly or very strongly for 159 participants. Absolute BIC score differences categorized according to Raftery (1995): values be-

tween 6 and 10 signify strong evidence, values above 10 very strong evidence for one model over the other. 

sis for registered comparisons, while an exploratory analy-

sis including a fifth model did. As registered, we deemed 

support for one of the hypotheses nested in RQ1 sufficient 

to affirm the RQ. Thus, there was support for the assump-

tion of a frequency-based habitization process. 

RQ2: Is external reinforcement of behavior       

necessary for frequency-based habitization or      

can the process arise also in a context without          

external reinforcement?   

The Unrewarded Habit task manipulated instructed 

choice frequency in the absence of external reinforcement 

and thereby investigated whether choice frequency alone 

can drive habitization of behavior, independent of external 

reinforcement. The subsequent sections present findings 

relating choices, response times, and stimulus ratings in 

the Unrewarded Habit task to frequency-based learning and 

decision making. For these analyses, 3 participants were ex-

cluded for having more than 50% missing trials in at least 

one training session and 4 participants were excluded for 

choosing the wrong stimulus during at least one training or 

the test session in at least 50% of trials resulting in a final 

sample size of n=213 participants for analyses of RQ2. Ad-

ditional analyses and information can be found in the Sup-

plementary Information 3.2. 

Choices. We tested the effect of choice frequency during 

training on choice frequency in the test phase (H2a; Figure 

6). The corresponding GLMM regressed choice (left vs. 

right) on the difference in choice frequency during training 

sessions. Random effects of the regressor per participant 

were included in the model. Choice frequency during train-

ing had a positive and statistically significant effect on 

choice in the test phase (b=0.144, z=2.060, p=.039; Box 4). 

Thus, participants chose the left stimulus more frequently 

during test if they had chosen it more frequently during 

training. The findings suggest that frequency-based habit 

learning mechanisms are separate from value-based learn-

ing mechanisms. Thus, hypothesis H2a was confirmed. 

Please note that the mean score of the Social Desirability 

Scale (SDS-17) did not show a statistically significant corre-

lation with the choice score of the Unrewarded Habits task 
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Figure 5. Exploratory computational modeling analyses of choice behavior during test.          

When including the reduced model combining RL and CK, this reduced model was strongly preferred over the group of participants with an exceedance probability close to 1 (A). 

Models: 1 – random choice, 2 – reinforcement learning, 3 – choice kernel, 4 – reinforcement learning and choice kernel, 5 – reduced model combining RL and CK. The inverse tem-

perature parameter of the CK, βh, had a distribution with a mean of 6.78 indicating an imbalance between weighing RL and CK values towards the CK (B). Participants, for which the 

weighting parameter implied favoring RL are colored blue, those favoring CK green. On an individual level (C), evidence was very strongly in favor of the reduced model combining RL 

and CK for 211 participants; there was insufficient evidence for either model for one participant; and evidence favored the RL only model strongly for one participant. Absolute BIC 

score differences categorized according to Raftery (1995): values between 6 and 10 signify strong evidence, values above 10 very strong evidence for one model over the other. 

(r=-.06 [-.20; .07], p=.37) and was, thus, not included as a 

covariate in the GLMM. 

Response times.  We tested whether choice frequency 

during training affected RTs in the test phase (H2b). The 

corresponding LMM regressed log-transformed RTs (in ms) 

during test on the difference in choice frequency between 

the chosen and the unchosen option during training, the 

location of stimuli in respect to training, their interaction, 

and the EHI score. Random effects of all regressors and 

their interaction per participant were included in the 

model. There was no significant effect of choice frequency 

during training (b=-0.004, t(196.909)=-1.222, p=.223; Box 

5). Stimulus location had a statistically significant effect 

(b=0.028, t(204.715)=4.145, p<.001) indicating that stimuli 

presented in the same locations as during training elicit a 

faster response during the test phase. Previous choice fre-

quency and stimulus location did not statistically signif-

icantly interact. Together, the response time data in the 

Unrewarded Habit task do not support the hypothesis of a 

frequency-based habit learning mechanism separate from 

Figure 6. Choices during the test phase of the        

Unrewarded Habits task.    

The proportion of choosing a stimulus during test increased with instructed choice fre-

quency during training. Note that the average percentage across all four stimuli is less 

than 50% because most participants missed some trials (see Supplementary Information 

3.2.1). Error bars depict standard errors. N=213. 
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Box 4. Hierarchical logistic mixed effects regression of choices during the test phase of the Unrewarded Habit                

task.  

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

Family: binomial ( logit ) 

Formula: action ~ diff_choice_frequency + (diff_choice_frequency | ID) 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.265 0.515 

diff_choice_frequency 0.937 0.968 0.07 

Number of observations:12,332; groups: ID, 213 

 

Fixed effects: 

Estimate 95% CI OR z value Pr(>|z|) 

Intercept -0.059 [-0.140, 0.022] - -1.464 0.143 

diff_choice_frequency 0.144 [0.008, 0.285] 1.155 2.06 0.039 * 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples. 

 

Correlation of Fixed Effects: 

Intercept 

(1) diff_choice_frequency 0.06 

The difference in previous choice frequency (diff_choice_frequency) was z-transformed before the analysis and used as random effect on both intercept and slope per subject. A ran-

dom effect for the identity of the chosen stimulus (stim_rawID_chosen) had to be eliminated to avoid issues of non-convergence and singular results. The fixed effects entail both the 

unstandardized regression coefficients (Estimate) and standardized odds ratios (OR). 

value-based learning. Accordingly, hypothesis H2b was re-

jected. 

Stimulus ratings.  We tested whether choice frequencies 

during the training session would affect stimulus ratings af-

ter the test phase (H2c). We fit a LMM regressing the stim-

ulus ratings after the test phase on choice frequency during 

training and stimulus ratings before the training. Random 

effects of choice frequency by participant and stimulus 

identity were included in the model. Stimulus ratings be-

fore the training had a statistically significant effect on 

stimulus ratings after the test phase (b=0.333, 

t(819.780)=10.295, p<.001; Box 6). Choice frequency during 

training did not have a statistically significant effect 

(b=0.041, t(203.760)=1.271, p=.205). Thus, there was no in-

fluence of frequency-based processes underlying changes in 

stimulus valuation in our paradigm and hypothesis H2c was 

rejected. 

Summary. The results of the Unrewarded Habits task 

confirm the hypothesis of a frequency-based habit process 

in the absence of external reinforcement with regard to 

overt choices but not with regard to RTs or stimulus ratings. 

As support for one hypothesis nested in RQ2 suffices to af-

firm it, our results indicate that a frequency-based habit 

process does not necessarily rely on an externally rein-

forced learning process being at work simultaneously. 

RQ3: Is there a universal (i.e., paradigm        

independent) habitization process?    

Using scores of participants’ behavior in all six habit 

tasks, we first examined to what extent these tasks measure 

the same underlying construct via correlations and confir-

matory factor analysis (convergent validity). We analyzed 

the data separated by the modality of parameter (i.e., 

choice, response times, stimulus ratings, and parameters 

of computational models), but we report all correlations 

across different modalities in the Supplementary Informa-

tion (Tables S6 and S7). Since all behavioral scores of the 

tasks were coded such that larger positive values corre-

sponded to stronger habitual behavior, we expected posi-

tive correlations between task and questionnaire scores. As 

preceding analyses, we examined whether the previously 

used habit tasks showed the same effects as in the original 

studies using them. We were able to replicate previous ef-

fects for each of the four behavioral tasks (see Supplemen-

tary Information 3.3-3.6). Adding the data of three working 

memory capacity tasks, we then investigated the discrimi-

nant validity of the habit tasks. 

Convergent Validity   

Choices. We found no evidence for convergent validity 

(i.e., all r’s < .50). Due to the small correlations (rmax = 

-.09 [-.22; .05], see Table 2) between the five habit para-

digms providing a behavioral score based on choices, a one-
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Box 5. Hierarchical linear mixed effects regression assessing Response Times during the test phase of the Unrewarded Habit.                 

Linear mixed model fit by REML. t-tests use Satterthwaite's method 

Formula: log(RT) ~ stim_location*diff_choice_frequency + (stim_location*diff_choice_frequency | ID) + 1 | stim_rawID_chosen) 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.015 0.121 

stim_location reversed 0.007 0.082 0.04 

diff_choice_frequency_chosen 0.001 0.026 0.27 -0.37 

stim_loc reversed: diff_choice_freq 0.001 0.033 -0.23 0.78 -0.75 

Residual 0.047 0.216 

Number of observations: 12,332; groups: ID, 213 

 

Fixed effects: 

Estimate 95% CI β df t value Pr(>|t|) 

Intercept 5.824 [5.750, 5.898] - 210.325 156.362 <.001 *** 

stim_location reversed 0.028 [0.015, 0.042] 0.056 204.715 4.145 <.001 *** 

diff_choice_frequency_chosen -0.004 [-0.011, 0.002] -0.017 196.909 -1.222 0.223 

stim_loc reversed: diff_choice_frequency_chosen 0.007 [-0.002, 0.017] 0.021 186.483 1.572 0.118 

score_EHI -0.001 [-0.003, 0.002] -0.023 210.095 -0.664 0.507 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples. 

 

Correlation of Fixed Effects: 

Intercept -1 -2 -3 

(1) stim_location reversed -0.023 

(2) diff_choice_frequency_chosen 0.034 -0.143 

(3) stim_loc reversed: diff_choice_frequency_chosen -0.027 0.317 -0.708 

(4) score_EHI -0.972 -0.002 -0.006 0.004 

Participants’ response times (RT) in ms were regressed on the differences in previous choice frequencies (diff_choice_frequency_chosen), the stimulus location with respect to their location during training (stim_location_reversed), and their interaction. The difference in previous choice frequency was z-

transformed to facilitate model fitting. We also included a random effect for the identity of the chosen stimulus (stim_rawID_chosen) to control for stimulus-specific effects independent of reward value and choice frequency and a fixed-effect of no interest of the Edinburgh Handedness Inventory (EHI) to 

control for response time differences due to faster responding with the dominant hand. As before, we eliminated the random effects of the identity of the chosen stimulus to avoid issues of non-convergence and singular results. The fixed effects entail both the unstandardized (Estimate) and standardized 

(β) regression coefficients. 
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Box 6. Hierarchical linear mixed effects regression of ratings of the stimuli of the Unrewarded Habit task.                

Linear mixed model fit by REML. t-tests use Satterthwaite's method 

Formula: rating_post ~ rating_pre + frequency + (frequency | ID) 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

ID Intercept 0.207 0.455 

frequency 0.056 0.237 -0.2 

Residual 0.631 0.794 

Number of observations: 836; groups: ID, 211 

 

Fixed effects: 

Estimate 95% CI β df t value Pr(>|t|) 

Intercept 0.016 [-0.063, 0.099] - 208.494 0.393 0.695 

rating_pre 0.333 [0.269, 0.398] 0.338 819.78 10.295 <.001 *** 

frequency 0.041 [-0.023, 0.105] 0.041 203.76 1.271 0.205 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

95% CIs (confidence intervals) based on bootstrapping with 5000 randomly drawn samples 

 

Correlation of Fixed Effects: 

Intercept -1 

(1) rating_pre 0.01 

(2) frequency -0.078 0.035 

Participants’ ratings of the stimuli after the test phase (rating_post) were regressed on ratings before the training (rating_pre) and choice frequency during training (frequency). We 

also model the random effects of these variables and of the stimulus identity (stim_rawID). Ratings at the beginning (rating_pre) and at the end of the study (rating_post) as well as 

choice frequency during training (frequency) were z-transformed before the analysis. We eliminated the random effects of the identity of the chosen stimulus to avoid issues of non-

convergence and singular results. The fixed effects entail both the unstandardized (Estimate) and standardized (β) regression coefficients. Note that n=211 in this analysis, as two 

participants encountered technical errors during the stimulus ratings at the end of the study. 

dimensional measurement model did not fit the data (i.e., 

the models did not converge or insufficient model fits oc-

curred according to the criteria by Schermelleh-Engel and 

colleagues (2003)). Further exploratory analyses (e.g., ex-

ploratory factor analysis) were not successful in identifying 

a common underlying habitization process. 

Response times.  The highest correlation between the 

three habit paradigms was rmax = .20 [.03; .37] and, thus, 

we found no evidence for convergent validity (i.e., all r’s < 

.50). Testing different versions (e.g., congeneric, tau-equiv-

alent) of a one-dimensional measurement model based on 

a CFA led to improper solutions (e.g., negative variances) 

and model fits indicating a non-fitting measurement model 

(paired with non-significant factor loadings). Thus, we 

found no evidence for a common habitization process. 

Stimulus ratings.  The correlation between stimulus rat-

ings of the Reward Pairs and Unrewarded Habits tasks was 

r = -.15 [-.31; .02], which implies no evidence for a common 

habitization process. 

Computational parameters.  The highest correlation 

between the computational modeling parameters of the Re-

ward Pairs and Kool’s Markov sequential decision task was r 

= -.10 [-.22; .02]. Thus, the computational parameters pro-

vide no evidence for a common habitization process. 

Summary. Independent of the behavioral measure (i.e., 

choices, response times, stimulus ratings, computational 

parameters), the data provide no evidence for convergent 

validity and, hence, for a common habitization process un-

derlying these six tasks. In fact, most of the associations 

were near zero or even negative, providing strong evidence 

that the six habit tasks tap into different aspect of habits. 

Thus, hypothesis H3.1 was rejected. 

Discriminant Validity   

According to hypothesis H3.2, we assumed that a com-

mon habitization process can be distinguished from work-

ing memory based on a two-dimensional measurement 

model. However, as we did not find any evidence for conver-

gent validity of the six habit paradigms, we investigated the 

relation between each habit paradigm and working memory 

separately. 

Preceding analyses.  The correlations between the three 

working memory tasks were between .13 and .20 (Table 3). 

A one-dimensional measurement model for working mem-

ory (with two constrained factor loadings) fit the data well: 
2(1) = 0.12, p = .73, CFI = 1.00; RMSEA = 0.00, 90%CI = 

[0.00; 0.13]; SRMR = .01. In further analysis of hypothesis 

H3.2, the latent variable for working memory and the ob-

served behavioral measures for each paradigm were corre-

lated. All reported correlations were based on well-fitting 

models (i.e., CFI ≥ .95, RMSEA ≤ .08, SRMR ≤ .10). 
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Table 2. Correlations between various habit tasks.      

Choice Reward Pairs Unrewarded Habits Luque Tricomi 

Reward Pairs 1 

Unrewarded Habits -.09 [-.22; .05] 1 

Luque .06 [-.12; .24] -.09 [-.25; .06] 1 

Tricomi .08 [-.06; .22] .07 [-.08; .21] .07 [-.10; .25] 1 

Vaghi -.05 [-.23; .13] .04 [-.17; .23] .00 [-.29; .31] -.08 [-.29; .13] 

Response Times Reward Pairs Unrewarded Habits 

Reward Pairs 1 

Unrewarded Habits .10 [-.04; .22] 1 

Luque .01 [-.16; .16] .20 [ .03; .37] 

Stimulus Ratings Reward Pairs 

Reward Pairs 1 

Unrewarded Habits -.15 [-.31; .02] 

Computational Parameters Reward Pairs, αCK Reward Pairs, βCK 

Reward Pairs, αCK 1 

Reward Pairs, βCK -.30 [-.41; -18] 1 

Kool -.10 [-.22; .02] .08 [-.07; .22] 

All correlations have been bootstrapped and include 95% confidence intervals. Tasks used in previous studies are named after the first author of the respective original article: Kool – 

Sequential Markov Decision task; Luque – Outcome Devaluation taskLUQUE, Tricomi – Outcome Devaluation taskTRICOMI; Vaghi – Contingency Degradation task. 

Choices. The correlations between choice scores of the 

habit tasks and working memory capacity provided evi-

dence for discriminant validity of the habit tasks. All corre-

lations were smaller than .3 (rmax = .23 [.01; .45]; Table 3), 

thus, tasks shared less than 10% variance with each other. 

Moreover, all absolute correlation coefficients were as large 

as or larger than the corresponding correlation between 

choice scores of the habit tasks (Table 2). However, the con-

fidence intervals of a habit task’s correlations with all other 

habit tasks and with working memory capacity greatly over-

lapped. Accordingly, we do not interpret correlations with 

working memory to be substantially larger than those with 

other habit tasks. 

Response times.  Correlations between response time 

scores of habit tasks and working memory capacity pro-

vided evidence for discriminant validity of all habit para-

digms (i.e., all r’s < .30; rmax = .16 [-.06; .38], see Table 3). 

Stimulus ratings.  Correlations between stimulus rat-

ings scores of habit tasks with working memory capacity 

provided evidence for discriminant validity of all habit par-

adigms (i.e., all r’s < .30; rmax = -.02 [-.24; .20], see Table 3). 

Computational parameters.  Correlations between pa-

rameters of the computational models of habit tasks with 

working memory capacity provided evidence for discrimi-

nant validity of the Reward Pairs task (rmax = -.08 [-.30; 

.14], see Table 3). The parameter quantifying the balance 

between model-free and model-based control in the 2-Step 

task, ω, correlated substantially with working memory ca-

pacity (r = -.41 [-.63; -.19, see Table 3). As we had reversed 

ω so that a value closer to 1 reflected more model-free 

control and a value closer to 0 more model-based control, 

this correlation indicated more model-based control being 

associated with higher working memory capacity and pro-

vided only weak evidence for discriminant validity of the 

2-Step task. 

Summary. The present findings provide evidence for the 

discriminant validity of the frequency-based habitization 

tasks with regard to working memory capacity. In other 

words, habitization as measured with these tasks was in-

dependent of working memory, with the exception of the 

Markov sequential decision task 2-Step, which shared some 

variance with working memory. 

RQ4: How does the habitization process relate to         

real-life habitual behavior?    

We expected a correlation of at least r=.3 between the 

common underlying habitization process and real-life ha-

bitual behavior. Due to the missing evidence of a common 

underlying habitization process, we investigated the rela-

tion between each habit paradigm and each habit ques-

tionnaire (i.e., COHS, SRHI, HTQ) separately. As with the 

analyses for convergent validity, we expected positive cor-

relations between task and questionnaire scores of habitual 

behavior. 

Choices. No choice score of any habit task showed a cor-

relation of at least .3 with any of the habit questionnaires 

(rmax = -.24 [-.40; -.07], Table 4). Thus, the data provided no 

evidence for the construct validity of any of the habit tasks 

with this modality. 

Response times.  No response time score of any habit 

task showed a correlation of at least .3 with any of the habit 

questionnaires (rmax = -.15 [-.33; .03], Table 4). Thus, the 

data provided no evidence for the construct validity of any 

of the habit tasks with this modality. 
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Table 3. Manifest correlations between various working memory capacity tasks (upper most panel) and latent              

correlations between a latent working memory capacity factor and the various behavioral habit scores.               

Working Memory Capacity Numerical Memory Updating Sentence Span 

Numerical Memory Updating 1 

Sentence Span .20 [ .08; .34] 1 

Spatial Short-term memory .13 [-.01; .27] .16 [ .02; .31] 

Choice Working Memory Capacity 

Reward Pairs -.11 [-.33; .11] 

Unrewarded Habits .23 [ .01; .45] 

Luque -.08 [-.31; .15] 

Tricomi -.08 [-.30; .14] 

Vaghi .18 [-.05; .42] 

Response Times Working Memory Capacity 

Reward Pairs -.06 [-.28; .16] 

Unrewarded Habits .16 [-.06; .38] 

Luque .03 [-.21; .26] 

Stimulus Ratings Working Memory Capacity 

Reward Pairs -.02 [-.24; .20] 

Unrewarded Habits .00 [-.22; .22] 

Computational Parameters Working Memory Capacity 

Reward Pairs, alphaCK .02 [-.20; .24] 

Reward Pairs, betaCK -.08 [-.30; .14] 

Kool -.41 [-.63; -.19] 

All latent correlations have been bootstrapped and include 95% confidence intervals. 

Stimulus ratings.  No stimulus rating score of any habit 

task showed a correlation of at least .3 with any of the habit 

questionnaires (rmax = -.12 [-.26; .02], Table 4). Thus, the 

data provided no evidence for the construct validity of any 

of the habit tasks with this modality. 

Computational parameters.  No parameter of the cor-

responding computational model of any habit task showed 

a correlation of at least .3 with any of the habit question-

naires (rmax = .10 [-.04; .24], Table 4). Thus, the data pro-

vided no evidence for the construct validity of any of the 

habit tasks with this modality. 

Summary. The data collected in this study provided no 

evidence for the criterion validity of any habit task regard-

ing real-life habits as measured with self-report question-

naires. 

RQ5: Is there a difference in validity with regard          

to various behavioral measures of habitual       

behavior?  

In this exploratory research question, we examined 

whether one type of our behavioral measures (choices, re-

sponse times, stimulus ratings, computational parameters) 

showed systematically stronger associations with other 

measures of habitual behavior. Thus, we qualitatively ex-

plored patterns in the analyses of RQs 3 and 4. However, 

these analyses revealed overall substantially smaller cross-

correlations than expected and all confidence intervals of 

correlations between different behavioral measures over-

lapped strongly. Therefore, none of the various behavioral 

measures seems to be at an advantage over the others re-

garding associations with other measures of habitual be-

havior. 

Analyses regarding the association of anxiety and        

chronic stress with measures of habits       

As a side issue of our study, we explored the associations 

of anxiety and chronic stress measured via the State/Trait 

Anxiety Inventory (STAI; Spielberger et al., 1999) and Trier 

Inventory for Chronic Stress (TICS; Petrowski et al., 2012; 

Schulz et al., 2004) with all measures of habits (see Tables 

S9-S11). For anxiety, we found insubstantial to small cor-

relations (according to the classification of Gignac & 

Szodorai, 2016) with task measures of habits (rmax = -.14 [-

.28; .01], Table S9) and medium to large correlations with 

questionnaire measures of real-life habits (rmax = .59 [.50; 

.67], Table S11). For chronic stress, we found insubstantial 

to medium correlations with task measures of habits (rmax 
= -.23 [-.37; -.10], Table S9) and medium to large correla-

tions with questionnaire measures of real-life habits (rmax 
= .60 [.50; .68], Table S11). Note that we would have as-

sumed positive correlations between the degree of anxiety/

chronic stress and habitual behavior from the previous lit-

erature and some of the found associations are in opposite 

direction. For the relation between habit tasks and ques-
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Table 4. Correlations between habit tasks and questionnaires with bootstrapped 95% confidence intervals.            

Choice 
Reward Pairs Unrewarded Habits Luque Tricomi Vaghi 

COHS automaticity .15 [ .02; .28] -.01 [-.14; .12] -.00 [-.18; .17] .08 [-.04; .20] -.18 [-.33; .03] 

routine -.00 [-.15; .14] .09 [-.04; .22] -.12 [-.32; .08] -.12 [-.25; .01] -.09 [-.29; .10] 

HTQ total score -.02 [-.16; .12] .13 [-.00; .25] -.10 [-.26; .08] -.08 [-.20; .04] -.25 [-.43; -.04] 

compulsivity .01 [-.13; .16] .00 [-.13; .13] .05 [-.13; .23] -.00 [-.14; .14] -.26 [-.42; -.07] 

regularity -.05 [-.20; .10] .05 [-.09; .20] -.01 [-.20; .17] -.00 [-.15; .15] -.17 [-.36; .02] 

aversion to novelty -.00 [-.14; .13] .18 [ .05; .30] -.20 [-.34; .04] -.14 [-.25; -.03] -.07 [-.24; .12] 

SRHI .01 [-.13; .14] .02 [-.11; .15] -.09 [-.27; .09] -.03 [-.15; .09] -.05 [-.23; .13] 

Response Times Reward Pairs Unrewarded Habits Luque 

COHS automaticity .11 [-.01; .23] -.05 [-.20; .09] -.11 [-.27; .06] 

routine -.02 [-.16; .13] -.11 [-.24; .03] -.13 [-.32; .06] 

HTQ total score -.00 [-.14; .14] -.00 [-.13; .13] -.03 [-.23; .16] 

compulsivity .10 [-.04; .24] .02 [-.11; .15] -.04 [-.23; .15] 

regularity -.02 [-.16; .13] -.08 [-.21; .06] -.09 [-.28; .09] 

aversion to novelty -.08 [-.21; .05] .04 [-.09; .18] .05 [-.13; .23] 

SRHI -.08 [-.22; .07] -.14 [-.27; .00] -.06 [-.25; .13] 

Stimulus Ratings Reward Pairs Unrewarded Habits 

COHS automaticity .09 [-.06; .24] -.12 [-.26; .02] 

routine .08 [-.06; .22] .04 [-.09; .18] 

HTQ total score -.01 [-.15; .13] .05 [-.09; .19] 

compulsivity .01 [-.14; .16] -.09 [-.24; .06] 

regularity -.06 [-.21; .09] .09 [-.04; .22] 

aversion to novelty .02 [-.12; .16] .10 [-.04; .24] 

SRHI .11 [-.02; .24] .03 [-.11; .16] 

Computational Parameters Reward Pairs, alphaCK Reward Pairs, betaCK Kool 

COHS automaticity -.05 [-.19; .09] -.00 [-.15; .15] .05 [-.10; .20] 

routine -.03 [-.16; .10] .08 [-.06; .21] .03 [-.13; .20] 

HTQ total score -.08 [-.22; .07] .06 [-.09; .20] .03 [-.11; .17] 

compulsivity -.04 [-.19; .11] .02 [-.12; .16] .00 [-.15; .15] 

regularity -.06 [-.20; .08] .02 [-.12; .16] .10 [-.04; .24] 

aversion to novelty .05 [-.19; .09] .07 [-.07; .21] -.02 [-.15; .11] 

SRHI -.01 [-.18; .16] -.05 [-.19; .08] .07 [-.07; .22] 

Tasks used in previous studies are named after the first author of the respective original article: Kool – Sequential Markov Decision task; Luque – Outcome Devaluation taskLUQUE, Tricomi – Outcome Devaluation taskTRICOMI; Vaghi – Contingency Degradation task. 

COHS, Creature of Habit Scale; HTQ, Habitual tendencies Questionnaire; SRHI, Self-Report Habit Index. 
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tionnaires, these findings add to previously reported mixed 

findings regarding the association of experimentally in-

duced habits with trait anxiety (Gillan, 2021; Gillan et al., 

2016; Glück et al., 2023; Pool et al., 2022) and stress 

(Friedel, 2017; Pool et al., 2022; Schwabe & Wolf, 2009; 

Wirz et al., 2018), though the differentiation between acute 

and chronic stress seems to be relevant to resolve the con-

flicting nature of our and previous findings. 

Discussion  

Our study aimed to empirically test the notion that be-

havioral frequency contributes to habit strength with two 

new tasks and assess the associations of behavior in these 

tasks with paradigms used previously to measure human 

habits in the lab. Furthermore, we included all three cur-

rently available self-report questionnaires to measure ha-

bitual tendencies in real-life behavior. Analyses of behavior 

in the Reward Pairs and Unrewarded Habits tasks showed 

evidence for the hypothesized effect of previous choice fre-

quency in addition to, and even independent from, external 

reinforcement. However, we could not confirm that the 

tasks we used measure the same underlying latent con-

struct of habitual behavior. In addition, associations be-

tween behavioral tasks and self-report questionnaires were 

low and, thus, provided no evidence that the behavioral 

tasks we used measure something related to self-reported 

real-life habits. Thus, if taken at face value, our data sug-

gest that habits are specific to stimuli and behaviors used 

rather than reflecting one common habitization process. 

Effects of frequency and reinforcement      

We found an effect of previous choice frequency on fu-

ture choice frequency and response times irrespective of 

external reinforcement value. Hence, we provide empirical 

evidence for the notion that current behavior is shaped in 

part by the mere frequency with which agents produced a 

specific behavior in the past (Guthrie, 1959; Miller et al., 

2019). This effect was smaller than the effect of reinforce-

ment on behavior and occurred primarily in overt choice 

and to a lesser degree in response times. Our findings re-

garding frequency-based learning processes raise the pos-

sibility that one path to the development of habits consists 

of repeating a behavior in a stable context, which might en-

trench that behavior into a routine that can be triggered 

automatically by context stimuli. This might be a useful 

lever when trying to change maladaptive behavior or de-

velop beneficial routines (e.g., regarding physical exercise, 

dietary choice, or social media use). From a clinical per-

spective, it will be interesting to see how pure frequency-

based learning relates to disorders such as addiction and 

compulsion. From a theoretical perspective, we would sup-

pose this effect (or the elicitation and maintenance of be-

havior more generally) to be faster and stronger and to be 

associated with stronger extinction resistance if reinforce-

ment is used in addition to mere repetition. This is corrob-

orated by the comparatively smaller effect of repetition in 

the Unrewarded Habits compared to the Reward Pairs task. 

At the same time, our findings regarding the influence 

of choice frequency and its interpretation of supporting in-

creasing habitization of behavior are at odds with some re-

ports of “instant habits” (Gollwitzer, 1999, p. 499) or the 

“automatic effects of instructions” (Meiran et al., 2017, p. 

509) due to using implementation intentions during the in-

struction of a task. In these studies, the use of explicit if-

then instructions to participants increased automaticity of 

behavior inferred from response times or accuracy during 

task execution. The effect of implementation intentions 

cannot be explained through behavioral frequency as it is 

assumed to affect behavior immediately after instructions. 

Yet, in how far implementation intentions really induce 

habit-like behavior is still an open question. One study 

combined implementation intentions with the Symmetrical 

Outcome-Revaluation task (Watson et al., 2023) finding an 

influence of the instructions on behavior that is better ex-

plained with reduced stimulus-outcome learning instead of 

a change of stimulus-response learning, which is supposed 

to underlie habitual behavior. More research is needed to 

find commonalities and differences between the effects of 

instructions and behavioral repetition on habitual behav-

ior. 

Our findings did not suggest an interaction between be-

havioral frequency and reinforcement in most analyses of 

the Reward Pairs task. It is an interesting question for fu-

ture research to test whether there are conditions in which 

the two effects together impact and shape habitual behav-

ior more strongly than would be expected from adding up 

their individual effects. For example, it might be that repe-

tition has a relatively larger effect in combination with sub-

stances inducing large reinforcing effects like cocaine (Ito 

et al., 2002; Redish et al., 2008; Robbins & Everitt, 1999) 

than in our experimental conditions using small amounts 

of snacks or money. This might then lead to faster habiti-

zation of substance use and could contribute to the devel-

opment of substance use disorders. Yet, we currently lack 

empirical evidence for this proposition. However, the ef-

fect of behavior repetition is already used as a part of cer-

tain therapeutic approaches to treat alcohol use disorders, 

chronic tic disorder, and trichotillomania, that is, Cogni-

tive Bias Modification and Habit Reversal Training (Azrin & 

Nunn, 1973; Bate et al., 2011; Gladwin et al., 2017; Stock, 

2017). Both therapeutic approaches rely in part on the fre-

quent repetition of instrumental behavior that is diametri-

cal to maladaptive or burdensome routines or automatically 

triggered responses. 

Our finding of an influence of choice frequency on value-

based decision making converges with previous reports of 

past repetitive behavior affecting current behavior in the 

fields of working memory (Oberauer et al., 2015), percep-

tual decision making (Abrahamyan et al., 2016; Braun et 

al., 2018; Urai et al., 2019), and choice-induced preference 

changes (Brehm, 1956; Izuma & Murayama, 2013; Sharot et 

al., 2009). Furthermore, work on derived relations between 

stimuli (e.g., Liefooghe et al., 2020) showed that stimulus-

stimulus associations can be learned by repetition without 

direct reinforcement but be inferred from overlapping stim-

ulus material. These derived associations can even lead to 
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automaticity as observed in a Stroop task. Thus, this learn-

ing process can work without direct reinforcement of be-

havior and still lead to automaticity, a hallmark feature of 

habits (Du et al., 2022; Seger & Spiering, 2011). Together 

with our findings regarding frequency-based habitization 

of behavior, this might create an interesting line of re-

search examining habits on a more fundamental level, that 

is, on the level of the constituent features of habitual be-

havior. The nature of these features depends on the defi-

nition one uses in habit research. For example, Seger and 

Spiering (2011) suggested habits to be automatic, inflexi-

ble, learned slowly or incrementally, unconscious, and in-

sensitive to changes in reinforcer value. Gardner (2015) 

names automatic impulse generation, impulses (or urges) 

to perform behavior, cue-dependency, and an underlying 

stimulus-response association as fundamental characteris-

tics of habits. Finding approaches to examine these features 

will advance the field. 

Validity of habit tasks     

The lack of associations across tasks seems not to have 

been caused by unusual behavior of our participants. In-

deed, our participants showed the same behavioral effects 

as the participants of the original studies (see Supplemen-

tary Information 3.3-3.6). In the devaluation tasks using 

food outcomes by Tricomi and colleagues (Pool et al., 2022; 

Tricomi et al., 2009), participants did not show a change 

in response rates after devaluation by satiety (i.e., they 

seemed insensitive to changes in outcome value in their be-

havior, though their self-reported valuation of the deval-

ued snack item decreased). This pattern replicates that of 

the original study (Tricomi et al., 2009) and the one suc-

cessful replication study (Pool et al., 2022), while being at 

odds with previously reported failed replications (de Wit et 

al., 2018; Gera et al., 2023). Participants’ behavior in the 

outcome devaluation task by Luque and colleagues (2020) 

using monetary rewards revealed goal-directed changes in 

overt responses during devaluation but showed increased 

response times when participants had to switch their 

learned response to the now more valuable option. Thus, 

we replicated the original study’s (Luque et al., 2020) find-

ing of response time switch costs associated with habitual 

behavior in the absence of an effect on overt choice. Par-

ticipants’ behavior in the contingency degradation task was 

consistent with the findings for the original study’s (Vaghi 

et al., 2019) control group in that they goal-directedly 

adapted their response rates to changes in the contingency 

between action and outcome, that is, neither the original 

authors nor we found evidence for the development of 

habits in a non-clinical sample. In the sequential Markov 

decision task, participants showed behavior corresponding 

to a mixture of model-free and model-based behavior sim-

ilar to the original study (Kool et al., 2016). Yet, there were 

no substantial associations between different habit tasks 

(see Tables 2, S6, and S7). Therefore, the lack of association 

seems not to be caused by our participants behaving differ-

ently than those in previous publications with these tasks 

and we have to conclude that the various habit tasks used in 

our study do not measure a single latent “habit” construct. 

One possible reason for the lack of associations between 

habit tasks is that these tasks might not be “process pure” 

(Seger, 2018, p. 154), that is, all tasks might measure 

processes besides the development of habitual behavior. If 

the amount of variance related to processes different from 

habit is relatively large and does not overlap across tasks, 

the habit tasks would not share enough variance to make 

an association between them evident. This might also hap-

pen if habits are dependent on the specific stimuli or re-

sponses used. As habits are strongly context-dependent in 

general (De Houwer, 2019; Gardner, 2015), this dependency 

on the specifics of the tasks seems plausible. In this case, 

specific features of the stimulus material or characteristics 

of the learning environment would shape how automatic 

and habitual a certain behavior becomes with repetition. 

However, this notion appears to be incompatible with the 

assumption of a stable, trait-like individual propensity to 

develop habits, which is implicitly assumed, for example, in 

the literature examining differences in habitual behavior in 

substance use disorders (e.g., Everitt & Robbins, 2016). As-

suming that a “habit trait” exists but we were not able to 

measure it with the tasks we used in our study, habit re-

searchers will need to find better ways of measuring habit-

ual behavior in the lab to uncover it. 

In addition to the lack of associations between tasks, 

analyses examining the construct validity of habit tasks 

provided no evidence for an association between any exper-

imental measure and self-reports of real-life habits. Thus, 

our findings point towards a lack of validity of all used 

tasks. This pattern of findings is similar to that of Eisenberg 

and colleagues (2019) who in their seminal study on self-

regulation showed a lack of associations between various 

tasks and questionnaires supposed to measure some aspect 

of self-regulation. Furthermore, task measures did not 

show substantial associations with real-life outcomes in 

their study – in their perspective a result of the behavioral 

tasks either not successfully probing the cognitive func-

tions that are relevant in real life or having a “contrived 

nature”, compromising their ecological validity. The second 

argument of Eisenberg and colleagues (2019) is also in line 

with Cattell’s (1957) proposition that task and question-

naire data in general do not show more than small correla-

tions at best even if they are supposed to measure the same 

construct as their method-specific variance is vastly greater 

than the shared construct-related variance. Circumventing 

this issue by using a latent modeling approach which would 

have accounted for method-specific variance was not possi-

ble because the measures within the same class of method 

(i.e., tasks) were mostly unrelated. 

More generally, our findings converge with the notion 

that it is not easy to elicit habits in humans performing 

tasks in the lab (Gera et al., 2023). Indeed, tasks specifically 

designed to robustly establish habits result in substantial 

variation in the degree of habitual behavior across partic-

ipants (e.g., Pool et al., 2022, Fig. 3; van Timmeren et al., 

2023, Fig. 2B; van Timmeren & de Wit, 2023, Fig. 2C). This 

is in line with our own findings with the previously used 

habit tasks (see Supplementary Information 3.3.-3.6). Ac-

cordingly, some authors even call into question whether the 
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commonly used tasks measure habits at all (e.g., Buabang 

et al., 2021; De Houwer et al., 2018, 2023), while others just 

call into question certain aspects of habitual behavior like 

automaticity (Du & Haith, 2023). While our data suggest 

that it is in principle possible to elicit habits in some hu-

mans in the lab, they also show that, like other behaviors, 

habits are more situation-specific and task-dependent than 

often assumed. 

Limitations  

Although we took great care to avoid major shortcom-

ings of our preregistered study, there were still limitations 

worth keeping in mind. The sample was a convenience sam-

ple mostly comprised of university students. Thus, our 

sample was relatively young, likely with a decreased range 

of cognitive and learning abilities compared to the pop-

ulation. This decreased variance might in turn have led 

to underestimating associations across different measures 

and reduced generalizability of our findings. Second, test-

ing took around 90-120 min per day over the course of five 

consecutive days in addition to two online sessions before 

the first on-site session of around 45 and 60 min, respec-

tively. This long duration might have strained participants’ 

motivation and attention. Although we balanced the se-

quence of tasks across participants to counter order effects, 

reduced motivation and attention might have prevented 

participants from showing their maximum performance in 

some tasks. By consequence, this might have decreased 

variance of behavior across participants further, leading to 

additional underestimation of associations. However, this 

caveat is hard to avoid in this type of study and could only 

be counteracted with a reduced set of tasks or a larger 

sample with more subgroups in a planned missing design. 

Yet, such an approach might have created problems with 

the imputation procedure due to the greater proportion of 

missing data. 

Another challenge was creating a task that works with-

out directly reinforcing behavior, yet having control over 

what participants do. In the Unrewarded Habits task, we in-

structed participants which stimuli to choose during train-

ing and they generally complied with our instructions. 

However, one could argue that following instructions might 

have been a rewarding experience for them, thus creating 

an internal reinforcement signal. This effect is outside our 

experimental control, which is why we only speak about the 

effects of external reinforcement in our research questions 

and the interpretation of our findings. 

Conflicting findings in the habit literature might be 

partly due to misalignments of the definition of habits used 

in different studies (De Houwer et al., 2023). In this study, 

we examined habits in terms of functional causation, that 

is, “as behavior that is due to certain environmental events 

under certain conditions” (De Houwer et al., 2023, p. 871). 

What we define as habitual behavior in the Reward Pairs 

and Unrewarded Habits tasks is supposed to be caused by 

previous choice frequency, while habitual behavior in the 

devaluation and degradation tasks (Luque et al., 2020; Tri-

comi et al., 2009; Vaghi et al., 2019) is defined as behavior 

“insensitive to changes in rewards or reward contingencies” 

(De Houwer et al., 2023, p. 871). These definitions of ha-

bitual behavior correspond to habits in terms of functional 

causation. However, with the used computational models 

we made an assumption about the mental causes of habit-

ual behavior, that is, changes in subjective value represen-

tations due to reinforcement and choice frequency. Thus, 

we covered two of the four suggested kinds of definition of 

habitual behavior, but caution needs to be exercised if one 

intends to generalize our findings to habits that are defined 

descriptively or representationally. 

An additional caveat is that we do not know the reli-

ability of the used paradigms. Repeating the full proce-

dure on the same participants was beyond the scope of 

this already large study. Therefore, we cannot make any 

statement about the reliability of the experimental mea-

sures, and it is possible that a lack thereof has led to the 

lack of associations between tasks and between tasks and 

questionnaires. However, the conclusions would remain the 

same. Whether the used paradigms lack reliability or valid-

ity – we as a field should invest efforts to modify tasks or 

generate new behavioral tasks and examine their reliability 

and validity before using them in further studies and claim-

ing that the results of those studies speak to mechanisms 

of habitual behavior. This is a long-term endeavor based on 

iterations of theory building/refinement, generation of new 

tasks or refinement of old ones, and the empirical examina-

tion regarding their psychometric properties. This process 

might be facilitated by devising benchmark findings that 

are reproducible, generalize across methodological varia-

tions, and are theoretically informative as was done in the 

field of short-term and working memory research (Oberauer 

et al., 2018). The effect of behavioral frequency found to be 

at work in our study could be one of those benchmarks to-

gether with automaticity, reinforcer revaluation insensitiv-

ity, cue-dependency, and other hallmark features of habit-

ual behavior. 

Conclusions  

In conclusion, a main contribution of this study is to 

provide evidence that a frequency-based mechanism is at 

play during instrumental learning. This process works in 

addition to, and independent of, value-based learning 

processes and might be one mechanism driving habitiza-

tion of behavior. As such, the effects of behavioral repeti-

tion might be considered as one of a number of character-

istics defining habitual behavior in future studies and could 

contribute to the emergence of maladaptive behavioral rou-

tines or aid in shaping beneficial every-day habits. How-

ever, the indicators of frequency-based habitization were 

not associated with measures of habits from other behav-

ioral paradigms. Moreover, those other measures were not 

meaningfully associated with each other, and no experi-

mental indicator of habitual behavior was associated with 

self-report measures of real-life habits. This set of findings 

calls into question current approaches of inducing and 

measuring habitual behavior in the lab and calls for a rigor-

ous reassessment of our understanding and measurement 

of human habitual behavior in the lab. 
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https://doi.org/10.17605/OSF.IO/EQ9JD. 
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