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Abstract

In current clinical practice, radiotherapy treatments are often fractionated,
i.e. the total radiation dose is equally divided into small fractions to be
delivered daily over a period of few days or weeks. It has recently been
shown in silico that spatiotemporal fractionation schemes, i.e. delivering
distinct dose distributions in different fractions, can potentially improve the
treatment. This is possible if these dose distributions are designed such that
different fractions deliver similar doses to normal tissues (i.e. exploit the
fractionation effect), but each fraction delivers high single-fraction doses to
alternating parts of the tumor (i.e. achieve partial hypofractionation in the
tumor). Thereby, the ratio of biological dose in the tumor versus the normal
tissue can be improved.

In this project, we further developed this innovative and novel concept.
In particular, we focused on:

1. Developing new treatment planning algorithms for spatiotemporal frac-
tionation

2. Identifying potential clinical applications of spatiotemporal fractiona-
tion

with the aim of bringing spatiotemporal fractionation towards the design and
implementation of a phase I clinical trial.

Spatiotemporal fractionation is associated with higher complexity in treat-
ment planning and delivery. Different plans with distinct dose distributions
for different fractions must be designed such that all fractions together deliver
the prescribed biological dose to the tumor. To that end, novel mathemati-
cal optimization methods for treatment planning have been developed, which
are based on the cumulative biological dose rather than the physical dose. In
particular, we developed robust treatment planning methods to account for
geometric uncertainty in the patient setup and biological uncertainty in the
fractionation sensitivity, which may lead to a degradation of the resulting
treatment if not accounted for. It was shown that spatiotemporally fraction-
ated treatments can be obtained which are robust against setup errors and
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uncertainty in the fractionation sensitivity. At the same time, these robust
plans maintain most of their dosimetric benefit over uniformly fractionated
plans. Besides liver cancer patients and patients with large arteriovenous
malformations, patients with multiple brain metastases were identified to be
especially well suited for spatiotemporal fractionation, because of the high
accuracy in patient positioning. For theses patients, delivering high doses
to different metastases in different fractions allows for fractionation of the
normal brain dose in between the metastases while increasing the biological
dose within the metastases.

In addition, novel extensions of spatiotemporal fractionation were inves-
tigated. Spatiotemporal fractionation has been combined with other degrees
of freedom that can be exploited in fractionated radiotherapy treatments, i.e.
the combination of different particle types and treatment techniques, and the
use of different beam orientations in different fractions. We showed that in
the context of combined proton-photon therapy, spatiotemporal fractionation
can be used to determine the optimal dose contribution of the proton and
photon fractions to the tumor, thereby improving on simple proportional
combination of intensity modulated radiotherapy and intensity modulated
proton therapy plans. Also, we demonstrated that the quality of spatiotem-
porally fractionated treatments can be boosted by selecting fraction-specific
beam orientations that are beneficial to treat specific regions of the tumor.
To that end, a treatment planning algorithm was developed that allows for
simultaneous optimization of multiple non-coplanar arc treatments.

Finally, the simultaneous optimization of multiple dose distributions based
on the cumulative biological dose is not supported by any commercial treat-
ment planning system. To this end, we implemented a method which allows
to import treatment plans optimized using our in-house research treatment
planning system into a commercial treatment planning system. Thereby, it
is possible to deliver spatiotemporally fractionated treatments in the clinics.

In conclusion, in this dissertation we addressed the main hurdles associ-
ated with spatiotemporal fractionation which must be overcome before being
clinically implemented. The work performed in this thesis may thus facilitate
the design of a clinical phase I trial to investigate the feasibility of spatiotem-
poral fractionation in the clinics.
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Chapter 1

Introduction

Cancer is the second leading cause of death worldwide [1]. In Switzerland,
more than 46’000 new patients were diagnosed with a tumor and more than
17’000 persons died from cancer in 2019 [2]. Due to population aging, en-
vironmental factors and better diagnostic tools, the incidence of cancer has
been steadily increasing over the past few decades. However, the mortality
rate considerably decreased over the same period of time. The implementa-
tion of screening programs contributed to detect tumor at the early stages
and significant advancements in the treatment of cancer were made.

Besides surgery and chemotherapy, radiotherapy is one of the three main
treatment options for cancer patients, with more than half of all tumor pa-
tients receiving radiotherapy as part of their treatment [3]. Radiotherapy
delivers ionizing radiation to the tumor, which disrupts cancer cells by in-
ducing DNA damage. The energy deposited in the tissue by radiotherapy is
quantified by the physical quantity "dose", which has the unit of Gray (1 Gy
= 1 J/kg), and can be delivered either from an external or an internal radi-
ation source. The central goal of radiotherapy is to deliver enough radiation
dose to the tumor to achieve tumor control, while simultaneously sparing
the surrounding normal tissues in order to minimize the risk of serious side
effects and preserve the patient’s quality of life. The tumor control probabil-
ity (TCP) and normal tissue complication probability (NTCP) are typically
represented as sigmoid curves as a function of the radiation dose (Fig. 1.1).
While increasing the dose to the tumor leads to a higher TCP, this will also
results in higher normal tissue toxicities, thereby limiting the potential of ra-
diotherapy. The term "therapeutic window" is often used when considering
the tradeoff between enhanced radiotherapy efficacy and decreased toxicity.

Radiotherapy achieves a high TPC and a low NTCP via two main con-
cepts: dose conformity and fractionation. Dose conformity means that the
dose distribution is precisely shaped to the tumor and dose to sensitive or-
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Figure 1.1: Dose-response curves for the tumor control probability (red) and
the normal tissue complication probability (blue).

gans is minimized. In practice, dose conformity allows to be on different
points on the TCP and NTCP curves. The development of intensity modu-
lated radiotherapy (IMRT), which is detailed in the next section, has been
a key technological development for achieving this. Fractionation refers to
the fact that the total radiation dose is not delivered at once, but is split
into many fractions to be delivered daily over a period of few weeks. As it is
further discussed in section 1.3, this is motivated by the ability of the normal
tissue cells to recover from sub-lethal radiation damage in between fractions.
In practice, fractionation moves the TCP and NTCP curves further apart,
increasing the therapeutic window.

1.1 Modern radiotherapy techniques
Over the past years, research in medical physics has improved the precision of
radiotherapy tremendously. Nowadays, it is possible to shape the radiation
dose distribution very precisely to the tumor and minimize the radiation
exposure to the surrounding normal tissues. This was rendered possible by
the sophistication of the imaging modalities and treatment machines, as well
as by the development of new and more advanced radiotherapy techniques.

The most common way of administering radiotherapy is through the use
of external radiation sources. Conventional external beam radiotherapy uses
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Figure 1.2: Components of a Linac for photon therapy. The gantry com-
prises (a) the acceleration tube and the treatment head, and can rotate around
the patient that lies on the treatment couch [4]. The imaging system is used
for patient positioning verification. The radiation is shaped to the tumor us-
ing a multileaf collimator system (b) [5].

high energy photons (6-20 MV) produced by linear accelerators (Linacs).
The main components of a medical linac are shown in Fig. 1.2a, and include
an accelerating tube, a gantry head, a treatment couch and imaging systems.
In the accelerating tube, electrons are accelerated up to MeV energies and
focused on a target (composed by a material with a high atomic number)
positioned in the treatment head. Interactions of the electrons with the tar-
get produce X-rays through Bremsstrahlung. These X-rays are subsequently
precisely shaped to the tumor using a system composed by rectangular col-
limator jaws and a multileaf collimator (MLC, Fig. 1.2b). Both the acceler-
ating tube and the gantry head are mounted either on a C-arm gantry, ring
or robotic treatment unit, which can rotate around the patient to deliver
radiation from multiple orientations. Imaging systems are also mounted on
the linac and consist of pairs of kV emitters and photon detectors, and can
be used to accurately position the patient in each treatment session.

Prior to the development of the MLC, three-dimensional conformal radio-
therapy (3D-CRT) was first introduced, which shaped each radiation beam
to the projection of the tumor in the beam’s eye view by means of patient-
specific collimator blocks. Although local and loco-regional could be achieved
in many patients with 3D-CRT, limitations arised with irregularly shaped
tumors. This led to the development of intensity modulated radiotherapy
(IMRT), which marked a milestone in the history of radiotherapy [6]. The
defining feature of IMRT is that each of the radiation fluence delivered from
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Figure 1.3: Comparison of dose distributions obtained with 3D-CRT (left)
and IMRT (right) [7].

each beam can be modulated to deliver inhomogeneous dose distributions,
using the MLC. This enabled to considerably improve dose conformity com-
pared to 3D-CRT, especially for concave tumors (Fig. 1.3). In order to in-
crease the treatment delivery efficiency, dynamic gantry rotation was further
introduced. The resulting volumetric modulated arc therapy (VMAT) has
the advantage of considerably decreasing the treatment time compared to
IMRT, while maintaining a similar plan quality [8]. IMRT and VMAT are
nowadays considered standard of care for many tumor indications.

Latest research investigated novel treatment techniques, which aim to
exploit additional degrees of freedom which can be achieved with medical
linacs to further improve the quality of radiotherapy plans. For example, the
treatment couch can be rotated to increase the set of beam orientations that
can be used to treat the tumor and further reduce the dose in the surrounding
normal tissue. Also, collimator rotation can be exploited during treatment
to achieve better intensity modulation. Treatment techniques such as 4Π
radiotherapy [9] and non-coplanar VMAT [10] are currently starting to be
used in the clinics and have the potential to further improve dose conformity
compared to IMRT and VMAT.

Improvements to dose conformity through technological advances in photon-
only treatment techniques seem likely to reach a plateau in the near future
[11]. Most of the degrees of freedom to increase the variety of beam directions
which can be accessed using current linear accelerators are already exploited
by the aforementioned treatment techniques. To overcome this limitation,
two ways have been explored recently. On one hand, the plan optimization
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is starting to become more biologically oriented, i.e. the radio-sensitivity of
tumor and normal tissue is actively included in the treatment objectives. On
the other hand, the use of other particle types is being investigated. In that
regard, proton therapy was shown to lead to better sparing of the normal
tissue and has become established for certain applications [12].

1.2 Treatment plan optimization
Radiotherapy treatment planning refers to the process of determining the
best possible treatment plan for every patient that delivers a prescribed dose
to the target volume while respecting all dosimetric constraints on the organs-
at-risk (OARs) and normal tissue. In this section, we discuss inverse treat-
ment planning for intensity modulated radiotherapy, as opposed to forward
planning which has been used in early days to generate 3D-CRT radiotherapy
plans. In IMRT planning, each radiation field is discretized into small beam
elements (called beamlets), and the intensity of each beamlet is optimized
independently. The goal of inverse radiotherapy planning is to determine
the optimal beamlets intensities that yield the desired radiation dose to the
tumor but minimize the dose to the surrounding OARs [13].

Prior to the optimization of the beamlet’s intensities, the target volume
and all relevant organs-at-risk (OARs) are delineated, following the applica-
ble guidelines, including the ICRU 50 [14] and ICRU 62 [15] reports (Fig. 1.4).
To this end, a computed tomography (CT) scan of the patient is acquired,
and the relevant structures are contoured. Other imaging modalities such as
magnetic resonance imaging (MRI) or positron-emission tomography (PET)
can be used to further improve target volume localization and delineation.
First, the gross tumor volume (GTV) is delineated. This represents the tu-
mor mass which is visible on the diagnostic images. However, microscopic
disease spread to nearby regions might be present, which is accounted for by
adding an extension of the GTV. This is typically referred to as the clinical
target volume (CTV) and represents the volume that we want to eradicate
with radiotherapy. However, as the tumor might move during treatment
(e.g. because of respiratory motion or heart beating), an additional margin
is added to the CTV to obtain the internal target volume (ITV). Finally, a
margin is applied to compensate for possible uncertainties during the patient
positioning, leading to the planning target volume (PTV). Radiotherapy aims
to deliver a prescribed dose to the PTV, to ensure that the CTV receives
the intended radiation dose, independent of motion and setup uncertainties.
To date, the process of target and OARs delineation is performed manually
and is very time-consuming. Artificially intelligence technology is being pro-

5



Figure 1.4: Schematic representation of the main radiotherapy target vol-
umes: the gross tumor volume (GTV), the clinical target volume (CTV), the
internal target volume (ITV) and the planning target volume (PTV) [17].
The ITV is obtained from the CTV by adding an internal margin (IM) and
the PTV is obtained from the ITV by adding a setup margin (SM). A similar
concept can be applied also to organs-at-risk.

gressively introduced in clinical practice to facilitate auto-delineation of both
target volume and OARs [16].

Once all the relevant structures for optimization have been contoured, the
dose distribution for each beamlet considered for optimization is calculated.
Several dose calculation algorithms can be used, which range from simple
pencil beam algorithms [18] to more accurate Monte Carlo methods [19].
These dose distributions are stored in the form of dose-influence matrices D,
where each element Dij specifies the dose contribution of beamlet j to voxel
i for unit intensity. In this way, the total dose di delivered to any voxel i
in the patient can be computed as the superposition of all beamlet’s dose
contributions, scaled by their intensities xj

di =
∑
j

Dijxj (1.1)

The intensities of each beamlet are subsequently optimized using mathe-
matical optimization algorithms. The clinical goals of achieving a high TCP
and a low NTCP are translated into mathematical terms and expressed as
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functions to be minimized. Typical objective functions used in radiotherapy
planning are piecewise quadratic penalty functions and generalized equiva-
lent uniform dose (gEUD) functions. Quadratic penalty functions are used
to penalize doses above or below a certain threshold, and can be expressed
as

f(d) =


1
Vn

Vn∑
i=1

(di − dmax
i )2+

1
Vn

Vn∑
i=1

(dmin
i − di)

2
+

(1.2)

For example, quadratic penalty functions are used to ensure that a certain
prescribed dose is delivered to any part of the target volume, or to limit the
maximum dose to serial OARs. Generalized EUD objectives, instead, can be
expressed as

f(d) =

[
1

Vn

Vn∑
i=1

(di)
p

] 1
p

(1.3)

A special form of the gEUD objective is obtained for p = 1, and corresponds
to the mean dose to a given structure. Mean dose objectives are used to limit
the mean dose delivered to parallel OARs.

The optimization problem aims to determine the beamlets intensities
which minimize a weighted sum of planning objectives for the target vol-
ume and the OARs, and is formulated as

minimize
x

f(d) (1.4)

subject to cm(d) ≤ um ∀m (1.5)

di =
∑
j

Dijxj ∀i (1.6)

xj ≥ 0 ∀j (1.7)

Depending on the relative weights for the different planning objectives, dif-
ferent, so-called Pareto-optimal plans can be obtained which refer to different
tradeoffs between the conflicting goals of delivering a high dose to the target
volume and limiting the dose to the surrounding OARs. In clinical practice
such tradeoffs are decided on a patient basis, where multiple plans are cre-
ated and the one with the best tradeoff for a specific situation is selected
to be delivered. The quality of a radiotherapy plan is typically evaluated
through inspection of the three-dimensional dose distribution, where it is
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Figure 1.5: Example of a differential (left) and cumulative (right) dose-
volume histogram (DVH) with typical curves for the PTV (red) and the nor-
mal tissue (blue).

checked that the target volume is covered with the intended dose and that
the dose in the surrounding normal tissue and OARs is low (i.e. that there
are no hot dose spots in unwanted regions). Also, dose-volume histrograms
(DVHs) are frequently used, which are easier to interpret (Fig. 1.5).

The optimization problem in Eq. (1.4)-(1.7) is typically referred to as
fluence map optimization and results in a set of optimal intensities for each
beamlet. To deliver such a plan, fluence maps must be converted into a set
of MLC apertures. This can either be achieved using leaf sequencing algo-
rithms, or by directly integrating such machine-specific delivery constraints
into the plan optimization. In the latter case, we speak about direct aperture
optimization (DAO).

1.3 Fractionation
Besides dose conformity, fractionation is the second major mechanism to limit
radiation damage to the normal tissue. Fractionation means that radiother-
apy treatments do not deliver the total dose at once, but split the dose over
multiple smaller fractions which are delivered daily over a period of 1-6 weeks.
This is motivated by the observation that the normal tissue can repair from
sublethal radiation damage in between the different fractions, and thereby
tolerates a higher total dose. For example, typical maximum tolerated doses
by the spinal cord are 10-15 Gy in 1 fraction and 50-60 Gy in 30 fractions
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[20]. Tumors have reduced repair mechanisms, but still have some capacity
to repair radiation damage and repopulate in between fractions. Therefore,
splitting the treatment into more fractions requires that the total radiation
dose necessary to maintain the same level of tumor control is increased.

In clinical practice, the biologically effective dose (BED) model is the most
widely used concept to describe the fractionation effect and compare different
fractionation schemes [21]. The BED model states that the biological dose b
is given by

b = nd

(
1 +

d

α/β

)
(1.8)

where n is the number of fractions, d is the dose per fraction and α/β is a
tissue-specific parameter that quantifies the tissue’s sensitivity to fraction-
ation. The idea is that a fixed BED leads to a given clinical effect (e.g.
probability of tumor control or normal tissue complication) independent of
the number of fractions and the dose per fraction. Hence, for a given α/β
value, fractionation schemes with the same BED are assumed to be isoeffec-
tive (or isotoxic, respectively). Mathematically, the BED model in Eq. (1.8)
describes the clinical observation that a given total dose nd is more effective
when the dose per fraction d is large (Fig. 1.6).

Depending on the underlying properties of the tumor and normal tissues,
a wide variety of fractionation schemes is used in clinical practice. Tradition-
ally, the majority of the patients are treated with 1.8-2 Gy per fraction, five
times per week over a period of 5-6 weeks. However, alternative fractionation
schemes such as hyperfractionation or hypofractionation may improve treat-
ment outcomes or reduce the burden of long treatment schedules for patients
and health care providers. The BED model has been used to obtain theoret-
ical insight into the optimal fractionation decision, assuming the goal is to
minimize the BED in the normal tissue for a given BED prescribed to the
tumor [22]. If a dose dT is delivered to the tumor and a dose dN is delivered
to the normal tissue, it is beneficial to treat the tumor with a large number
of fractions if

(α/β)N
(α/β)T

< δ (1.9)

where δ = dN/dT denotes the ratio between the dose delivered to the normal
tissue and the dose delivered to the tumor, whereas (α/β)N and (α/β)T
refer to the α/β-ratios of the normal tissue and of the tumor, respectively.
Typical values for the α/β-ratio of tumors are 10 Gy or higher [21], whereas
normal tissues are mainly characterized by α/β-ratios in the order of 2 Gy
(for late-responding tissues) to 10 Gy (for early-reacting tissues) [23].
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Figure 1.6: Total physical dose to be delivered in a n-fraction treatment to
achieve the same BED as a 5-fraction treatment delivering 10 Gy per fraction,
expressed as a function of the number of fractions n. In this example, we
assumed α/β = 10 Gy.

Thus, the result in Eq. (1.9) provides two justifications for the trend
towards hypofractionation that is currently seen in the field of radiation
oncology. Due to the improved ability of modern radiotherapy techniques to
precisely conform the radiation dose to the tumor and spare the surrounding
healthy tissue (thus reducing δ), there has been a trend over the recent years
to reduce the number of treatment fractions. Reducing normal tissue dose
motivates the use of SRS and SBRT, for example in the treatment of early
stage lung cancer [24] or metastatic diseases [25]. In addition, clinical trials
have shown that for some tumor, the α/β-ratios are small. This explains the
trend towards hypofractionation for prostate cancer [26] and breast cancer
[27].

1.4 Spatiotemporal fractionation
Fractionation decisions face tradeoffs between conflicting treatment goals:
increasing the number of fractions protects normal tissue; however, this pro-
longs the total treatment time and requires that the total dose is increased.
In that regard, the ideal treatment would fractionate the dose in the normal

10



tissue (to exploit the fractionation effect), while achieving hypofractionation
in the tumor (to reduce the total radiation dose). At first glance, this may
appear unattainable. In conventionally fractionated treatments, where the
same dose distribution is delivered in every fraction, increasing the dose per
fraction to the tumor would also unavoidably increase the dose to the normal
tissue. However, it has recently been shown that some degree of hypofrac-
tionation in the tumor can be achieved along with near-uniform fractionation
in the normal tissue, by delivering distinct dose distributions in different frac-
tions [28-32].

The rationale is illustrated in Fig. 1.7 in the context of arc therapy tech-
niques such as VMAT or tomotherapy. Different dose distributions in distinct
fractions can be designed in such a way that each fraction delivers a simi-
lar dose bath to the normal tissue surrounding the target volume, thereby
achieving the fractionation effect. However, each fraction also delivers a high
single-fraction dose to complementary regions of the tumor. Thereby, for a
fixed radiation dose, higher biologically effective doses are delivered to the tu-
mor compared to conventional treatments. Since the dose in the surrounding
normal tissue is fractionated, this yields a net improvement of the therapeutic
ratio.

Treatment planning for spatiotemporal fractionation schemes is performed
by simultaneously optimizing treatments for all distinct fractions in a single
procedure. This can be done using the same type of objective functions as
used in traditional treatment planning, with the only difference that the ob-
jective functions are now evaluated for the cumulative BED rather than for
the physical dose. In this way, in fact, fractionation effects can be directly
incorporated into the treatment plan optimization. The treatment plan op-
timization problem for spatiotemporal fractionation can then be formulated
as

minimize
x1,...,xn

f(b) (1.10)

subject to cm(b) ≤ um ∀m (1.11)

bi =
n∑

t=1

dit

(
1 +

dit
(α/β)i

)
∀i (1.12)

dit =
∑
j

Dijxjt ∀i,∀t (1.13)

xjt ≥ 0 ∀j,∀t (1.14)

where dit is the physical dose delivered to voxel i in fraction t. The BED
model is generalized to the situation in which different doses can be delivered
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Figure 1.7: Example of a spatiotemporlly fractionated plan obtained for the
treatment of a patient with a large arteriovenus malformation [31].

in different fractions.
Initial proof-of-principle in-silico planning studies on spatiotemporal frac-

tionation have been performed for large cerebral arteriovenous malformations
(AVM) [31], as well as liver tumors [32]. These works showed encouraging re-
sults: spatiotemporal fractionation can improve the ratio of tumor to normal
tissue BED by approximately 10-20% compared to conventional uniformly
fractionated treatments.

1.5 Aim and outline of the thesis
In this thesis, we further develop the innovative and novel concept of spa-
tiotemporal fractionation.

12



First, we will further develop treatment planning methodology to de-
sign spatiotemporally fractionated treatments. Prior work on spatiotemporal
fractionation assumed that each fraction will be delivered as planned, such
that dose contributions from different fractions add up to the planned cumu-
lative BED in all parts of the target volume. However, some uncertainties in
tumor position due to organ motion must be accounted for, despite substan-
tial progress in image guided radiotherapy. A concern is that, as a result of
a setup error in one fraction, these dose distributions are shifted relative to
each other, potentially causing under-dosing in parts of the tumor. Tradi-
tionally, motion uncertainties are accounted for by a margin expansion of the
tumor. However, in the context of spatiotemporal fractionation this approach
is clearly insufficient. For treatments as illustrated in Fig. 1.7, the target vol-
ume is effectively compartmentalized into multiple regions that are treated in
different fractions. This compartmentalization occurs automatically during
treatment plan optimization and is not manually determined before treat-
ment planning. Therefore, we will develop optimization methods that can
incorporate uncertainty directly into treatment plan optimization, resulting
in spatiotemporally fractionated treatments which are robust against motion
and setup uncertainties. In Chapters 2 and 3, a novel approach to spatiotem-
poral fractionation is developed for the treatment of patients with multiple
brain metastases, where the dose compartmentalization is constrained to fol-
low the anatomical compartmentalization given by the metastases. As each
metastasis is defined through an own PTV, robustness against setup errors
can be achieved through the traditional safety margin approach. In Chapter
4, a novel efficient stochastic programming method is developed to incorpo-
rate setup uncertainties in the optimization of the different fractional dose
distributions.

Second, we will develop treatment plan optimization algorithms using
extensions of the BED model and methods to incorporate uncertainties in
the BED model parameters. All clinical experience is based on delivering the
same uniform dose to the entire target volume in every fraction. Therefore,
concerns arise about the validity of the standard BED model to accurately
describe the response to varying doses per fraction. In particular, there are
concerns about the validity of the BED model at very low and very high doses
per fraction. Also, there are uncertainties about the BED model parameters
to be used (i.e. the α/β-ratio). In Chapter 5, we propose an extension of the
BED model which introduces a dose-dependence on the α/β-ratio and can
be used to model deviations from the expected biological effect predicted by
the standard BED model. Uncertainties in the parameters of the extended
BED model are then accounted for during the optimization by stochastic
programming methods.

13



Spatiotemporal fractionation involves varying the dose distribution in be-
tween distinct fractions. However, the dose distribution only represents one
of the possible degrees of freedom which can be varied in between fractions.
For example, different particle types can be utilized in different fractions, or
different beam orientations can be used to deliver the plan at each fraction.
In Chapter 6, we present a combined proton-photon treatment plan where
photon-based plans are delivered in some of the fractions and proton-based
plans are delivered in the remaining fractions. Besides exploiting the use of
multiple particle types in between different fractions, such a treatment may
also broaden the use of proton therapy to a larger population. In Chapter
7, instead, spatiotemporal fractionation optimization is combined with beam
orientation optimization. Treatment plans are optimized, where each frac-
tion treats complementary parts of the target volume using fraction-specific
beam orientations.

Finally, the optimization of spatiotemporal fractionation schemes is by
now only possible in research software. There is no commercial treatment
planning system that allows the optimization of multiple dose distributions
based on the cumulative BED. For that reason, in Chapter 8 we will develop
a treatment planning process that allows to reproduce spatiotemporally frac-
tionated radiotherapy plans generated using a research treatment planning
system into a commercial treatment planning system. This will enable the
clinical delivery of spatiotemporally fractionated treatments.
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Chapter 2

Optimal combination of
single-fraction and
hypofractionated stereotactic
radiosurgery for the treatment of
multiple brain metastases
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2.1 Abstract
Purpose: Stereotactic radiosurgery (SRS) is a standard treatment modal-
ity for intracranial metastases. While small lesions are preferably treated
in a single fraction, large metastases must be temporally fractionated to re-
duce brain toxicities. We developed an algorithm that optimally combines
single-fraction SRS for some metastases and hypofractionated SRS for other
metastases in patients with multiple brain metastases, in an attempt to min-
imize brain toxicities.
Materials and Methods: For each individual metastasis, a separate non-
coplanar VMAT plan is created in the Eclipse treatment planning system
(TPS). We then require each metastasis to be either treated to the full dose
in one of the fractions or treated uniformly over all fractions. The assignment
of each metastasis to one of the fractions or to uniform fractionation is jointly
optimized by solving a binary quadratic programming problem, which min-
imizes the cumulative biologically effective dose BED2 to the healthy brain,
for a fixed tumor BED10. The optimal combination of single-fraction and
hypofractionated SRS is investigated for a clinical case consisting of twenty-
nine brain metastases of varying sizes to be treated with a BED10 of 45 Gy.
Results: By solving the BED-based binary quadratic programming problem,
fractionation schemes are obtained which aim to treat small lesions to the full
dose in separate fractions to best reduce the integral dose in the brain, while
large lesions are temporally fractionated. The fractionation scheme depends
on the number of fractions used (the more, the better) and on the planning
goals. In particular, reduction of dose-volume objectives for the brain is best
achieved through temporal fractionation. For a four-fraction treatment, for
example, the resulting fractionation scheme improves on single-fraction SRS
by reducing the mean brain BED2 by 28.1% and the mean BED2 to a 0.25
cm thick rim structure around the PTV (representing the high dose region)
by 15.6%. Compared to a uniformly fractionated 4-fraction SRS treatment,
the mean brain BED2 is reduced by 0.9% for the optimized fractionation
scheme, whereas the mean BED2 to the rim structure slightly increases by
0.4%.
Conclusions: The proposed algorithm allows to combine single-fraction SRS
for some metastases and hypofractionated SRS for other metastases, poten-
tially outperforming current state-of-the-art uniform fractionation schemes
for the treatment of multiple intracranial metastases. However, the opti-
mization of the fractionation schemes for each individual lesion is performed
independently from the optimization of the dose distributions, what may lead
to sub-optimal solutions.
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2.2 Introduction
Brain metastases are the most common type of brain malignancy, affecting
about 10-30% of all cancer patients [33]. Due to better diagnostic modal-
ities and advancements in systemic therapies that enabled cancer patients
to live longer, the incidence of brain metastases has been steadily increasing
in recent years [34]. In response to this growing issue, current radiother-
apy strategies for the treatment of brain metastases have evolved to improve
outcomes and minimize radiation-induced toxicities. Whole brain radiother-
apy (WBRT), which delivers a prophylactic dose to the entire brain, has
been the mainstay of treatment for brain metastases over the past decades.
However, WBRT is associated with neurocognitive decline in a large patient
population, and has been increasingly replaced by stereotactic radiosurgery
(SRS) over the past few years [35]. SRS is a technique which delivers highly
focused radiation dose only to the metastatic sites while sparing the sur-
rounding healthy brain, and has reported similar outcomes in terms of local
disease control and overall survival as WBRT, but with a reduced risk of
neurocognitive impairment [36-40].

Stereotactic radiosurgery is typically delivered either in a single-fraction
or fractionated over three to six fractions [41-43]. The selection of the frac-
tionation scheme depends on several factors, including the size and location
of the metastases, the patient performance status and other prognostic fac-
tors. Single-fraction SRS (SF-SRS) is mainly used to treat small metastases
(e.g. with a GTV volume < 3-5 cc), whereas hypofractionated SRS (HF-
SRS) is preferred for treating lesions which are large or located close to
critical structures, as it allows to better spare the surrounding normal tis-
sue through fractionation. However, while this choice is well motivated for
solitary brain metastases, it might not necessarily be optimal for treating
patients with multiple brain lesions. In the latter situation, in fact, there
may be both small metastases which could benefit from single-fraction SRS
and larger lesions that would instead profit from hypofractionated SRS.

In this work, we propose an alternative solution to the fractionation prob-
lem for SRS treatments, which consists of jointly optimizing the fractiona-
tion scheme for each individual metastasis, while allowing the fractionation
scheme for each individual metastasis to be possibly different. By treating
different metastases to the full prescribed dose in a single fraction, but dis-
tributing the metastases to be treated over different fractions, some degree
of fractionation can be achieved in between the different lesions, without the
need to increase the total physical dose delivered to the metastases. At the
same time, some lesions can be treated uniformly over several fractions to
best reduce the brain volume receiving a high dose. A biologically effective
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dose (BED) based algorithm is developed which automatically determines
what is the optimal fractionation scheme for each metastasis (either SF-SRS
or HF-SRS) and optimally assigns metastases to be treated in a single frac-
tion into different fraction groups. This algorithm is demonstrated for a
clinical case with twenty-nine brain metastases and compared to both single-
and multi-fraction SRS.

2.3 Materials and Methods

2.3.1 Optimization methodology

We consider the situation where a patient with M metastases is treated in
a maximum of N fractions. We aim to jointly optimize the fractionation
scheme for each individual metastasis in order to minimize the healthy brain
toxicities, for a fixed tumor BED. For simplicity and not to overly deviate
from current clinical practice, we constrain each lesion to be either treated
to the full dose in one single fraction (SF-SRS) or to be treated uniformly
over all N fractions (HF-SRS).

Assumption

In this chapter, we assume that treating a metastasis m results in a dose
distribution d(m) which is independent of the dose distributions generated by
treating other metastases. This is achieved by creating M separate treatment
plans, which irradiate one individual metastasis each. This means that the
dose distribution dtot resulting from treating all metastases m ∈ {1, ...,M} is
given by the sum of the dose distributions obtained by treating each metas-
tasis individually:

dtot =
M∑

m=1

d(m) (2.1)

We can then define the normalized dose distribution δ(m) in the normal
tissue as

δ(m) =
d(m)

d
(n)
T

(2.2)

where d
(n)
T denotes the prescribed dose per fraction delivered to metastasis m

in a uniformly fractionated n-fraction treatment. We also refer to δ
(m)
i as the
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"sparing factor" of voxel i for the dose distribution resulting from treating
metastasis m.

BED-based optimization problem

The optimal fractionation scheme for each individual metastasis is then de-
termined by solving the following BED-based optimization problem:

minimize
x, y

f(b) (2.3)

subject to bi =

N∑
f=1

dif

(
1 +

dif
(α/β)i

)
∀i (2.4)

dif =

M∑
m=1

[(
xfmd

(1)
T + ymd

(N)
T

)
δ
(m)
i

]
∀i,∀f

(2.5)

N∑
f=1

(xfmd
(1)
T + ymd

(N)
T

)
+

(
xfmd

(1)
T + ymd

(N)
T

)2
(α/β)T

 = b
(m)
T ∀m (2.6)

xfm ∈ {0, 1} ∀f, ∀m
(2.7)

ym ∈ {0, 1} ∀m (2.8)

where f(b) is an objective function to be minimized, bi is the cumulative BED
in voxel i and dif is the physical dose delivered to voxel i in fraction f . The
optimization variables x = (xfm)f∈{1,...,N},m∈{1,...,M} and y = (ym)m∈{1,...,M}

denote whether metastasis m is treated to the full dose d(1)T in a given fraction
f or uniformly over all fractions (with a dose per fraction d

(N)
T ), respectively,

where

xfm =

{
1, if metastasis m is treated to the full dose in fraction f

0, otherwise
(2.9)

and

ym =

{
1, if metastasis m is treated uniformly over all fractions
0, otherwise

(2.10)
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The constraint in Eq. (2.6) requires that every metastasis m is treated to the
same cumulative tumor BED b

(m)
T , independent of the fractionation scheme

used.

Binary quadratic programming

Given the binary nature of the optimization variables x and y, the opti-
mization problem in Eq. (2.3)-(2.8) can be written in the form of a binary
quadratic programming problem for an objective function f(b) that is linear
in the BED. To this end, let’s introduce the following notation:

• z =

[
x
y

]
∈ N1×M(N+1) is the vector of binary optimization variables

• qi =

[
qA
i

qB
i

]
∈ R1×M(N+1), where

– qA
i ∈ R1×MN with (qA

i )m = δ
(m)
i d

(1)
T

– qB
i ∈ R1×M with (qB

i )m = δ
(m)
i d

(N)
T

• Qi =

[
QA

i QB
i

QC
i QD

i

]
∈ RM(N+1)×M(N+1), where

– QA
i = Qa

i

⊕
Qa

i

⊕
. . .
⊕

Qa
i ∈ RMN×MN , where

∗ Qa
i ∈ RM×M with (Qa

i )m1m2 =
δ
(m1)
i δ

(m2)
i

(
d
(1)
T

)2

(α/β)i

– QB
i =


Qb

i

Qb
i

...
Qb

i

 ∈ RM×MN , where

∗ Qb
i ∈ RM×M with (Qb

i)m1m2 =
δ
(m1)
i δ

(m2)
i d

(1)
T d

(N)
T

(α/β)i

– QC
i =

(
QB

i

)t ∈ RMN×M

– QD
i ∈ RM×M with (QD

i )m1m2 =
Nδ

(m1)
i δ

(m2)
i

(
d
(N)
T

)2

(α/β)i

• A =
[
IM×M IM×M . . . IM×M

]
∈ NM(N+1)×M , where

– IM×M ∈ NM×M is the identity matrix

• 11×M ∈ N1×M is a vector with ones in all entries
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The cumulative BED bi to voxel i in Eq. (2.4) can then be written as:

bi = qt
iz + ztQiz (2.11)

Consequently, the optimization problem in Eq. (2.3)-(2.8) can be formulated
as follows:

minimize
z

(f1(q))
t z + ztf2(Q)z (2.12)

subject to Az = 11×M (2.13)

where f1 : R1×M(N+1) → R1×M(N+1) and f2 : RM(N+1)×M(N+1) → RM(N+1)×M(N+1)

are functions that specify the planning objectives. The linear constraint in
Eq. (2.13) requires that each metastasis m is either treated to the full dose
in a single fraction or treated uniformly over all fractions (i.e.

[∑N
f=1 xfm

]
+

ym = 1 ∀m).
Binary quadratic programming problems can be solved efficiently using

commercial optimization solvers. In this work, the proposed binary quadratic
programming problem in Eq. (2.12)-(2.13) has been implemented in Mat-
lab (The MathWorks Inc., Natick, MA) and solved using the commercial
Gurobi optimization software (Gurobi Optimization, LLC). We constrained
the optimization time to t=500 s.

2.3.2 Clinical case

We retrospectively investigated the potential benefit of combining single-
fraction and hypofractionated SRS for a patient with 29 brain metastases,
who has previously been treated with linac-based stereotactic radiosurgery at
our institution. The total GTV volume is 14.7 cc (range: 0.1 cc to 9.9 cc) and
an isotropic 1.2 mm margin expansion is applied from the GTV to obtain the
PTV. The fractionation scheme that has been adopted in the clinical plan
aimed to deliver 30 Gy in 6 fractions (6x5 Gy) at the 80% isodose line to
each metastasis.

The dose distributions resulting from treating each individual metastasis
separately have been generated prior to the optimization of the fractiona-
tion scheme using the commercial Eclipse Treatment Planning System v15.6
(Varian Medical Physics, Palo Alto, CA). The selected beam configurations
resembled the one used in the clinical plan, and consisted of a full VMAT
arc at a couch angle of 0◦ and three half-arcs from 0◦ to 180◦ at couch an-
gles of 45◦, 270◦ and 315◦. The HD120 multileaf collimator (Varian Medical
Physics, Palo Alto, CA) was used. The following planning objectives have
been selected to generate all the dose distributions, i.e.:

21



1. A physical dose of 30 Gy in 6 fractions was prescribed to the PTV
of the selected metastasis, using a piecewise quadratic penalty function
(priority = 100). A dose exceeding 37.5 Gy was penalized quadratically
(priority = 80).

2. A physical dose of 33.5 Gy was prescribed to the GTV of the selected
metastasis, again using a piecewise quadratic penalty function (priority
= 100).

3. The mean dose to the brain was minimized (mean dose = 0, priority =
10).

4. The automatic normal tissue objective was used to achieve a good dose
conformity (priority = 100).

The VMAT optimization was performed using the Photon Optimizer algo-
rithm (Version 16.1.0), and dose calculation was performed using the Acuros
External Beam (Version 16.1.0) algorithm.

Exemplary dose distributions obtained for the treatment of some selected
brain metastases, along with dose-volume histograms (DVHs) evaluated for
the corresponding PTV and the PTVs of the other metastases, are illustrated
in Fig. 2.1. For the selected beam setup and treatment technique, a very steep
dose fall off is achieved in the surrounding healthy brain. Consequently, the
dose contributions to metastases other than the one treated are very small.

All dose distributions have then been anonymized and exported as DI-
COM files, together with the corresponding structures set. The normalized
dose distributions δ(m)’s have been computed by dividing the dose di in each
voxel i by d

(6)
T = 30 Gy, and stored as ".mat"-files in Matlab (The MathWorks

Inc., Natick, MA). Masks for the different structures have been obtained us-
ing the open-source radiotherapy planning research platform CERR [44].

2.3.3 Assessing the benefit of combining single-fraction
and hypofractionated SRS

The fractionation scheme for each individual metastasis has been optimized
for the following planning objectives, while constraining each metastasis to
receive a BED10 of 45 Gy:

1. Minimize the mean BED2 to the healthy brain (i.e. brain without
PTV).

2. Minimize the mean BED2 to a 0.25 cm thick rim structure around the
PTV. This is used to limit the dose in the high dose region, as the
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Figure 2.1: Normalized dose distributions and the corresponding DVHs re-
sulting from treating three selected brain metastases M1, M2 and M3 individ-
ually. The DVHs are evaluated for the PTV of the corresponding metastasis
(red) and for the PTVs of all other lesions (blue).

volume of healthy brain exposed to high doses is considered to be a
clinically relevant parameter for optimization.

Therefore, the functions f1 and f2 in Eq. (2.12) can be expressed as:
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f1(q) =

[
ω1

|B|
∑
i∈B

qi

]
+

[
ω2

|R|
∑
j∈R

qj

]
(2.14)

and

f2(Q) =

[
ω1

|B|
∑
i∈B

Qi

]
+

[
ω2

|R|
∑
j∈R

Qj

]
(2.15)

where B and R denotes the set of voxels belonging to the healthy brain and
to a 0.25 cm thick rim around the PTV, respectively, while ω1 and ω2 are
the priorities for the objectives 1 and 2 above.

Multiple optimizations have been performed both for different numbers of
fractions N and different priorities ω1 and ω2, and subsequently compared to
both a single-fraction SRS plan and N -fraction uniformly fractionated SRS
plans. We optimized the fractionation scheme for values of N = 2, N = 3,
N = 4, N = 5 and N = 6. For each of these cases, 13 different optimization
scenarios have been considered with varying objective priorities:

1. ω1 = 100, ω2 = 1

2. ω1 = 50, ω2 = 1

3. ω1 = 25, ω2 = 1

4. ω1 = 10, ω2 = 1

5. ω1 = 5, ω2 = 1

6. ω1 = 2, ω2 = 1

7. ω1 = 1, ω2 = 1

8. ω1 = 1, ω2 = 2

9. ω1 = 1, ω2 = 5

10. ω1 = 1, ω2 = 10

11. ω1 = 1, ω2 = 25

12. ω1 = 1, ω2 = 50

13. ω1 = 1, ω2 = 100

24



Solving the optimization problem in Eq. (2.12)-(2.13) result in a BED10

higher than the prescribed BED in some of the metastases due to the dose
contribution of multiple dose distributions to the same PTV (see Fig. 2.1). A
post-processing step has been performed to obtain SRS plans with a compa-
rable cumulative BED10 in all metastases. To this end, we introduce a factor
µ ∈ R1×M(N+1) to up- or down-scale the relative contribution of the dose dis-
tributions d(m), whose entries are optimized such that a given mean cumula-
tive BED10 is achieved in each metastasis m. The optimization problem can
be formulated as a linear programming problem with quadratic constraints:

minimize
µ

1M×1µ (2.16)

subject to
(
1M(N+1)×1 − z

)t
µ = 0 (2.17)

qt
mµ+ µtQmµ > 0.99cm ∀m (2.18)

qt
mµ+ µtQmµ < 1.01cm ∀m (2.19)

where

• qm ∈ R1×M with (qm)m̃ = Nδ(m̃)→(m)d
(N)
T , where δ(m̃)→(m) denotes the

mean contribution of the normalized dose distribution δ(m̃) to metas-
tasis m

• Qm ∈ RM×M with (Qm)m1m2 =
Nδ(m1)→(m)δ(m2)→(m)

(
d
(N)
T

)2

(α/β)T

• cm ∈ R is the reference mean cumulative BED10 delivered to metastasis
m, which in this study was selected to correspond to the mean BED10

delivered to metastasis m by the 4-fraction SRS treatment obtained by
solving the optimization problem in Eq. (2.12)-(2.13) for the scenario
with ω1 = 1 and ω2 = 1. The constraints in Eq. (2.18)-(2.19) ensure
that the mean BED10 in each metastases is close to cm.

The constraint in Eq. (2.17) ensures that only the dose distributions d(m)

contribute to the fractional dose distribution of fraction f if the corresponding
metastases m were selected to be treated in fraction f by solving the binary
quadratic programming problem in Eq. (2.12)-(2.13).

The optimization problem with a linear objective and quadratic con-
straints in Eq. (2.18)-(2.19) has been solved again using the commercial
Gurobi optimization software (Gurobi Optimization, LLC). However, the
optimization variables were assumed to be continuous real numbers in this
latter case.
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2.4 Results

2.4.1 Qualitative comparison between different fraction-
ation schedules for a simple situation with M = 2
metastases and N = 2 fractions

To better understand the potential of both single-fraction and hypofraction-
ated SRS to reduce the brain BED in treatments of patients with multiple
brain metastases, we consider a simple situation where M = 2 metastases
have to be treated in a maximum of N = 2 fractions, and compare the fol-
lowing four possible treatment schedules as a function of the sparing factors
δ
(1)
i and δ

(2)
i of a voxel i in the healthy brain:

1. 1fx-SRS : Both metastases are treated to the full dose in fraction 1 (no
fractionation).

2. 2fx-SRSTF : Both metastases are treated uniformly in fractions 1 and 2
(temporal fractionation).

3. 2fx-SRSSF : Metastasis 1 is treated to the full dose in fraction 1 and
metastasis 2 is treated to the full dose in fraction 2 ("spatial" fraction-
ation).

4. 2fx-SRSTF+SF : Metastasis 1 is treated to the full dose in fraction 1 and
metastasis 2 is treated uniformly in both fractions 1 and 2 (temporal
and "spatial" fractionation).

Fig. 2.2a shows the difference in BED2 to voxel i in the healthy brain
between 1fx-SRS and 2fx-SRSTF as a function of the sparing factors δ(1)i and
δ
(2)
i . Temporally fractionating the dose delivered to the metastases is bene-

ficial if the cumulative physical dose in voxel i is larger than the ratio (α/β)B
(α/β)T

of the α/β-values of the healthy brain and target volume (assumed to be
0.2 in this study). The comparison of BED2 to voxel i in the healthy brain
between 1fx-SRS and 2fx-SRSSF is shown in Fig. 2.2b. Under the assump-
tion that both metastases have to be treated to the full prescribed dose in a
single fraction, it is always beneficial to treat different metastases in different
fractions. In such a treatment, every voxel receiving a non-zero dose contribu-
tion from both dose distributions experiences a fractionation effect. Fig. 2.2c
compares 1fx-SRS and 2fx-SRSTF+SF , and represents an intermediate solu-
tion in between temporal and "spatial" fractionation. Finally, Fig. 2.2d-f
illustrate the comparison in brain BED2 between 2fx-SRSTF and 2fx-SRSSF ,
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Figure 2.2: Comparison of difference fractionation schedules as a function
of the sparing factors δ(1)i and δ

(2)
i of a voxel i in the healthy brain. Differences

the brain BED2 are expressed in unit of Gy.

2fx-SRSTF and 2fx-SRSTF+SF , and 2fx-SRSSF and 2fx-SRSTF+SF , respec-
tively. In Fig. 2.2d one can observe that, in general, it is beneficial to treat
different metastases in separate fractions when the dose contribution of both
dose distributions d(1) and d(2) to voxel i is large. Uniform fractionation of
both metastasis leads to a dosimetric benefit when the dose contribution to
voxel i is large for one dose distribution and small for the other one (e.g. in
the high dose region close a given metastasis).

2.4.2 Optimal fractionation scheme for a patient with
multiple brain metastases

Fig. 2.3 shows the fractional dose distributions obtained for a 4-fraction
SRS treatment aiming for the optimal combination of single-fraction and hy-
pofractionated SRS for each individual lesion (for the scenario with ω1 = 1
and ω2 = 1), along with the fractional dose distributions for a single-fraction
SRS treatment and a 4-fraction uniformly fractionated SRS treatment, re-
spectively. The optimized fractionation scheme aims to treat the very large
metastasis (with a PTV volume of 9.9 cc) to the same dose in all fractions,
while smaller lesions are treated to the full prescribed dose in one of the
fractions. In particular, metastases close to each other tend to be treated in
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different fractions to better spare the healthy brain in between the metastases
via the fractionation effect. Compared to SRS treatments that treat all the
metastases either to the full dose in a single fraction or to the same uniform
dose in all fractions, the combination of single-fraction and hypofractionated
SRS can reduce the integral brain BED2, as also illustrated in Fig. 2.4. The
mean brain BED2 is reduced from 29.2 Gy to 21.0 Gy (-28.1%) and the mean
BED2 to the 0.25 cm thick rim around the metastases is reduced from 181.6
Gy to 153.3 Gy (-15.6%) using the optimized fractionation scheme compared
to single-fraction SRS. Compared to the 4-fraction uniformly fractionated
SRS treatment, the optimized fractionation scheme reduces the mean brain
BED2 by 0.9% (21.0 Gy vs 21.2 Gy), while the mean BED2 to the 0.25 cm
thick rim around the metastases slightly increases by 0.4% (153.3 Gy vs 152.8
Gy). As very well illustrated in Fig. 2.4c, temporally fractionating the doses
delivered to a metastasis is beneficial to reduce the biological dose in the high
dose region close to the metastasis.

Similar results are also obtained for different weightings of the objective
functions and different number of fractions, as illustrated in Fig. 2.5. In
general, by increasing the number of fractions, a better sparing of the healthy
brain can be achieved. In fact, this allows to distribute the metastases to
be treated to the full prescribed dose in a single fraction over more fractions
(thereby fractionating even further the dose in between the different lesions),
and to achieve a better temporal fractionation of the large metastases. Also,
the optimal fractionation scheme varies depending on whether it is more
important to reduce the mean brain BED2 or the BED2 in the high dose
regions close to the metastases. In the latter case, it is more promising to
temporally fractionate some of the lesions, whereas the mean brain BED2 is
mostly reduced by treating different metastases to the full dose in distinct
fractions. Further details on the different optimized fractionation schemes
are reported in the Supplementary material, Appendix A.

2.5 Discussion
The optimal fractionation scheme for stereotactic radiosurgery of multiple
brain metastases involves the accurate balance between the delivery of a
high single-fraction dose to small lesions and temporal fractionation of the
larger metastases. In this study, we developed an optimization approach
which allows to minimize the biological dose to the healthy brain by opti-
mally sorting metastases to be either treated to the full prescribed dose in one
of the fractions or to be uniformly treated over all fractions. Compared to
both single-fraction SRS and uniformly fractionated SRS which are currently
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Figure 2.3: Fractional dose distributions for two different transversal slices
for (a)/(g) the single-fraction SRS plan, (b)/(h) the uniformly fractionated
4-fraction SRS plan and (c)-(f)/(i)-(l) the 4-fraction plan combining single-
fraction and hypofractionated SRS.
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Figure 2.4: Differences in the cumulative BED distribution for two differ-
ent transversal slices between (a)/(d) the single-fraction SRS plan and the
uniformly fractionated 4-fraction SRS plan, (b)/(e) the single-fraction SRS
plan and the optimized SRS plan, and (c)/(f) the uniformly fractionated 4-
fraction SRS plan and the optimized SRS plan, respectively.

used in clinical practice, such an optimal combination of single-fraction and
hypofractionate SRS was demonstrated to potentially reduce the biological
dose to the healthy brain. In addition, also the delivery time of SRS treat-
ments may be reduced when only a subset of the metastases is treated in
every fraction.

Similar approaches aiming to irradiate different subsets of brain metas-
tases in different fractions have already been proposed in the literature [45-
47]. In those studies, each lesion was forced to receive the full prescribed dose
in a single fraction. In this work, we extend such methods by jointly opti-
mizing the fractionation scheme for all metastases based on the cumulative
BED distribution in the healthy brain, while allowing for the fractionation
scheme for the individual lesions to be flexible. In this way, not all metas-
tases are treated to the full dose in a single fraction, but a metastasis-specific
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Figure 2.5: Dosimetric results obtained for the mean brain BED2 and the
mean BED2 to the 0.25 cm thick rim structure around the PTV for the single-
fractions SRS plan, the uniformly fractionated SRS plans and the SRS com-
bining single-fraction and hypofractionate SRS of the metastases for different
values of N . For the optimized SRS plans, several results obtained by vary-
ing the priorities for the objectives are shown (straight lines connecting the
different optimal solutions are only used as visual help and are not associated
with any result).

fractionation scheme is optimized depending on the lesion size and its loca-
tion relative to other metastases and organs at risk. The ability to uniformly
fractionate the dose delivered to some of the lesions is particularly beneficial
for metastases which are large or located close to critical structures, as this
allows fulfilling dose-volume constraints for the brain in the high dose region.

We could show that the optimized fractionation schemes suggested here
improve on a single fraction SRS treatment that irradiates all metastases
in the same single fraction. However, the improvement over uniformly frac-
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tionated treatments were small. This may be due to one key limitation of
the approach presented so far. The main limitation of this work relates to
the sequential approach taken here, which separates the optimization of the
incident fluence from the optimization of the fractionation scheme. In the
first step, separate dose distributions are optimized for individual metastases
independently of each other because it is still undetermined which metas-
tases are treated in the same fraction. In the second step, the fractionation
scheme is determined, taken fixed dose distributions as input. The inciden-
tal dose that the treatment of one metastasis delivers to another metastasis
is neither taken into account when creating the dose distributions d(m) nor
when solving the binary quadratic problem for determining the fractionation
scheme. Although very steep dose gradients can be achieved in current clini-
cal practice using stereotactic radiosurgery, the optimal dose distribution for
the treatment of multiple metastases might be different from the sum of the
dose distributions obtained by treating each metastasis individually. In par-
ticular, the same aperture or beam can be used to deliver dose to more than
one lesion. Using the algorithm proposed in this study, in fact, metastases
which are located close to each other tend to be treated in different fractions
to better spare the healthy brain in between the lesions through fractiona-
tion. However, if two metastases are very close to each other, treating one
lesion will unavoidably result in a given amount of dose delivered to the ad-
jacent metastasis. With the current algorithm, this dose contribution is not
accounted for. In addition, the integral dose might also be distributed dif-
ferently when a dose distribution is optimized for the treatment of multiple
lesions simultaneously, in order not to accumulate dose on the same region
of the brain.

An approach to improve on the optimization algorithm presented here,
which considers the simultaneous optimization of the dose distribution along
with the fractionation scheme and which does not necessarily constrain the
fractionation schemes to either deliver the full prescribed dose in a single frac-
tion or an equally divided dose in all fractions to the metastases, is presented
in Chapter 3.

2.6 Conclusion
An algorithm to optimize the fractionation scheme in patients with multiple
brain lesions has been developed and demonstrated. The algorithm allows
different fractionation schemes in individual metastases and optimally assigns
metastases to different fractions. The optimal fractionation scheme aims to
treat small metastases to the full dose in different fractions, thereby reducing
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the physical dose needed for tumor control while still achieving a fractiona-
tion effect in between the metastases, whereas large lesions are temporally
fractionated to better fulfill the dose-volume constraints for the brain in the
high dose region.

2.7 Supplementary material

Appendix A Detailed fractionation schemes
In this section, we detail the fractionation schemes obtained using different
weigths for the planning objectives 1 and 2. In Tables 2A.1- 2A.5, it is re-
ported how the different metastases are distributed over the different fractions
to be treated to the full dose or assigned to uniform fractionation, respec-
tively, for each of the optimized fractionation scheme. Metastases which are
treated to the full dose in a single fraction are quite evenly distributed over
the different fractions. While for a small number of fractions all metastases
are treated to the full dose in one of the fractions, by increasing the number
of fractions more metastases are temporally fractionated over all fractions.
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Table 2A.1: Characteristics of the optimized fractionation schemes obtained
for N=2.

Objective
weights

Number of metastases treated to
the full dose in a single fraction Number of metastases treated to

the same dose in all fractionsN ω1 ω2 Fx 1 Fx 2 Fx 3 Fx 4 Fx 5 Fx 6

2

100 1 16 13 - - - - 0
50 1 16 13 - - - - 0
25 1 16 13 - - - - 0
10 1 15 14 - - - - 0
5 1 15 14 - - - - 0
2 1 15 14 - - - - 0
1 1 15 14 - - - - 0
1 2 15 14 - - - - 0
1 5 15 14 - - - - 0
1 10 15 14 - - - - 0
1 25 15 14 - - - - 0
1 50 15 14 - - - - 0
1 100 15 14 - - - - 0

Table 2A.2: Characteristics of the optimized fractionation schemes obtained
for N=3.

Objective
weights

Number of metastases treated to
the full dose in a single fraction Number of metastases treated to

the same dose in all fractionsN ω1 ω2 Fx 1 Fx 2 Fx 3 Fx 4 Fx 5 Fx 6

3

100 1 11 10 8 - - - 0
50 1 11 10 8 - - - 0
25 1 12 10 7 - - - 0
10 1 11 11 7 - - - 0
5 1 11 11 7 - - - 0
2 1 13 9 7 - - - 0
1 1 13 9 7 - - - 0
1 2 12 9 8 - - - 0
1 5 12 9 8 - - - 0
1 10 13 9 7 - - - 0
1 25 12 9 8 - - - 0
1 50 13 9 7 - - - 0
1 100 12 9 8 - - - 0
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Table 2A.3: Characteristics of the optimized fractionation schemes obtained
for N=4.

Objective
weights

Number of metastases treated to
the full dose in a single fraction Number of metastases treated to

the same dose in all fractionsN ω1 ω2 Fx 1 Fx 2 Fx 3 Fx 4 Fx 5 Fx 6

4

100 1 8 7 7 7 - - 0
50 1 8 7 7 7 - - 0
25 1 8 8 7 6 - - 0
10 1 8 8 7 6 - - 0
5 1 8 8 7 6 - - 0
2 1 8 8 7 5 - - 1
1 1 8 8 7 5 - - 1
1 2 8 8 7 4 - - 2
1 5 8 8 7 4 - - 2
1 10 8 8 7 4 - - 2
1 25 8 8 7 4 - - 2
1 50 8 8 7 4 - - 2
1 100 8 8 7 4 - - 2

Table 2A.4: Characteristics of the optimized fractionation schemes obtained
for N=5.

Objective
weights

Number of metastases treated to
the full dose in a single fraction Number of metastases treated to

the same dose in all fractionsN ω1 ω2 Fx 1 Fx 2 Fx 3 Fx 4 Fx 5 Fx 6

5

100 1 8 7 5 5 4 - 0
50 1 8 7 5 5 4 - 0
25 1 7 6 6 5 5 - 0
10 1 7 6 6 5 5 - 0
5 1 7 7 6 5 4 - 0
2 1 7 6 6 5 4 - 1
1 1 7 6 6 5 4 - 1
1 2 6 6 6 5 4 - 2
1 5 6 6 6 5 4 - 2
1 10 6 6 6 5 4 - 2
1 25 6 6 6 5 4 - 2
1 50 6 6 6 5 4 - 2
1 100 6 6 6 5 4 - 2
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Table 2A.5: Characteristics of the optimized fractionation schemes obtained
for N=6.

Objective
weights

Number of metastases treated to
the full dose in a single fraction Number of metastases treated to

the same dose in all fractionsN ω1 ω2 Fx 1 Fx 2 Fx 3 Fx 4 Fx 5 Fx 6

6

100 1 6 5 5 5 4 4 0
50 1 6 5 5 5 4 4 0
25 1 6 5 5 5 4 4 0
10 1 7 6 5 4 4 3 0
5 1 6 6 5 4 4 3 1
2 1 5 5 5 5 5 3 1
1 1 6 5 5 4 4 3 2
1 2 6 5 5 4 4 3 2
1 5 5 5 5 4 4 3 3
1 10 5 5 5 4 4 3 3
1 25 5 5 5 4 3 3 4
1 50 5 5 5 4 4 3 3
1 100 5 5 5 4 4 3 3
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3.1 Abstract
Background: Stereotactic radiosurgery (SRS) is an established treatment
for patients with brain metastases (BMs). However, damage to the healthy
brain may limit the tumor dose for patients with multiple lesions.
Purpose: In this study, we investigate the potential of spatiotemporal frac-
tionation schemes to reduce the biological dose received by the healthy brain
in SRS of multiple BMs, and also demonstrate a novel concept of spatiotem-
poral fractionation for polymetastatic cancer patients that faces less hurdles
for clinical implementation.
Methods: Spatiotemporal fractionation (STF) schemes aim at partial hy-
pofractionation in the metastases along with more uniform fractionation in
the healthy brain. This is achieved by delivering distinct dose distributions
in different fractions, which are designed based on their cumulative biologi-
cally effective dose (BEDα/β) such that each fraction contributes with high
doses to complementary parts of target volume, while similar dose baths are
delivered to the normal tissue. For patients with multiple brain metastases,
a novel constrained approach to spatiotemporal fractionation (cSTF) is pro-
posed, which is more robust against setup and biological uncertainties. The
approach aims at irradiating entire metastases with possibly different doses,
but spatially similar dose distributions in every fraction, where the optimal
dose contribution of every fraction to each metastasis is determined using a
new planning objective to be added to the BED-based treatment plan opti-
mization problem. The benefits of spatiotemporal fractionation schemes are
evaluated for three patients, each with >25 BMs.
Results: For the same tumor BED10 and the same brain volume exposed to
high doses in all plans, the mean brain BED2 can be reduced compared to
uniformly fractionated plans by 9-12% with the cSTF plans and by 13-19%
with the STF plans. In contrast to the STF plans, the cSTF plans avoid
partial irradiation of the individual metastases and are less sensitive to mis-
alignments of the fractional dose distributions when setup errors occur.
Conclusions: Spatiotemporal fractionation schemes represent an approach
to lower the biological dose to the healthy brain in SRS-based treatments
of multiple BMs. Although cSTF cannot achieve the full BED reduction of
STF, it improves on uniform fractionation and is more robust against both
setup errors and biological uncertainties related to partial tumor irradiation.
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3.2 Introduction

3.2.1 Stereotactic radiosurgery for the treatment of mul-
tiple brain metastases

Stereotactic radiosurgery (SRS) has emerged as an established treatment
option for patients with a limited number of brain metastases [48,49]. Com-
pared to whole brain radiotherapy (WBRT), which has been the mainstay of
treatment for brain metastases over the past few decades, SRS leads to sim-
ilar outcomes in terms of local disease control and overall survival, but with
a reduced risk of neurocognitive impairment [36-40]. Consequently, the use
of WBRT is being increasingly replaced by SRS in patients with favorable
prognostic factors [35].

The role of SRS in the management of patients with multiple brain metas-
tases is still controversial [50-52]. Major concerns are the prolonged treatment
duration and the large integral dose delivered to the healthy brain associated
with the concurrent treatment of multiple lesions [53,54]. While recent ad-
vances in dose delivery techniques have enabled the efficient treatment of
multiple targets using SRS [55], it would be highly desirable to limit the
radiation-induced damage to the brain in order to expand the indications
for SRS to include selected patients with multiple brain metastases. The
volume of brain exposed to high doses is widely considered the most relevant
dosimetric parameter [56,57]. However, because of the higher risk of distant
brain failure when WBRT is omitted, brain metastases patients must often
undergo multiple courses of SRS [58]. In this clinical scenario, it may also
be of fundamental importance to minimize the integral brain dose in order
to lower the risk of complications after repeated courses of SRS.

3.2.2 Spatiotemporal fractionation schemes

There is a lack of consensus regarding the optimal fractionation scheme for
the treatment of brain metastases, with several recent clinical studies report-
ing similar toxicity levels in the healthy brain between single- and multi-
fraction SRS [41-43]. Increasing the number of fractions is beneficial to im-
prove the brain tolerance to high doses. However, the total physical dose
must be increased to maintain tumor control [59], and thereby the integral
biologically effective dose (BED) delivered to the healthy brain is only slightly
affected by the fractionation regimen. In that regard, it would be ideal to
simultaneously achieve fractionation in the healthy brain and deliver high
single fraction doses to the metastases.

As it has recently been shown for other treatment sites, such a goal can
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partly be achieved by delivering non-uniform dose distributions in distinct
fractions, in which each fraction contributes with a high dose to complemen-
tary parts of the target volume while a similar dose bath is delivered to the
surrounding normal tissue. This concept has been named spatiotemporal
fractionation and has been demonstrated in in-silico studies to improve the
therapeutic ratio compared to conventional uniform fractionation using both
proton [28,29] and rotational photon therapy [30-32].

While spatiotemporal fractionation schemes may provide a valuable treat-
ment approach for reducing the integral brain BED in patients with multiple
brain metastases treated with SRS, biological and geometrical uncertainties
represent a substantial hurdle for clinical implementation. Clinical experi-
ence is based on treating an entire lesion in each fraction and the biological
effect of irradiating different parts of a lesion in different fractions is unknown.
In addition, setup and motion uncertainties represent more of a concern for
the accurate delivery of spatiotemporally fractionated plans compared to
treatments that deliver the same uniform dose to the target volume in ev-
ery fraction. If different regions of each individual metastasis are targeted
with high doses in distinct fractions, setup and motion errors may lead to
misalignments of the dose contributions of the different fractions, causing
target underdosage and compromising tumor control. The target compart-
mentalization is automatically determined in a BED-based treatment plan
optimization and is not known a priori. Hence, geometrical uncertainties
cannot be accounted for by using margins around the treated volume as in
conventional clinical practice.

In the context of polymetastatic diseases, we propose a constrained ap-
proach to spatiotemporal fractionation that addresses these issues. The ap-
proach forces each fraction to treat the entire volume of a metastasis and
avoids partial irradiation of a lesion. However, the approach allows different
metastases to be treated to large doses in different fractions. Thereby, the
total physical dose needed to control the metastases can be reduced while
some degree of fractionation is achieved in the normal tissue in between the
metastases, maintaining parts of the benefit of spatiotemporal fractionation.
Such a constrained approach to spatiotemporal fractionation is more robust
against setup and motion uncertainties than the original approach to spa-
tiotemporal fractionation, because it avoids steep dose gradients within a
metastasis in the dose contributions of individual fractions. In addition, the
approach yields dose distributions that are more similar to current clinical
practice and reduces the biological uncertainties related to partial tumor
irradiation. In summary, the constrained approach to spatiotemporal frac-
tionation may face lower hurdles for clinical implementation.
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Main contributions of this paper

In this work, we make three main contributions to research on spatiotemporal
fractionation. First, we demonstrate the potential of spatiotemporal fraction-
ation schemes for reducing the integral brain BED in SRS-based treatments
of patients with multiple brain metastases. This may expand the indications
for SRS to include selected patients with multiple brain metastases. Second,
we present a conceptual extension of spatiotemporal fractionation and fur-
ther methodology development by introducing a novel constrained approach
to spatiotemporal fractionation, that is applicable to polymetastatic cancer
patients. Here, the compartmentalization of the target volume follows the
anatomical target compartmentalization defined by each individual metasta-
sis, leading to spatiotemporally fractionated treatments that are more robust
against setup and biological uncertainties. Third, by simultaneously optimiz-
ing multiple spatial dose distributions and allowing for non-stationary frac-
tionation scheme for individual lesions, we extend on previous studies that
aimed to determine the optimal fractionation schedule given a single spatial
dose distribution [22,60-32].

3.3 Methods

3.3.1 Planning of spatiotemporally fractionated treat-
ments

Spatiotemporally fractionated treatments are obtained by simultaneously op-
timizing multiple dose distributions to be delivered in different fractions. In
this work, we consider two different approaches to spatiotemporal fractiona-
tion, which differ in the way the dose is distributed within the target volume.

Original (unconstrained) approach to spatiotemporal fractionation

The first approach mimics previous studies on spatiotemporal fractionation
[29-32]. The target volume, as well as each individual metastasis, can be ar-
bitrarily compartmentalized into distinct regions to be irradiated in different
fractions. The optimal dose distributions for each fraction are automatically
generated by solving a BED-based treatment plan optimization problem,
aiming for the best possible trade-off between hypofractionation in the tar-
get volume and more uniform fractionation in the healthy tissue. Such an
optimization problem, which is further detailed in the work of Unkelbach et al
[31], directly accounts for the fractionation effects by evaluating the planning
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objectives and constraints for the cumulative BED bi =
∑n

t=1 dit

(
1 + dit

(α/β)i

)
rather than the physical dose. Here, (α/β)i is the α/β-ratio of voxel i, n
is the total number of fractions, and dit =

∑
j Dijxjt is the physical dose

delivered to voxel i in fraction t (where Dij is the dose-influence matrix term
describing the dose contribution of beamlet j to voxel i per unit intensity
and xjt is the intensity of beamlet j in fraction t).

Constrained approach to spatiotemporal fractionation

The second approach is specific to patients presenting with polymetastatic
diseases. Here, all fractions are restricted to deliver similar (but not neces-
sarily homogeneous) spatial dose distributions within each lesion, to avoid
that different parts of the same lesion are treated in different fractions. How-
ever, the dose contribution of each fraction to every metastasis can be freely
decided to best achieve the desired dosimetric goals. The optimal fractiona-
tion scheme for this constrained approach to spatiotemporal fractionation is
determined by means of a new planning objective, which is defined as

fcSTF (b, δ) =
M∑

m=1

n∑
t=1

∑
i∈PTVm

 1

|PTVm|

(
bit − δmt

(
n∑

t=1

bit

))2
 (3.1)

Here, PTVm is the set of voxels belonging to metastasis m and M is the
total number of metastases. The variables δmt represent the partial BED
contribution of fraction t to metastasis m, and are introduced as additional
optimization variables that are determined through the optimization algo-
rithm along with incident beamlet intensities x.

The motivation and intuition behind this objective are as follows. Let
us consider the contribution of fraction t and metastasis m to the value of
fcSTF . For a given value of δmt, this contribution is zero if the BED bit
delivered in fraction t to voxel i is the same portion δmt of the total BED
bi =

∑n
t=1 bit for all voxels i ∈ PTVm that belong to metastasis m. Thus, a

treatment plan corresponding to a low value of fcSTF has the property that
each fraction delivers a spatial dose distribution to a metastasis that is similar
to the prescribed cumulative BED distribution, except that it is downscaled
by a factor δmt. In the original unconstrained approach to spatiotemporal
fractionation, per contra, a fraction could deliver a large portion of the total
cumulative BED in one voxel, and a low portion of the total BED in another
voxel of the same metastasis, which corresponds to a large value of fcSTF

because the same δmt applies to all voxels belonging to a given metastasis m.
By encouraging such an inter-fraction similarity, the constrained approach
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to spatiotemporal fractionation is expected to be more robust against setup
uncertainties compared to the original approach, because misalignments of
dose contributions from different fractions do not lead to cold spots in the
middle of a metastasis. Setup errors only affect coverage of the PTV edge,
which can be accounted for by margins as in current clinical practice. In
addition, by delivering spatially uniform dose distributions within a lesion in
all fractions, the constrained approach to spatiotemporal fractionation may
mitigate the biological uncertainties related to partial tumor irradiation.

The formulation of the objective in Eq. (3.1) has two important ad-
vantages. First, by introducing δmt’s as additional optimization variables,
it still allows for simultaneous optimization of the incident fluence and the
fractionation scheme. The partial BED contributions of every fraction t to
each metastasis m are directly optimized together with the cumulative BED
distribution and it is therefore not required to manually define a priori how
much dose should be delivered to each lesion by which fraction. Second,
the proposed planning objective does not make any assumptions on the cu-
mulative BED distribution. Compared, for example, to objective functions
which aim at minimizing the variance of the BED distribution of fraction t
in metastasis m and thereby force the BED distribution in the PTV to be
homogeneous, the objective in Eq. (3.1) allows to deliver inhomogeneous
cumulative BED distributions within each lesion (which is clinical practice
in SRS of brain metastases).

3.3.2 Patient cases

Three patients, each with a large number of brain metastases (> 25), have
been selected to retrospectively investigate the potential benefits of spa-
tiotemporal fractionation schemes. All three cases were treated with linac-
based fractionated stereotactic radiosurgery at our institution. Patient 1 has
29 lesions of varying size with a total GTV volume of 14.7 cc and is used for
illustration in the results section. Patients 2 and 3 have 27 and 30 metas-
tases, respectively, with total GTV volumes of 22.6 cc and 20.3 cc. More
detailed characteristics of the three patients are reported in the Supplemen-
tary material, Appendix A.

3.3.3 Treatment planning study

For each of the three brain metastases patients, we generate 3-fraction IMRT
treatment plans using non-coplanar 6 MV photon beams, which are designed
to approximate a full VMAT arc at a couch angle of 0◦ and three half-
arcs from 0◦ to 180◦ at couch angles of 45◦, 270◦ and 315◦. The treatment
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geometry is assumed to be single-isocenter. The beamlet resolution is 5 x 5
mma and the resolution of the dose grid is 1.2 x 1.2 x 0.6 mm3 in the x-,
y- and z-directions. Calculation of the dose-influence matrix elements Dij is
performed with the open-source radiotherapy planning platform CERR [44]
using a quadrant infinite beam (QIB) algorithm [63]b .

We attempt to solve the treatment plan optimization problem for the
following choice of objective functions and constraints.

Objectives:

1. A BED10 of 51.3 Gy is prescribed to the GTV. This is implemented via
a quadratic penalty function and corresponds to 27 Gy physical dose
delivered in 3 fractions.

2. A BED10 of 43.2 Gy is prescribed to the PTV (which is obtained from
a isotropic 1.2 mm margin expansion from the GTVc), corresponding
to 24 Gy physical dose delivered in 3 fractions. A BED10 exceeding
60 Gy (i.e. 30 Gy physical dose in 3 fractions) is penalized quadrat-
icallyd . These different dose prescriptions between the GTV and the
PTV reflect the clinical practice of prescribing to the 80% isodose line
and increasing the dose in the center of the metastases [64].

3. The volume V60 of healthy brain (i.e. brain-PTV) receiving a BED2

larger than 60 Gy is minimized. This corresponds to 10 Gy in a sin-
gle fraction and is implemented via a continuous relaxation of a dose-
volume objective, as further detailed in the Supplementary material,
Appendix B.

aAlthough the chosen beamlet size is similar to the diameter of some small metastases,
inhomogeneous doses within the lesions and an excellent dose conformity can be achieved
with 5 x 5 mm2 beamlets due to the large number of field directions used. A beamlet size
of 2.5 x 2.5 mm2 may, however, further improve the results.

bCERR uses a pencil beam algorithm for calculation of the dose-influence matrix.
We performed a comparison of dose profiles computed in CERR to the convolution-
superposition algorithm implemented in the commercial planning system Eclipse (Varian
Medical Systems). Although some discrepancies can be noticed in the lateral dose profile,
the depth dose curves obtained using the QIB algorithm are reliable. In particular, as the
brain tissue is quite homogeneous, we expect the dose distributions used in this study to
be realistic.

cThe same PTV margin is applied to every lesion, independently of their distance from
the isocenter. The adopted planning margins are intended to be conservative and to hold
true also for lesions which are further away from the isocenter.

dThis over-dose penalty function applies also to all GTV voxels, as GTV ⊂ PTV.
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4. The mean BED2 to the normal tissue excluding the PTV and the brain
is minimized.

5. The mean BED2 to the healthy brain is minimized.

Constraints:

1. The maximum BED2 at 5 mm distance from the PTV is constrained
to 36 Gy, corresponding to 12 Gy physical dose delivered in 3 fractions
(i.e. half of the prescribed PTV dose). This forces the plan to be
conformal and prevents hot spots in the normal tissue away from the
metastases.

2. The maximum BED2 to the brainstem is constrained to 120 Gy, cor-
responding to 24 Gy physical dose delivered in 3 fractions.

We first optimize a uniformly fractionated (UF) 3-fraction SRS treatment
plan that delivers the same dose in all fractions, based on a weighted sum of
the five objectives. This plan reflects current clinical practice of delivering a
hypofractionated SRS treatment to patients with multiple brain metastases
and is used as benchmark. Subsequently, two spatiotemporally fractionated
plans are generated with both the original (STF plan) and the constrained
(cSTF plan) approaches to spatiotemporal fractionation. The STF plan is
obtained by minimizing the mean cumulative brain BED2, subject to the
additional constraints that the values of objectives 1-4 are no worse than
in the UF plan. Hence, the entire benefit of spatiotemporal fractionation is
directed on reducing the mean BED2 to the healthy brain. The STF plan
is compared to the UF plan to evaluate the maximum achievable benefit of
delivering different non-uniform dose distributions in distinct fractions, when
no constraints are set on the spatial dose distribution of each fraction. The
cSTF plan is obtained by minimizing a weighted sum of the mean brain
BED2 objective and the new objective in Eq. (3.1), subject to the same
constraints as for the STF plan, and is compared to both the UF plan and
the STF plan in terms of mean brain BED2 reduction and robustness against
setup errors. The spatial dose distribution within the individual metastases
in each fraction and the optimal fractionation scheme as a function of the
size of the lesions are also compared between the STF and cSTF plans. The
cSTF plan is hypothesized to maintain some of the benefit of spatiotemporal
fractionation compared to the UF plan, while at the same time being more
robust against setup errors and biological uncertainties related to partial
tumor irradiation than the STF plan.

To find a local minimum of the optimization problem, we used our own
implementation of the L-BFGS quasi-Newton method [65], together with an
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augmented Lagrangian method for handling constraints [66]. Fluence maps
were initialized with small random intensities (varying in between the differ-
ent fractions of the spatiotemporally fractionated plans), while the additional
optimization variables δmt used in Eq. (3.1) are initially set to 1/n. As both
the BED-based optimization problem and the new planning objective in Eq.
(3.1) are not convex, two additional STF plans and two additional cSTF
plans have been generated for patient 1 with different initializations of the
fluence maps and of the δmt parameters, in order to investigate the sensitivity
of the planning outcomes to different initializations.

A more detailed description of the treatment plan optimization problem
can be found in the Supplementary material, Appendix B.

3.3.4 Variations of the constrained approach to spa-
tiotemporal fractionation

The BED contribution δmt of fraction t to metastasis m in Eq. (3.1) can,
per definition, assume any value in between 0 (i.e. no dose) and 1 (i.e. the
full prescribed dose). However, all clinical experience is based on delivering
the same dose in every fraction and the effect of delivering very different
doses in different fractions is unknown. In that regard, we also consider
and investigate two further modifications of the constrained approach to
spatiotemporal fractionation, which aim at creating treatments that are even
closer to clinical practice.

Adding objectives or constraints on δmt

Additional constraints or objectives can be defined for the optimization vari-
ables δmt’s to promote specific fractionation schemes. A special case of the
constrained approach to spatiotemporal fractionation consists, for example,
of assigning each metastasis to be either treated to the full dose in a sin-
gle fraction (e.g. {δm1, δm2, δm3} = {1, 0, 0}), to be uniformly fractionated
over 2 out of 3 fractions (e.g. {δm1, δm2, δm3} = {1/2, 1/2, 0}), or uniformly
irradiated over all 3 fractions ({δm1, δm2, δm3} = {1/3, 1/3, 1/3}). Such a
fractionation scheme can be promoted by adding the following penalty term
to the BED-based optimization problem:

f bounds
cSTF (δ) =

M∑
m=1

n∑
t=1

δ2mt

(
δmt −

1

3

)2(
δmt −

1

2

)2

(δmt − 1)2 (3.2)

The penalty function f bounds
cSTF (δ) in Eq. (3.2) is handled as a constraint

using augmented Langrangian methods. It can be thought of as constraint
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function that adds a term of the form λf bounds
cSTF (δ) + µ(f bounds

cSTF (δ))2 to the
augmented Lagrangian function, where λ is the estimate of a Lagrange mul-
tiplier that is iteratively updated and µ is a penalty factor that is iteratively
increased as long as the constraint f bounds

cSTF (δ) = 0 is violated. Thus, ini-
tially the fractional dose distributions and the parameters δmt’s are jointly
optimized as continuous variables using the planning objective in Eq. (3.1).
Eventually, δmt are frozen to the values 0, 1/3, 1/2 and 1 while the cumulative
BED distribution is adjusted accordingly.

Not counting the contribution of very small doses per fraction to
local tumor control

One specific concern for the application of spatiotemporal fractionation schemes
to SRS of brain metastases is that the contribution of very small doses per
fraction to local tumor control may be lower than predicted by the standard
BED model. To account for such a potential issue, we implemented a method
for generating cSTF plans in which only doses per fraction larger than a given
threshold value contribute to local tumor control. Based on the cSTF plan
obtained by allowing any value for the δmt’s in the interval [0,1], a second
optimization is performed with the constraint that all the prescribed BED10

to each lesion is delivered in those fractions in which the cSTF plan con-
tributes with δmt>0.1 (which corresponds approximately to a physical dose
larger than 3.5 Gy). This is achieved by evaluating the planning objectives
and constraints for the corresponding metastasis only for the subset of frac-
tions with δmt>0.1.

Two additional cSTF plans are generated in this study using both the
described approaches, to investigate whether alternative formulations of the
constrained approach to spatiotemporal fractionation which are even closer to
clinical practice might still have a benefit compared to uniform fractionation
of all the metastases. These plans are initialized with the results of the cSTF
plan obtained using the planning objective in Eq. (3.1) and are optimized
using the same planning objectives and constraints.

3.4 Results
Fig. 3.1e and Fig 3.1m show the dose distribution for two different CT slices
of patient 1 for the UF plan, in which each metastasis is treated to the
same dose in all three fractions. This plan achieves a mean physical dose of
5.13 Gy in the healthy brain, while the brain volume V60 receiving a BED2
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larger than 60 Gy is 38.4 cc. The three fractional dose distributions for the
STF and cSTF plans are illustrated in Fig. 3.1b-d/Fig. 3.1j-l and Fig. 3.1f-
h/Fig. 3.1n-p, respectively. Both plans deliver high doses to complementary
parts of the target volume in distinct fractions. In some metastases, maxi-
mum single-fraction doses exceed 15 Gy (note that 18.2 Gy delivered in a sin-
gle fraction corresponds to the prescribed BED10 of 51.3 Gy to the GTV). All
together, however, the three fractional dose distributions in both spatiotem-
porally fractionated plans deliver the same prescribed cumulative BED10 in
each metastasis as in the uniformly fractionated plan (the equieffective dosee

distributions in patient 1 achieved with the different fractionation schemes
are reported in the Supplementary material, Appendix C.1).

Because of partial hypofractionation in the target volume, spatiotempo-
rally fractionated plans achieve the prescribed tumor BED10 with less phys-
ical dose. This is shown in Fig. 3.1a and Fig. 3.1b, which compare the three
plans in terms of the dose-volume histograms (DVH) evaluated for the cu-
mulative physical dose and the equieffective dose, respectively. The mean
physical dose to the PTV is 27.2 Gy for the uniformly fractionated plan,
while it is reduced to 26.6 Gy (-2.2%) with the cSTF plan and to 25.8 Gy (-
5.1%) with the STF plan. As some degree of fractionation is simultaneously
achieved in the surrounding healthy brain, this reduction in physical dose
leads to a net reduction in the brain BED2 (Fig. 3.1b). The mean BED2 to
the healthy brain is reduced compared to the uniformly fractionated plan by
9.3% and by 13.2% with the cSTF and STF plans, respectively.

Similar results have been obtained for the other patients. Table 3.1 sum-
marizes the dosimetric results achieved with uniform and spatiotemporal
fractionation schemes for all three cases studied, while dose distributions for
patients 2 and 3 can be found in the Supplementary material, Appendix C.2.
For the same tumor BED10 and the same brain volume exposed to high doses
in all plans, the mean BED2 to the healthy brain can be reduced by 9-12%
with the cSTF plan and by 13-19% with the STF plan compared to the uni-
formly fractionated plan. Note that the reduction in the mean brain BED2

achieved with the spatiotemporally fractionated plans is lower than the cor-
responding reduction in the mean physical dose. This is due to a deviation
from the ideal uniform fractionation in the healthy brain.

Because of the non-convexity of the BED-based optimization problem
used in this study, different fractional dose distributions are obtained for
both the STF and cSTF plans when the fluence maps are initialized differ-

eThe equieffective dose EQDX = b
(1+X/(α/β) can be interpreted as the total physical

dose to be delivered in a uniformly fractionated treatment with a dose per fraction X to
achieve a BED b [67].
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Figure 3.1: Dose distributions for two CT slices of patient 1 achieved with
the different fractionation schemes. In slice A (a), four metastases are visible
with PTV volumes of 3.2 cc (A1), 0.3 cc (A2), 2.3 cc (A3) and 0.1 cc (A4).
In slice B (i), three metastases are visible with PTV volumes of 0.1 cc (B1),
0.4 cc (B2) and 9.9 cc (B3). For each lesion, contours for the GTV (red) and
PTV (orange) are shown. Also shown is the contour of the brain (green).

ently (this is shown in Fig. 3C.5 in the Supplementary material, Appendix
C.3). However, as it has previously been observed by Gaddy et al [68] on a
different treatment site, such distinct local minima of the optimization prob-
lem correspond to treatments leading to very similar reductions in the mean
brain BED2 compared to the UF plan. These findings have been confirmed
in this study for the STF plans, and also demonstrated to hold true for the
cSTF plans.
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Figure 3.2: Dose-volume histogram comparison for (a) the cumulative phys-
ical dose and (b) the equieffective dose EQDX. The DVHs are evaluated for
both the PTV (X = 9 Gy) and the healthy brain (X = 2 Gy).

Table 3.1: Summary of the dosimetric results achieved with uniform and
spatiotemporal fractionation schemes for all three patients studied. For pa-
tient 1, the mean values and standard deviations for the three optimizations
with different initializations of the optimization variables are reported. As
the mean tumor EQD9 is not directly optimized, slightly lower values for the
mean EQD9 may be achieved in the PTV in the spatiotemporally fraction-
ated plans compared to the UF plan. Under- and over-dose quadratic penalty
functions for the PTV, however, are at least as good for the cSTF and STF
plans as they are for the corresponding UF plan.

UF plan cSTF plan STF plan

Patient 1

PTV Mean dose (Gy) 27.2 26.6 ± 0.0 (-2.2%) 25.8 ± 0.1 (-5.1%)
Mean EQD9 (Gy) 27.3 27.3 ± 0.0 (=) 27.2 ± 0.0 (-0.4%)

Healthy brain
Mean dose (Gy) 5.13 4.57 ± 0.1 (-10.9%) 4.29 ± 0.1 (-16.4%)
Mean EQD2 (Gy) 5.82 5.29 ± 0.1 (-9.1%) 5.06 ± 0.1 (-13.1%)
V60 (cc) 38.4 38.3 ± 0.0 (-0.3%) 38.3 ± 0.0 (-0.3%)

Patient 2

PTV Mean dose (Gy) 27.2 26.7 (-1.8%) 25.8 (-5.1%)
Mean EQD9 (Gy) 27.4 27.3 (-0.4%) 27.2 (-0.7%)

Healthy brain
Mean dose (Gy) 7.47 6.66 (-10.8%) 6.02 (-19.4%)
Mean EQD2 (Gy) 9.51 8.38 (-11.9%) 7.72 (-18.9%)
V60 (cc) 45.0 45.0 (=) 44.9 (-0.3%)

Patient 3

PTV Mean dose (Gy) 27.1 26.4 (-2.6%) 25.6 (-5.5%)
Mean EQD9 (Gy) 27.3 27.2 (-0.4%) 27.1 (-0.7%)

Healthy brain
Mean dose (Gy) 6.18 5.58 (-9.7%) 5.14 (-16.8%)
Mean EQD2 (Gy) 7.51 6.84 (-8.9%) 6.39 (-14.9%)
V60 (cc) 47.2 47.1 (-0.2%) 47.2 (=)

3.4.1 Plan sensitivity to random setup errors

The dosimetric results in Table 1 are reported assuming that all dose distribu-
tions for the different fractions are delivered as planned and thereby add up to
the prescribed BED10 in all parts of the target volume. In order to determine
the impact of random setup errors on the GTV dose coverage, we performed
a robustness analysis. For each of the three fractionation schemes, Fig. 3.3
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shows the DVHs evaluated for the EQD9 assuming that random setup errors
of ±1.2 mm in left-right, superior-inferior and anterior-posterior directions
apply to the GTV between the different fractions. The magnitude of the
setup errors is selected to agree with the GTV-to-PTV margin expansion.
Both the UF and the cSTF plans maintain an excellent dose homogeneity
within most of the lesions comparable to the situation without setup errors.
Only for very small metastases (e.g. metastasis A2) the GTV dose cover-
age is slightly affected by setup errors, because a larger portion of the GTV
moves outside of the high dose region for a 1.2 mm shift. This problem,
however, is common to both the UF and cSTF plans, which overall show a
very similar sensitivity to geometrical uncertainties. Instead, as a result of
the misalignments of the dose contributions of the different fractions within
the single metastases, the STF plan presents an increased risk of cold and
hot dose spots within the GTV when setup errors are assumed, especially for
larger metastases. For instance, the STF plan delivers a mean EQD9 of only
25.3 Gy to the GTV of metastasis A3 in the worst case scenario, whereas the
corresponding mean EQD9 reads 29.5 Gy when no setup error is assumed.
For smaller lesions, the STF plan is less sensitive to setup errors, because
the ability of the STF plan to hypofractionate different parts of the PTV in
distinct fractions is reduced for a finite beamlet size (as shown in Fig. 3.5b).

Spatial dose distributions within the individual metastases

In Fig. 3.4, the spatial dose distributions within the individual lesions are
analyzed in more detail. For four metastases in patient 1, Fig. 3.4a-d sep-
arately display the relative number of voxels receiving a given BED contri-
bution from each of the three fractions in the spatiotemporally fractionated
plans. The cSTF plan delivers spatially very homogeneous dose distributions
to each metastasis in all fractions, thereby avoiding partial irradiation of the
different lesions. Dosimetric improvements over the UF plan are nevertheless
obtained by varying the partial dose contribution of each fraction to every
lesion. For example, metastasis A4 receives more than 90% of the BED10 in
the first fraction of the cSTF plan, whereas fractions 2 and 3 only contribute
a minor part to the prescribed tumor BED10. In contrast, the STF plan is
not constrained to irradiate entire metastases with similar spatial dose dis-
tributions and thereby more inhomogeneous doses are delivered within each
lesion in separate fractions. This results in an improved trade-off between
hypofractionation in the target volume and more uniform fractionation in the
healthy brain, and thereby also in a larger brain BED2 reduction compared
to the cSTF plan. However, this may also introduce biological uncertainties
related to partial tumor irradiation.
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Figure 3.3: Dose-volume histograms for the GTVs of four individual lesions
in patient 1 evaluated for the EQD9, assuming a scenario with no setup
errors (black dashed line) and 73 − 1 = 342 error scenarios corresponding to
all combinations of random setup errors of ±1.2 mm in left-right, superior-
inferior and anterior-posterior directions (red solid lines).

3.4.2 Impact of the size of the metastases on the optimal
fractionation scheme

In Fig. 3.5, we analyze how the optimal fractionation scheme depends on
the size of the metastases. Fig. 3.5a shows the maximum fractional BED
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Figure 3.4: Relative BED contribution of every fraction to four individual
metastases in patient 1 for both the cSTF (dashed line) and the STF (solid
line) plans.

contribution maxtδmt to each of the 29 metastases in patient 1 as a function
of their size for the cSTF plan, where δmt are the additional variables defined
in Eq. (3.1) for the cSTF plan optimization. Generally, small lesions are
treated to high doses in one of the fractions (e.g. metastases A4 and B1 in
Fig. 3.1), whereas larger metastases receive a similar dose in all the fractions.
For example, the fractionation scheme for the largest lesion with a diameter
of 2.7 cm (metastasis B3 in Fig. 3.1) approaches uniform fractionation. As
seen in Fig. 3.4b, the partial BED contributions of all three fractions in the
cSTF plan to that metastasis range from 32% to 34%. These findings are
also well illustrated for patient 3 in the Supplementary material, Appendix
C.2.

Fig. 3.5b reports the standard deviation
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(3.3)

of the BED contributions of every fraction t in the STF plan to all voxels
in each of the metastases m in patient 1, as a function of the lesion size.
Large values of σmt occur when complementary parts of the same metastasis
are treated to high doses in distinct fractions. For example, metastasis B3
is treated with highly inhomogeneous doses in every fraction of the STF
plan (as can be seen in Fig. 3.4b), and the corresponding values for the
standard deviation read 10.2 Gy, 9.1 Gy and 10.9 Gy for fractions 1, 2 and
3, respectively. Instead, small values for the standard deviation correspond
to a fraction delivering more homogeneous spatial dose distributions within
the individual lesions (as it is the case for metastasis A4 in Fig. 3.4d, for
which the corresponding values of σmt are 1.3 Gy, 4.9 Gy and 0.4 Gy for the
three contributing fractions). The ability of the STF plan to hypofractionate
distinct regions of the same lesion in different fractions is greater for larger
metastases, while it almost disappears for lesions with a diameter smaller
than 8 mm (note that the beamlet size used in this study is limited to 5
mm).

3.4.3 Alternative cSTF plans with fractional dose con-
tributions which are closer to clinical practice

As shown in Fig. 3.4 and Fig. 3.5a, the optimal BED contribution δmt of
fraction t to metastasis m in the cSTF plan can assume very different values
depending on the size of the lesions. In the following, we present the results
for two alternative cSTF plans whose fractional dose contributions to the
individual lesions are closer to what is conventionally delivered in clinical
practice.

cSTF plan obtained by constraining the values of δmt

The fractional dose distributions for the cSTF plan obtained using the penalty
function in Eq. (3.2) are shown in Fig. 3.6 for patient 1. This treatment ir-
radiates each metastasis with fractionation schemes that are conventionally
used in clinical practice (i.e. 1 x 16 Gy, 2 x 10 Gy or 3 x 8 Gy), which has the
advantage that one does not expect changes in local tumor control. However,
with these additional restrictions, such a cSTF plan achieves a mean brain
BED2 reduction of only 1.4% compared to the UF plan (for a similar PTV
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Figure 3.5: Dependence of the optimal fractionation scheme on the size of
the metastases for patient 1. (a) Maximum fractional BED contribution to
each metastasis in the cSTF plan, showing that small lesions are treated to
high doses in one of the fractions, whereas large metastases receive similar
doses in all fractions. (b) Standard deviation of the partial BED contribu-
tions of each fraction in the STF plan to the voxels of each individual lesion,
showing that the ability of the STF plan to hypofractionate distinct regions of
the target volume in different fractions is reduced for small metastases. The
sizes of the metastases refer to the planning target volume.

dose coverage), which is partly explained by the result that 21 out of 29 are
assigned to uniform fractionation over all 3 fractions.

cSTF plan obtained by neglecting the contribution of very small
doses per fraction to local tumor control

Fig. 3.7 illustrates the result for two selected metastases in patient 1 for the
cSTF plan which is obtained by neglecting the contribution to local tumor
control of fractions delivering a dose smaller than 3.5 Gy to a metastasis.
The method increases the dose contribution of the largest fraction to deliver
the entire tumor BED10. While the same PTV dose coverage and volume of
brain receiving high doses could be achieved as for the original cSTF plan,
the mean brain EQD2 is increased to 5.53 Gy when the contribution of small
doses per fraction are neglected. This still represents a 5.0% reduction in
the mean brain BED2 compared to the benchmark UF plan, demonstrating
that the benefit of cSTF plans over UF plans is maintained also when it
is assumed that small doses per fraction do not contribute to local tumor
control. However, the benefit is substantially lower than the 9.1% for the
initial cSTF plan, because the method enforces that overall more dose is
delivered to the patient.
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Figure 3.6: Dose distributions for two CT slices of patient 1 achieved with
the cSTF plan obtained using the additional penalty term in Equation (2). All
metastases are either treated to the full dose in a single fraction (2/29 lesions;
A4), uniformly irradiated over two of the three fractions (6/29 lesions; C1,
C2) or uniformly irradiated over all three fractions (21/29 lesions; A1, A2,
A3, C3, C4).

Figure 3.7: Comparison between the initial cSTF plan and the cSTF plan
which considers only fractional dose contributions of at least 3.5 Gy for (a)
metastasis A4 and (b) metastasis B1 in patient 1. Round markers represent
the physical dose per fraction, whereas the bars represent the contribution to
the cumulative target BED10 of all fractions with δmt > δthreshold.
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3.5 Discussion
The treatment of multiple brain metastases with stereotactic radiosurgery
is often limited by the large integral dose delivered to the healthy brain.
While uniform fractionation schemes have limited ability to reduce radiation-
induced brain toxicities, we demonstrated in this study that by delivering
non-uniform dose distributions in distinct fractions, the mean brain BED2

can be substantially reduced for a fixed prescribed tumor BED10. For each
fraction, the dose distributions are designed to achieve partial hypofraction-
ation in the target volume along with more uniform fractionation in the
healthy brain, and thereby optimally exploit fractionation effects. Although
it is difficult to quantify the clinical benefit of reducing the mean BED2 in the
healthy brain, a lower brain BED2 may mitigate the risk for neurocognitive
decline and give more margin for repeated SRS in brain metastases patients.

Despite the accurate patient positioning typical of SRS treatments, resid-
ual setup errors remain a serious concern for the delivery of spatiotemporal
fractionation schemes when different parts of the same metastasis are treated
to high doses in distinct fractions. Setup errors may, in fact, lead to mis-
alignments of the planned dose distributions of the different fractions, thereby
causing non-negligible target underdosage and potentially compromising tu-
mor control. These uncertainties cannot be accounted for by adding margins
around the treated volume as in conventional clinical practice, as the optimal
dose compartmentalization for the STF plans is automatically determined
by solving the BED-based optimization problem and is not known a priori.
Stochastic optimization methods to account for geometrical uncertainties in
spatiotemporal fractionation schemes have been previously investigated [69].
In this work, we presented a different approach to spatiotemporal fraction-
ation applicable to polymetastatic cancer patients and demonstrated that
most of the benefits of STF can be maintained by treating entire metastases
with possibly different doses, but spatially similar dose distributions in dif-
ferent fractions. Such constrained approach to spatiotemporal fractionation
has two main advantages compared to using stochastic optimization meth-
ods. First, by avoiding intra-metastatic fractional dose gradients, robustness
against setup and motion uncertainties can be directly achieved by adding
margins around the treated volume as in conventional clinical practice. As
cSTF plans are obtained by evaluating a single additional planning objective,
this method is thereby computationally more efficient than stochastic opti-
mization methods, as it does not require to evaluate multiple error scenarios.
Second, the constrained approach to spatiotemporal fractionation potentially
mitigates biological uncertainties related to the partial irradiation of a lesion,
and thereby represents a practical approach to spatiotemporal fractionation
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with lower hurdles for clinical implementation.
In this study, we used a generalization of the standard BED model to

quantify the fractionation effects, assuming α/β values of 10 Gy in the tu-
mor and of 2 Gy in the normal brain. While the BED model has been widely
used to compare different fractionation schemes, clinical experience is mostly
limited to delivering the same dose in each fraction and it is uncertain if the
assumed generalization of the BED model adequately describes the effective-
ness of treatments that deliver very different doses in different fractions. In
that regard, two alternative cSTF approaches have been investigated, which
either neglect the contribution of very small doses per fraction to local tu-
mor control or aim at delivering more standard fractionation schemes to each
lesion. Both approaches are demonstrated to still outperform the UF plan,
but the benefit is lower compared to the cSTF plan obtained by allowing
arbitrary fractional dose contributions to the different metastases.

Several prior publications have introduced the concept of irradiating dif-
ferent subsets of metastases in different fractions [45-47]. In those studies,
each lesion was forced to receive the full prescribed dose in a single frac-
tion. Chen et al [47] considered gammaknife radiosurgery for multiple brain
metastases. In a first step, individual treatment plans were created for each
metastasis, and in a second step, the optimal sorting of metastases into the
different fraction groups was determined by solving an integer programming
problem. In the context of linac-based SRS, this approach has two main lim-
itations that the proposed cSTF approach improves upon. First, in contrast
to a sequential approach, it allows for jointly optimizing the incident fluence
and the fractional dose contributions to each metastasis. Second, it allows
the fractionation scheme for the individual lesions to be flexible. In this way,
not all metastases are necessarily treated to the full dose in a single fraction,
but a metastasis-specific fractionation scheme is optimized depending on the
lesion size and its location relative to other metastases and organs at risk.
The ability to uniformly fractionate the dose delivered to some of the lesions
is particularly beneficial for metastases which are large or located close to
critical structures, as this allows fulfilling dose-volume constraints for the
brain in the high dose region. As a special case of cSTF, treatments that
irradiate each metastasis to the full dose in one of the fractions can be ob-
tained if Eq. (3.2) is modified as f bounds

cSTF (δ) = δ2mt(δmt − 1)2. This approach
was investigated. However, treatments obtained in this way increased the
mean brain BED2 compared to the UF plan.

Future studies may investigate the potential benefit of the cSTF approach
for other treatment sites. Multiple lung or liver metastases might be partic-
ularly well suited, as concerns regarding motion uncertainties are even more
pressing for the original STF approach. In addition, other methods could be
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investigated for making cSTF treatments closer to clinical practice without
considerably compromising their dosimetric benefit. This may include alter-
native formulations of Eq. (3.2) and approaches to address the nonconvexity
of the optimization problems, e.g. smart initializations of the optimization
variables that yield local minima close to the global optimum.

3.6 Conclusions
Spatiotemporal fractionation schemes lead to lower biological doses in the
healthy brain compared to uniform fractionation schemes for patients with
multiple brain metastases treated with SRS. A constrained approach to spa-
tiotemporal fractionation that treats entire metastases with possibly different
doses, but spatially similar dose distributions in distinct fractions maintains
most of the benefits in terms of mean brain BED reduction and presents
lower hurdles for clinical implementation.

3.7 Supplementary material

Appendix A Patients
Table 3A.1 reports the characteristics of the three metastastic cancer patients
used to investigate the benefits of spatiotemporal fractionation schemes. The
selection criteria include patients with more than 25 brain metastases (BMs)
treated with hypofractionated SRS at our institution in the year of 2020.

Appendix B Treatment plan optimization
In this section, we detail the treatment plan optimization methods. We pro-
vide the mathematical formulation of the planning objectives and constraints
used in the treatment plan optimization problem, and discuss the dose cal-
culation algorithm which has been used in this study.

Table 3A.1: Characteristics of the three clinical cases studied. Volumetric
data refer to the gross tumor volume.

Volume per BM (cc)
No. of metastases Total volume (cc) Min Max Median

Patient 1 29 14.7 0.1 7.4 0.1
Patient 2 27 22.6 0.1 3.4 0.2
Patient 3 30 20.3 0.1 8.3 0.3
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B.1 Optimization of the uniformly fractionated plan

For the uniformly fractionated plan, the BED-based treatment plan optimiza-
tion problem is solved for a single fluence map x. The following objectives
and constraints have been used:

minimize
x

f(b) =
M∑

m=1

1

|Gm|
∑
i∈Gm

(51.3− bi)
2
+ (3B.1)

+
M∑

m=1

1

|Pm|
∑
i∈Pm

[
5

2
(43.2− bi)

2
+ + (bi − 60)2+

]
(3B.2)

+
ωp

|B|
∑
i∈B

1

1 + e−(bi−60)/0.5
(3B.3)

+
10ωp

|B|
∑
i∈B

bi (3B.4)

+
ωp

|Nrem|
∑

i∈Nrem

bi (3B.5)

subject to bi ≤ 36 ∀i ∈ N5mm (3B.6)
bi ≤ 120 ∀i ∈ S (3B.7)

bi = ndi

[
1 +

di
(α/β)i

]
∀i (3B.8)

di =
∑
j

Dijxj ∀i (3B.9)

xj ≥ 0 ∀j (3B.10)

where ωp is a patient-specific weighting factor which is set to 1 for patients
1 and 3, and to 1/5 for patient 2. Here, the dose-influence matrix elements
Dij describe the physical dose contributions of beamlets j to voxel i for unit
fluence, while xj is the fluence of beamlet j. Gm and Pm (where Gm ⊂ Pm)
denote the sets of voxels contained in the GTV and the PTV of metastasis
m, respectively; B is the set of voxels in the healthy brain (defined as the
brain without the PTV); Nrem denotes all voxels in the remaining normal
tissue (i.e. the normal tissue without the brain and the PTV); N5mm is
the set of voxels belonging to the normal tissue and at a distance equal or
larger than 5 mm from the PTV; and S denotes the set of voxels belonging
to the brainstem. The planning objective in Eq. (3B.3) is used to control
the brain volume exposed to BED2 values larger than 60 Gy. Differently
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Figure 3B.1: (a) Logistic sigmoid function and (b) its derivative. In (a), the
red solid line is obtained for a smoothness parameter ϵ = 0.5 and corresponds
to the continuously differentiable function that is used for the treatment plan
optimization in this work, whereas the black dashed line (obtained for ϵ → 0)
corresponds to the Heaviside step function.

than classical DVH objectives, which are evaluated using the Heaviside step
function θ(x), the objective function in Eq. (3B.3) is evaluated using a
continuously differentiable logistic sigmoid function ζϵ(x) (Fig. 3B.1a), where
ϵ is called smoothness parameter [70]. For ϵ ̸= 0, we can define a smooth
approximation of a DVH objective with a non-vanishing gradient around b
= 60 Gy (Fig. 3B.1b). This makes such planning objective more suitable for
gradient-based optimizations, particularly when used as a constraint. In this
work, we set the smoothness parameter ϵ to 0.5 (note that ζϵ(x) → θ(x) for
ϵ → 0).

Note that Eq. (3B.8) and (3B.9) define the relation of the optimization
variables x (i.e. the beamlet intensities), the physical dose, and the cumula-
tive BED (which is used to evaluate the objectives and constraints). These
relations are included here as equality constraints only for presentation pur-
poses, but the actual optimization is done by expressing the cumulative BED
in terms of the beamlet intensities xj’s, and solving for the optimal fluence
map x.

B.2 Optimization of the spatiotemporally fractionated
plans

Spatiotemporally fractionated plans may deliver n possibly different dose
distributions in each of the n fractions, and thereby the BED-based treatment
plan optimization problem is solved for n distinct fluence maps {x1, ...,xn}.
The corresponding optimization problem reads:
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minimize
x1,...,xn

f(b) =
100

|B|
∑
i∈B

(51.3− bi)
2
+ (3B.11)

+

 M∑
m=1

n∑
t=1

∑
i∈Pm

1/ωp

|Pm|

(
bit − δmt

(
n∑

t=1

bit

))2

(3B.12)

subject to fUF
Gm

≥ 1

|Gm|
∑
i∈Gm

(51.3− bi)
2
+ ∀m (3B.13)

fUF
Pm

≥ 1

|Pm|
∑
i∈Pm

[
5

2
(43.2− bi)

2
+ + (bi − 60)2+

]
∀m (3B.14)

fUF
B,volume ≥

ωp

|B|
∑
i∈B

1

1 + e−(bi−60)/0.5
(3B.15)

fUF
Nrem

≥ ωp

|Nrem|
∑

i∈Nrem

bi (3B.16)

bi =
n∑

t=1

dit

[
1 +

dit
(α/β)i

]
∀i (3B.17)

dit =
∑
j

Dijxjt ∀i, ∀t (3B.18)

xjt ≥ 0 ∀j,∀t (3B.19)

where we denote the objective values for the GTVs, PTVs, brain volume
and normal tissue obtained in the uniformly fractionated plan by fUF

Gm
, fUF

Pm
,

fUF
B,volume and fUF

Nrem
. Note that the new planning objective in Eq. (3B.12)

is used when optimizing spatiotemporally fractionated plans using the con-
strained approach.

The computation time for generating spatiotemporally fractionated treat-
ments scales linearly with the number of different dose distributions to opti-
mize. For the 3-fraction SRS treatments considered in this study, the com-
putation time for optimizing the STF and cSTF plans is thereby about 3
times longer than the time needed for optimizing the UF plan given com-
parable setups. The additional time required to generate the cSTF plans is
negligible, as the new planning objective in Eq. (3B.12) is evaluated only for
the PTV voxels (which are very few compared to the voxels in the rest of the
body).
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B.3 Numerical satisfaction of the constraints

The planning constraints in Eq.(3B.6)-(3B.7) and Eq.(3B.13)-(3B.18) are
handled using an augmented Lagrangian method. As a penalty method
rather than a barrier method, the AL algorithm may satisfy constraints only
after a large number of iterations. In fact, for the current study, differently
than what is done in current clinical practice, a very large number of itera-
tions (N=2000) was allowed for the L-BFGS algorithm (to have a rigorous
comparison), what enables the algorithm to converge until almost constraint
satisfaction. Any residual constraint violations in this study were numeri-
cally very small compared to the improvements of the STF and cSTF plans
over the uniformly fractionated plans. Their impact on the quantitative plan
comparisons was negligible for all cases.

Appendix C Results

C.1 EQD9 distributions in patient 1

Fig. 3C.2 shows the EQD9 distributions achieved with the different frac-
tionation schemes for patient 1. Although the spatiotemporally fractionated
plans deliver non-uniform doses to the target volume in distinct fractions,
the sum of all fractional doses result in the same prescribed BED10 within
each metastasis as the corresponding uniformly fractionated plan.

C.2 Dose distributions for patients 2 and 3

Fig. 3C.3 and Fig. 3C.4 show the fractional dose distributions obtained with
the uniformly and both spatiotemporally fractionated plans for two differ-
ent slices of patient 2 and patient 3, respectively. Similar to patient 1,
the spatiotemporally fractionated plans hypofractionate the dose in the tar-
get volume by delivering high doses in distinct fractions. While the STF
plans deliver high doses to complementary parts of individual metastases,
the plans obtained with the constrained approach to spatiotemporal frac-
tionation scheme do not present dose gradients within the individual lesions
between the different fractions. The cSTF plans, in fact, improve on uni-
formly fractionated plans by treating small metastases to a high dose in
alternated fractions, but tend to deliver similar doses to the larger lesions in
order to fulfill the dose-volume constraints for the healthy brain. Note also
that metastasis B2 in patient 2 is almost uniformly fractionated in the STF
and cSTF plans in order not to violate the maximum dose constraint for the
brainstem. This demonstrates that not only large metastases may preferably
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Figure 3C.2: EQD9 distributions achieved with the different fractionation
schemes for (a)-(c) slice A and (d)-(f) slice B of patient 1.

be treated over multiple uniform fractions, but also lesions which are inside
or close to critical organs at risk.

C.3 Dose distributions for patient 1 obtained with dif-
ferent initializations of the optimization variables

Fig. 3C.5 shows the dose distributions obtained for the STF and cSTF plans
for two different initializations of the fluence maps (and the additional opti-
mization parameters δmt’s).
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Figure 3C.3: Dose distributions for two CT slices of patient 2 achieved
with the different fractionation schemes. In slice A (a), five metastases are
visible with PTV volumes of 3.5 cc (A1), 3.4 cc (A2), 0.2 cc (A3), 0.2 cc
(A4) and 0.4 cc (A5). In slice B (i), five metastases are visible with PTV
volumes of 0.3 cc (B1), 0.2 cc (B2), 0.6 cc (B3), 4.7 cc (B4) and 4.2 cc
(B5). For each lesion, both contours for the GTV (green) and PTV (orange)
are shown. Also shown are the contours of the brain (dark blue) and of the
brainstem (light green).
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Figure 3C.4: Dose distributions for two CT slices of patient 3 achieved with
the different fractionation schemes. In slice A (a), six metastases are visible
with PTV volumes of 1.7 cc (A1), 1.3 cc (A2), 0.5 cc (A3), 0.6 cc (A4), 0.5
cc (A5) and 0.7 cc (A6). In slice B (i), nine metastases are visible with PTV
volumes of 1.3 cc (B1), 0.4 cc (B2), 0.4 cc (B3), 10.9 cc (B4), 0.3 cc (B5),
0.4 cc (B6), 1.4 cc (B7), 0.6 cc (B8) and 0.5 cc (B9). For each lesion, both
contours for the GTV (brown) and PTV (orange) are shown. Also shown is
the contour of the brain (light blue).
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Figure 3C.5: Dose distributions for the (a)-(f) STF and (g)-(l) cSTF plans
in slice A of patient 1 obtained with different initializations of the fluence
maps and the additional optimization variables δmt’s.
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A novel stochastic optimization
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4.1 Abstract
Purpose: Spatiotemporal fractionation schemes have recently arisen as a
promising technique for healthy tissue sparing. However, because spatiotem-
porally fractionated treatments have a characteristic pattern of delivering
high doses to different parts of the tumor in each fraction, uncertainty in
patient positioning may cause target underdosage and compromise tumor
control. To overcome this issue, we developed a novel stochastic optimiza-
tion approach which directly accounts for possible setup errors during the
optimization of spatiotemporally fractionated treatments.
Methods: The method considers the expected value E(b) and standard de-
viation σ(b) of the cumulative BED b in every voxel of the target volume, for
several discrete error scenarios. To ensure that a good target dose coverage is
achieved in any error scenario, a piecewise quadratic penalty function of the
form [bmin − (E(b)− 2σ(b))]

2
+ is minimized. This approach avoids considering

all combinations of discrete error scenarios and in thereby computationally
tractable. The proposed method has been used to generate both robust uni-
formly fractionated (UF) and robust spatiotemporally fractionated (STF)
plans for a patient with multiple brain metastases, assuming setup errors
of approximately ±1.2 mm in the left-right, anterior-posterior and cranial-
caudal directions.
Results: Using the proposed stochastic programming method, a spatiotem-
porally fractionated treatment plan could be obtained which is robust against
patient setup errors. Interestingly, the robust STF plan maintains the char-
acteristic feature of spatiotemporal fractionation schemes of treating some
regions of the target volume to a high dose and other regions to a low dose.
At the same time, the robust STF plan maintains a dosimetric benefit over
the robust UF plan, reduing the mean brain BED2 6.6% for a similar target
coverage.
Conclusions: A stochastic programming method has been implemented
that can mitigate the degradation of the target dose coverage for STF plans
in the presence of setup errors. This may facilitate the clinical implementa-
tion of spatiotemporal fractionation schemes.

4.2 Introduction
In the previous chapter, we showed that spatiotemporally fractionated treat-
ments can be obtained for patients with multiple brain metastases which
are robust against setup uncertainties. This was achieved by introducing a
novel planning objective that constrains the spatial dose distribution within
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each metastatic lesions to be similar in every fraction, while still allowing
for the dose contribution of each fraction to every metastasis to be freely
optimized. However, this is only one possible approach to mitigate the detri-
mental impact of misalignments of the different fractional dose distributions.
Other optimization approaches have been proposed in the literature to obtain
treatment plans that are robust against setup and motion uncertainties [71].
For example, stochastic programming methods can be used to directly ac-
count for intra-fraction setup errors during the plan optimization [72]. These
methods do not make any assumption on how the spatial dose distributions
should be compartmentalized between the different fractions, but rather si-
multaneously optimize the dose distributions for multiple errors scenarios
associated with discrete shifts in the patient position, and require that the
prescribed dose is delivered to the target volume in any error scenario.

Conventional stochastic programming approaches have previously been
investigated for spatiotemporally fractionated treatments of patients with
liver metastases [69]. It was shown that spatiotemporal fractionation schemes
maintain their characteristic pattern of delivering high doses to complemen-
tary parts of the tumor in distinct fractions only if the setup errors are
assumed to be small. For larger setup errors, spatiotemporally fractionated
treatments converged to uniformly fractionated treatments, where the en-
tire target volume is treated with a similar dose in every fraction. In this
regard, patients with cranial lesions are expected to maintain a benefit for
spatiotemporal fractionation schemes also in the presence of setup errors.
One limitation of the previous study is that it was only performed for a sin-
gle two-dimensional slice of each patient to make the computational effort
feasible. Existing scenario-based stochastic optimization approaches are not
efficient enough to be directly adapted to the optimization of spatiotempo-
rally fractionated treatments. To make such treatments robust with respect
to misalignments of dose contributions from different fractions, they rely on
the complete enumeration of all combinations of setup errors in every frac-
tion, which grows exponentially.

To circumvent this issue, in this work we developed a novel robust op-
timization approach that considers piecewise quadratic penalty functions of
the expected value and variance of the cumulative BED in every voxel [73].
The method is demonstrated for a patient with multiple brain metastases and
both differences and similarities to the constrained approach to spatiotem-
poral fractionation proposed in Chapter 2 are discussed.
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4.3 Materials and methods

4.3.1 Stochastic optimization of spatiotemporally frac-
tionated treatments

Setup uncertainties

Inter-fractional setup uncertainties are modeled via discrete error scenarios.
For each error scenario s ∈ S, different dose-influence matrices D(s) are
considered, such that the dose d

(s)
i delivered to voxel i for a given fluence x

can be computed as

d
(s)
i =

∑
j

D
(s)
ij xj (4.1)

where j indexes all the beamlets which contribute to the dose in voxel i.
In this work, dose-influence matrices D(s) at different error scenarios s are

obtained from the dose-influence matrix D(0) at the nominal scenario via the
static dose-cloud approximation. This means that the dose-influence matrices
for different error scenarios can be computed starting from the dose-influence
matrix in the nominal scenario as follows:

D(s)(x, y, z) = D(0)(fs(x), gs(y), hs(z)) (4.2)

where

fs : R → R, x 7→ x+ c(s)x (4.3)

fs : R → R, y 7→ y + c(s)y (4.4)

fs : R → R, z 7→ z + c(s)z (4.5)

are rigid transformations that link the voxel position at the coordinates
(x, y, z) in the error scenario s to the corresponding voxel position in the
nominal scenario, and c(s) = (c

(s)
x , c

(s)
y , c

(s)
z ) denotes the setup error for the

error scenario s. This assumption is justified as the brain consists of a very
homogeneous tissue, and shifts in the entry position of a photon beamlet
only have a minor impact on the resulting dose distribution.
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Incorporation of setup errors into the optimization of spatiotem-
poral fractionation schemes

As discussed in the previous chapters, spatiotemporally fractionated schemes
are generated by simultaneously optimizing multiple dose distributions to be
delivered in the different fractions. In this work, we directly incorporate
possible inter-fractional setup errors in the optimization of spatiotemporal
fractionation schemes by developing a novel piecewise quadratic objective
function that considers the expected value and variance of the cumulative
BED for the different errors scenarios in every voxel of a structure, and
penalizes deviations from the prescribed BED values.

E(bi) =
N∑
t=1

E(bit) =
N∑
t=1

(∑
s∈S

psb
(s)
it

)
(4.6)

and

V(bi) =
N∑
t=1

V(bit) =
N∑
t=1

[∑
s∈S

ps(b
(s)
it )

2 − E(bit)2
]

(4.7)

where b
(s)
it is the BED delivered to voxel i in fraction t for scenario s, N is

the total number of fractions and ps denotes the probability for scenario s.
To ensure that target coverage is achieved in the presence of setup uncer-

tainties, the under- and over-dose planning objectives for the target volume
are formulated as

funder(b) =
1

|TV |
∑
i∈TV

[
bmin −

(
E(bi)− δ

√
V(bi)

)]2
+

(4.8)

and

fover(b) =
1

|TV |
∑
i∈TV

[(
E(bi) + δ

√
V(bi)

)
− bmax

]2
+

(4.9)

where bmin and bmax refer to the prescribed minimum and maximum doses in
the target volume TV , and δ is a real scalar. Minimization of these objective
functions leads to a spatiotemporally fractionated treatments that aims to
achieve that in each voxel within the target volume the expected dose minus
δ times the standard deviation exceeds the prescribed dose.

Computational cost

The computation time of the objective function and its gradient is dominated
by the calculation of the dose distributions for the individual error scenarios,
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which requires the multiplication of the dose-influence matrices D(s) with the
corresponding beamlet intensities vector x. The gradient of the objective
function in Eq. (4.8) with respect to the intensity of beamlet j in fraction t
can be expressed as

∂funder
∂xjt

=
2

|TV |

[
bmin −

(
E(bi)− δ

√
V(bi)

)]
+

(
−∂E(bi)

∂xjt
+ δ

1

2
√

V(bi)
∂V(bi)
∂xjt

)
(4.10)

where

∂E(bi)
∂xjt

=
∑
s∈S

psD
(s)
ij

[
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it

(α/β)i

]
(4.11)

and

∂V(bi)
∂xjt

=
∑
s∈S

psD
(s)
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(s)
it

(α/β)i

]
(4.12)

The gradient for the over-dose penalty function in Eq. (4.9) can be derived
analogously.

In our approach, the calculation of the gradient of the objective function
benefits from the fact that the variance of the cumulative BED distribu-
tion separates into the sum of the variances of each different fractional BED
distribution. Due to this property, the calculation of the gradient effectively
only requires looping once over all non-zero elements of the different scenarios
dose-influence matrices D(s), and hence over N |S| scenarios. More conven-
tional stochastic optimization approaches, in which the objective function is
formulated as

funder(b) =
∑
s∈S

ps

[
1

|TV |
∑
i∈TV

(bmin − b
(s)
i )2+

]
(4.13)

instead require looping over |S|N scenarios. Hence, the proposed approach
avoids the curse of dimensionality.

4.3.2 Clinical case, dose prescriptions and planning study

We retrospectively applied the novel stochastic optimization method to a
patient with 29 brain metastases. We first generated a robust uniformly
fractionated (UF) plan for the following choice of planning objectives:
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1. A BED10 of 51.3 Gy is prescribed to the GTV in the nominal scenario.
This corresponds to a physical dose of 27 Gy in 3 fractions and used
to achieve the desired dose gradient within the metastasis.

2. A BED10 bmin=43.2 Gy (corresponding to 24 Gy physical dose in 3
fractions) is prescribed to the GTV for all error scenarios, using the
novel planning objective in Eq. (4.8). A BED10 exceeding bmax=60
Gy (corresponding to 30 Gy physical dose in 3 fractions) is penalized
quadratically using the planning objective in Eq (4.9). In both cases,
we set δ=2.

3. The volume V60 of healthy brain (defined as the brain without the
PTV) receiving a BED2 larger than 60 Gy is minimized.

4. The mean brain BED2 is minimized.

5. The mean BED2 to the normal tissue except the brain is minimized.

In addition, the BED2 in all voxels at a distance larger than 5 mm from
the PTV boundary was constrained to be lower than 36 Gy. The planning
objective 2 has been evaluated assuming setup errors of approximately ±1.2
mm in the left-right, anterior-posterior and cranial-caudal directions, which
correspond to a shift of 1 voxel. The probabilities ps were set to 2/(|S|+ 1)
for the nominal scenario and to 1/(|S|+ 1) for all other scenarios.

Subsequently, a robust STF plan is optimized aiming to minimize objec-
tive 4 under the additional constraints that the other objectives are no worse
than for the UF plan. The robust STF plan was compared to the robust UF
plan in terms of brain BED2 reduction, and the sensitivity of both plans to
setup uncertainties was studied.

4.4 Results
The dose distributions for the robust UF and STF plans are shown in Fig. 4.1.
For the UF plan, stochastic optimization extended the irradiated region
around the GTV of each metastasis to achieve sufficient GTV dose cover-
age under setup errors, similar to the situation in which a safety margin
is used. Interestingly, the STF plan maintains the characteristic pattern of
spatiotemporal fractionation schemes also in the presence of setup errors,
where distinct regions of the larger metastases are treated to a high dose in
different fractions. Compared to STF plans optimized using a safety mar-
gin and assuming no setup errors (see Fig. 3.1 in Chapter 3), however, the
spatial dose distributions within the individual metastases are more similar
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Figure 4.1: Fractional dose distributions for the robust UF and STF plans,
for two different CT slices of the patient.

in between the different fractions for the robust STF plan. This is illus-
trated in Fig. 4.2, which compares the dose profiles in the left-right and
anterior-posterior directions delivered in the different fractions to metastasis
M8 shown in Fig. 4.1e-h for both the robust STF plan and the STF plan
obtained using safety margins and assuming no setup errors. Consequently,
the robust STF plan is also less sensitive to setup errors. As demonstrated
in Fig. 4.3, where the dose-volume histograms for the GTV of metastases
M1 and M8 are evaluated for different combinations of setup errors, mis-
alignments of the fractional dose distributions do not lead to a considerable
degradation of the GTV dose coverage, similar to the robust UF plan.

Spatiotemporal fractionation schemes maintain a benefit over uniform
fractionation schemes also in the presence of setup uncertainties. The mean
brain BED2 is reduced by 6.6% for the robust STF plan compared to the
robust UF plan. Although a one-to-one quantitative comparison with the
results obtained in Chapter 3 using the safety margin approach is not possible
due to slight differences in the optimization settings used to generate the
different plans (which result in a different trade-off between target coverage
and sparing of the healthy brain), the dosimetric benefit of the robust STF
plan over the robust UF plan appears to be reduced compared to the situation
when no inter-fractional misalignments are assumed (in that case, the mean
brain BED2 was reduced by 13.1% for the STF plan compared to the UF
plan).
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Figure 4.2: Dose profiles in metastasis M8 along the left-right and anterior-
posterior directions for (a)-(b) the robust STF plan and (c)-(d) the STF plan
optimized for the nominal scenario using a safety margin.

4.5 Discussion
In this study, we developed a stochastic programming approach which di-
rectly accounts for potential setup errors during the optimization of spa-
tiotemporal fractionation schemes, including misalignments of the dose con-
tributions of different fractions. We demonstrated that robust STF plans
can be obtained which still maintain a dosimetric benefit over UF plans and
for which good target coverage is maintained also in the presence of setup
erros. By considering the expected cumulative BED and the BED variance
over the different error scenarios, the proposed robust optimization approach
avoids the complete enumeration of all combinations of setup errors in every
fraction and is thereby computationally efficient.

Compared to the constrained spatiotemporal fractionation approach pre-
sented in Chapter 3, STF plans optimized with the proposed stochastic pro-
gramming approach are not constrained to deliver a similar spatial dose dis-
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Figure 4.3: Dose-volume histograms evaluated for the GTVs of metastases
M1 and M8 for the nominal scenario (black line) and for all 73-1=342 possible
combinations of setup errors.

tribution within each lesion. As a result, STF plans are obtained which still
treat certain regions of large metastases to a higher dose and other regions to
a lower dose. While this is expected to potentially lead to better dosimetric
results, uncertainties regarding the biological response of the metastases to
partial tumor irradiation remain. Thereby, robust STF plans obtained us-
ing the proposed stochastic programming method represent an intermediate
solution between STF plans obtained using the traditional margin approach
and optimized for the nominal scenario only, and STF plans obtained us-
ing the constrained spatiotemporal fractionation approach proposed in the
previous chapter.

Patients with multiple brain metastases are promising candidates for spa-
tiotemporal fractionation schemes, as setup errors are expected to be very
small. Additional work may be performed to investigate whether robust STF
plans can be obtained which improve on UF plans also for other treatments
sites where larger setup errors are possible (e.g. lung or liver cancer).
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4.6 Conclusion
Misalignments of the different fractional dose distributions of a spatiotempo-
rally fractionated plan may cause target underdosage. Setup errors can be
accounted for via stochastic optimization of spatiotemporally fractionated
treatments, while still maintaining a dosimetric benefit over conventional
uniformly fractionated treatments.
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Chapter 5

Robust optimization of
spatiotemporally fractionated
radiotherapy treatments to
handle uncertainties in the
biologically effective dose model
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5.1 Abstract
Purpose: Spatiotemporal fractionation schemes are optimized based on the
cumulative BED in all fractions, assuming fixed α/β-ratios for the tumor
and the normal tissue. Although the BED model has been widely used in
clinical practice to compare different fractionation schemes, there is uncer-
tainty regarding which fractionation schemes are really isoeffective, which
can be interpreted as uncertainty in the BED model parameters. Also, there
are concerns about the validity of the BED model at very low and very high
doses per fraction. In this work, we investigate the sensitivity of spatiotem-
porally fractionated treatments to such biological uncertainties and develop
a stochastic optimization method to directly account for biological uncer-
tainties in the optimization of spatiotemporal fractionation schemes.
Methods: An extension of the BED model is proposed, which introduces
a dose-dependence on the α/β ratio, which allows to model deviations of
the expected biological effect from the standard BED model at very low and
very high doses per fraction. The sensitivity of both STF and UF plans on
variations of the parameters of the extended BED model is investigated for
a patient with liver metastases and a patient with a large arteriovenus mal-
formation. A stochastic programming method which optimizes a treatment
for multiple discrete scenarios with different model parameters is developed
and used to generate robust UF and STF plans.
Results: The UF plans are almost insensitive to variations of the BED model
parameters. The STF plans, per counter, present differences in the degree
of tumor hypofractionation depending on the different BED model parame-
ters used for the optimization. In particular, the benefit of spatiotemporal
fractionation increases for small values of α/β in the tumor, where high
single-fraction doses are expected to be more effective. Consequently, the
expected target BED10 coverage may degrade if a STF plan is optimize for
a specific value for the α/β-ratio in the tumor and evaluated for a different
α/β-ratio in the tumor. The robustly optimized STF plans, instead, show
a much reduced sensitivity to variations of the BED model parameters and
at the same time maintain part of the dosiemtric benefit of spatiotemporal
fractionation.
Conclusions: The optimal solution to spatiotemporal fractionation is de-
pendent on the BED model parameters used in the optimization. However,
the sensitivity of the STF plans to biological uncertainties can be mitigate
using an appropriate stochastic optimizations method.
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5.2 Introduction
Spatiotemporal fractionation schemes have recently arisen as a promising
treatment approach for tumor dose escalation and normal tissue sparing. In
contrast to conventional fractionation techniques, spatiotemporally fraction-
ated treatments vary the dose distribution in each fraction, with the aim to
exploit the fractionation effect optimally. The goal of spatiotemporal frac-
tionation schemes is to approximate an ideal treatment that would achieve
tumor hypofractionation and at the same time deliver a conventionally frac-
tionated dose to the surrounding normal tissue. Spatiotemporal fractionation
schemes in part accomplish this by delivering high single-fraction doses to
complementary parts of the tumor in every fraction, while distributing the
normal tissue dose more uniformly over all fractions. Consequently, spa-
tiotemporal fractionation schemes necessitate a lower cumulative physical
dose compared to conventional treatments to achieve the same level of tu-
mor control, what translates into a net reduction of the biological dose in the
normal tissue.

Prior in-silico studies have demonstrated the potential of spatiotempo-
rally fractionated treatments to improve the therapeutic ratio compared to
conventionally fractionated radiotherapy treatments for multiple treatments
sites, using both proton therapy [28,29] and rotational photon therapy [30-
32]. However, the impact of biological uncertainties on the quality of spa-
tiotemporal fractionation schemes was not investigated. In all prior work, the
biologically effective dose (BED) model was used to describe the fractiona-
tion effects, assuming fixed α/β-ratios for the tumor and the normal tissue
[21]. Although the BED model has been widely used in clinical practice
to compare different fractionation schemes, there are uncertainties regarding
which fractionation schemes are really isoeffective, which can be interpreted
as uncertainties in the α/β-ratios. Depending on the tumor stage, the se-
lected clinical endpoint and other patient related factors, a wide variation in
the α/β-ratios was reported in the literature [74]. In addition, radiobiolog-
ical experiments in-vitro and in preclinical models raise concerns about the
validity of the BED model across a large range from very low to very high
doses per fraction [75]. For example, at very low doses some cell lines exhibit
a hyper-radiosensitivity and the BED model fails to describe the measured
in-vitro cell-survival curves [76]. At very high doses, instead, damage to the
vasculatory environment may cause deviations from the radiation response
predicted by the standard BED model [77]. It is unclear to what extend such
effects observed in a laboratory setting translate into a deviation from the
BED in a clinical setting. Nevertheless, uncertainty in biological effective-
ness may potentially affect the therapeutic efficacy of spatiotemporal frac-
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tionation schemes and must be addressed before a clinical implementation of
spatiotemporal fractionation.

Several extensions of the linear-quadratic (LQ) model have been proposed
in the literature to better fit the measured in vitro cell survival curves, which
may be used to motivate extensions of the standard BED model [78]. For ex-
ample, the linear-quadratic-cubic model introduces a third fit parameter pro-
portional to the cube of the dose, whereas the linear-quadratic-linear model
modifies the LQ model such that it has a maximum slope followed by a linear
response at high doses. Other strategies have been explored to provide a more
mechanistic explanation for altering the LQ model. These approaches include
transitioning smoothly between the LQ model and a multi-target model, or
integrating adjustments for dose protraction and lesion interaction. Also,
there have been some attempts to describe higher order biological effects,
such as incomplete repair of radiation damage between fractions, repopula-
tion of tumors over the course of the treatment, accelerated repopulation
effects, the effect of chemotherapeutic agents, and reoxygenation of hypoxic
tumors. The latter models typically introduce a time-dependence in the cell
response to radiation, and are beyond the scope of this study.

In this work, we incorporate uncertainties in the LQ model by proposing
an extension of the standard BED model which describe the situation that
the α/β-ratios in the high dose region may be different from those in the low
dose region, where a dose-dependent α/β-ratio is suggested. This results in a
cubic dependence of the BED on the dose per fraction, similar to the linear-
quadratic-cubic model. To account for uncertainties in the extended BED
model parameters during the optimization of spatiotemporal fractionation
schemes, we use stochastic programming methods. In this way, spatiotempo-
rally fractionated treatments can be obtained which are more robust against
biological uncertainties. The impact of biological uncertainties on the ex-
pected benefit of spatiotemporal fractionation schemes is investigated for
two treatment sites previously considered as promising candidates for spa-
tiotemporal fractionation, i.e. large liver metastases and large arteriovenous
malformations.

5.3 Materials and methods

5.3.1 Modeling the fractionation effects

Standard BED model

The standard BED model is commonly used in clinical practice to compare
different fractionation schemes. It specifies that two radiotherapy treatments
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that deliver the same BED to the tumor (or normal tissue) are isoeffective
(or isotoxic), where the BED bi in voxel i is defined for a n-fraction treatment
delivering the same physical dose di in all fractions as

bi = ndi

(
1 +

di
(α/β)i

)
(5.1)

Here, (α/β)i denotes the α/β-ratio of the tissue that voxel i belongs to and
quantifies the fractionation sensitivity of that tissue.

In previous studies on spatiotemporal fractionation, Eq. (5.1) has been
generalized to the situation in which a treatment delivers possibly different
doses in distinct fractions. In such a case, the cumulative BED bi over the
entire treatment is expressed as

bi =
n∑

t=1

dit

(
1 +

dit
(α/β)i

)
(5.2)

where dit is the physical dose delivered to voxel i in fraction t.

Extended BED model

To account for possible deviations from the standard BED model when de-
livering low and high doses to the target volume in distinct fractions, we
propose an extension of the standard BED model which describes the situ-
ation in which the α/β-ratios in the low dose and high dose regions may be
different from the α/β-ratio that is typically used for comparing convention-
ally fractionated treatments. This extension of the standard BED model is
derived by introducing a dose-dependence in the α/β-ratio:

1

α/β
→ 1

α/β
(1 + κ(d− dref )) (5.3)

where dref is the dose per fraction in a reference fractionation scheme near
which the standard BED model is approximately valid and κ is a parameter
that can describe deviations from the standard BED model far away from
the reference dose per fraction dref . This leads to the extended BED model

bexti =
n∑

t=1

dit

[
1 +

dit
(α/β)i

(1 + κ(d− dref ))

]
(5.4)

Here, we can distinguish between two situations:

• κ > 0 describes the situation that for large (small) doses per fraction,
the BED increases more (less) than predicted by the standard BED
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model. In practice, this can be used to model conservative normal
tissue constraints (conservative prescription doses for tumors).

• κ < 0 describes the situation that for large (small) doses per fraction,
the BED increases less (more) than predicted by the standard BED
model. In practice, this can be used to model conservative prescription
doses for tumors (conservative normal tissue constraints).

Mathematically, the extended BED model in Eq. (5.4) leads to a cubic rather
than quadratic dependence of the BED on the physical dose, similar to other
models proposed in the literature.

In this work, we constrained the parameter κ in the extended BED model
to only assume values in a certain range, such that the BED is a monotoni-
cally increasing function with respect to the dose per fraction:

∂bexti

∂di
> 0 (5.5)

This leads to the following boundaries for the parameter κ in the extended
BED model:

κ ∈
]
− 2di + (α/β)i
|3d2i − 2drefdi|

,+
2di + (α/β)i
|3d2i − 2drefdi|

[
(5.6)

Examples of fractionation schemes which are assumed to be equieffective
according to the extended BED model are shown in Fig. 5.1 for different
model parameters α/β and κ. In this example, we assume that a dose of 40
Gy in 5 uniform fractions is prescribed to the PTV. For the standard BED
model and α/β=10 Gy this is equieffective to 22.3 Gy in a single fraction or
56.2 Gy in 20 fractions (yellow curve in Fig. 5.1b). Decreasing α/β in the
standard BED model makes large doses per fraction more effective and small
doses less effective (purple curve). For α/β=5 Gy, a dose of 20.4 Gy in a single
fraction is sufficient to achieve the BED equivalent to 40 Gy in 5 fractions.
On the other hand, the dose in 20 fractions would have to be increased to 63.6
Gy. Analogously, increasing α/β in the standard BED model makes large
doses per fraction less effective and small doses more effective. The extended
BED provides a second parameter κ to control the effectiveness of small and
large fraction doses independently. The case α/β=10 Gy and κ=0.02 Gy−1

(green curve) also makes a single fraction dose of 20.4 Gy equivalent to 40
Gy in 5 fractions. Thus, large doses per fraction are similarly effective as in
the standard BED model for α/β=5 Gy. However, small doses per fraction
remain relatively effective.
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Figure 5.1: (a) Value of the dose-dependent α/β-ratio in Eq. (5.3) as a
function of different BED model parameters. (b) Equieffective fractionation
schemes for different BED model parameters.

5.3.2 Treatment planning methodology

Optimization of spatiotemporal fractionation schemes

Spatiotemporally fractionated treatments are generated by simultaneously
optimizing n possibly distinct fluence maps {x1, ...,xn} for each of the n
fractions in an IMRT plan. To directly account for the fractionation effects
during the optimization, planning objectives and constraints are evaluated
for the cumulative BED rather than for the physical dose. Formally, the
treatment plan optimization problem reads

minimize
x1,...,xn

f(b) (5.7)

subject to cm(b) ≤ um ∀m (5.8)

bi =
n∑

t=1

dit

(
1 +

dit
(α/β)i

)
∀i (5.9)

dit =
∑
j

Dijxjt ∀i,∀t (5.10)

xjt ≥ 0 ∀j,∀t (5.11)

where f is an objective function to be minimized, ck are a set of constraints
indexed by k with upper bounds uk and Dij denotes a dose-influence matrix
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element storing the physical dose contribution of beamlet j to voxel i per
unit intensity.

Stochastic programming methods for handling uncertainties in the
BED model parameters

There is uncertainty in the clinical knowledge of which fractionation schemes
are truly isoeffective. Mathematically, this corresponds to uncertainties in
the BED model parameters (i.e. the α/β-ratio and κ parameters in the ex-
tended BED model in Eq. (5.4)). In this work, we directly incorporate such
uncertainty in biological effectiveness into the treatment plan optimization
through stochastic programming methods. Treatment plan optimization is
performed based on a weighted sum of objective functions, where the sum-
mation happens over multiple combinations of α/β-ratios and κ parameters.
Over- and under-dose quadratic penalty functions for target coverage are
then expressed as

funder(b) =
∑
s∈S

ps
∑

i∈TV

[
n∑

t=1

(
dit +

d2it
(α/β)i

(
1 + κs(dit − dref )

))
− nref

(
dref +

d2ref

(α/β)i

)]2
+

(5.12)

and

fover(b) =
∑
s∈S

ps
∑

i∈TV

[
nref

(
dref +

d2ref

(α/β)i

)
−

n∑
t=1

(
dit +

d2it
(α/β)i

(
1 + κs(dit − dref )

))]2
+

(5.13)

respectively, where dref is the prescribed dose per fraction to the target vol-
ume TV in a reference fractionation scheme with nref fractions, and ps de-
notes the probability of scenario s with α/β-ratio (α/β)s and κ parameter
κs. Minimization of these objective functions will yield a treatment plan
that aims to deliver a biological dose to the target volume that is at least
as effective as the reference fractionation scheme for any pair {(α/β)s, κs}
assumed in the uncertainty set.

In this work, (α/β)s and κs are simulated by randomly sampling from
truncated Gaussian distributions with parameters {µα/β, σα/β} and {µκ, σκ},
respectively, where only positive values for (α/β)s and values for κs in the
range [−1/dref ,+1/dref ] are accepteda . We set the number of scenarios to
S=100 and assign an equal probability ps = 1/S to each scenario s.

aValues for κs in this range should fulfill the constraint in Eq. (5.6) for most of the
values of (α/β)s assumed in this study and for dose values which are typically adopted in
clinical practice.
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Optimization algorithm

To find a local minimum of the optimization problem, we use our own imple-
mentation of the L-BFGS quasi-Newton method, together with an augmented
Lagrangian method for handling constraints. To allow for the dose distribu-
tions in the distinct fractions to possibly diverge, fluence maps are initialized
with small random intensities (varying in between the different fractions of
the spatiotemporally fractionated plans). Calculation of the dose-influence
matrix elements Dij is performed with the open-source radiotherapy planning
research platform CERR [44] using a quadrant infinite beam (QIB) algorithm
[63].

5.3.3 Clinical cases

We retrospectively investigated the impact of biological uncertainties on the
quality of spatiotemporal fractionation schemes for two patients, who have
previously been identified as promising candidates for spatiotemporal frac-
tionation. Patient 1 has four large metastases located in the right lobe of the
liver, and is used for illustration in the results section. The total GTV vol-
ume is 319 cc and a 3 mm isotropic margin expansion has been applied to the
GTV to obtain the PTV. Patient 2 has a large arteriovenous malformation
(AVM) located in the right frontal lobe with a volume of 30 cc.

5.3.4 Treatment planning study

For both patient 1 and patient 2, we generated uniformly fractionated (UF)
and spatiotemporally fractionated (STF) plans for different fixed values for
the α/β-ratio and the parameter κ in the extended BED model. The dosi-
metric benefit of spatiotemporal fractionation as compared to conventional
uniform fractionation is evaluated for different parameters of the extended
BED model, and the sensitivity of the different fractionation schemes to un-
certainties in the α/β-ratio and parameter κ are investigated. Afterwards,
UF and STF plans are optimized using stochastic programming methods
aiming to mitigate the impact of these uncertainties. For simplicity, we only
assume uncertainties in the BED model parameters used for the target vol-
ume, while the standard BED model with a fixed α/β-ratio is used to model
the fractionation effect in the normal tissue.

Patient 1

For patient 1, 5-fraction stereotactic body radiotherapy (SBRT) UF plans
are first optimized for the following planning objectives:
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1. A BEDα/β equivalent to 40 Gy in 5 fractions (i.e. dref=8 Gy) is pre-
scribed to the PTV (excluding the GTV). A BEDα/β exceeding BEDα/β

values equivalent to 50 Gy in 5 fractions are penalized quadratically.

2. A BEDα/β equivalent to 50 Gy in 5 fractions is prescribed to the GTV,
again using piecewise quadratic penalty functions.

3. The dose has to be conformal to the PTV. This is implemented via a
normal tissue objective which limits the BED3 to the normal tissue by
steepening the dose gradient.

4. The mean BED3 to the healthy liver (defined as liver without PTV) is
minimized.

Subsequently, 5-fraction STF plans are generated aiming to minimize the
planning objective 4, under the constraints that the objectives 1-3 are no
worse than the corresponding UF plans. Hence, the benefit of spatiotemporal
fractionation is directed on reducing the mean liver BED3. Finally, a robust
UF plan and a robust STF plan are optimized for the planning objectives
in Eq. (5.12) and Eq. (5.13), assuming the same physical dose prescriptions
are for objectives 1 and 2, along with the planning objectives 3 and 4. For
these robust optimizations, we assumed µα/β=10 Gy, σα/β=5 Gy, and µκ=0
Gy−1 and σκ=0.02 Gy−1.

Both the UF and STF plans consisted of 19 equispaced 6 MV photon
beams, which approximate a full VMAT arc at a couch angle of 0◦. The bixel
size is set to 5 x 5 mm2 and a non-uniform dose grid size is used throughout
the body, with small voxels of 5.1 x 5.1 x 2.5 mm3 in size that are used in
the PTV and close to the PTV, where a larger dose gradient is expected. At
a distance between 2 cm and 4 cm from the PTV edge, medium-size voxels
are used with 8-fold volume, whereas at distances larger than 4 cm from
the PTV edge large-size voxels are used with 64-fold volume. All dosimetric
results, however, are evaluated based on the finest (small) dose grid size.

Patient 2

Analogously, for patient 2 we generated 4-fraction stereotactic radiotherapy
(SRT) plans for different BED model parameters using both uniform and
spatiotemporal fractionation schemes. Successively, a robust UF plan and a
robust STF plan are optimized for the planning objectives in Eq. (5.12) and
Eq. (5.13).

Details regarding the planning objectives and the optimization setup used
for patient 2 are reported in the Supplementary material, Appendix A.
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5.4 Results
In the following, we present the results obtained for patient 1. Similar re-
sults are obtained also for patient 2 and are reported in the Supplementary
material, Appendix B.

5.4.1 Characterization of spatiotemporal fractionation
schemes for different parameters of the BED model

First, we characterize the STF plans obtained for different BED model pa-
rameters. The effect of varying both the α/β-ratio and the parameter κ in
the extended BED model on the resulting fractional dose distributions and
on the expected benefit over UF plans is studied.

Different α/β-ratios, fixed κ

Fig. 5.2 shows the fractional dose distributions obtained for the UF and
STF plans optimized assuming α/β-ratios for the PTV of (α/β)T=5 Gy,
(α/β)T=10 Gy and (α/β)T=15 Gy, respectively, and a fixed parameter κ=0
Gy−1 (i.e. the standard BED model is considered). Almost no differences
are observed between the different UF plans when different α/β-ratios are
assumed for the PTV. Also, qualitatively similar STF plans are obtained. A
more quantitative analysis reveals that spatiotemporal fractionation schemes
present a higher degree of hypofractionation in the target volume for small
values of (α/β)T . This is illustrated in Fig. 5.4a, which shows the maximum
relative single-fraction doses received by all voxels belonging to the PTV for
the different STF plans. By achieving such higher degree of hypofractionation
in the PTV, the STF plans optimized for small values of (α/β)T necessitate a
lower physical dose in the PTV to achieve the same level of tumor control. As
the normal tissue dose is distributed more uniformly over all fractions, this
translates into a net reduction of the BED3 in the healthy liver. The mean
liver BED3 for the STF plans is reduced compared to the corresponding UF
plans by 18.6% for (α/β)T = 5 Gy, 13.3% for (α/β)T = 10 Gy and 9.8% for
(α/β)T = 15 Gy, for a similar PTV dose coverage.

Fixed α/β-ratios, different κ

The fractional dose distributions obtained for the UF and STF plans assum-
ing an α/β-ratio for the tumor of 10 Gy and different parameters κ of -0.02
Gy−1, 0.0 Gy−1 and +0.02 Gy−1 are illustrated in Fig. 5.3. Again, the UF
plans are almost insensitive to variations of the parameter κ. In fact, as
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Figure 5.2: Fractional dose distributions obtained for patient 1 with the UF
and STF plans using different α/β-ratios for the target volume of (a)-(f) 5
Gy, (g)-(l) 10 Gy and (m)-(r) 15 Gy, respectively. The parameter κ is fixed
to 0 Gy−1 for all plans.

the UF plans aim to deliver a uniform dose dref to the entire target volume,
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the effects of the additional term in the extended BED model only has a
very little effect on the cumulative BED delivered to the PTV. On the other
hand, changes in the parameter κ of the extended BED model lead to varia-
tions of the dose distributions obtained for the STF plans. As also shown in
Fig. 5.4b, when negative values for κ are assumed, fewer PTV voxels receive
high single-fraction doses. In fact, high doses per fraction are less effective
when a negative value of κ is assumed in the extended BED model (Fig.
5.1b), and the corresponding tumor hypofractionation would not compen-
sate for the loss of uniform fractionation in the healthy liver. Positive values
of κ, instead, represent a favorable situation for STF (Fig. 5.1b). The mean
liver BED3 for the STF plans is reduced compared to the corresponding UF
plans by 6.3% for κ = -0.02 Gy−1, 13.3% for κ = 0 Gy−1 and 18.3% for κ =
+0.02 Gy−1, for a similar PTV dose coverage.

Sensitivity of the STF and UF plans to uncertainties in the BED
model parameters

Fig. 5.5 shows the dose-volume histograms (DVHs) for the PTV for each
UF and STF plan (i.e. both optimized for fixed BED model parameters and
optimized using the stochastic approach), evaluated for all different scenarios.
Although STF plans have the potential to better spare the healthy liver
compared to UF plans, STF plans are also more sensitive to uncertainties in
the BED model parameters compared to the UF plans. For example, if a STF
plan is optimized for (α/β)T= 5 Gy but evaluated for (α/β)T = 10 Gy, there
will be some underdosage in the hypofractionated PTV regions (Fig. 5.5g).
Such underdosage is even more extreme in the situation where (α/β)T = 10
Gy and κ = -0.02 Gy−1 (because high doses are even less effective).

5.4.2 Robustly optimized treatment plans

The dose distributions for the STF and UF plans obtained using stochas-
tic programming methods are shown in Fig. 5.6. Thus, the robust STF
still shows the characteristic features of spatiotemporal fractionation. The
robustly optimized STF plan aims to find a trade-off between the optimal
fractionation schemes for the single-scenario situations, and thereby avoids
to excessively hypofractionate the dose in the tumor (see also Fig. 5.7). In
this manner, such a treatment plan is more robust against biological uncer-
tainties compared to STF plans optimized for fixed values of (α/β)T and κ,
and can partly mitigate the detrimental effects of biological uncertainties on
the PTV dose coverage. This is demonstrated in Fig. 5.5l.
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Figure 5.3: Fractional dose distributions obtained for patient 1 with the UF
and STF plans using different κ parameters for the target volume of (a)-(f)
-0.02 Gy−1, (g)-(l) 0 Gy−1 and (m)-(r) +0.02 Gy−1, respectively. The α/β-
ratio is fixed to 10 Gy for all plans.

At the same time, some of the dosimetric benefits of spatiotemporal frac-
tionation schemes are maintained. The robustly optimized STF plans still
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Figure 5.4: Maximum relative dose contribution of each fraction to the
PTV voxels for (a) STF plans obtained using different (α/β)T -ratios and a
fixed parameter κ, and (b) a fixed (α/β)T -ratio and different values for the
parameter κ.

reduces the mean liver BED3 compared to the robustly optimized UF plan
by 4.5%. Thus, the benefit of spatiotemporal fractionation over conventional
uniform fractionation is lower compared to STF plans optimized for (α/β)T
and κ fixed to their mean values. The residual benefit is comparable to the
benefit obtained when STF plans are optimized for unfavorable values of
(α/β)T and κ.

5.5 Discussion
In this study, we investigated the impact of uncertainties in the BED model
parameters on spatiotemporal fractionation schemes. We first investigated
how STF plans vary when optimized for different but fixed values of the BED
model parameters α/β and κ in the tumor. It was observed that the qualita-
tive features of STF plans are preserved (for the range of values considered
here). However, the benefit of spatiotemporal fractionation schemes over
conventional uniform fractionation schemes is higher if the α/β-ratio in the
tumor is low, as hypofractionation in the tumor becomes more effective. This
result is in line with previous studies which showed that for small values of
the ratio (α/β)T

(α/β)OAR
hypofractionation improves on standard fractionation [22].

In that regard, methods to accurately determine tumor- and patient-specific
α/β-ratios would be helpful to identify patients who are expected to benefit
the most from spatiotemporal fractionation schemes.

We then investigated the robustness of STF plans optimized for fixed BED
model parameters against uncertainty in these parameters. It was demon-
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Figure 5.5: Dose-volume histograms for the PTV evaluated for the equief-
fective dose EQD8 assuming different values for the BED model parameters
(α/β)T and κ.
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Figure 5.6: Fractional dose distributions obtained for patient 1 with the UF
and STF plans using stochastic programming methods.

Figure 5.7: Maximum relative dose contribution of each fraction to the PTV
voxels for the robustly optimized STF plan.

strated that STF plans are quite sensitive to variations of both the α/β-ratio
in the tumor and the parameter κ introduced in the extended BED model.
These uncertainties may compromise the therapeutic efficacy of spatiotempo-
ral fractionation schemes. To overcome this issue, we proposed a stochastic
programming method to directly account for these potential uncertainties
in the biological response of the tumor during the plan optimization, and
demonstrated that STF plans can be obtained which still maintain a consid-
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erable dosimetric benefit over conventional UF plans, while at the same time
being more robust against uncertainties in the BED model parameters.

The extended BED model assumed in this work can describe deviations of
the biological response from what is predicted by the standard BED model at
very low and very high doses per fraction. By introducing a dose-dependent
α/β-ratio, it leads to a cubic dependence of the BED on the physical dose,
similar to the linear-quadratic-cubic model. Nevertheless, several alternative
models have been proposed in the literature to improve on the LQ model,
which may have a different impact on the resulting spatiotemporal fractiona-
tion schemes. In particular, in this study we did not model biological effects
related to partial tumor irradiation, nor effects such as tumor repopulation
and development of radiation resistance. Also, we assumed that dose distri-
butions in each fraction are delivered as planned and add up to the prescribed
BED in every part of the target volume. However, setup and motion errors
may lead to misalignments of the different fractional dose distributions, re-
sulting in cold and hot dose spots within the PTV.

Future work may combine robust optimization approaches to handle bio-
logical uncertainties with robust optimization approaches to handle setup and
motion uncertainties. Also, research in radiobiology may lead to the devel-
opment of novel models to describe the fractionation effect, which could then
be integrated into the optimization of spatiotemporal fractionation schemes.

5.6 Conclusion
Uncertainties in the BED model and its parameters are a concern regarding
the therapeutic efficacy of spatiotemporal fractionation schemes. We devel-
oped a stochastic programming approach to directly integrate such uncertain-
ties in the optimization of spatiotemporal fractionation schemes and demon-
strated that spatiotemporally fractionated treatment plans can be obtained
which are robust against uncertainties in the BED model parameters, while
maintaining a dosimetric benefit over uniformly fractionated treatments.

5.7 Supplementary material

Appendix A Treatment plan optimization
In this section, we further detail the treatment plan optimization methods.
We provide the mathematical formulation of the planning objectives used in
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the treatment plan optimization problem, and discuss the dose calculation
algorithm which has been used for computing the dose-influence matrices.

A.1 Patient 1

For patient 1, the objective function in Eq. (5.7) reads as follows:

f(b) =
1

|GTV |
∑

i∈GTV

[
10

(
50

(
1 +

10

(α/β)T

)
− bexti

)2

+

+

(
bexti − 55

(
1 +

11

(α/β)T

))2

+

]
(5A.1)

+
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+
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(
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))2
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]
(5A.2)

+
50

|NT |
∑

i∈NT

(bi − bmax
i )2+ (5A.3)

+
10

|L|
∑
i∈L

bi (5A.4)

where GTV denotes the set of voxels belonging to the GTV , ( ˜PTV ) is the
set of voxels belonging to the PTV excluding the GTV voxels, NT denotes
the set of voxels belonging to the normal tissue (i.e. the entire body except
for the PTV ) and L is the set of voxels belonging to the healthy liver (i.e.
liver without the PTV ). The planning objective in Eq. (5A.3) corresponds
to the normal tissue objective (NTO) implemented in the Eclipse Treatment
Planning System (Varian Medical Systems, Palo Alto, CA), where bmax

i is a
voxel-dependent value defined as:

bmax
i =

{
b0, if xi < x0

b0e
−κ(xi−x0) + b∞

(
1− e−κ(xi−x0)

)
, if xi ≥ x0

(5A.5)

Here, xi indicates the distance of a normal tissue voxel i from the PTV edge
and we set b0=131.7 Gy, b∞=15.75 Gy, x0=0.5 cm and κ=0.6 cm−1. The
penalty value bmax

i as a function of xi is schematically illustrated in Fig. 5A.1.

A.2 Patient 2

For patient 2, the different treatment plans are optimized for the following
choice of planning objectives:
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Figure 5A.1: BED gradient as a function of the distance from the PTV
edge required by the normal tissue objective in Eq. (5A.3).

1. A BEDα/β equivalent to 28 Gy in 4 fractions is prescribed to the AVM
(implemented via a quadratic penalty function). A BEDα/β exceeding
BEDα/β values equivalent to 40 Gy physical dose in 4 fractions are
penalized quadratically.

2. The volume of healthy brain (i.e. brain excluding the AVM) receiving
a BED2 larger than 60 Gy is minimized. This corresponds to a physical
dose of 10 Gy in a single fraction and is implemented via a continuous
relaxation of a dose-volume objective.

3. The dose has to be conformal to the AVM. This is implemented via a
normal tissue objective which limits the dose to the normal tissue by
steepening the dose gradient.

4. The mean BED2 to the healthy brain (i.e. brain without the AVM) is
minimized.

Mathematically, these objectives can be expressed as follows:

f(b) =
1

|AVM |
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i∈AV M

[
10

(
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+
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+
1

|NT |
∑
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(bi − bmax
i )2+ (5A.8)

+
10

|B|
∑
i∈B

bi (5A.9)

where AVM denotes the set of voxels belonging to the arteriovenous mal-
formation, B is the set of voxels belonging to the healthy brain (i.e. brain
without the AVM) and NT denotes the set of voxels belonging to the normal
tissue (i.e. the entire body except for the AVM).

The parameters for the normal tissue objective in Eq. (5A.7) are set to
b0=115 Gy, b∞=13.125 Gy, x0=0.5 cm and κ=0.6 cm−1. For patient 2, we
assumed µα/β=4 Gy, σα/β=2 Gy, and µκ=0 Gy−1 and σκ=0.02 Gy−1. Similar
as for patient 1, a non-uniform dose grid size is used, where the size of the
smaller voxels is 2.7 x 2.7 x 1.2 mm3. Nineteen equispaced photon beams are
used, with a bixel size of 5 x 5 mm2 and a photon energy of 6 MV.

A.3 Dose calculation algorithm

Calculation of the dose-influence matrix elements Dij is performed with
the open-source radiotherapy planning research platform CERR [59] using
a quadrant infinite beam (QIB) algorithm [60].

Appendix B Results for patient 2
In this section, we report the results obtained for patient 2.

B.1 Characterization of spatiotemporal fractionation schemes
for different parameters of the BED model

First, we characterize the STF plans obtained for different BED model pa-
rameters. The effect of varying both the α/β-ratio and the parameter κ in
the extended BED model on the resulting fractional dose distributions and
on the expected benefit over UF plans is studied.

B.1.1 Different α/β-ratios, fixed κ

The fractional dose distributions for the UF and STF plans optimized for
different α/β-values for the AVM of (α/β)T = 2 Gy, (α/β)T = 4 Gy and
(α/β)T = 6 Gy, respectively, and a fixed parameter κ = 0 Gy−1 are shown
in Fig. 5B.2. Also for patient 2, a higher degree of hypofractionation in the
target volume is observed for smaller values of (α/β)T . This is also shown in
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Fig. 5B.4a. The UF plans do not show any qualitative difference if optimized
for different BED model parameters.

The mean brain BED2 is reduced compared to the corresponding UF
plans by 8.1% for the STF plan optimized for (α/β)T = 2 Gy, plans by 5.6%
for the STF plan optimized for (α/β)T = 4 Gy and by 1.9% for the STF plan
optimized for (α/β)T = 6 Gy. The brain volume V60 receiving a BED2 higher
than 60 Gy is reduced by 8.5% for the STF plan optimized for (α/β)T = 2
Gy, by 8.7% for the STF plan optimized for (α/β)T = 4 Gy and by 3.9% for
the STF plan optimized for (α/β)T = 6 Gy compared to the corresponding
UF plans.

B.1.2 Fixed α/β-ratios, different κ

Fig. 5B.3 illustrates the fractional dose distributions obtained for the UF and
STF plans optimized for a fixed α/β-ratio of 4 Gy and different parameters
κ of -0.02 Gy−1, 0 Gy−1 and +0.02 Gy−1, respectively. Similar to patient 1,
much higher doses are delivered to the target volume for positive values of
the parameter κ (see Fig. 5B.4b). This also leads to an improved sparing of
the healthy brain. Compared to the corresponding UF plan, the STF plan
optimized for κ=+0.02 Gy-1 reduces the mean brain BED2 by 13.2% and
the brain volume V60 by 14.8%, respectively. The reduction of mean brain
BED2 compared to the corresponding UF plans is 5.6% for the STF plan
optimized for κ=0 Gy−1 and 1.2% for the STF plan optimized for κ=-0.02
Gy−1, whereas the volume V60 of healthy brain exposed to a BED2 higher
than 60 Gy decreases by 8.7% for the STF plan optimized for κ=0 Gy−1 and
4.2% for the STF plan optimized for κ=-0.02 Gy−1.

B.1.3 Sensitivity of the STF and UF plans to uncertainties in the
BED model parameters

Fig. 5B.5 shows the DVHs for the AVM for each UF and STF plan (i.e. both
optimized for fixed BED model parameters and optimized using the stochas-
tic approach), evaluated for all different scenarios. Although STF plans have
the potential to better spare the healthy brain compared to UF plans, STF
plans are also more sensitive to uncertainties in the BED model parameters
compared to the UF plans. For example, if a STF plan is optimized for
(α/β)T = 2 Gy but evaluated for (α/β)T = 4 Gy, there will be some under-
dosage in the hypofractionated PTV regions (Fig. 5B.5g). Such underdosage
is even more extreme in the situation where (α/β)T = 4 Gy and κ = -0.02
Gy−1.
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Figure 5B.2: Fractional dose distributions obtained for patient 2 with the
UF and STF plans using different α/β-ratios for the target volume of (a)-(e)
2 Gy, (f)-(j) 4 Gy and (k)-(o) 6 Gy, respectively. The parameter κ is fixed
to 0 Gy−1 for all plans.

B.2 Robustly optimized treatment plans

The dose distributions for the STF and UF plans obtained using stochastic
programming methods are shown in Fig. 5B.6. Also for patient 2, the robust
STF partly preserves the characteristic pattern of treating different parts of
the target volume to a higher dose in distinct fractions, while at the same
time being very robust against uncertainties in the BED model parameters
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Figure 5B.3: Fractional dose distributions obtained for patient 2 with the
UF and STF plans using different parameters κ of (a)-(e) -0.02 Gy−1, (f)-(j)
0 −1 and (k)-(o) +0.02 −1, respectively. The α/β-ratio is fixed to 4 Gy for
all plans.

(Fig. 5B.5l). Nevertheless, the degree of hypofractionation achieved in the
target volume for the robust STF plan is lower compared to the degree of
hypofractionation achieved for some STF plans optimized for favorable BED
model parameters. This is also well illustrated in Fig. 5B.7.

The robust STF plan maintains a dosimetric benefit compared to the
robust UF plan. The mean brain BED2 and brain volume V60 receiving a

102



Figure 5B.4: Maximum relative dose contribution of each fraction to the
PTV voxels for (a) STF plans obtained using different (α/β)T -ratios and a
fixed parameter κ, and (b) a fixed (α/β)T -ratio and different values for the
parameter κ.

BED2 larger than 60 Gy are reduced for the robust STF plan by 3.3% and
8.6%, respectively.

103



Figure 5B.5: Dose-volume histograms for the AVM evaluated for the equief-
fective dose EQD7 assuming different values for the BED model parameters
(α/β)T and κ.
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Figure 5B.6: Fractional dose distributions obtained for patient 2 with the
UF and STF plans using stochastic programming methods.

Figure 5B.7: Maximum relative dose contribution of each fraction to the
PTV voxels for the robust STF plan in patient 2.
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6.1 Abstract
Purpose: Combined proton-photon therapy (CPPT), where most fractions
are delivered with photons and only a few are delivered with protons, may
represent a practical approach to optimally use limited proton resources. Pre-
vious studies showed that CPPT performs better when an overproportionate
dose is delivered to the tumor with the proton fractions. In this study, we
extend such an approach by determining the optimal proton and photon dose
contributions to individual lesions for patients with multiple metastases.
Methods: CPPT plans are generated by simultaneously optimizing distinct
IMPT and IMRT dose distributions based on their cumulative biologically
effective dose (BEDα/β). The dose contributions of the proton and photon
fractions to each individual metastasis are handled as additional optimiza-
tion variables in the fluence map optimization problem using a new planning
objective, which also ensures that similar spatial dose distributions are de-
livered within each lesion in all fractions. Five-fraction and three-fraction
CPPT plans, in which one fraction is delivered with protons and the remain-
ing fractions with photons, are generated for a patient with 4 liver metastases
(patient 1) and a patient with 30 brain metastases (patient 2), respectively,
and benchmarked against uniformly fractionated IMRT and IMPT plans.
Results: For patient 1, the IMRT plan achieves a mean liver BED4 of 29.9
Gy, while this is reduced to 17.0 Gy (-43%) with the CPPT plan and to 16.3
Gy (-45%) with the IMPT plan. Similar results are obtained for patient 2,
for which the mean brain BED2 is reduced compared to the IMRT plan (12.3
Gy) by 27% with the CPPT plan and by 21% with the IMPT plan. The dose
contribution of the single proton fraction to the individual metastases varies
from 67% to 93% of the tumor BED10 for patient 1 and from 24% to 84% of
the tumor BED10 for patient 2.
Conclusions: CPPT outperforms IMRT in terms of BED reduction to crit-
ical organs and approaches (or even improves) the IMPT plan quality, while
using only a single proton fraction. The proposed approach allows to deliver
different proton dose contributions to distinct metastases, depending on their
size and location.

6.2 Introduction
Photon-based stereotactic radiosurgery (SRS) and stereotactic body radio-
therapy (SBRT) have recently emerged as promising treatment options for
patients with cranial and extra-cranial oligometastatic diseases [79-82], and
their role in combination with systemic therapies is well established [83,84].
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Per contra, there are only very few clinical studies considering proton ther-
apy for the treatment of oligometastatic cancer patients [85]. Although the
superior normal tissue sparing properties of proton beams may considerably
reduce the integral dose in selected patients with multiple metastatic lesions,
the high cost and scarce availability of proton therapy prevent its wide adop-
tion in the metastatic setting. Most national health policies, in fact, only
support the routine commissioning of proton therapy to include tumor indi-
cations which are considered curable [86].

To improve the accessibility to proton therapy to a larger patient popula-
tion, combined proton-photon therapy (CPPT) has recently been proposed
[73,87-91]. CPPT treatments aim at delivering some treatment fractions
using proton therapy and the remaining fractions using conventional pho-
ton therapy. Different from the Dutch model, where it is a binary decision
whether to treat a patient with proton-only or photon-only therapy [92],
CPPT treatments allow to better distribute the limited proton resources over
a larger patient population [87]. Prior research on combined proton-photon
therapy focused on how to optimally combine proton and photon fractions.
Ten Eikelder et al [88] considered separately generated intensity modulated
proton therapy (IMPT) and intensity modulated radiotherapy (IMRT) plans,
and optimized the target dose to be delivered with each modality such to
minimize the biologically effective dose (BED) in the normal tissue. In most
cases, the superior dosimetric properties of proton beams were exploited by
delivering a higher dose to the target volume in the IMPT fractions. Unkel-
bach et al [89] considered simultaneously optimized IMPT and IMRT plans,
based on their cumulative BED distribution. They showed that the optimal
combination of protons and photons is achieved when non-uniform dose dis-
tributions are delivered with the IMPT and IMRT plans, where protons are
used to hypofractionate parts of the target volume while photons are used to
achieve the fractionation effect in regions of the target volume located close
to dose-limiting organs at risk.

While the latter approach may exploit the fractionation effects more op-
timally, it is also more sensitive to setup and motion errors compared to
the method of ten Eikelder et al. As very pronounced dose gradients may
appear within the target volume, misalignments of the proton and photon
dose distributions could lead to target underdosage and compromise tumor
control. This cannot be compensated by adding planning margins around
the treated volume, as the dose compartmentalization is automatically de-
termined during the BED-based plan optimization and not decided a priori.
For this reason, in this study we consider a novel approach to combined
proton-photon therapy for oligometastatic cancer patients, which expands
on the work of ten Eikelder et al, while being more robust against setup un-
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certainties compared to the method of Unkelbach et al. This approach, which
was first proposed by Torelli et al [93] for photon-based stereotactic radio-
surgery of multiple brain metastases, consists of treating different metastases
to possibly different doses in the IMRT and IMPT fractions, while constrain-
ing the spatial dose distribution within each individual metastatic lesion to
be homogeneous in every fraction. In this way, some of the metastases can
be treated to a high single-fraction dose, what allows to achieve the desired
level of tumor control with a lower physical dose. At the same time, a good
fractionation effect can be achieved in between the different metastatic le-
sions and robustness against setup errors can be achieved by adding planning
margins around each metastasis as in conventional clinical practice.

In this work, CPPT treatments for oligometastatic cancer patients are
created using the proposed planning approach for a patient with multiple
brain metastases and a patient with liver metastases, where the optimal
dose contribution of the IMRT and IMPT fractions to each metastasis is
determined using a novel BED-based objective function. Such CPPT plans
are then compared to IMRT-only plans, IMPT-only plans and CPPT plans
resulting from a simple proportional combination of IMRT and IMPT plans.

6.3 Materials and methods

6.3.1 Modeling of the fractionation effects

In this work, the fractionation effects are described using the biologically
effective dose (BED) model [94]. Similar to the previous work of Unkelbach
et al [89], we assume that the standard BED formalism can be generalized to
non-stationary fractionation schemes, where different doses may be delivered
in the proton and photon fractions. The cumulative BED bi to voxel i for a
CPPT treatment delivering nX photon fractions and np proton fractions is
defined as

bi = nXdXi

(
1 +

dXi
(α/β)i

)
+ npdpi

(
1 +

dpi
(α/β)i

)
(6.1)

where dXi and dpi are the physical doses delivered to voxel i in the photon
and proton fractions, respectively, and (α/β)i is the α/β-ratio of the tissue
that voxel i belongs to. The proton dose distribution dp includes a constant
relative biologically effectiveness (RBE) factor of 1.1, which we do not make
explicit in Eq. (6.1).
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6.3.2 BED-based multi-modality treatment plan opti-
mization

Planning of combined proton-photon treatments is performed by simultane-
ously optimizing distinct IMRT and IMPT plans, based on their cumulative
BED distribution. Formally, the optimization problem reads:

minimize
xX ,xp

f(bX + bp) (6.2)

subject to ck(bX + bp) ≤ uk ∀k (6.3)

bχi = nχdχi

(
1 +

dχi
(α/β)i

)
∀i, ∀χ (6.4)

dχi =
∑
j

Dχ
ijx

χ
j ∀i, ∀χ (6.5)

xχ
j ≥ 0 ∀j,∀χ (6.6)

where f(bX+bp) is an objective function evaluated for the cumulative BED,
ck(bX+bp) are a set of constraint functions indexed by k with corresponding
upper bounds uk and χ ∈ {X, p} denotes the treatment modality used in each
fraction (i.e. either photons or protons). For both IMRT and IMPT plans,
distinct fluence maps xX and xp are optimized, which are related to the
photon and proton doses via the dose-influence matrices elements DX

ij and
Dp

ij (storing the dose contribution of photon beamlet or proton pencil beam
j to voxel i per unit intensity).

6.3.3 Robust combination of IMRT and IMPT plans for
oligometastatic cancer patients

The simultaneous optimization of distinct IMRT and IMPT plans as de-
scribed in the treatment plan optimization problem in Eq. (6.2)-(6.6) po-
tentially results in highly non-uniform dose distributions within the target
volume, when no additional constraints are defined on the individual dose dis-
tributions of the photon and proton fractions. This may in turn compromise
target coverage in the presence of setup or motion uncertainties. To ensure
that a CPPT treatment is robust against inter-fraction setup uncertainties,
we constrain both the IMRT and IMPT plans to deliver a similar spatial
dose distribution within each metastasis. As a separate planning margin
is defined for each metastatic lesion, the resulting CPPT treatment will be
less sensitive to setup uncertainties when dose gradients are avoided within
each metastasis in both the IMPT and IMRT plans. However, the absolute
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dose contribution of each fraction to every individual metastasis is allowed to
vary in between the photon and proton fractions, to best achieve the desired
dosimetric goals. The optimal photon and proton dose contributions to each
metastasis are determined through the following planning objective, which
has previously been proposed by Torelli et al [93] for photon-only treatments:

f(bX ,bp, δX , δp) =

M∑
m=1

∑
i∈PTVm

1

|PTV|

[(
bXi − δXm(bXi + bpi )

)2
+
(
bpi − δpm(bXi + bpi )

)2]
(6.7)

Here, M is the total number of metastases and PTVm is the set of voxels
belonging to metastasis m. The parameters δXm and δpm describe the partial
BED contributions of the photon and proton fractions to metastasis m, re-
spectively, and are handled as optimization variables to be optimized along
with the incident fluences xX and xp. The quadratic penalty terms ensure
that similar spatial dose distributions are delivered within each metastasis m
in both the IMRT and IMPT plans, corresponding to the cumulative BED
bi = bXi + bpi scaled by factors δXm and δpm, respectively.

6.3.4 Clinical cases

We retrospectively investigate the proposed approach to CPPT for two metastatic
cancer patients. Patient 1 has 30 brain metastases with sizes varying from
0.1 cc to 8.3 cc and a total GTV volume of 20.3 cc. For patient 1, an isotropic
margin expansion of 1.2 mm is applied from the GTV to obtain the PTV.
Patient 2 has four metastases of varying size located in the right lobe of
the liver, with a total GTV volume of 391 cc. For patient 2, an isotropic
GTV-to-PTV margin expansion of 3 mm is applied.

6.3.5 Treatment planning study

Multiple brain metastases patient

For patient 1, we first generate a 3-fraction IMPT plan using the following
planning objectives:

1. A BED10 of 51.3 Gy is prescribed to the GTV. This is implemented via
a quadratic penalty function and corresponds to 27 Gy physical dose
delivered in 3 fractions.

2. A BED10 of 43.2 Gy is prescribed to the PTV (where GTV ⊂ PTV),
corresponding to a physical dose of 24 Gy delivered in 3 fractions. A
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BED10 exceeding 60 Gy (i.e. 30 Gy physical dose in 3 fractions) is
penalized quadratically.

3. The volume V60 of healthy brain (i.e. brain-PTV) receiving a BED2

larger than 60 Gy is minimized. This corresponds to 10 Gy in a
single fraction and is implemented via a continuous relaxation of a
dose‚Äìvolume objective.

4. The mean BED2 to the normal tissue excluding the PTV and the brain
is minimized.

5. The mean BED2 to the healthy brain is minimized.

The IMPT plan consists of 3 proton beams with gantry and couch angles
of (90◦, 0◦), (270◦, 0◦) and (90◦, 270◦), respectively. The proton pencil beams
are chosen to have a spacing of 2.5 mm in both the x- and y-directions, with
the initial sigma of the Gaussian proton pencil beams at the patient surface
ranging from 5.0 mm for a proton energy of 31.7 MeV to 2.3 mm for an
energy of 236.1 MeV . The dose-influence matrices for the proton pencil
beams are computed using the open-source radiotherapy research platform
matRad [95]. Subsequently, a 3-fraction IMRT plan is generated by solving
the treatment plan optimization problem in Eq. (6.2)-(6.6) for objective 5,
under the additional constraints that objectives 1-4 are no worse than for
the IMPT plan. The IMRT plan consists of 46 non-coplanar photon beams,
which approximate a full VMAT arc at a couch angle of 0◦ and three half-
arcs from 0◦ to 180◦ at couch angles of 45◦, 270◦ and 315◦. The beamlet
resolution is set to 5x5 mm2 and the photon energy is set to 6 MV for all
beams. Dose calculation for photon beamlets is performed using the open-
source radiotherapy research platform CERR [44].

Liver metastases patient

For patient 2, we first generate a 5-fraction IMRT plan using the following
planning objectives:

1. A BED10 of 100 Gy is prescribed to the GTV. This is implemented via
a quadratic penalty function and corresponds to 50 Gy physical dose
delivered in 5 fractions.

2. A BED10 of 72 Gy is prescribed to the PTV (where GTV ̸⊂ PTV),
corresponding to a physical dose of 40 Gy delivered in 5 fractions. A
BED10 exceeding 100 Gy is penalized quadratically.
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3. The dose has to be conformal to the PTV. This is implemented via
normal tissue objective, which limits the BED4 in the normal tissue by
steepening the dose gradient.

4. The mean BED4 to the normal tissue excluding the PTV and the liver
is minimized.

5. The mean BED4 to the healthy liver is minimized.

The IMRT plan consists of 19 equispaced coplanar beams, which approx-
imate a VMAT arc. Similar to patient 1, the beamlet resolution is set to 5x5
mm2, the photon energy is set to 6 MV for all beams and dose calculation
is performed using the open-source radiotherapy research platform CERR.
Then, a 3-fraction IMPT plan is generated by solving the treatment plan
optimization problem in Eq. (6.2)-(6.6) for objective 5, under the additional
constraints that objectives 1-4 are no worse than for the IMRT plan. The
IMPT plan consists of 3 coplanar proton beams at gantry angles of 225◦,
270◦ and 315◦. The proton pencil beams are chosen to have a spacing of 5x5
mm in both the x- and y-directions. The dose-influence matrices for the pro-
ton pencil beams are computed using the open-source radiotherapy research
platform matRad.

6.3.6 Assessing the benefit of CPPT treatments

For both patients, we consider CPPT plans with a single proton fraction and
N -1 photon fractions (where N=3 for patient 1 and N=5 for patient 2). To
quantify the benefit of the proposed CPPT approach, three CPPT plans are
generated with the following characteristics:

I A CPPT plan resulting from a simple proportional combination of the
single-modality plans, which treats each metastasis with the same fixed
dose in every fraction. We refer to this plan as CPPTUF plan.

II A CPPT plan where the fractional dose contribution to the entire target
volume is allowed to be different for the proton and photon fractions,
but not for the individual metastases. This plan is optimized using a
weighted sum of objectives 5 in both patients and the objective function
in Eq. (6.7), under the constraints that the plan is no worse than the
IMPT plan (in case of patient 1) and the IMRT plan (in case of patient
2) for all the other objectives 1-4, and that δXm = δX ∀m and δpm = δp ∀m.
This plan, which is hereafter referred to as CPPT(fixed)

cSTF plan, represents
an intermediate scenario in which the superior normal tissue sparing
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properties of proton beams can be exploited, but where the fractionation
effects are not optimally considered.

III A CPPT plan where the dose contribution of the proton and photon
fractions can vary for every individual metastasis. This plan is opti-
mized similar to the previous CPPT plan, but without any constraint
on the additional optimization parameters δXm and δpm. This plan can
also better exploit the fractionation effects and is hereafter referred to
as CPPT(variable)

cSTF plan.

6.4 Results

6.4.1 Multiple brain metastases patient

Fig. 6.1a and Fig. 6.1b show the dose distributions for patient 1 obtained
with the IMRT plan and the IMPT plan, respectively, while Fig. 6.1c show
the EQD9 distribution of the CPPTUF plan resulting from their simple pro-
portional combination. For a similar PTV dose coverage, the IMPT plan can
considerably reduce the mean brain BED2 compared to the IMRT plan (9.65
Gy vs 12.25 Gy), at the cost of a slightly increased brain volume receiving
a BED2 larger than 60 Gy (42.75 cc vs 41.02 cc). The CPPTUF plan can
only slightly improve on the IMRT plan, by reducing the mean brain BED2

to 11.39 Gy (-7.0%). However, when the dose contribution of the single
proton fraction to the PTV is allowed to be increased compared to the dose
contribution of the photon fractions, the superior normal tissue sparing prop-
erties of the proton beams can be exploited more effectively. The fractional
dose distributions for the CPPT(fixed)

cSTF plan are illustrated in Fig. 6.1d-e and
their cumulative EQD9 is shown in Fig. 6.1f. The CPPT(fixed)

cSTF plan deliv-
ers approximately 11.7 Gy to every metastasis in the single proton fraction,
corresponding to 59% of the total prescribed BED10 to the PTV (δpm=0.59
∀m). In this way, the mean brain BED2 can be reduced to 9.22 Gy (-24.7%
compared to the IMRT plan), for a similar PTV dose coverage.

By further relaxing the constraint on the fractionation schedule and al-
lowing the proton dose contribution to every individual metastasis to be
different, the resulting CPPT(variable)

cSTF plan can make use of the dosimetric
properties of the proton beams to hypofractionate some of the metastases,
whereas photon beams are used to achieve the fractionation effect in metas-
tases which cannot be treated to a very high single fraction dose (e.g. due to
their size or location within the brain) and to improve the dose conformity.
The fractional dose distributions and the cumulative EQD9 distribution ob-
tained with the CPPT(variable)

cSTF plan are shown in Fig. 6.1g-h and Fig. 6.1i,
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Figure 6.1: Fractional dose distributions and cumulative EQD9 distribu-
tions obtained for patient 1 using the IMRT, IMPT and the three considered
CPPT plans.

respectively. Different from the CPPT2 plan, each metastasis is treated to
very different doses in the proton fraction, ranging from 6.3 Gy (δp(min)

m =0.24)
to 14.7 Gy (δp(max)

m =0.84). The individual dose contributions of the proton
fraction to all individual metastases are reported in Fig. 6.2. By more opti-
mally exploiting the fractionation effect, the CPPT(variable)

cSTF plan can further
reduce the mean brain BED2 to 9.02 Gy (-26.4% compared to the IMRT
plan).

All results are summarized in Table 1.
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Figure 6.2: Partial tumor BED10 contribution of the single proton fraction
of the CPPT(variable)

cSTF plan to the 30 brain metastases in patient 1.

Table 6.1: Summary of the dosimetric results obtained with the IMRT,
IMPT and the three CPPT plans for both patient 1 and patient 2.

IMRT IMPT CPPTUF CPPT(fixed)
cSTF

CPPT(variable)
cSTF

Patient 1

PTV -
Mean BED10 (Gy) 50.3 50.9 (+1.2%) 50.5 (+0.4%) 50.5 (+0.4%) 50.5 (+0.4%)

Healthy brain -
Mean BED2 (Gy) 12.3 9.7 (-21.2%) 11.4 (-7.0%) 9.2 (-24.7%) 9.0 (-26.4%)

Healthy brain -
V60 (cc) 41.0 42.8 (+4.2%) 41.5 (+1.1%) 41.5 (+1.1%) 40.8 (-0.6%)

Patient 2
PTV -
Mean BED10 (Gy) 96.1 95.7 (-0.4 %) 96.1 (-0.1 %) 95.3 (-0.8 %) 95.3 (-0.9 %)

Healthy liver -
Mean BED4 (Gy) 29.9 16.3 (-45.3%) 27.2 (-9.1%) 18.0 (-39.9%) 17.0 (-43.0%)

6.4.2 Liver metastases patient

Fig. 6.3a-b show the dose distributions obtained for patient 2 using the IMRT
and IMPT plans, respectively. The IMPT plan reduces the mean liver BED4

by 45.3% compared to the IMRT plan (16.33 Gy vs 29.87 Gy), for a similar
PTV dose coverage. By simply combining the single-modality plans with the
same fixed dose per fraction, a CPPTUF plan is obtained which achieves a
mean liver BED4 of 27.16 Gy (-9.1% compared to the IMRT plan), whose
cumulative EQD8 distribution is illustrated in Fig. 6.3c. The fractional dose
distributions and the cumulative EQD8 distribution for the CPPT(fixed)

cSTF plan
are shown in Fig. 6.3d-e and Fig. 6.3f, respectively. Similar as for patient 1,
the dose contribution to the PTV is considerably increased in the CPPT(fixed)

cSTF

plan compared to the CPPTUF plan. The single proton fraction delivers a
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Figure 6.3: Fractional dose distributions and cumulative EQD8 distribu-
tions obtained for patient 2 using the IMRT, IMPT and the three considered
CPPT plans.

dose of approximately 24.2 Gy to all metastases (δpm=0.83 ∀m). In this way,
the CPPT(fixed)

cSTF plan reduces the mean liver BED4 by 39.9% compared to the
IMRT plan. When the proton dose contribution to each individual metasta-
sis is allowed to vary, the mean liver BED4 can further be reduced to 17.03
Gy (-43.0% compared to the IMRT plan). The corresponding fractional dose
distributions and cumulative EQD8 distribution for the CPPT(variable)

cSTF plan
are shown in Fig. 6.3g-h and Fig. 6.3i, respectively. In particular, the bridge
dose in between the two metastases shown in Fig. 6.3 can better fraction-
ated in the CPPT(variable)

cSTF plan, resulting in a lower cumulative EQD8 in
between the two metastases. Fig. 6.4 reports the partial BED10 contribution
of the proton fraction to the individual metastases, which vary from 21.4 Gy
(δp(min)

m =0.67) for the largest lesion to 25.9 Gy (δp(max)
m =0.93).

The results obtained for patient 2 are summarized in Table 1.

6.5 Discussion
Proton therapy might be an effective treatment modality for oligometastatic
cancer patients. Due to their normal tissue sparing properties, proton beams
could considerably reduce radiation-induced toxicities, thereby positively im-
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Figure 6.4: Partial tumor BED10 contribution of the single proton fraction
of the CPPT(variable)

cSTF plan to the 4 liver metastases in patient 2.

pacting both the overall survival and quality of life. However, proton therapy
is still scarcely available and most of the available resources are currently
directed onto the treatment of selected tumor indications, preventing the
enrollment of oligometastatic cancer patients in clinical studies with proton
therapy. In this work, we demonstrated that proton therapy is potentially
beneficial for the treatment of oligometastatic diseases and presented an ap-
proach to combined proton-photon therapy for metastatic cancer patients
which can approximate or even outperform the dosimetric quality of IMPT-
only treatments while using only few proton fractions. Combined proton-
photon therapy may thereby facilitate the clinical implementation of proton
therapy for the treatment of oligometastatic patients, with minor impact on
the limited proton resources.

The proposed approach to CPPT treatments is specifically designed for
patients with multiple metastases. By determining the optimal proton dose
contribution to each individual metastasis, it expands on the previous work
of ten Eikelder et al [85], where the same proton dose contribution is deliv-
ered to the entire target volume. In this way, not only the more favorable
dosimetric properties of proton beams are considered, but also the fraction-
ation effect is more optimally exploited. In addition, compared to previous
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work of Unkelbach et al [89], the proposed approach is more robust against
misalignments of the proton and photon dose distributions, as dose gradi-
ents within the individual metastases are avoided. Robustness is achieved
by the evaluation of a single additional planning objective, and is therefore
computationally more efficient compared to previously suggested stochas-
tic optimization approaches that consider multiple errors scenarios for setup
errors [90]. Finally, this study also extends on the work of Torelli et al
[93], including the combination of multiple particle types. Treating different
metastases to a different dose in distinct fractions is indeed not only opti-
mal in terms of the fractionation effects, but can also be used to exploit the
different dosimetric characteristics of different treatment modalities.

The optimization of CPPT treatments in this study is based on a gener-
alization of the BED model, which assumes that very different doses can be
delivered to the target volume in distinct fractions. In addition, a constant
RBE factor of 1.1 is assumed for the proton beams. While many extensions
of the BED model have been proposed to incorporate higher-order radio-
biological effects [96-99] and variable RBE of protons [100], none of these
models is yet established in clinical practice. Therefore, even if it is unclear
whether the proposed generalization of the BED model adequately describes
the fractionation effects over the whole range of doses per fraction, we argue
that this does not generally question the proposed approach. Future work
may investigate this approach for other metastatic treatment sites. For lung
metastases, the use of photons in combination with protons may also be use-
ful to mitigate range uncertainties related to proton therapy, as previously
shown by Amstutz et al [101]. Also, more sophisticated radiobiological model
including tumor repopulation and an energy-dependent RBE factor might be
investigated.

6.6 Conclusion
Proton therapy has the potential to considerably reduce the normal tissue
dose in oligometastatic cancer patients. By treating some metastases to high
single-fraction proton doses and using photons to fractionate the dose in
metastases which are large or located close to critical organs-at-risk, com-
bined proton-photon treatments can exploit most of the benefits of proton
therapy while using fewer of the limited proton resources.
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Chapter 7

Fraction-variant radiotherapy
treatments: an approach to
exploit additional degrees of
freedom in radiotherapy
treatment planning
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7.1 Abstract
Objective: In current clinical practice, a single treatment plan is typically
generated for each patient and repeatedly delivered over several fractions, us-
ing the same fixed set of beam orientations. In this work, we investigate the
benefit on the quality of radiotherapy treatments of delivering different, pos-
sibly non-uniform dose distributions and using different non-coplanar beam
orientations in distinct fractions.
Approach: A biologically effective dose (BED)-based direct aperture op-
timization (DAO) algorithm is developed, which simultaneously optimizes
multiple dose distributions to be delivered in different fractions, together
with their corresponding set of aperture shapes and MU weights. Each set
of apertures specifies a series of control points along a fraction-specific non-
coplanar dynamic trajectory, which consists of a 360◦ gantry arc with dy-
namic bi-directional couch rotation and whose gantry-couch path is automat-
ically determined during the treatment plan optimization. Fraction-variant
non-coplanar stereotactic radiotherapy treatments are generated using the
proposed planning approach for a patient with four large liver metastases
(patient 1, 3 fractions) and a patient with a large arteriovenous malforma-
tion (patient 2, 4 fractions), and benchmarked against state-of-the-art radio-
therapy treatments that delivers the same dose distribution in every fraction
using coplanar VMAT arcs.
Main results: Fraction-variant radiotherapy treatments deliver highly non-
uniform dose distributions in distinct fractions, which hypofractionate the
dose in the target volume while delivering a similar dose bath to the nor-
mal tissue. In each fraction, different non-coplanar dynamic trajectories are
selected. For a similar target BED coverage in both treatments, fraction-
variant treatments reduce the mean liver BED3 in patient 1 by 27.5% and
the mean brain BED2 in patient 2 by 26.5% compared to state-of-the-art
VMAT treatments.
Significance: Delivering different non-uniform dose distributions and uti-
lizing different beam orientations in different fractions can considerably im-
prove the dosimetric quality of radiotherapy compared to state-of-the-art
treatments that deliver the same plan in every fraction.

7.2 Introduction
Radiotherapy treatment planning aims at generating a patient-personalized
treatment plan that delivers a therapeutic radiation dose to the tumor while
sparing the surrounding normal tissue as much as possible. Over the past
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few decades, developments of new treatment hardware, such as the multileaf
collimator [102] and a robotic treatment couch [103], together with the imple-
mentation of more sophisticated planning algorithms [7,104-109] allowed to
access previously unutilized degrees of freedom in radiotherapy planning and
enormously impacted the quality of radiotherapy treatments. Intensity mod-
ulated radiotherapy (IMRT) [104,105] and volumetric modulated arc therapy
(VMAT) [106], for example, improved dose conformity and organs-at-risk
(OAR) sparing compared to three-dimensional conformal radiotherapy (3D-
CRT). The use of non-coplanar beam orientations [7,107-109], either man-
ually selected or determined through beam orientation optimization, may
further improve the dose distribution.

However, there are still some degrees of freedom which are not yet fully
exploited in conventional radiotherapy treatment planning. In current clin-
ical practice, in fact, a single treatment plan is typically generated for each
patient and repeatedly delivered over the course of several fractions, using
the same fixed set of beam orientations in every fraction. Further improve-
ments to the quality of radiotherapy treatments may be possible through the
delivery of different, possibly non-uniform dose distributions and the use of
different beam orientations in distinct fractions.

Deviating from the current rigid planning approach and allowing for dif-
ferent dose distributions to be delivered in distinct fractions may improve
the quality of radiotherapy treatments for two reasons. First, a better inten-
sity modulation could be achieved. For step-and-shoot IMRT, the incident
fluence is represented by a restricted number of apertures per beam angle
[110], and for VMAT only a single aperture per gantry angle is used to limit
the treatment delivery time [111]. By allowing different aperture shapes and
weights to be delivered in distinct fractions, overall more apertures could be
used to approximate the optimal fluence map without increasing the delivery
time per fraction. Second, the fractionation effects can be more optimally
exploited. Delivering the same dose distribution over multiple fractions is
beneficial as most normal tissues can better repair from radiation damage
in between the different fractions compared to most tumors. However, tu-
mor cells can also partly repair and repopulate, and thereby a higher total
physical dose must be delivered to the tumor to achieve the same level of
response when a treatment is fractionated [59]. By delivering different non-
uniform dose distributions in distinct fractions, where each fraction treats
complementary parts of the target volume to a high dose while the normal
tissue dose is more uniformly distributed over all fractions, some degree of
hypofractionation can be achieved in the tumor while still exploiting the frac-
tionation effect in the normal tissue. This approach has first been proposed
by Unkelbach et al and referred to as spatiotemporal fractionation [31]. Spa-
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tiotemporally fractionated treatments have been demonstrated in in-silico
studies to considerably improve the therapeutic ratio for several treatment
sites compared to treatments that deliver the same dose distribution in every
fraction [28,30-32].

Utilizing different beam orientations for the delivery of the different treat-
ment fractions, on the other hand, may allow to use overall more beam angles
over the entire treatment course. Typically, the more beam orientations are
used for generating a treatment plan, the better the plan quality will be
[112]. However, if the same beam orientations are used in each fraction, then
the total delivery time increases when a larger number of beam orientations
are used, what poses a limit on the maximum achievable dosimetric benefit.
O’Connor et al [113] and Gu et al [114] showed for both non-coplanar IMRT
and intensity modulated proton therapy (IMPT) treatments that the use
of different beam orientations in distinct fractions may either improve the
dosimetric quality of a treatment while keeping the delivery time per frac-
tion viable, or alternatively can maintain a good plan quality while lowering
the delivery time. In their study, however, a similar dose distribution was
delivered within the target volume in every fraction. By combining the use
of different beam orientations and the delivery of different non-uniform dose
distributions in distinct fractions, the treatment plan quality might be fur-
ther improved by selecting specific beam orientations for each fraction which
are beneficial for treating specific parts of the tumor.

In this study, we investigate the impact on both the dosimetric quality and
the delivery efficiency of using different beam orientations and delivering dif-
ferent, possibly non-uniform dose distributions in distinct fractions. A direct
aperture optimization algorithm is proposed that simultaneously optimizes
multiple dose distributions to be delivered in different fractions, together
with their corresponding fraction-specific non-coplanar dynamic trajectories.
Non-coplanar dynamic trajectories consist of a treatment technique com-
bining dynamic gantry and couch rotation, and represent an efficient way
of delivering non-coplanar radiotherapy treatments using conventional C-
arm linear accelerators [8,115-122]. The proposed approach, which extends
state-of-the-art radiotherapy practice by exploiting fraction-variant intensity
modulation, the use of different non-uniform dose distributions in distinct
fractions and patient- and fraction-specific beam orientation optimization, is
demonstrated for a patient with large liver metastases and a patient with a
large arteriovenous malformation.
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7.3 Materials and methods

7.3.1 Optimization methodology

Treatment plans in this study are generated by simultaneously optimizing
multiple dose distributions to be delivered in the different fractions, together
with their corresponding sets of multileaf collimated apertures and monitor
unit (MU) weights. Each set of apertures specifies a series of control points
along a fraction-specific non-coplanar dynamic trajectory, which consists of a
360◦ gantry arc with dynamic bi-directional couch rotation and whose gantry-
couch path is automatically determined during the treatment plan optimiza-
tion. To account for the fractionation effects when different non-uniform dose
distributions are delivered in distinct fractions, the cumulative biologically
effective dose (BED) is optimized rather than the cumulative physical dose.

The proposed BED-based optimization problem is solved using a direct
aperture optimization (DAO) algorithm that has been implemented into our
in-house research optimization software. The algorithm combines a column
generation based method to iteratively add apertures from promising beam
orientations together with a gradient based method for DAO that refines MU
weights and aperture shapes at each iteration. The optimization workflow is
schematically illustrated in Fig. 7.1 and further detailed in the following.

Column generation based method for selecting apertures from promis-
ing beam orientations

Favorable non-coplanar dynamic trajectories for the delivery of each treat-
ment fraction are determined using a column generation based method. This
is a heuristic algorithm which iteratively adds suitable apertures from promis-
ing beam orientations to a treatment fraction, until all control points along
the fraction-specific non-coplanar dynamic trajectories are populated. The
algorithm starts by assuming an empty set of apertures Kt = ∅ for all the
fractions t ∈ {1, ..., n} (where n is the total number of fractions). Given a
set B of feasible beam orientations, the most promising multileaf collimator
(MLC)-based apertures per field and per fraction are determined by eval-
uating the first-order perturbation for each bixel on the objective function
(solving a so called pricing problem [3]). The resulting candidate apertures
have an associated price, given by the sum of the gradient contributions of
each of the bixels not covered by the MLC, and the apertures with the low-
est price in each fraction are added to the treatment plan at each iteration
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Figure 7.1: (a) Workflow of the direct aperture optimization algorithm. The
index λ refers to the iteration number in the column generation based method
and n is the total number of fractions in the treatment. (b) Schematic illus-
tration of iteration λ > n of the DAO algorithm for two exemplary fractions
t and t̃. The black stars indicate control points for which an aperture has
already been fixed. First, candidate apertures are generated for each of the
beam orientations which can still be efficiently reached by the non-coplanar
dynamic trajectories. The apertures with the lowest price in each fraction are
subsequently added to the treatment plan. Both the MU weights and shapes
of all the already added apertures are finally refined.
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(see Fig. 7.1ba). To allow for the dose distributions delivered in the different
fractions to possibly diverge, during the first λ ∈ {1, ..., n} iterations of the
column generation method, only one single aperture is added to the treat-
ment plan for fraction t = λ. This is necessary as the gradient information
for all fractions with an empty pool of apertures is the same.

Similar to the work of Mullins et al [122], the set B of candidate beam ori-
entations (which is initially the same for all fractions) spans multiple poten-
tial control points for the non-coplanar dynamic trajectories, each defined by
different pairs of gantry-couch angles. The search space for candidate beam
orientations considered for the pricing problem varies dynamically with the
addition of each new aperture. Both control points for which an aperture has
already been defined and control points that cannot be reached efficiently by
a dynamic trajectory due to delivery-efficiency constraints (which are further
detailed below) are excluded from the search space B. This makes solving the
pricing problem more efficient after the addition of each new aperture. In
this study, the control points grid resolution is set to ∆θ= 5◦ for the gantry
angles and to ∆ϕ= 2.5◦ for the couch angles, with gantry angles ranging
from -180◦ to +180◦ and couch angles ranging from -90◦ to +90◦. Avoid-
ance zones for gantry-couch angle pairs leading to collisions are determined
for typical patient geometries and treatment sites (i.e. they are not patient
specific) and are excluded from the set of candidate beam orientations. The
collimator angle is not optimized and is fixed to 0◦.

Gradient based DAO method for apertures’ shape and MU weight
refinement

After the addition of each aperture to the treatment plan, both the MU
weights and the shapes of all the already defined apertures are refined using a
gradient based DAO approach, aiming to minimize an objective function f(b)
evaluated for the cumulative BED distribution b. Formally, the treatment
plan optimization problem reads:

minimize f(b) (7.1)

subject to bi =
∑

t = 1ndit

[
1 +

dit
(α/β)i

]
∀i (7.2)

dit =
∑
k∈Kt

ωk

∑
l∈Lk

Φkl
i (x

kl
L , x

kl
R) ∀i, ∀t (7.3)

a In case that multiple non-coplanar dynamic trajectories are used in a single fraction
and the same apertures are generated for all trajectories, then the most promising aperture
is (per construction) added to the first non-coplanar dynamic trajectory.

126



ωk ≥ 0 ∀k (7.4)

|x(k−1)l
L − xkl

L | ≤ ∆xmax ∀k ≤ 1,∀l (7.5)

|x(k−1)l
R − xkl

R | ≤ ∆xmax ∀k ≤ 1,∀l (7.6)
xkl
L ≤ xkl

R ∀k, ∀l (7.7)

where bi is the cumulative BED to voxel i, (α/β)i is the α/β-ratio of the
tissue that voxel i belongs to, dit is the physical dose delivered to voxel i
in fraction t by all the contributing MLC-based apertures k ∈ Kt, Φkl

i is
the dose contribution of the l-th leaf pair of aperture k to voxel i per unit
intensity and k is the MU weight of aperture k. The parameters xkl

L and
xkl
R describe the positions of the left and right MLC leaves in the l-th leaf

pair of aperture k, respectively, and Lk is the set of all MLC leaf pairs in
aperture k. The constraints in Eq. (7.5)-(7.6) are used to limit the MLC
displacement between neighboring control points by a maximum distance
∆xmax, as further detailed belowb .

The proposed gradient based DAO approach, which is inspired by the
work of Cassioli and Unkelbach [123], exploits gradient information to locally
optimize the positions of the MLC leaves and the MU weights in an iterative
way. At each iteration of the gradient based DAO method, a restricted
optimization problem is solved, where the left and right MLC leaf positions
for all leaf pairs l ∈ Lk and for all apertures k ∈ Kt are constrained to the
bixels bklL and bklR they are positioned in. Under this assumption, the dose
contribution Φkl

i (x
kl
L , x

kl
R) to voxel i in Eq. (7.3) can be decomposed into

three separate terms describing the dose contributions of the bixels that are
in between the two leaves and are thereby completely exposed, and the dose
contributions of the partially exposed bixels on the left and on the right,
respectively,

Φkl
i (x

kl
L , x

kl
R) = δklLDibklL

+ δklRDibklR
+

bklR−1∑
j=bklL +1

Dij (7.8)

Here, δklL ∈ [0, 1] and δklR ∈ [0, 1] describe the fractional opening of the bixles
that the left and right MLC leaves are restricted to, and Dij is the dose-
influence matrix term storing the dose contribution of bixel j to voxel i per
unit intensity. Within each bixel, the dose contribution can be approximated
by a linear function of the corresponding dose-influence matrix term. This

bNote that for the first and last control points along a dynamic trajectory (i.e. at θ=-
180◦ and θ=+180◦), only the MLC displacement from a single neighboring control point
is considered.
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leads to a well-behaved optimization problem for the leaf positions and the
aperture weights, which can be solved efficiently using standard gradient-
based algorithms. In this study, we use our in-house implementation of the
L-BFGS quasi-Newton method [63], where the constraints δklL ∈ [0, 1] and
δklR ∈ [0, 1] are handled by projection methods.

If a MLC leaf is moved at the edge of a bixel after an iteration of the
gradient based DAO method (e.g. δklL ∈ {0, 1} or δklR ∈ {0, 1}), its position
can be confined to the neighboring bixel in the next iteration (details on
the leaf-to-bixel assignment procedure are discussed in the work of Cassioli
and Unkelbach [120]). This allows for larger MLC leaf displacements over
multiple iterations. In this work, the iterative refinement of the MLC leaf
positions and the MU weights stops either after 20 iterations of the gradient
based DAO algorithm or sooner if the decrease in the relative value of the
objective function between two consecutive iterations is smaller than ϵ=10−6.

Delivery efficiency constraints

To keep the delivery time of non-coplanar dynamic trajectories practical,
delivery efficiency constraints are implemented. Similar to Peng et al [124],
we first constrain the MLC leaf displacement ∆xmax between consecutive
control points. The maximum MLC leaf position displacement from one
control point to the neighboring one is determined by the maximum leaf
speed

(
dx
dt

)
max

and the minimum time which the system composed by gantry
and couch needs to move between the two control points. For the delivery of
non-coplanar dynamic trajectories, this is determined either by the inverse of
the maximum gantry angular speed

(
dθ
dt

)−1

max
or by the inverse of the maximum

couch angular speed
(
dϕ
dt

)−1

max

∆xmax = max

[(
dx

dt

)
max

(
dθ

dt

)−1

max

∆θ,

(
dx

dt

)
max

(
dϕ

dt

)−1

max

∆ϕ

]
(7.9)

where ∆θ and ∆ϕ denote the difference in gantry and couch angles between
neighboring control points, respectivelyc. In this study, the maximum MLC
leaf speed is set to 2.5 cm/s, the maximum rotation speed of the gantry
is set to 6◦/s and the maximum rotation speed of the couch is set to 3◦/s.
These values correspond to the dynamic parameters for a TrueBeam (Varian

cNote that ∆θ and ∆ϕ in Eq. (7.9) can assume values which are integer multiples of
the gantry-couch grid resolution, in case that the two considered control points are not to
be delivered consecutively (i.e. if apertures at intermediate control points have not been
added yet to the treatment plan).
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Medical Systems, Palo Alto, CA) treatment unit equipped with a Millennium
MLC 120 (Varian Medical Systems, Palo Alto, CA). For the chosen gantry-
couch grid resolution (i.e. ∆θ=5◦ and ∆ϕ=2.5◦), the travel time from one
control point to the neighboring one corresponds to 0.83 s and the maximum
leaf travel between consecutive control points is thereby limited to 2.08 cm.
This constraint on the maximum MLC leaf displacement is incorporated
both in the column generation based method (within the pricing problem)
and in the gradient based DAO method (within the leaf-to-bixel assignment
procedure).

Second, we constrain the delivery time for a non-coplanar dynamic tra-
jectory to be approximately the same as the delivery time for a full coplanar
VMAT arc. Potential improvements in the treatment plan quality when
using non-coplanar dynamic trajectories are thereby not associated with a
decreased delivery efficiency. The maximum couch rotation ∆ϕmax between
consecutive control points (defined by monotonically increasing gantry an-
gles) is restricted to

∆ϕmax =

(
dϕ

dt

)
max

(
dθ

dt

)−1

max

∆θ (7.10)

To satisfy the constraint in Eq. (7.10) and still obtain a continuous dy-
namic trajectory spanning a 360◦ gantry arc, control points which cannot be
reached efficiently by a dynamic trajectory while avoiding the collision zones
are excluded from the initial beam search space B.

In this work, we do not define any constraint on the maximum MU rate.
It is therefore possible that the speed of the mechanical linear accelerator
components must be adjusted if a too large number of MUs has to be delivered
between consecutive control points.

7.3.2 Patient cases

The proposed DAO algorithm is demonstrated for two patients which have
previously been investigated in the context of spatiotemporal fractionation
research [29,30]. Patient 1 has four metastases of varying size located in
the right lobe of the liver and is used for illustration in the results section.
The total GTV volume is 319 cc, and a 3 mm isotropic margin expansion is
applied from the GTV to obtain the PTV. Patient 2 has a large arteriovenous
malformation (AVM) located in the right frontal lobe with a volume of 30
cc.
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7.3.3 Treatment planning study and algorithm valida-
tion

Patient 1

For patient 1, a 3-fraction stereotactic body radiotherapy (SBRT) plan is
generated using the proposed planning approach. For each fraction, a dif-
ferent non-uniform dose distribution is optimized which is delivered using
two fraction-specific non-coplanar dynamic trajectories. Both non-coplanar
dynamic trajectories are constrained to share the same gantry-couch path,
which is automatically optimized along with the corresponding dose distri-
bution and consists of 73 control points selected from 1463 feasible beam
orientations. This fraction-variant SBRT plan (which hereafter is referred to
as SBRTFV ) is benchmarked against a 3-fraction SBRT plan that delivers
the same dose distribution in every fraction and is obtained using two copla-
nar VMAT arcs at a fixed couch angle of ϕ = 0◦ in every fraction (hereafter
referred to as SBRTstd). In the latter case, only one single dose distribu-
tion is optimized for all fractions using a pre-defined and fixed set of beam
orientations B0 = {(θk, ϕk)}|θk = −180◦ + k.5◦, ϕk = 0◦∀k ∈ {0, 1, ..., 72}}.

Both plans are optimized for the following choice of planning objectives:

1. A BED10 of 100.8 Gy is prescribed to the GTV (implemented via a
quadratic penalty function), corresponding to a physical dose of 42
Gy in 3 fractions. A BED10 exceeding 112.5 Gy (equivalent to 45 Gy
physical dose in 3 fractions) is penalized quadratically.

2. A BED10 of 79.2 Gy (equivalent to 36 Gy physical dose in 3 fractions)
is prescribed to the PTV (excluding the GTV voxels), while BED10

values exceeding 100.8 Gy are penalized quadratically.

3. The dose has to be conformal to the PTV. This is implemented via a
normal tissue objective which limits the BED3 to the normal tissue by
steepening the dose gradient.

4. The mean BED3 to the non-involved liver (i.e. liver without PTV) is
minimized.

The bixel size is set to 5 x 5 mm2 and the photon energy is 6 MV for all
candidate beam orientations. A non-uniform dose grid size is used through-
out the body, with small voxels of 5.1 x 5.1 x 2.5 mm3 in size that are used
in the PTV and close to the PTV, where a larger dose gradient is expected.
At a distance between 2 cm and 4 cm from the PTV edge, medium-size vox-
els are used with 8-fold volume, whereas at distances larger than 4 cm from
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the PTV edge large-size voxels are used with 64-fold volume. As previously
shown by Mueller et al [125], the use of a non-uniform dose grid size allows to
considerably enhance the computational efficiency with negligible trade-offs
on the plan accuracy. All dosimetric results, however, are evaluated based
on the finest (small) dose grid size.

Patient 2

Analogously, for patient 2 we generate a 4-fraction stereotactic radiother-
apy (SRT) plan using the proposed planning approach, where different dose
distributions are optimized for each fraction utilizing two fraction-specific
non-coplanar dynamic trajectories (both defined through the same 73 con-
trol points selected from 3035 candidate beam orientations). This fraction-
variant SRT plan (which hereafter is referred to as SRTFV ) is benchmarked
against a 4-fraction uniformly fractionated SRT plan that uses two coplanar
VMAT arcs at a fixed couch angle of ϕ = 0◦ in every fraction (hereafter
referred to as SRTstd).

The planning objectives and the optimization settings used for patient 2,
as well as additional details on the computational setup can be found in the
Supplementary material, Appendix A.

Algorithm validation

To test the ability of the proposed DAO algorithm to determine non-coplanar
dynamic trajectories that are beneficial for the delivery of each specific frac-
tional dose distribution, N=25 additional treatment plans are generated for
patient 1 utilizing different randomly generated non-coplanar dynamic tra-
jectories in different fractions and allowing for different non-uniform dose
distributions to be delivered in each distinct fraction. Random dynamic
trajectories are determined a priori by randomly sampling feasible beam ori-
entations in an iterative way until a complete set of beam orientations Brnd

describing a non-coplanar dynamic trajectory is obtained (which again must
satisfy the delivery-efficiency constraints). The different sets of beam orien-
tations Brnd for each fraction are then used as input for the optimization and
the resulting plans are compared to the SBRTFV plan obtained with opti-
mized non-coplanar dynamic trajectories (i.e. where the set B of all feasible
beam orientations is used as input for the optimization), using the objective
function value as a measure for plan quality.
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Investigating the impact of each additional degree of freedom on
the treatment plan quality and delivery efficiency

Compared to state-of-the-art radiotherapy treatments that deliver the same
dose in every fraction and for which the beam orientations are manually
defined and fixed for all fractions, treatments generated in this study exploit
the following additional degrees of freedom:

• Fraction-variant intensity modulation (which refers to the use of pos-
sibly different MLC-based apertures and MU weights in different frac-
tions)

• Delivery of different non-uniform dose distributions in distinct fractions
(spatiotemporal fractionation)

• Patient- and fraction-specific beam angle selection

(Note that fraction-variant intensity modulation is an intrinsic characteristic
of plans exploiting spatiotemporal fractionation schemes and fraction-specific
beam angle selection.) To separately investigate the impact of each of these
individual degrees of freedom on the treatment plan quality, the following
additional treatment plans are also generated for both patients:

I A plan that exploits fraction-variant intensity modulation only (here-
after referred to as SBRTFV IM/SRTFV IM). This plan allows for the
shapes and MU weights of the apertures to vary in between the differ-
ent fractions, but requires that a uniform dose distribution is delivered
within the PTV in every fraction using coplanar VMAT arcs. To ensure
that a uniform dose distribution is delivered within the target volume in
every fraction, additional planning objectives are defined which require
that 1/n of the total prescribed BED is delivered to each voxel of the
target volume in every fraction (as further detailed in the Supplementary
material, Appendix A).

II A plan that exploits spatiotemporal fractionation schemes only (here-
after referred to as SBRTSTF/SRTSTF ). This plan delivers different
non-uniform dose distributions in every fraction, but using two coplanar
VMAT arcs in all fractions (thereby neither patient- nor fraction-specific
beam angle selection is exploited, similar to previous studies on spa-
tiotemporal fractionation schemes [13-17]). The set of aperture shapes
and intensities is allowed to vary between the different fractions, but no
constraint is defined on the spatial dose distribution within the target
volume at each fraction.
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III A plan that exploits fraction-specific beam angle selection only (here-
after referred to as SBRTFSBAS/SRTFSBAS). This plan delivers a uni-
form dose distribution within the target volume in each fraction, us-
ing fraction-specific non-coplanar dynamic trajectories. In this case, we
allow to select different non-coplanar dynamic trajectories in different
fractions, but require that the dose is distributed near uniformly within
the target volume in every fraction (again by adding planning objectives
which require that 1/n of the total prescribed BED is delivered to each
voxel of the target volume in every fraction).

The use of fraction-variant intensity modulation and fraction-specific beam
angle selection has also the potential of improving the delivery efficiency
of radiotherapy treatments without compromising the plan quality. To in-
vestigate the trade-off between plan quality and delivery efficiency, we also
generate for both patients an additional plan which is allowed to deliver
non-uniform dose distributions in different fractions, but which utilizes only
one single fraction-specific non-coplanar dynamic trajectory in each fraction
(instead of two VMAT arcs or two dynamic trajectories as for the other
plans) and thereby requires a shorter delivery time (hereafter referred to as
SBRT(1)

FV /SRT(1)
FV ). The delivery time is estimated by considering the dy-

namic delivery constraint discussed in the previous section and assuming a
maximum MU rate of 10 MU/s.

7.4 Results
Fig. 7.2 shows the fractional dose distributions for patient 1 obtained with
the SBRTstd plan and the SBRTFV plan, respectively, along with the corre-
sponding gantry-couch paths followed by the VMAT arcs and non-coplanar
dynamic trajectories used in each fraction. The SBRTFV plan delivers highly
non-uniform dose distributions in different fractions, each treating comple-
mentary parts of the PTV to a high dose of up to 20 Gy. In this way,
the prescribed BED10 to the PTV is achieved with a lower physical dose (the
mean physical dose within the PTV is 42.0 Gy for the SBRTstd plan and 39.4
Gy for the SBRTFV plan). At the same time, a similar dose bath is delivered
to the normal tissue in every fraction, thereby exploiting the fractionation
effect. Along with the use of non-coplanar beam orientations, which allow
to better distribute the integral dose over a broader volume, this leads to
a net reduction in the mean BED3 to the healthy liver. Compared to the
SBRTstd plan, which utilizes the same two coplanar VMAT arcs and delivers
the same uniform dose distribution in every fraction, the mean liver BED3 is
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reduced from 45.4 Gy to 32.9 (-27.5%) with the SBRTFV plan. The cumu-
lative BED10 in the PTV, instead, is approximately the same in both plans.
As illustrated in Fig. 7B.1 in the Supplementary material (Appendix B), in
fact, the three fractional dose distributions of the SBRTFV plan add up to
prescribed equieffective dose in all parts of the target volume.

Interestingly, depending on which part of the target volume is treated
in each fraction of the SBRTFV plan, very different non-coplanar dynamic
trajectories are used (as shown in Fig. 7.2d/h/l). Although it is difficult to
visually interpret why specific beam orientations are used in each fraction,
the SBRTFV plan always leads to a lower objective function value (on average
-6.97%) compared to the N=25 additional plans obtained by using different
randomly generated non-coplanar dynamic trajectories in distinct fractions.

7.4.1 Dosimetric benefit of fraction-variant intensity mod-
ulation

Fig. 7.3a-c show the three fractional dose distributions obtained with the
SBRTFV IM plan. By allowing different sets of aperture shapes and MU
weights to be used in the different fractions (Fig. 7.2d), overall more apertures
can be used over the course of the treatment, what allows to better reproduce
an ideal intensity modulation. This is demonstrated in Fig. 7.2e, which
compares the objective value as a function of the number of apertures per
fraction for the SBRTstd plan, the SBRTFV IM plan and a plan generated
using fluence map optimizationd for each beam orientation (representing the
upper bound for the achievable plan quality), respectively. The SBRTFV IM

plan improves on the SBRTstd plan by achieving a mean liver BED3 of 42.7
Gy (-5.9%). In addition, differently than for the SBRTstd plan, the dose
spikes entering the normal tissue (which must be typically kept low) in the
SBRTFV IM plan are not constrained to be located at the same position in
every fraction, thereby improving on dose conformity.

7.4.2 Dosimetric benefit of spatiotemporal fractionation

The three fractional dose distributions obtained with the SBRTSTF plan are
shown in Fig. 7.4a-c. By optimally exploiting the fractionation effects, this
plan reduces the mean liver BED3 by 16.1% compared to the SBRTstd plan
(38.1 Gy vs 45.4 Gy). However, since the beam orientations are not optimized
and fixed for all fractions, it leads to a lower mean liver BED3 reduction

dFluence map optimization is performed for the same planning objectives and priorities
using the L-BFGS quasi-Newton method [32].
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Figure 7.2: Fractional dose distributions on the transversal (middle) and
coronal planes (right) and the corresponding gantry-couch paths (left) for (a)-
(c) the SBRTstd plan and (d)-(l) the SBRTFV plan for patient 1. The dark
grey regions on the gantry-couch map refer to beam orientations leading to
collisions between the gantry and the couch.

compared to the SBRTFV plan. Also, the way the dose is compartmentalized
is different, indicating that the decision on which parts of the target volume
to treat to a high dose depends on the beam orientations that are used in
the BED-based treatment plan optimization problem.
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Figure 7.3: Characteristics of the SBRTFV IM plan: (a)-(c) fractional dose
distributions obtained by exploiting only fraction-variant intensity modula-
tion; (d) amount of MUs delivered from each control point in the three
different fractions of the SBRTFV IM plan; (e) comparison of the objective
value as a function of the number of apertures per fraction for the SBRTstd,
SBRTFV IM and fluence map optimization based plans.

Figure 7.4: Fractional dose distributions obtained for patient 1 with the
SBRTSTF plan.

7.4.3 Dosimetric benefit of fraction-variant beam angle
selection

Fig. 7.5a-c show the fractional dose distributions obtained with the SBRTFSBAS

plan. This plan achieves a mean liver BED3 of 38.4 Gy (-15.4% compared to
the SBRTstd plan). As illustrated in Fig. 7.5d-f, different non-coplanar dy-
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Figure 7.5: Fractional dose distributions and the corresponding gantry-
couch paths for the SBRTFSBAS plan for patient 1. The dark grey regions on
the gantry-couch map refer to beam orientations leading to collisions between
the gantry and the couch.

namic trajectories are used in different fractions. Compared to the SBRTFV

plan, however, the chosen gantry-couch paths are different. As a similar dose
distribution is delivered within the PTV in every fraction, in fact, the ben-
efit of using different non-coplanar dynamic trajectories in distinct fractions
mainly lies in the utilization of overall more beam orientations and not in the
selection of specific beam orientations which are beneficial for the treatment
of specific regions of the target volume.

7.4.4 Trade off between plan quality and delivery time

By utilizing only a single non-coplanar dynamic trajectory in every fraction,
the mean delivery time per fraction can be considerably reduced compared to
the corresponding SBRTFV plan obtained using two non-coplanar dynamic
trajectories per fraction (67 s vs 132 s). Nevertheless, most of the dosimet-
ric benefits could be maintained. The mean liver BED3 achieved by the
SBRT(1)

FV plan, in fact, is 39.9 Gy (i.e. -12.1% compared to the SBRTstd

plan). The corresponding dose distributions are reported in Fig. 7B.2 in the
Supplementary material, Appendix B.

7.4.5 Summary of the results

Table 7.1 summarizes the results obtained for patient 1 using all the different
plans which have been discussed, while Fig. 7.6 shows the corresponding dose-
volume histograms for the PTV and healthy liver. For a similar PTV dose
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Table 7.1: Dosimetric results and delivery times for the different treatments
plans generated for patient 1.

Plans Number of arcs
per fraction

Mean BED10

to the PTV (Gy)
Mean liver
BED3 (Gy)

Mean delivery time
per fraction (s)

SBRTstd 2 101.2 45.4 120
SBRTFV IM 2 100.6 (-0.6%) 42.7 (-5.9%) 121 (+0.8%)
SBRTSTF 2 99.9 (-1.3%) 38.1 (-16.1%) 127 (+5.8%)
SBRTFSBAS 2 100.1 (-1.1%) 38.4 (-15.4%) 123 (+2.5%)
SBRTFV 2 100.1 (-1.1%) 32.9 (-27.5%) 132 (+10.0%)
SBRT(1)

FV 1 101.1 (-0.1%) 39.9 (-12.1%) 67 (-44.2%)

Figure 7.6: Dose-volume histograms for the PTV (red, X=12 Gy) and
healthy liver (green, X=2 Gy) evaluated for the equieffective dose [64]. The
equieffective dose EQDX = b

1+X/(α/β)
) corresponds to the total physical dose

that needs to be delivered in a uniformly fractionated treatment with a dose
per fraction X to achieve a BED b, and is linearly proportional to the BED.

coverage in all plans, each of the degrees of freedom considered in this study
leads to an improvement in terms of mean liver BED3 reduction. Combining
fraction-variant intensity modulation, the delivery of non-uniform dose dis-
tributions in different fractions and fraction-specific beam angle selection all
together, a significant improvement in treatment plan quality (and/or deliv-
ery efficiency) can be achieved compared to exploiting each degree of freedom
separately.

Similar results have been obtained also for patient 2 and are summarized
in Table 2. The corresponding dose distributions and DVHs are reported in
the Supplementary material, Appendix B. Note that for patient 2, the use
of fraction-variant intensity modulation alone is less beneficial compared to
patient 1, as the tumor geometry is less complex.
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Table 7.2: Dosimetric results and delivery times for the different treatments
plans generated for patient 2.

Plans Number of arcs
per fraction

Mean BED4
to the AVM (Gy)

Brain
V60 (cc)

Mean brain
BED2 (Gy)

Mean delivery time
per fraction (s)

SRTstd 2 100.5 28.4 7.01 120
SRTFV IM 2 99.4 (-1.1%) 28.7 (+1.1%) 6.96 (-0.7%) 120 (=)
SRTSTF 2 98.6 (-1.9%) 26.2 (-7.7%) 6.31 (-10.0%) 121 (+0.8%)
SRTFSBAS 2 101.5 (+1.0%) 22.5 (-20.8%) 6.18 (-11.8%) 123 (+2.5%)
SRTFV 2 102.0 (+1.5%) 21.2 (-5.4%) 5.15 (-26.5%) 126 (+5.0%)

SRT(1)
FV

1 101.7 (+1.2%) 21.5 (-24.3%) 5.46 (-22.1%) 64 (-46.7%)

7.5 Discussion
In conventional clinical practice, a single treatment plan is generated for
each patient. Such a plan utilizes the same beam orientations and deliv-
ers the same uniform dose distribution in every fraction. In this work, we
showed that by removing these constraints and varying the beam orienta-
tions and the dose distributions in between the different fractions, treatment
plans can be generated which considerably reduce the integral BED to crit-
ical OARs, for a similar PTV dose coverage. The dose distributions are
designed such that distinct regions of the target volume are treated to a high
dose in different fractions, while the normal tissue dose is more uniformly
distributed over all fractions, and beam orientations are used in every frac-
tion which are optimal for treating each part of the target volume. These
treatment plans are generated using a novel direct aperture optimization al-
gorithm that allows to simultaneously optimize multiple dose distributions
together with corresponding fraction-specific non-coplanar dynamic trajecto-
ries. The DAO algorithm has been successfully validated for a patient with
large liver metastases and a patient with a large arteriovenous malformation,
and demonstrated to improve on plans obtained using randomly determined
beam orientations.

Besides to leading to a considerable dosimetric benefit, the generated
treatments have been shown to also possibly enhance the delivery efficiency
of radiotherapy treatments without compromising the dosimetric quality. In
particular, utilizing different sets of aperture shapes and MU weights in dif-
ferent fractions allows to better reproduce an ideal intensity modulation while
using fewer apertures/arcs per fraction. By varying the set of beam orien-
tations which are used in the different fractions, instead, a larger number
of non-coplanar beam orientations can be used over the treatment course
without increasing the delivery time per fraction. Decreasing the delivery
time of radiotherapy treatments may positively impact clinical practice by
reducing the uncertainties related to intra-fraction motion and diminishing
the discomfort for the patients.
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The delivery of different non-uniform dose distributions in distinct frac-
tions using fraction-specific non-coplanar dynamic trajectories is technically
feasible using conventional C-arm linear accelerators. However, the following
aspects must be carefully considered prior to an eventual clinical implemen-
tation of the proposed method:

• First, in this work we assumed that fractionation effects can be mod-
eled using a generalization of the standard BED model, which accounts
for different dose distributions to be possibly delivered in different frac-
tions. However, this assumption challenges a decade-old paradigm in
radiation therapy, namely that the same dose is delivered in every frac-
tion. Nevertheless, this is a plausible working hypothesis for exploring
new fractionation approaches and recently published pre-clinical inves-
tigations on the delivery of non-uniform dose distributions in distinct
fractions support the assumptions made in this work [126].

• Second, results have been presented in this study by assuming that
each dose distribution is delivered as planned. Inter- and intra-fraction
setup and motion uncertainties may, however, lead to misalignments
of the different dose distributions when different parts of the target
volume are treated in distinct fractions, thereby potentially causing
target over- or under-dosage. The dose gradients within the target
volume can be controlled by adding additional planning objectives on
the spatial dose distributions within the target volume, as it has been
done for the SBRTFSBAS/SRTFSBAS plans in this study. The priority
of these objectives can be used to select a preferred trade-off between
robustness against setup errors (high priority) and dosimetric quality
(low priority). Image-guided radiotherapy or robust optimization ap-
proaches may also be used to guarantee a good therapeutic accuracy
when delivering non-uniform dose distributions in different fractions
[68].

• Third, although the simultaneous rotation of gantry and couch is sup-
ported by most commercial C-arm linear accelerators, the clinical im-
plementation of non-coplanar dynamic trajectories still faces some po-
tential problems, like the increased risk of collision between the gantry
head and the system composed by couch and patient, and intra-fraction
patient motion due to the continuous couch rotation. Development of
more accurate collision prediction models and the use of adequate im-
mobilization devices may be warranted for a clinical use of non-coplanar
dynamic trajectories.
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• Finally, both the optimization time needed for generating multiple
fraction-specific treatment plans and the time necessary for perform-
ing quality assurance of the different daily plans are increased. For
patient 1, the optimization time needed to generate the SBRTFV plan
is approximately 3.4 times longer than the optimization time needed
for obtaining the SBRTstd plan, while for patient 2 the optimization
time increases by 7.4 times. However, this is unlikely to be an insur-
mountable difficulty, as the continuous development in computational
hardware makes optimization increasingly faster, and the development
of plan complexity metrics may reduce the need for plan-specific quality
assurance [127].

Despite these challenges, fraction-variant radiotherapy treatments show
a great potential to considerably improve the quality of radiotherapy com-
pared to state-of-the-art treatments that deliver the same dose distribution
in every fraction using fixed and manually defined beam directions in ev-
ery fraction. Future work can be performed to include even more degrees
of freedom which are conventionally not exploited in standard radiotherapy
treatment planning, like the combination of multiple treatment modalities
and particle types (e.g. combined proton-photon radiotherapy [90] or com-
bined photon-electron radiotherapy [128]). As it has been shown in this
study, in fact, combining multiple degrees of freedom leads to an incremental
benefit compared to exploiting each degree of freedom separately.

7.6 Conclusion
A BED-based direct aperture optimization algorithm which allows to simul-
taneously optimize multiple dose distributions to be delivered in distinct
fractions along with fraction-specific non-coplanar dynamic trajectories has
been successfully implemented and demonstrated. Fraction-variant radio-
therapy treatments generated by delivering different, possibly non-uniform
dose distributions and utilizing different beam orientations in distinct frac-
tions outperform state-of-the-art radiotherapy treatments which deliver the
same dose in every fraction using a fixed and pre-determined set of beam
orientations, in terms of both dosimetric quality and delivery efficiency.
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7.7 Supplementary material

Appendix A Treatment plan optimization
In this section, we further detail the treatment plan optimization methods.
We provide the mathematical formulation of the planning objectives used in
the treatment plan optimization problem, and discuss the dose calculation
algorithm which has been used for computing the dose-influence matrices.

A.1 Patient 1

For patient 1, the objective function in Eq. (7.1) reads as follows:

f(b) =
1

|GTV |
∑

i∈GTV

[
ωlower
1 (100.8− bi)

2
+ + ωupper

1 (bi − 112.5)2+
]

(7A.1)

+
1

| ˜PTV |

∑
i∈ ˜PTV

[
ωlower
2 (79.2− bi)

2
+ + ωupper

2 (bi − 100.8)2+
]

(7A.2)

+
ω3

|NT |
∑
i∈NT

(bi − bmax
i )2+ (7A.3)

+
ω4

|L|
∑
i∈L

bi (7A.4)

where GTV denotes the set of voxels belonging to the GTV , ( ˜PTV ) is the
set of voxels belonging to the PTV excluding the GTV voxels, NT denotes
the set of voxels belonging to the normal tissue (i.e. the entire body except
for the PTV ) and L is the set of voxels belonging to the healthy liver (i.e.
liver without the PTV ). For the planning objective in Eq. (7A.3) we set
b0=131.7 Gy, b∞=15.75 Gy, x0=0.5 cm and κ=0.6 cm−1.

The priorities ωlower
1 , ωupper

1 , ωlower
2 , ωupper

2 , ω3 and ω4 for the planning
objectives in Eq. (7A.1)-(7A.4) are set differently for the different treatment
plans in order to achieve a similar target BED10 coverage and similar dose
conformity in all plans:

• SBRTstd: ωlower
1 = 20, ωupper

1 = 2, ωlower
2 = 10, ωupper

2 = 1, ω3 = 7.5,
ω4 = 6

• SBRTFV IM : ωlower
1 = 20, ωupper

1 = 2, ωlower
2 = 10, ωupper

2 = 1, ω3 = 7.5,
ω4 = 6
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• SBRTSTF : ωlower
1 = 20, ωupper

1 = 2, ωlower
2 = 12, ωupper

2 = 1.2, ω3 = 7.5,
ω4 = 4.5

• SBRTFSBAS: ωlower
1 = 8, ωupper

1 = 0.8, ωlower
2 = 8, ωupper

2 = 0.8, ω3 =
10, ω4 = 2.5

• SBRTFV : ωlower
1 = 10, ωupper

1 = 1, ωlower
2 = 10, ωupper

2 = 1, ω3 = 10,
ω4 = 2

• SBRT(1)
FV : ωlower

1 = 10, ωupper
1 = 1, ωlower

2 = 10, ωupper
2 = 1, ω3 = 10,

ω4 = 2

A.2 Patient 2

For patient 2, the different treatment plans are optimized for the following
choice of planning objectives:

1. A BED4 of 77 Gy is prescribed to the AVM (implemented via a quadratic
penalty function), corresponding to a physical dose of 28 Gy in 4 frac-
tions. A BED4 exceeding 140 Gy (equivalent to 40 Gy physical dose in
4 fractions) is penalized quadratically.

2. The volume of healthy brain (i.e. brain excluding the AVM) receiving
a BED2 larger than 60 Gy is minimized. This corresponds to a physical
dose of 10 Gy in a single fraction and is implemented via a continuous
relaxation of a dose-volume objective.

3. The dose has to be conformal to the AVM. This is implemented via a
normal tissue objective which limits the dose to the normal tissue by
steepening the dose gradient.

4. The mean BED4 to the healthy brain (i.e. brain without the AVM) is
minimized.

Mathematically, these objectives can be expressed as follows:

f(b) =
1

|AVM |
∑

i∈AVM

[
ωlower
5 (77− bi)

2
+ + ωupper

5 (bi − 140)2+
]

(7A.5)

+
ω6

|B|
∑
i∈B

1

1 + e−(bi−60)/0.5
(7A.6)

+
ω7

|NT |
∑
i∈NT

(bi − bmax
i )2+ (7A.7)
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+
ω8

|B|
∑
i∈B

bi (7A.8)

where AVM denotes the set of voxels belonging to the arteriovenous mal-
formation, B is the set of voxels belonging to the healthy brain (i.e. brain
without the AVM) and NT denotes the set of voxels belonging to the normal
tissue (i.e. the entire body except for the AVM).

The parameters for the normal tissue objective in Eq. (7A.7) are set
to b0=115 Gy, b∞=13.125 Gy, x0=0.5 cm and κ=0.6 cm−1. Analogously
to patient 1, the priorities ωlower

5 , ωupper
5 , ω6, ω7 and ω8 for the planning

objectives in Eq. (A5)-(A8) are set differently for the different treatment
plans in order to achieve a similar BED4 coverage of the AVM in all plans:

• SRTstd: ωlower
5 = 10, ωupper

5 = 1, ω6 = 100, ω7 = 1, ω8 = 10

• SRTFV IM : ωlower
5 = 10, ωupper

5 = 1, ω6 = 100, ω7 = 1, ω8 = 10

• SRTSTF : ωlower
5 = 10, ωupper

5 = 2, ω6 = 100, ω7 = 1, ω8 = 10

• SRTFSBAS: ωlower
5 = 10, ωupper

5 = 1, ω6 = 100, ω7 = 3, ω8 = 5

• SRTFV : ωlower
5 = 10, ωupper

5 = 1, ω6 = 100, ω7 = 4, ω8 = 5

• SRT(1)
FV : ωlower

5 = 10, ωupper
5 = 1, ω6 = 100, ω7 = 4, ω8 = 5

Similar as for patient 1, a non-uniform dose grid size is used, where the
size of the smaller voxels is 2.7 x 2.7 x 1.2 mm3. The bixel size is set to 5 x
5 mm2 and the photon energy is 6 MV for all candidate beam orientations.

A.3 Additional planning objectives used to optimize the
SBRTFV IM/SRTFV IM and SBRTFSBAS/SRTFSBAS plans

The additional planning objectives that are used to constrain the dose dis-
tribution within the target volume to be uniform in every fraction of the
SBRTFV IM/SRTFV IM and SBRTFSBAS/SRTFSBAS plans, respectively, read

f(b) =

3∑
t=1

[
1

|GTV |
∑

i∈GTV

[
ωlower
9

(
100.8

3
− bit

)2

+

+ ωupper
9

(
bit −

112.5

3

)2

+

]]
(7A.9)

+
3∑

t=1

 1

| ˜PTV |

∑
i∈ ˜PTV

[
ωlower
10

(
79.2

3
− bit

)2

+

+ ωupper
10

(
bit −

100.8

3

)2

+

] (7A.10)

for patient 1, and
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f(b) =

4∑
t=1

[
1

|AVM |
∑

i∈AV M

[
ωlower
11

(
77

4
− bit

)2

+

+ ωupper
11

(
bit −

140

4

)2

+

]]
(7A.11)

for patient 2, where bit is biologically effective dose delivered to voxel i in
fraction t.

The priorities for the planning objectives in Eq. (A9)-(A10) are set to
ωlower
9 =10, ωupper

9 =1, ωlower
10 =10 and ωupper

10 =1 for both the SBRTFV IM and
SBRTFSBAS plans, whereas the priorities for the planning objective in Equa-
tion (A11) are set to ωlower

11 =10 and ωupper
11 =1 for both the SRTFV IM and

SRTFSBAS plans.

A.4 Dose calculation algorithm

Calculation of the dose-influence matrix elements Dij is performed with
the open-source radiotherapy planning research platform CERR [44] using
a quadrant infinite beam (QIB) algorithm [63].

Appendix B Results

B.1 Patient 1

B.1.1 EQD8 distribution for the SBRTstd and SBRTFV plans

Fig. 7B.1 shows the equieffective dose (EQD8) distributions achieved with
the SBRTstd and SBRTFV plans in patient 1. The equieffective dose EQDX
can be interpreted as the total physical dose to be delivered in a uniformly
fractionated treatment with a dose per fraction X to achieve a BED b

EQDX =
b

1 +X/(α/β)
(7B.12)

and is linearly related to the cumulative BED. Although the SBRTFV plan
delivers non-uniform doses to the target volume in distinct fractions, the sum
of all fractional doses results in the same prescribed BED10 within the PTV
as in the SBRTstd plan.

B.1.2 SBRT(1)
FV plan obtained using a single non-coplanar dynamic

trajectory per fraction

Fig. 7B.2 shows the fractional dose distributions and the corresponding gantry-
couch paths for the SBRT(1)

FV plan obtained using a single non-coplanar dy-
namic trajectory in each fraction.
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Figure 7B.1: EQD8 distributions for the SBRTstd and SBRTFV plans in
patient 1.

Figure 7B.2: Fractional dose distributions and the corresponding gantry-
couch paths for the SBRT(1)

FV plan for patient 1. The dark grey regions on the
gantry-couch map refer to beam orientations leading to collisions between the
gantry and the couch.

B.1 Patient 2

B.1.4 Dose distributions for patient 2

Fig. 7B.3 and Fig. 7B.4 show the dose distributions and the corresponding
gantry-couch paths for the SRTstd and SRTFV plans for patient 2, respec-
tively. The fractional dose distributions for the SRTFV IM and SRTSTF plans
are reported in Fig. 7B.5 and Fig. 7B.6, while the dose distributions and
gantry-couch paths for the SRTFSBAS are illustrated in Fig. 7B.7. Finally,
Fig. 7B.8 show the dose distributions and the corresponding gantry-couch
paths for the SRT(1)

FV plan.
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Figure 7B.3: Dose distribution and the corresponding gantry-couch path
for the SRTstd plan for patient 2. The dark grey regions on the gantry-couch
map refer to beam orientations leading to collisions between the gantry and
the couch.

B.1.5 Dose-volume histograms for patient 2

Fig. 7B.9 shows the DVHs for the AVM and healthy brain evaluated for the
equieffective dose.
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Figure 7B.4: Fractional dose distributions and the corresponding gantry-
couch paths for the SRTFV plan for patient 2. The dark grey regions on the
gantry-couch map refer to beam orientations leading to collisions between the
gantry and the couch.
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Figure 7B.5: Fractional dose distributions for the SRTFV IM plan for patient
2.

Figure 7B.6: Fractional dose distributions for the SRTSTF plan for patient
2.
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Figure 7B.7: Fractional dose distributions and the corresponding gantry-
couch paths for the SRTFSBAS plan for patient 2. The dark grey regions on
the gantry-couch map refer to beam orientations leading to collisions between
the gantry and the couch.

150



Figure 7B.8: Fractional dose distributions and the corresponding gantry-
couch paths for the SRT(1)

FV plan for patient 2. The dark grey regions on the
gantry-couch map refer to beam orientations leading to collisions between the
gantry and the couch.
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Figure 7B.9: Dose-volume histograms for the AVM (red, X=7 Gy) and
healthy brain (green, X=2 Gy) evaluated for the equieffective dose EQDX.

152



Chapter 8

Development of a workflow for
generating clinically deliverable
spatiotemporally fractionated
radiotherapy plans using the
Eclipse scripting API

Nathan Torelli1, Florian Dietsche1, Jan Unkelbach1

1Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland.
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8.1 Abstract
Purpose: The optimization of spatiotemporally fractionated treatments is
so far only supported by research treatment planning systems (TPS). How-
ever, research TPS are not approved medical products and lack the rigorous
testing of commercial TPS. In this work, we developed a tool to upload treat-
ment plans generated with our in-house TPS into the Eclipse TPS (Varian
Medical Systems, Palo Alto, CA).
Methods: Treatment plans generated with our in-house TPS are charac-
terized by a set of multileaf collimator (MLC)-based apertures at different
control points. Using the Eclipse Scripting API (ESAPI), treatment plans
are created in the Eclipse TPS for the corresponding patient for discrete
beam orientations or dynamic arcs, and initialized with control points whose
MLC positions are set to the apertures specified in the in-house TPS. Dose
distributions for each individual aperture are then computed using Eclipse’
commissioned dose calculation algorithms and exported through ESAPI as
dose matrices. To mitigate the impact of tongue-and-groove effect, transmis-
sion through the MLC and discrepancies between dose calculation algorithms,
the fluence of each aperture are re-optimized in the in-house TPS using the
exported information. The new monitor unit weights for each aperture are
finally uploaded to the Eclipse TPS.
Results: The proposed workflow was tested for a prostate cancer patient.
An intensity modulated radiotherapy (IMRT) treatment generated in the
in-house TPS was uploaded to the Eclipse TPS and compared to a corre-
sponding IMRT plan generated directly in the Eclipse TPS, where the same
fields and same planning objectives were used. The dosimetric quality of the
treatments generated in the in-house TPS and Eclipse TPS were similar.
Conclusions: A tool for uploading treatment plans generated using our in-
house TPS into the Eclipse TPS was developed. This potentially enables
the clinical delivery of spatiotemporally fractionated treatment plans that
can only be obtained using our in-house research TPS and not directly in
commercial TPS.

8.2 Introduction
In the previous chapters, the potential benefit of spatiotemporal fractionation
was investigated in in-silico planning studies for several tumor sites, includ-
ing patients with large arteriovenous malformations, patients with large liver
metastases and patients with multiple brain metastases. Using our in-house
research treatment planning software, spatiotemporally fractionated treat-
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ments were generated which may reduce the mean BED to the normal tissue
surrounding the tumor by approximately 10-20% compared to conventional
uniformly fractionated treatments, making these treatment sites interesting
candidates for clinical translation in a phase I feasibility trial. However, ad-
ditional extensions of the in-house research platform are necessary to enable
the delivery of spatiotemporal fractionation schemes using commercial linear
accelerators.

Research treatment planning systems (TPS) can be easily extended to
address research questions. However, research TPS lack of proper quality
assurance and are not commissioned for clinical use. Therefore, treatment
plans that are entirely generated using a research TPS cannot be delivered to
patients. Commercial TPS, on the other hand, are certified medical devices
and are commissioned for specific treatment machines. However, commercial
TPS only offer established planning approaches and do not support latest
planning approaches developed in research. To the best of our knowledge,
there is no commercial TPS that supports the simultaneous optimization of
multiple dose distributions based on their cumulative biologically effective
dose (BED), which is the foundation of spatiotemporal fractionation opti-
mization.

To address this issue and enable the clinical implementation of spatiotem-
poral fractionation, we developed a treatment planning process in which a
treatment plan is first generated using our in-house research TPS, and sub-
sequently a similar plan with the same characteristics (i.e. the same set of
multileaf collimated apertures and monitor unit weights) is re-created in the
commercial Eclipse TPS (Varian Medical Physics, Palo Alto, CA) using the
Eclipse scripting API (EASPI). In this way, treatment plans can be gener-
ated using latest optimization approaches, but evaluated using a medically
certified TPS. If a plan and its corresponding dose distribution are evaluated
directly on a certified commercial TPS and deemed clinically acceptable,
there is no legal need to perform quality assurance on the research TPS.
The proposed treatment planning process has been validated for a prostate
cancer patient and used to generate clinically deliverable spatiotemporally
fractionated plans.

8.3 Materials and methods

8.3.1 Treatment planning process

The treatment planning process adopted in the commercial Eclipse TPS is
schematically illustrated in Fig. 8.1a. It involves the delineation of the target
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volume and relevant organs-at-risk (OARs), the selection of the treatment
technique and beam orientations, along with the calculation of the corre-
sponding beamlet dose distributions, the optimization of the incident radia-
tion fluence, a final dose calculation and the plan evaluation. In this work,
we extended the treatment planning process to allow the plan optimization
to be performed using the in-house TPS (Fig. 8.1b), while still evaluating
the resulting plan in the commercial Eclipse TPS. To this end, the Eclipse
Scripting API (ESAPI) has been used to export and import files between
the Eclipse TPS and the in-house research TPS. In the following, we dis-
cuss in more detail the different steps that are performed to allow uploading
treatment plans generated in the in-house TPS into the Eclipse TPS.

Beamlet dose calculation and generation of other input files needed
for the plan optimization

Once the target volume and all other relevant structures (including the criti-
cal OARs) have been contoured in the Eclipse TPS, DICOM files for the pa-
tient CT and the structure set are anonymized and exported to the research
environment using ESAPI scripts. These files are then imported into the
open-source research software CERR [44], which is interfaced with Matlab.
In CERR, the patient geometry can be visualized along with the delineated
structures, and dose-influence matrices for the selected beam orientations are
computed using a quadrant infinite beam (QIB) algorithm [60]. This step is
necessary, as it is not possible to directly access the dose-influence matrices
used for optimization in the Eclipse TPS. Other files needed as input for
the plan optimization, including masks for the relevant structures and other
geometrical information, are also generated in CERR.

Treatment plan optimization

A treatment plan is then generated using the in-house research TPS, which
besides standard optimization algorithms also supports several novel opti-
mization approaches. These include BED-based optimization, the simul-
taneous optimization of multiple dose distributions, beam orientation op-
timization, collimator angle optimization, robust optimization approaches
using stochastic programming methods and the use of non-standard plan-
ning objectives and constraints such as tumor control probability and equiv-
alent uniform dose. Treatment plans can be optimized in the in-house TPS
both using a two-step approach with fluence map optimization followed by
leaf sequencing, as well as using direct aperture optimization. Ultimately,
treatment plans are generated which consists of a set of multileaf collimator
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Figure 8.1: Workflows for the treatment planning process used (a) to gen-
erate a treatment plan entirely in the Eclipse TPS and (b) to generate a
treatment plan using the in-house research TPS and uploading the final plan
to the Eclipse TPS.

(MLC)-based apertures at different beam orientations and their correspond-
ing weights. Each plan is stored as a ".csv" file, which for each aperture
includes the information reported in Table 8.1.

Import of the treatment plan into the Eclipse TPS

The files storing the plan information generated by the in-house TPS are
subsequently imported into the Eclipse TPS, again using ESAPI scripts. At
this step, additional information are manually provided regarding the frac-
tionation scheme, the selection of a target structure, the treatment technique
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Table 8.1: Plan information stored for each MLC-based aperture in the
treatment plan optimized using the in-house TPS in a ".csv"-file.

Variable Description

Instance number

Denotes the number of the instance that the
aperture belongs to, where an instance refers to
a specific dose distribution to be delivered in a
given fraction (in case a treatment consists of
multiple dose distributions to be delivered in
distinct fractions)

Beam number Indexes the number of the beam in the instance

Gantry angle Denotes the gantry angle of the beam from
which the aperture is delivered

Table angle Denotes the table angle of the beam from
which the aperture is delivered

Collimator angle Denotes the collimator angle for the beam
from which the aperture is delivered

Isocenter position
Denotes the isocenter position for the beam
from which the aperture is delivered (in the
patient’s reference frame)

Aperture number Indexes the number of the aperture

Leaf positions Denote the x and y coordinates of each
MLC leaf pair shaping the aperture

Weight Denotes the weight of the aperture
(not necessarily normalized to monitor units)

(i.e. step-and-shoot intensity modulated radiotherapy (IMRT) or dynamic
volumetric modulated arc therapy (VMAT)) and the treatment machine to
be used for the delivery of the plan. To create a treatment plan in the Eclipse
TPS with the same characteristics (i.e. same beam orientations and same
MLC apertures’ shapes and weights) of the plan generated using the in-house
TPS, the information contained in the input ".csv"-file is first pre-processed
to create a hierarchical grouping of different class objects that mirrors the
intrinsic class structure for objects in the Eclipse TPS (Fig. 8.2a), i.e. Treat-
ment → Instance → Beam → Aperture → LeafPosition, where:

• The Treatment class is the parent node of the structure. It contains
all other class objects and is only initialized once. It contains only one
class attribute, which is a list of Instance objects.

• The total amount of Instance objects corresponds to the number of dif-
ferent instances (i.e. dose distributions) within the plan. Each Instance
object in turn contains a list of Beam objects.

• Beam objects store the attributes of the beam to be used, namely the
gantry, table and collimator angle, as well as the sum of the aperture
weights. Additionally, a list of Aperture objects is stored for each
beam, which corresponds to all apertures generated in the in-house
TPS belonging to this specific beam number and instance number.

158



Figure 8.2: Details about the hierarchical structure used to handle treatment
plans in the Eclipse, which has been mirrored in the pre-processing step.

• Aperture objects contain information about the aperture weight, and
a list of LeafPosition objects.

• LeafPosition objects store the positions of the left and right MLC leaves
for a specific leaf pair and the y coordinate of the corresponding leaf
pair. Given this y coordinate, the corresponding leaf number for a
machine can then be calculated by using information about the width
of the outer and inner MLC leaves. This is also summarized in Figure
2b, which displays the class hierarchy alongside the layers at which
certain parameters are stored.

This is also summarized in Fig. 8.2b, which displays the class hierarchy
alongside the layers at which certain parameters are stored.

After this pre-processing step, a treatment course is created in the Eclipse
TPS, including different plan objects for each instance-specific dose distribu-
tion, which are characterized by the same beam orientations and the same
set of MLC apertures as obtained from the in-house TPS. This step was per-
formed following the Model-View-ViewModel (MVVM) architecture, which
is the accepted standard for Windows presentation foundation (WPF) appli-
cations and is the application type of binary plug-ins for the Eclipse TPS.

Dose re-calculation in the Eclipse TPS

For each of the MLC-based aperture imported into the Eclipse TPS, a dose
re-calculation is performed using built-in Eclipse dose calculation algorithms.
This is necessary for several reasons. First, the dose calculation algorithm
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Figure 8.3: Dose distributions obtained for a 10 x 10 cm2 field at a SSD
of 100 cm impinging on a homogeneous 50 x 50 x 50 cm3 water phantom
computed with (a) the Acuros16.1.0 algorithm in the Eclipse TPS and (b)
the QIB algorithm in CERR. Also shown are a comparison of the depth dose
curves and the lateral dose profiles, which have been normalized to the max-
imum voxel dose.

used to compute the beamlets dose distributions in CERR which have then
been used for plan optimization in the in-house TPS is not commissioned
for clinical use, whereas dose calculation algorithms in the Eclipse TPS have
been validated to match the measured dose distributions for each specific
treatment machine used in the clinics. This may introduce some slight dis-
crepancies between the dose distribution computed in CERR and the dose
distribution computed in the Eclipse TPS. An example of dose distributions
for a 10 x 10 cm2 field at a source-to-surface distance (SSD) of 100 cm im-
pinging on a homogeneous 50 x 50 x 50 cm3 water phantom computed with
the QIB algorithm in CERR and the Acuros16.1.0 algorithm in the Eclipse
TPS, respectively, are shown in Fig. 8.3. While similar depth dose curves
are obtained using both algorithms, the dose calculation algorithm used in
CERR tends to underestimate the lateral dose.
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Second, effects like the tongue-and-groove effect and transmission through
the MLC are not considered during plan optimization. Consequently, the
dose distribution resulting from the delivery of radiation through an aperture
does not necessarily corresponds to the sum of the dose distributions for each
of the exposed beamlets, as assumed during the treatment plan optimization.
Finally, the dose-influence matrices computed in CERR are not normalized
to monitor units (MUs) of a specific treatment machine. Thus, using the
same aperture weights as obtained in the in-house TPS does not result in
the intended total tumor dose.

Export of aperture-specific dose distributions and aperture weight
re-optimization

To mitigate the effect of such discrepancies in the apertures’ dose distri-
butions and correct for the MU weight normalization, an additional re-
optimization of the aperture weights is performed in the in-house TPS. The
dose distributions calculated in the Eclipse TPS are normalized to 1 MU and
exported to the research platform. The MU weights of all the apertures are
then simultaneously optimized using the in-house TPS for the same planning
objectives and constraints as used in the first treatment plan optimization.
The shapes of the apertures are not modified.

Import of the re-optimized apertures’ weights into the Eclipse TPS
and dose evaluation

Finally, the new MU weights for all apertures are imported into the Eclipse
TPS, where the dose distributions can be evaluated. To evaluate the quality
of spatiotemporal fractionation schemes, an ESAPI script has been used that
converts physical dose distributions in the Eclipse TPS into BED distribu-
tions.

8.3.2 Assessment of the quality of treatment plans gen-
erated using the proposed treatment planning pro-
cess

The treatment planning process discussed in the previous section has been
tested for a prostate cancer patient, by comparing an IMRT treatment plan
generated using the proposed workflow to an IMRT plan generated entirely in
the Eclipse TPS. However, the optimization and upload of dynamic VMAT
plans are also supported. Prostate cancer was chosen for such a comparison
because radiotherapy treatment planning for prostate cancer is very well
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Figure 8.4: CT of the prostate cancer patient along with the field setup used
to generate the step-and-shoot IMRT plan. Shown are the contours of the
PTV (blue, which measures 118.3 cc and includes the whole prostate gland),
rectum (brown), bladder (yellow) and femoral heads (cyan and violet).

standardized Thereby, it was possible to better evaluate eventual benefits or
shortcomings of the treatment planning process.

First, a step-and-shoot IMRT plan has been generated in the Eclipse
TPS. The IMRT plan consists of 5 equispaced fields at gantry angles of 0◦,
72◦, 144◦, 216◦ and 288◦ (Fig. 8.4), respectively, and N=10 apertures are
used to discretize the optimal fluence of each single beam (i.e. in total 50
apertures are used in the IMRT plan). A dose of 60 Gy in 30 fractions
has been prescribed to the PTV in both plans, and dose-volume planning
objectives for limiting the dose to bladder, bowel, femoral heads and rectum
have been used (as further detailed in the Supplementary material, Appendix
A). Additionally, a normal tissue objective was used to penalize high doses
outside of the PTV. For the plan optimization the PO16.1.0 algorithm has
been used, while dose calculation has been performed using the Acuros16.1.0
algorithm.

Afterwards, the same treatment plan has been re-optimized using the in-
house TPS. Dose calculation has been performed using the QIB algorithm
in CERR and the plan optimization was performed for the same planning
objectives, using an in-house implemented column generation based direct
aperture optimization algorithm (further details on the optimization algo-
rithm are discussed in the Supplementary material, Appendix B). The re-
sulting apertures have successively been uploaded into the Eclipse TPS and
apertures’ dose re-calculation was performed using the Acuros16.1.0 algo-
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rithm. Finally, the MU weights of the apertures have been re-optimized in
the in-house TPS using a quasi-Newton L-BFGS algorithm, and modified in
the Eclipse TPS. For comparison, both plans have been normalized such that
the prescribed dose is delivered to 50% of the target volume.

Besides comparing the resulting dosimetric quality of treatment plans
generated entirely in the Eclipse TPS and generated using the proposed TPP,
respectively, we also analyzed whether the quality of the plan generated using
the proposed TPP is affected by the different dose calculation algorithms
used. In particular, the quality of the treatment plan obtained assuming
the dose-influence matrices computed in CERR has been compared to the
quality of the plan obtained after the weight re-optimization. The degree to
which the apertures’ weights are adjusted was also studied.

8.4 Results
The dose distributions for the IMRT plans generated entirely using the
Eclipse TPS and using the proposed treatment planning process, respec-
tively, are shown in Fig. 8.5. The corresponding dose-volume histograms
(DVHs) evaluated for the PTV and the most relevant OARs are shown in
Fig. 8.6. Overall, the IMRT plan generated using the proposed treatment
planning process is very similar to the IMRT plan generated entirely using
the Eclipse TPS. In particular, both plans achieve a similar sparing of the
OARs. However, the PTV dose coverage is slightly worse for the plan gen-
erated using the proposed treatment planning process. This is likely due to
discrepancies in the dose calculation algorithms, which can only be partly
mitigated by the re-optimization of the apertures’ weights. A DVH com-
parison between the IMRT plan obtained after DAO optimization based on
the dose-influence matrices computed in CERR and the plan obtained af-
ter re-optimization of the apertures’ weights based on the dose distributions
computed using the Acuros16.1.0 algorithm in the Eclipse TPS is shown in
Fig. 8.7a, demonstrating that a very high plan quality and a good target
coverage could be achieved with the in-house research optimizer. Fig. 8.7b
illustrates how the weights of the different apertures have been adjusted after
the weight re-optimization.

8.5 Discussion
In this work, we developed a treatment planning process which allows to up-
load treatment plans generated using our in-house TPS into the commercial
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Figure 8.5: Dose distributions for the IMRT plans generated (a) using the
Eclipse TPS and (b) using the proposed treatment planning process.

Figure 8.6: Dose-volume histograms for the IMRT plans obtained using the
Eclipse TPS (solid line) and using the proposed treatment planning process
(dashed line).

Eclipse TPS. Such treatment planning process has been successfully vali-
dated for a prostate cancer patient, by showing that step-and-shoot IMRT
treatment plans can be obtained which have a similar quality as IMRT plans
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Figure 8.7: Comparison between the IMRT plans obtained using the pro-
posed treatment planning process after the first plan optimization (i.e. based
on the dose-influence matrices computed in CERR) and after re-optimization
of the apertures’ weights (based on the dose distributions calculated in the
Eclipse TPS). In particular, we compared (a) the dose-volume histograms
and (b) the apertures’ weights.

generated entirely in the Eclipse TPS. In this way, latest treatment planning
approaches developed in research can potentially be used to generated clin-
ically deliverable treatment plans. If dose distributions can be re-created in
the Eclipse TPS that meet all clinical standards, in fact, there is no legal
need to perform quality assurance of the in-house research TPS.

Despite the promising results obtained in this work, concerns remain re-
garding some practical aspects of the treatment planning process. In par-
ticular, differences in the dose calculation algorithms between CERR and
the Eclipse TPS were shown to lead to a slight degradation of the plan
quality before and after importing the plan into the Eclipse TPS. Although
discrepancies in the apertures’ dose distributions could be partly mitigated
by the apertures’ weights re-optimization step, such an issue may lead to
sub-optimal apertures’ shapes. Better dose calculation algorithms, for exam-
ple by using Monte Carlo methods, are necessary for improving the quality
of plans generated using the proposed treatment planning process. Also,
the need to switch between the in-house research TPS and the Eclipse TPS
makes the whole treatment planning process more cumbersome and error-
prone compared to generating a treatment plan entirely in the Eclipse TPS.
Better automation could reduce this issue.

8.6 Conclusion
Radiotherapy plans generated using a research TPS cannot be delivered clin-
ically without proper quality assurance of the research TPS. To circumvent
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this issue, we implemented and tested a treatment planning process which
allows reproduce treatment plans optimized using latest planning approaches
available in our in-house research TPS within the medically certified com-
mercial Eclipse TPS.

8.7 Supplementary material

Appendix A Planning objectives used to gen-
erate the IMRT plans
In this section, we detail and provide the mathematical formulation of the
planning objectives used for the optimization of the IMRT plans. The same
planning objectives are used both to optimize the plan generated entirely
in the Eclipse TPS and the plan generated using the proposed treatment
planning process, and are the following:

1. A physical dose of 58 Gy is prescribed to the PTV (using a piece-
wise quadratic penalty function) and dose values exceeding 62 Gy are
penalized quadratically.

2. The mean dose to the bladder is minimized.

3. The mean dose to the left femoral head is minimized.

4. The mean dose to the right femoral head is minimized.

5. Dose values exceeding 59 Gy in the rectum are penalized quadratically.

6. Dose values exceeding 20 Gy in the bowel are penalized quadratically.

7. The dose must be conformal to the PTV. This has been implemented
using a normal tissue objective.

Mathematically, these planning objectives are formulated as follows:

f(d) =
100

|PTV |
∑

i∈PTV

[
(58− di)

2
+ + (di − 62)2+

]
(8A.1)

+
100

|BL|
∑
i∈BL

di (8A.2)

+
100

|FHL|
∑

i∈FHL

di (8A.3)
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+
100

|FHR|
∑

i∈FHR

di (8A.4)

+
50

|R|
∑
i∈R

(59− di)
2
+ (8A.5)

+
50

|BW |
∑
i∈BW

(20− di)
2
+ (8A.6)

+
100

|NT |
∑
i∈NT

(bi − bmax
i )2+ (8A.7)

where PTV denotes the set of voxels belonging to the PTV, BL is the set of
voxels belongin to the bladder, FHL and FHR are the set of voxels belonging
to the left and right femoral head, respectively, R denotes the set of voxels
belonging to the rectum, BW is the set of voxels belonging to the bowel
and NT represents all voxels in the normal tissue. The parameters used for
the normal tissue objective are: d0=57 Gy, d∞=6 Gy, x0=0.2 cm and κ=0.2
cm−1.

Appendix B Direct aperture optimization
The step-and-shoot IMRT plan in the research TPS has been optimized using
a column generation based direct aperture optimization (DAO) algorithm.
The DAO algorithm is very similar to the one described in Chapter 7, where
promising apertures are iteratively generated and added to the plan using the
a column generation algorithm, and subsequently their shapes and weights
are re-optimized using a gradient based DAO approach. Compared to the
DAO algorithm used in Chapter 7, however, no delivery efficiency constraints
are defined for the optimization of IMRT plans.

The optimization problem thereby reads

minimize f(d) (8B.8)

subject to di =
∑
k∈K

ωk

∑
l∈Lk

Φkl
i (x

kl
L , x

kl
R) ∀i,∀t (8B.9)

ωk ≥ 0 ∀k (8B.10)
xkl
L ≤ xkl

R ∀k,∀l (8B.11)

where di is the physical dose delivered to voxel i by all the contributing MLC-
based apertures k ∈ K, Φkl

i is the dose contribution of the l-th leaf pair of
aperture k to voxel i per unit intensity and ωk is the MU weight of aperture
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k. The parameters xkl
L and xkl

R describe the positions of the left and right
MLC leaves in the l-th leaf pair of aperture k, respectively, and Lk is the set
of all MLC leaf pairs in aperture k. The apertures’ shape refinement stop
after 20 iterations of the gradient based DAO approach.

Compared to IMRT plans generated using the built-in Eclipse optimiza-
tion algorithm PO16.1.0, which performs first fluence map optimization and
then applies a leaf-sequencing algorithm to sequence the optimal fluence into
a user-defined number of apertures per beam, with our approach the number
of apertures per beam is not constrained to be the same.

168



Chapter 9

Discussion and Conclusion

Developments in radiotherapy have mainly been driven by advances in the
treatment delivery hardware and in the planning algorithms, which allowed
to progressively improve the conformity of the dose distribution to the tu-
mor while minimizing the dose to the surrounding normal tissue. However,
improvements in dose conformity seem like to reach a plateau in the near
future. In that regard, biologically oriented treatment plan optimization is
gaining a lot of interest.

In this thesis, we investigated the concept of spatiotemporal fractiona-
tion. Unlike traditional uniformly fractionated treatments, spatiotemporally
fractionated treatments alter the dose distribution in the different fractions
to best achieve hypofractionation in the tumor and uniform fractionation in
the surrounding normal tissue. This is achieved by treating distinct regions
of the target volume to a high dose in different fractions, thereby reducing
the total physical dose needed to achieve tumor control. At the same time,
a similar dose bath is delivered to the normal tissue in every fraction, thus
exploiting the fractionation effect. These two effects combined lead to an
improved ratio between the biological dose delivered to the tumor and the
biological dose delivered to the normal tissue in comparison to uniform frac-
tionation schemes. However, spatiotemporal fractionation also increases the
complexity of radiotherapy treatments, which must be considered before a
translation of spatiotemporal fractionation schemes into clinical practice.

The aim of this thesis was to bring the concept of spatiotemporal frac-
tionation towards the design and implementation of a phase I clinical trial
to facilitate a first clinical application. This has been achieved in two ways:

1. The treatment planning methodology to design spatiotemporally frac-
tionated treatments has been further developed. In particular, both
limitations of the standard BED model and uncertainty in the biologi-
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cal parameters, as well as patient setup uncertainty, have been exten-
sively investigated and integrated into the treatment plan optimization
to generate spatiotemporally fractionated treatments which are robust.

2. Additional promising clinical applications for spatiotemporal fractiona-
tion have been identified, which may inform the design of future clinical
trials.

In the following sections, we will discuss in more detail the main findings of
this thesis and summarize the current status of spatiotemporal fractionation.
Finally, we will outline avenues for future research and draw conclusions.

9.1 Robustness of spatiotemporally fractionated
treatments against biological and geomet-
rical uncertainties

The most pressing concern for spatiotemporal fractionation schemes is their
sensitivity to both setup errors and uncertainties in the BED model and the
model parameters. Despite the promising dosimetric results which are ob-
tained in in-silico studies, where spatiotemporal fractionation schemes are
shown to potentially reduce the integral BED to critical OARs by approxi-
mately 10-20% compared to conventional uniform fractionation schemes for
a comparable BED in the target volume, potential misalignments of the frac-
tional dose distributions in between the different fractions may lead to tumor
under-dosage and thereby compromise tumor control. This has been shown
in Chapters 2 and 3, where already setup errors in the order of few millime-
ters could considerably degrade the treatment plan quality. Also, deviations
of the from the assumed fractionation sensitivity were shown in Chapter 4 to
possibly deteriorate the therapeutic efficacy of spatiotemporal fractionation.

Such uncertainties can nevertheless be directly accounted for during the
optimization of spatiotemporally fractionated treatments. More specifically,
in this thesis we developed stochastic optimization methods for handling both
biological uncertainties (Chapter 4) and uncertainties in the patient setup
(Chapter 3). We demonstrated that robust spatiotemporally fractionated
treatment plans can be obtained which maintain parts of the benefits of
spatiotemporal fractionation schemes over uniform fractionation schemes. In
Chapters 1 and 2, we investigated a different approach which can be adopted
to reduce the impact of setup errors and biological uncertainties related to
partial tumor irradiation for patients with multiple brain metastases. This
approach constrains the dose compartmentalization of the target volume to
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follow the anatomical compartmentalization given by the distinct metastatic
lesions, while still accounting for setup uncertainties using a safety margin.

Although robust optimization of spatiotemporally fractionated treatments
were shown to reduce the expected dosimetric benefit of spatiotemporal frac-
tionation schemes over conventional uniform fractionation schemes, the meth-
ods developed in this thesis may be used to facilitate the clinical implemen-
tation of spatiotemporal fractionation schemes by reducing the sources of
uncertainties which might impact the treatment outcomes.

9.2 Promising candidates for spatiotemporal frac-
tionation

Prior to this study, spatiotemporal fractionation has been mainly investi-
gated for patients with large arteriovenous malformations and patients with
liver metastases. These patients have been further investigated in this thesis
utilizing both robust optimization approaches (Chapter 5) and combining
spatiotemporal fractionation with other interesting approaches, such as com-
bined proton-photon therapy (Chapter 6) and the use of fraction-variant
beam orientations (Chapter 7).

In particular, arteriovenous malformations are characterized by a low
α/β-ratio, comparable to the α/β-ratio of the surrounding healthy brain.
This is advantageous for spatiotemporal fractionation schemes, as high doses
per fraction are very effective and an improved trade-off between hypofrac-
tionation in the target volume and uniform fractionation in the surrounding
healthy brain can be achieved. However, large arteriovenous malformations
are rare and only very few patients are diagnosed with large arteriovenous
malformations per year. This would make performing a clinical I trial com-
plicated.

Patients with primary or metastatic liver cancer, on the other hand, are
more common. Spatiotemporal fractionation schemes have been shown to be
a promising treatment approach for patients with large tumor burden that
allows dose escalation when the prescription dose is limited by the mean liver
dose. Also, the fact that the liver is a parallel organ acts in favor of spa-
tiotemporal fractionation. Spatiotemporally fractionated treatments require
that a large portion of the target volume can be hypofractionated in order
to be effective. While this is typically not possible when the target volume is
very close to serial OARs, it is definitely possible for tumors which are em-
bedded into the liver. However, liver tumors may present significant intra-
fraction motion, as well as inter-fraction anatomical variation, which may
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negatively impact the accuracy of spatiotemporally fractionated treatments.
In that regard, future improvements in tumor tracking and deformable im-
age registration may pave the way for a successful clinical implementation of
spatiotemporal fractionation schemes for the treatment of patients with liver
metastases.

In this thesis, a new and very promising potential application for spa-
tiotemporal fractionation has been extensively investigated, namely patients
with multiple brain metastases. Spatiotemporal fractionation schemes may
not be necessarily advantageous for solitary brain tumors due to the unfa-
vorable ratio between high α/β in the tumor and low α/β in the surrounding
healthy brain. However, for patients with multiple lesions, it is possible
to treat different metastases to a high dose in different fractions while at
the same time achieving fractionation in the healthy brain in between the
different lesions. In Chapters 2, 3 and 4, we demonstrated that spatiotempo-
rally fractionated treatments can considerably reduce the mean brain BED
compared to established stereotactic radiosurgery treatments. One special
advantage of patients with multiple brain metastases, which makes them a
very interesting and promising application for spatiotemporal fractionation,
is that intra-cranial metastases only present negligible anatomical changes
during the treatment and existing immobilization devices together with im-
age guidance ensures high reproducibility of the patient setup in between the
different fractions. Consequently, spatiotemporally fractionated treatments
could guarantee an accurate tumor dose coverage. With the increasing ef-
ficacy of systemic therapies, which increase the life expectancy for patients
with multiple brain metastases, spatiotemporal fractionation schemes may be
a promising approach to reduce brain toxicities and improving the patients’
quality of life.

9.3 Temporal optimization of the radiotherapy
treatment course

Fractionation has historically been proposed to improve the tumor to nor-
mal tissue therapeutic ratio. However, fractionation also offer many other
opportunities which are underutilized in current clinical practice. Besides
altering the dose distributions in the different fractions as suggested by spa-
tiotemporal fractionation, there are additional concepts that benefit from the
fact that the dose can be delivered over multiple separate fractions. In this
study, we considered two such approaches: combined proton-photon therapy
and fraction-variant beam orientation optimization. In Chapter 6, we showed
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that the quality of spatiotemporally fractionated radiotherapy treatments can
be boosted by combination with fraction-variant beam orientation optimiza-
tion. As different regions of the target volume are treated to a high dose in
different fractions, and these regions may be situated at different anatomical
locations, it may be meaningful to also consider different beam orientations
for the delivery of each fraction. In Chapter 5, instead, we showed that spa-
tiotemporal fractionation can be used also to simultaneously optimize differ-
ent dose distributions obtained from using different treatment techniques and
particle types. In the context of combined proton-photon therapy, the treat-
ment planning algorithms developed for spatiotemporal fractionation can be
used to determine the combination of proton and photon fractions that best
utilize a limited number of proton fractions.

9.4 Practical considerations on the optimiza-
tion and delivery of spatiotemporally frac-
tionated treatments

Spatiotemporal fractionation schemes require the simultaneous optimization
of multiple dose distributions. Thereby, both the computational cost for
generating spatiotemporally fractionation schemes and the time needed for
quality assurance increase linearly with the number of different fractions. In
this thesis, several extensions to the optimization code have been made to en-
hance the computational efficiency, for example through the implementation
of a non-uniform dose grid size. With the increased use of GPU-based opti-
mization and recent developments in automated planning, the impact on the
clinical resources of the longer computational time needed to generate spa-
tiotemporally fractionated treatments does not appear to be a crucial prob-
lem. Also, with increased automation of patient-specific quality assurance
the additional burden of quality assurance for spatiotemporal fractionation
schemes is reduced.

In Chapter 8, we developed a treatment planning process which allow to
generate clinically deliverable spatiotemporally fractionated treatments on a
commercial treatment planning system. Although improvements in the dose
calculation algorithms used for the research treatment planning system and
additional testing of the implemented optimization algorithms may be needed
to further improve the treatment plan quality to the level of commercial
treatment planning systems, the work performed in Chapter 8 constitutes
an important step towards the clinical implementation of spatiotemporal
fractionation.
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9.5 Outlook and conclusions
In conclusion, in this thesis we demonstrated that spatiotemporal fractiona-
tion is a very promising treatment approach to improve the therapeutic ratio
compared to conventional uniform fractionation for some selected treatment
sites, including patients with multiple brain metastases, liver cancer and
large arteriovenous malformations. We developed and demonstrated differ-
ent methods to account for both geometrical and biological uncertainties,
such that robust spatiotemporally fractionated treatments can be obtained
which still outperform conventional uniformly fractionated plans. While fur-
ther research may be performed, for example to investigate the impact of
inter-fractional anatomical changes on the tumor or include more accurate
biological models, the work performed in this thesis together with the imple-
mentation of a treatment planning process to generate clinically deliverable
spatiotemporally fractionated plans represent fundamental steps to facilitate
the design of a clinical phase I trial to investigate the feasibility of spatiotem-
poral fractionation in the clinics.
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