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Abstract

While Gaussian basis sets have been successfully used in various electronic structure codes for elucidation
of structures and processes in computational chemistry, they are not nearly as popular in solid state physics.
There are various reasons for this, one of them being that in comparison to the plane wave approach there
is no single numerical parameter like the cutoff energy, which can be used to systematically increase the ac-
curacy of the calculation. Furthermore do basis sets depend either on a specific method, or can only be used
together with matching pseudopotentials in the case of valence basis sets. Finally, in contrast to a molecu-
lar setting are electrons in periodic systems often not localised and therefore many optimisations used with
atom-centred Gaussian basis sets do not work as efficiently. The number of codes targeting the intersec-
tion of computational chemistry and solid efficiently state physics is therefore small, as is the availability of
universally applicable basis set families.

In this thesis we are evaluating the recently revisedMOLOPT basis set with pseudopotentials and all-electron
calculations in both molecular and condensed matter settings, for three different functionals in Density Func-
tional Theory, each on a different rung on “Jacob’s Ladder”. Once again, we demonstrate the outstanding
performance of the MOLOPT basis sets for molecular systems and show that Gaussian-type Orbital codes
perform reasonably well for solids, and that this can also be achieved with a universal basis set family.

We further investigate the required framework for running and analysing such large benchmark calculations
to pave the way for fully automated benchmarking and iterative development of Gaussian basis sets and
pseudopotentials. The implementation of the of the actual benchmarks with three different approaches leads
to the development of Python-based parser and input generation libraries and utilities for CP2K, as well as
contributions and extensions to the Automated Interactive Infrastructure and Database (AiiDA).

To extend the support for periodic systems further within CP2K, we then progress to implement k-point
sampling in CP2K’s Hartree-Fock Exchange, required to run calculations with Hybrid functionals. And to
be able to make this usable on realistic systems, we extend the Auxiliary Density Matrix Method to k-point
sampling as well. Together, this novel implementation can be used as a reference implementation and step-
ping stone for the development of more efficient algorithms for the Hartree-Fock approximation and Hybrid
functionals in Density Functional Theory with CP2K.





Kurzzusammenfassung

Während Gaußsche Basissätze erfolgreich in verschiedenen Elektronenstrukturprogrammen zur Aufklärung
von Strukturen und Prozessen in der rechnergestützten Chemie eingesetzt werden, sind sie in der Festkörper-
physik weniger verbreitet. Dafür gibt es mehrere Gründe, einer davon ist, dass es im Vergleich zum ebenen
Wellen Ansatz keine einzelne numerische Grösse wie die Grenzwert Energie gibt, welche dazu benutzt wer-
den kann um systematisch die Genauigkeit der Rechnung zu erhöhen. Im Weiteren hängen die Basissätze
entweder von einer spezifischen Methode ab, oder können im Fall von Valenz Basis Sätzen nur mit pas-
senden Pseudopotentialen verwendet werden. Schließlich sind die Elektronen in periodischen Systemen im
Gegensatz zu molekularen Systemen oft nicht lokalisiert, so dass viele Optimierungen, die mit atomzentrier-
ten Gaußschen Basissätzen verwendet werden, nicht so effizient funktionieren. Die Anzahl der Softwarepro-
gramme welche auf die Schnittstelle zwischen rechnergestützten Chemie und Festkörperphysik abzielen ist
demzufolge klein, sowie die Verfügbarkeit von universell einsetzbaren Basissatzfamilien.

In dieser Arbeit evaluieren wir die kürzlich revidierte MOLOPT Basissatzfamilie mit Pseudopotentialen und
Gesamtelektronenberechnungen für molekulare Systeme als auch für Systeme der kondensierten Matterie,
für drei verschiedene Funktionale der Dichtefunktionaltheorie, jede auf einer anderen Sprosse der “Jacob’s
Ladder”. Damit demonstrieren wir einmal mehr die hervorragende Leistung der MOLOPT-Basissätze für
molekulare Systeme und zeigen, dass Codes welche Orbitale vomGauß-Typ für Festkörper gut funktionieren,
und dass dies auch mit einer universellen Basissatzfamilie erreicht werden kann.

Darüber hinaus untersuchen wir den erforderlichen Rahmen für die Durchführung und Analyse solch gro-
ßer Benchmark-Berechnungen um den Weg für ein vollautomatisches Benchmarking und die iterative Ent-
wicklung von Gaußschen Basissätzen und Pseudopotentialen zu ebnen. Die Implementierung der aktuellen
Benchmarks mit drei verschiedenen Ansätzen führt zur Entwicklung von Python-basierten Parser- und Ein-
gabegenerierungsbibliotheken und Dienstprogrammen für CP2K, sowie Beiträge und Erweiterungen zur Au-
tomated Interactive Infrastructure and Database (AiiDA).

Um die Unterstützung für periodische Systeme in CP2K weiter auszubauen, implementieren wir k-Punkt
Abtastung in CP2Ks Hartree-Fock Austausch, die für Berechnungen mit Hybridfunktionalen erforderlich
ist. Und um dies für realistische Systeme nutzbar zu machen, erweitern wir die Auxiliary Density Matrix
Method (ADMM) ebenfalls auf k-Punkt Abtastung. Zusammengenommen kann diese neuartige Implemen-
tierung als Referenzimplementation und Sprungbrett für die Entwicklung von effizienteren Algorithmen für
die Hartree-Fock-Näherung und Hybridfunktionale in der Dichtefunktionaltheorie mit CP2K verwendet wer-
den.
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Introduction 1.
Mankind’s development has historically been driven by the discovery of
elements and materials, starting from copper up to the current age of
silicon. However, since the first predictions in the periodic table of ele-
ments byMendeleev, this has started to change. Nowadays experimental
discoveries in the materials sciences are not only elucidated by accom-
panying computational simulations, but guided by them. To do so, one
has to solve the famous Schrödinger equation, describing the behaviour
of quantum particles such as the electrons. There exist many possible
ways to do so, each with their own strengths and weaknesses. While
plane wave (PW) approaches cater more to the needs of the solid state
community, approaches using Gaussian-type Orbital (GTO) orbitals per-
mit direct insight into the chemistry involved, such as chemical bonds.
As one of the few codes making use of a combined GTO and PW basis
approach in what is called the Gaussian and PlaneWavesMethod (GPW),
the CP2K software package can excellently target the intersection of both
fields. While GTO based codes have been used successfully at least since
the 60’s in computational chemistry, they have generated a Zoo of dif-
ferent basis sets optimised for various levels of theory, methods and use
cases. And although generating a basis set family – a series of increas-
ingly larger number of basis functions – for a specific case is not difficult
anymore (and has been a common task), developing one which is robust
enough such that it can be used for a wide range of tasks is not trivial.
Unlike with PW, there is also no rigorous way to proof that extending a
GTO basis set will improve the result, other than by computation. But as
the possibilities for computation have grown – quantum chemistry and
classical molecular dynamics make up for 4̃0% of all high-performance
computation time –, so have the use cases. Meaning that a basis set
family nowadays should ideally cover the full periodic table, as well as
various functionals of Density Functional Theory (DFT). Finally, running
a benchmark on such a large basis set family has its own challenges, re-
quiring a large number calculations on different systems to cover all of
the above.

This dissertation thus encompasses three distinct areas of computation.

In the first section, we concentrate on the fundamental components needed
to run a large amount of calculations for evaluating basis sets and pseu-
dopotentials for various systems and functionals, and how they can be
executed effectively and dependably. This involves the development of
a minimal domain-specific workflowmanager, along with required foun-
dation libraries for automated input configuration generation, output
data parsing, as well as data transport and load distribution. By using
a proper component-based software architecture we can then integrate
the tools in the much more general AiiDA workflow management sys-
tem to improve the integration of CP2K.

We then progress to applying the developed tools to run two different
benchmarks to evaluate the recently revised MOLOPT valence basis sets
alongside their also revised Gödecker-Teter-Hutter pseudopotential (PP)
with the GPWmethod, and the newly added All-Electron (AE) MOLOPT
basis set using theGaussian andAugmented Planewave (GAPW)method.



2 1. Introduction

First, a database of small molecules will be used to compare the perfor-
mance of CP2K in a molecular setting, with reference calculations ob-
tained using the G16 software package. This benchmark is performed for
three different functionals on different rungs of Jacob’s Ladder of Density
Functional Approximations: Generalized Gradient Approximation (GGA),
meta-GGA and Hybrid functionals, using PBE, TPSS and PBE0. For the
Hybrid functional PBE0 also the effect of using Auxiliary Density Matrix
Method (ADMM) is investigated. This allows us to draw a complete pic-
ture of the performance of the completeMOLOPT basis set in amolecular
setting, as well as investigate the transferability of basis set and pseu-
dopotential within a rung. Additionally, we identify important require-
ments for running such benchmarks in an automated fashion.

The second benchmark is then geared towards the solid state use case by
using the Δ-test metric and comparing against published high-precision
results. Given the larger number of calculations, it makes full use of our
own workflow manager, as well as AiiDA together with custom exten-
sions. Since this benchmark is aimed at determining accuracy between
different codes or methods and consists only of elemental crystals, it
draws its significance even more from single-point comparisons with
reference values than the previous benchmark. To extend this bench-
marks towards covering different functionals, we therefore devise and
implement a strategy to generate all data starting from the high-accuracy
Full-Potential Linearized Augmented Plane Wave method (FP-LAPW)
method (available via the integration of SIRIUS) to AE GAPW calcula-
tions to PP calculations with PW (again via SIRIUS) and GPW. This ref-
erence is obtained with the PBE functional and we validate the approach
with the closely related PBEsol.

The third and final part of this thesis covers the enabling of the previously
mentioned solid state benchmarks to be run with CP2K using Hybrid
functionals such as PBE0. While Hartree-Fock Exchange (HFX) has been
implemented in CP2K since quiet some time, it only covers the periodic
case without k-point sampling. A supercell approach could be employed
to sample the Brillouin zone instead, but this supercell must become very
large to reach the same k-point density as with direct k-point sampling,
rendering such calculations prohibitively expensive. The rate limiting
step in this calculation is the number of Electron Repulsion Integral (ERI)
which have to be calculated for the HFX, which depends highly on both
size and type of the basis set. Within a Hartree-Fock Exchange with k-
point (HFXk) calculation this becomes evenmore pronounced as some of
the techniques employed previously – namely the caching of summed-up
four-centre ERI – can not be applied anymore due to the sheer amount of
such ERIs and their associated storage requirement. And since the goal is
to calculate solid state – including metallic – systems, screening on the
density matrix to reduce the number of quartets to calculate becomes
ineffective. Which is why we have not only added k-point-support to
HFX, but also extended the ADMM to support k-point calculations. By
employing a smaller (and less diffuse) auxiliary basis set, it is possible to
significantly lower the number of primitive basis functions, making such
calculations feasible.



Theory 2.
In this chapter, we are reviewing the required theory for the Density
Functional Theory (DFT) and theHartree-Fock approximationwhen solv-
ing the Schrödinger equation of electronic structure theory. We will
furthermore look into the Auxiliary Density Matrix Method to reduce
the computational effort and – more importantly – its extension to peri-
odic k-point Hartree-Fock theory, permitting the use of ADMM for con-
densed matter systems. Additionally, a short recapitulation of Gaussian-
type orbitals in electronic structure theory in the form of the Gaussian
and plane-waves (GPW) method will be presented, together with the
mentioning of pseudopotentials and basis sets since these have been un-
der investigation as part of this thesis.

A more stringent introduction into the matter can be found in the usual
textbooks [6–11]

2.1. Hartree-Fock Theory

To calculate the electronic structure of molecules and solids we are try-
ing to solve the time-independent Schrödinger equation in the Born-
Oppenheimer (BO) approximation of fixed atomic nuclei, which is

ℋ𝜓 = 𝐸𝜓 (2.1)

and where the (non-relativistic) electronic Hamilton operator in atomic
units [7] is written as

ℋ = −
𝑁
∑
𝑖=1

1
2∇

2𝑖 −
𝑁
∑
𝑖=1

𝑀
∑
𝐴=1

𝑍𝐴
𝑟𝑖𝐴

+
𝑁
∑
𝑖=1

𝑁
∑
𝑗>𝑖

1
𝑟𝑖𝑗

. (2.2)

The terms of the Hamiltonian are in the order of appearance: the kinetic
energy of the electrons, the Coulomb terms of the attraction between
electrons and nuclei and the electron-electron interaction, with 𝑟𝑖𝑗 and
𝑟𝑖𝐴 the distance between the 𝑖-th and 𝑗-th electron, respectively the 𝑖-th
electron and the 𝐴-th nucleus, and 𝑁 and𝑀 the number of electrons and
nuclei.

As part of the BO approximation, we can neglect the contribution of the
kinetic energy of the nuclei as the electrons can be assumed to adjust
themselves immediately compared to the time frame in which the nuclei
change position. Given that the proton-electron mass ratio is 𝜇 = 𝑚𝑝

𝑚𝑒
≈

1836 the inverse effect can also be neglected. Since the Coulomb term
of the nucleus-nucleus interaction can also be assumed to be constant,
it has been omitted as well as it would only add a constant shift to the
energy.

The general form of 𝜓 is a many-body 4𝑁 -dimensional wavefunction
𝜓(x1, x2, … , x𝑁 ) with each x𝑖 consisting of three real space components
and one spin component x𝑖 = {r𝑖, 𝜔𝑖}. Since this is not solvable in useful
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time for non-trivial systems we need a different ansatz. Quantum me-
chanics demands that for Fermionic particles (electrons in our case) the
wavefunction must be totally antisymmetric

𝜓(x1, … , x𝑖, … , x𝑗 , … , x𝑁 ) = −𝜓(x1, … , x𝑗 , … , x𝑖, … , x𝑁 ), (2.3)

which means that the simple Hartree product ansatz of

𝜓(x1, x2, … , x𝑁 ) = 𝜒1(x1)𝜒2(x2)⋯ 𝜒𝑁 (x𝑁 ), (2.4)

where 𝜒𝑖(x𝑗) are single-electron wavefunctions, is insufficient as it would
violate that requirement. From Linear Algebra we know that a determi-
nant is totally antisymmetric and thus arrive at the single-determinant
Hartree-Fock ansatz for the wavefunction in form of a Slater determi-
nant

𝜓HF(x1, x2, … , x𝑁 ) = 1
√𝑁 !

||||||

𝜒1(x1) 𝜒2(x1) … 𝜒𝑁 (x1)
𝜒1(x2) 𝜒2(x2) … 𝜒𝑁 (x2)

⋮ ⋮ ⋱ …
𝜒1(x𝑁 ) 𝜒2(x𝑁 ) … 𝜒𝑁 (x𝑁 )

||||||
. (2.5)

There are of course multiple possible determinants such that a complete
solution should encompass all possible ones, which is the point of the
Full Configuration Interaction approach, but which we are not going to
pursue further.

To obtain the energy from the Schrödinger equation we take a look at
the expectation value of the Hamiltonian

⟨𝜓 |ℋ |𝜓 ⟩ = ⟨𝜓 |𝐸|𝜓 ⟩ ⇒ 𝐸[𝜓] = ⟨𝜓 |ℋ |𝜓 ⟩
⟨𝜓 |𝜓 ⟩ , (2.6)

with the usual definition of the Dirac notation of the expectation value

⟨𝜓 |𝒜 |𝜓 ⟩ = ∫ 𝜓 ∗(x)𝒜(x)𝜓 (x)𝑑x. (2.7)

The variational principle dictates the existence of a uniquely defined en-
ergy value 𝐸0 – the ground state energy – along with its ground state
wave function 𝜓0 for which for any other trial wave function 𝜓 the in-
equality 𝐸[𝜓 ] ≥ 𝐸[𝜓0] = 𝐸0 holds. Based on this we define the Hartree-
Fock energy as the variational minimum

𝐸HF ≔ min𝜒𝑖
⟨𝜓HF | ℋ | 𝜓HF⟩ (2.8)

Additionally, wemandate that the 𝜒𝑖 in this minimization procedure form
an orthonormal set (which will allow us to apply the Slater-Condon rules
for the one- and two-body integrals), e.g.

∫𝜒∗𝑖 (x)𝜒𝑗(x)𝑑x = 𝛿𝑖𝑗 . (2.9)
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Inserting the electronic Hamiltonian of Equation 2.2 in Equation 2.8 then
yields

𝐸HF = ⟨𝜓HF| ℋ |𝜓HF⟩

=
𝑁
∑
𝑖

∫𝜒∗𝑖 (x) [−1
2∇

2 + 𝑣(x)] 𝜒𝑖(x)𝑑x⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐻𝑖

+ 1
2

𝑁
∑
𝑖,𝑗,𝑖≠𝑗

∬𝜒𝑖(x1)𝜒∗𝑖 (x1) 1
‖r2 − r1‖

𝜒∗𝑗 (x2)𝜒𝑗(x2)𝑑x1𝑑x2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐽𝑖𝑗

− 1
2

𝑁
∑
𝑖,𝑗,𝑖≠𝑗

∬𝜒∗𝑖 (x1)𝜒𝑗(x1) 1
‖r2 − r1‖

𝜒𝑖(x2)𝜒∗𝑗 (x2)𝑑x1𝑑x2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐾𝑖𝑗

, (2.10)

where 𝑣(x) as the external potential captures the electron-nuclei interac-
tion.

By restricting ourselves to the closed-shell approximation where each
orbital is double occupied (hence we always have an even number of
electrons) and a product ansatz in which we express the spin orbitals
as a product of spatial orbitals and spin functions 𝜒𝑖(x) = 𝜒𝑖(x)𝛼𝑖(𝜔𝑖),
Equation 2.10 can be simplified to

𝐸HF = 2
𝑁/2
∑
𝑖=1

𝐻𝑖(r) +
𝑁/2
∑
𝑖,𝑗

(2𝐽𝑖𝑗(r) − 𝐾𝑖𝑗(r)) , (2.11)

where the Hartree- and Exchange-integrals 𝐽 , 𝐾 but also the one-particle
kinetic energy term 𝐻 depend only on the spatial coordinates. Based on
those integrals 𝐽 and 𝐾 we can now define new operators 𝑗 and 𝑘 with
the following actions on a function 𝑓 (r)

𝑗(r1)𝑓 (r1) = 2
𝑁/2
∑
𝑗

∫𝑓 (r1) 1
‖r2 − r1‖

𝜒𝑗(r2)𝜒∗𝑗 (r2)𝑑r2

𝑘(r1)𝑓 (r1) =
𝑁/2
∑
𝑗

∫𝜒∗𝑗 (r1) 1
‖r2 − r1‖

𝜒𝑗(r2)𝑓 (r1)𝑑r2
, (2.12)

which in turn lets us define the Fock operator

𝐹(r) = −1
2∇

2 + 𝑣(r) + 𝑗(r) − 𝑘(r), (2.13)

and leads us to the Hartree-Fock eigenvalue equations

𝐹(r)𝜒𝑖(r) = ∑
𝑗
𝜖𝑖𝑗𝜒𝑗(r). (2.14)
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Since 𝑗 and 𝑘 depend on a sum over an integral over spatial orbitals, the
Hartree-Fock theory is inherently orbital-dependant, yet 𝑗 − 𝑘 can be
interpreted in the same way as 𝑣 , as an average potential controlling the
behaviour of each orbital. This orbital dependency, despite the mean-
field characteristics of the operators, can thus computationally only be
resolved by an iterative procedure, starting from an initial guess for the
orbitals (for example for isolated atoms) and repeated until consistency
is reached, recalculating 𝑗 − 𝑘 again from the newly obtained orbitals 𝜒𝑖.
This approach is known as a self-consistent field (SCF) method.

To be able to solve the Hartree-Fock Equation 2.14 practically, we have
to choose a basis in which we are going to express our orbitals, allowing
us to solve the SCF problem by optimizing the coefficients. With {𝜙𝜇(r)}
as our basis we write

𝜒𝑖(r) = ∑
𝜇
𝐶𝜇𝑖𝜙𝜇(r) (2.15)

and call the 𝐶𝜇𝑗 the Molecular Orbital (MO) coefficients. The variational
minimisation therefore becomes a linear variational problem, solveable
by diagonalisation of the corresponding operator matrix.

As for the previously defined Hartree-Fock equations: Given that the
Fock operator is a Hermitian operator, we can always find a unitary trans-
formation U, which diagonalizes 𝜖𝑖𝑗 , such that the Hartree-Fock equa-
tions can be written in the canonical form (e.g. without a sum) of

𝐹(r)𝜒𝑖(r) = 𝜖𝑖𝜒𝑖(r). (2.16)

Inserting the basis expansion then leads from

𝐹(r)∑
𝜇
𝐶𝜇𝑖𝜙𝜇(r) = 𝜖𝑖∑

𝜇
𝐶𝜇𝑖𝜙𝜇(r). (2.17)

by integrating after multiplying with 𝜙∗𝜈 to

𝐶𝜇𝑖 ∫𝜙∗𝜈 (r)𝐹 (r)𝜙𝜇(r)𝑑r⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐹𝜈𝜇

= 𝜖𝑖∑
𝜇
𝐶𝜇𝑖 ∫𝜙∗𝜈 (r)𝜙𝜇(r)𝑑r⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑆𝜈𝜇
⇔

∑
𝜇
𝐹𝜈𝜇𝐶𝜇𝑖 = 𝜖𝑖∑

𝜇
𝑆𝜈𝜇𝐶𝜇𝑖.

(2.18)

The final equations are nothing else but a matrix equation written out, in
proper matrix notation they read as follows and are called the Roothan
equations

𝐹𝐶 = 𝜖𝑆𝐶 , (2.19)

where 𝜖 is a diagonal matrix with the 𝜖𝑖 on its diagonal. When using a
finite-sized basis set, this is therefore a solvable matrix eigenvalue prob-
lem. 𝐹 and 𝑆 are consequently called the Fock and Overlap matrices.
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As we will see later, we will need the isolated Hartree-Fock Exchange
(HFX) energy term 𝐾𝑖𝑗 from Equation 2.10 in this basis set representation
(for the closed-shell case). The other components we will also need are
the electron density 𝜌(r) and the corresponding density matrix 𝑃 . They
let us write the HFX energy in a more concise way.

As we know from general quantum mechanics, the square modulus of
the wave function can be interpreted as a probability density (in our
case) to find an electron at position r. Again for the closed-shell case
and expressed in our basis {𝜙𝑖} this means

𝜌(r) = 2
𝑁/2
∑
𝑖
|𝜒𝑖(r)|2

= 2
𝑁/2
∑
𝑖
𝜒∗𝑖 (r)𝜒𝑖(r)

= ∑
𝜇𝜈

2
𝑁/2
∑
𝑖
𝐶𝜇𝑖𝐶𝜈𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙𝜇(r)𝜙∗𝜈 (r)

= ∑
𝜇𝜈

𝑃𝜇𝜈 𝜙𝜇(r)𝜙∗𝜈 (r).

(2.20)

The exchange term elements of the Fock matrix then becomes

𝐹x𝜇𝜎 = −1
2 ∑

𝜈𝜆
𝑃𝜈𝜆 ∬𝜙∗𝜇(r1)𝜙𝜈 (r1) 1

‖r2 − r1‖
𝜙∗𝜆(r2)𝜙𝜎 (r2)𝑑r1𝑑r2

= −1
2 ∑

𝜈𝜆
𝑃𝜈𝜆(𝜇𝜈 | 𝜆𝜎),

(2.21)

where we have used the standard expression of two-electron integrals
(in Mulliken notation with round brackets to emphasise that the integral
is over spatial rather than spin orbitals, e.g. the spin has already been
integrated out)

(𝜇𝜈 | 𝜆𝜎) = ∬𝜙∗𝜇(r1)𝜙𝜈 (r1) 1
|r2 − r1|

𝜙∗𝜆(r2)𝜙𝜎 (r2)𝑑r1𝑑r2. (2.22)

And thus follows the Hartree-Fock energy as a contraction of density
matrix elements and four-center integrals

𝐸HF
x = −1

2 ∑
𝜇𝜈𝜆𝜎

𝑃𝜇𝜎𝑃𝜈𝜆(𝜇𝜈 | 𝜆𝜎). (2.23)

The restriction to take only a single determinant is an artificial one, as
already mentioned, to keep computational cost at bay. Together with
the ansatz of spin function separation for the spin-orbital, this leads to
an error compared to a truly exact exchange energy, which is the Hartree-
Fock correlation energy [6]
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𝐸HF𝐶 = 𝐸exact − 𝐸HF. (2.24)

This correlation energy arises because of the missing excitations given
by additional determinants due the interaction of single electrons with
the mean field of electrons, while the same-spin exchange interaction
(Pauli principle) is still included. This correlation energy can be correctedIn the context of Density Functional

Theory (DFT), Hartree-Fock Exchange
sometimes also referred to as exact ex-
change because of the absence of any
self-interaction error (SIE) [12].

by either expanding the wavefunction in linear combinations of Slater
determinants, or a number of other post-Hartree-Fock methods, which
will then increase the computational complexity again.

2.2. Density Functional Theory

Density Functional Theory is based on using the electronic density as
a primary quantity rather than directly the orbitals which generate this
density. Respectively, while in Hartree-Fock theory the Hamiltonian is
solely defined by the potential 𝑣 and the number of electrons 𝑁 , in DFT
it is the density which determines the external potential and hence the
Hamiltonian, according to the first Hohenberg-Kohn theorem [13].

The density in this case is defined as an integral over the 3𝑁 -dimensional
wave function 𝜓(r) as

𝜌(r1) = 𝑁 ∫⋯∫|𝜓(r1, r2, … , r𝑁 )|2𝑑r2⋯𝑑r𝑁 , (2.25)

with the integral over this density yielding the total number of electrons
in the system

∫𝜌(r) = 𝑁 . (2.26)

This allows us to write the energy expressed as a functional of this den-
sity in a similarly separated way as the Hartree-Fock energy in Equation
2.10, namely

𝐸[𝜌] = 𝑇 [𝜌] + 𝑉ee[𝜌]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ +𝑉ne

= 𝐹HK[𝜌] + ∫ 𝜌(r)𝑣(r)𝑑r,
(2.27)

with the kinetic term 𝑇 , and the electron-electron and nuclei-electron in-
teraction terms 𝑉ee and 𝑉ne. The terms independent of the nuclei are col-
lected in the commonHohenberg-Kohn functional 𝐹HK, while the electron-
electron interaction can be expressed as a sum of the classical Hartree
repulsion term 𝐽 and a non-classical part (which turns out to be part of
the exchange-correlation energy term):

𝑉ee = 𝐽[𝜌] + non-classical term. (2.28)

While this formulation is convenient, it all hinges on the availability of
the HK functional, which unfortunately can only be determined for very
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simple systems [14]. Luckily, the second Hohenberg-Kohn theorem in-
troduces an analogue to the variational approach of the wave function
theory in Equation 2.8. Namely that there is a ground state energy 𝐸0
to the true ground state density 𝜌0 and that for each trial density ̃𝜌 the
inequality

𝐸0 ≤ 𝐸[ ̃𝜌] (2.29)

holds. Together with a reformulation of the kinetic energy term 𝑇 which
still contains interacting and non-interacting parts, let us derive a solu-
tion. Kohn-Sham [15] introduced this by rewriting 𝑇 as a sum of the
kinetic energies of non-interacting electrons 𝑇𝑆 (the non-interacting ref-
erence system) and a still unknown term 𝑉 , together with the reintroduc-
tion of orbitals as defined before, allowing us to write

(𝑇𝑠 + 𝑉 )𝜓𝑠 = 𝐸𝑠𝜓𝑠
and

𝑇𝑠[𝜌] =
𝑁
∑
𝑖
⟨𝜓𝑖 | −1

2∇
2 | 𝜓𝑖⟩ ,

(2.30)

with the density now again defined as in Equation 2.20.

This allows us to rewrite Equation 2.27 and Equation 2.28 as

𝐸[𝜌] = 𝑇 [𝜌] + 𝐽 [𝜌] + 𝑇𝑠[𝜌] − 𝑇𝑠[𝜌] + non-classical term

= 𝑇𝑠[𝜌] + 𝐽 [𝜌] + 𝐸xc[𝜌],
(2.31)

where the non-classical term and the missing correlation in the non-
interacting kinetic energy are captured in the new 𝐸xc energy. Together
with the re-introduction of orbitals, the minimization procedure has to
be adjusted in the sense that the orthonormality constraint from Equa-
tion 2.9 takes the place of the integration yielding the total number of
electrons 𝑁 . It must also be noted that this extension does not invalidate
the variational principle introduced by the second Hohenberg-Kohn the-
orem. Hence the density-dependent energy term we want to minimize
reads by putting Equation 2.30 and as Equation 2.31 together:

𝐸[𝜌] =
𝑁
∑
𝑖
⟨𝜓𝑖 | −1

2∇
2 | 𝜓𝑖⟩ + 𝐽 [𝜌] + 𝐸xc[𝜌] + ∫ 𝑣(r)𝜌(r)𝑑r. (2.32)

This allows us now to define the Kohn-Sham operator which now con-
tains functional derivatives of the density

𝐾(r) = −1
2∇

2 + 𝑣(r) + 𝛿𝐽 [𝜌]
𝛿𝜌(r) + 𝛿𝐸xc[𝜌]

𝛿𝜌(r)
= 𝑣(r) + ∫

𝜌(r′)
|r − r′| 𝑑r

′ + 𝑣xc(r),
(2.33)
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with the exchange-correlation potential 𝑣xc. Again, as 𝐾 is hermitian, we
can find a unitary transformation which diagonalizes our energy eigen-
values such that we can without loss of generality write the Kohn-Sham
equations in their canonical form

𝐾(r)𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r), (2.34)

which can again be turned into a general matrix eigenvalue problem by
introducing a (finite) basis, to be solved numerically.

2.2.1. Exchange-Correlation Functionals of DFT

As we have been investigating the performance of basis sets (and pseu-
dopotentials) with different exchange-correlation functionals, we will
quickly discuss them here. While the Kohn-Sham equations are easier
to solve, due to their density dependency, they now depend on the qual-
ity of the exchange-correlation potential 𝑣xc. This leads to the exchange-
correlation energy via 𝐸xc[𝜌] = ∫ 𝜌(r)𝑣xc(𝜌(r)). Even though this has
been intensively studied in the past and new functionals are still being
proposed, there is no formally systematic way of improving those func-
tionals. Yet, there is a scheme proposed by Perdew [16] called “Jacob’s
Ladder”, allowing for categorisation of them. The start at the lowest rung
make functionals which depend solely on the density 𝜌. As they depend
only on the functional at that given point in space or in other words on
a constant electron density, they are called Local (Spin) Density Approxi-
mation (LDA). One step higher, the XC potentials depend additionally on
the gradient of the density ∇𝜌(r), giving them the name Generalized Gra-
dient Approximation (GGA) and making them semi-local in the process.
Going a step further, the meta-GGA are adding either a second deriva-
tive or orbital kinetic energy density 𝜏 , rendering them more accurate
but making property calculation more sensitive to numerics. The next
rungs towards chemical accuracy are then the Hybrid Functionals, which
add exact exchange (as given above) to either GGA or meta-GGA func-
tionals, rendering those functionals fully non-local. The final rung (for
completeness) then includes the Double-Hybrids, which in turn include
Random Phase Approximation (RPA) contributions or possibly others.

In the following, we are going to look at the explicit forms of the func-
tionals used in this work: PBE, TPSS, PBEsol and PBE0. While all the
functionals discussed here are based on the separation into an exchange
and a correlation part 𝐸x + 𝐸c, this is not a general requirement.

PBE

The Perdew, Burke, Ernzerhof functional is arguably one of the most
widely used functionals, especially in materials science [17]. As a GGA
functional it depends on both the density and its gradient

𝐸GGA
xc [𝜌] = ∫ 𝜌(r)𝑣xc (𝜌(r), ∇𝜌 (r)) . (2.35)
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The exchange part relies on the Local Density Approximation and aug-
ments it by an enhancement factor 𝐹x, while introducing a reduced den-
sity gradient 𝑠

𝐸X = ∫𝜌𝑣LDA
x (𝜌)𝐹x (𝑠(r)) 𝑑r (2.36)

𝐹(𝑠) = 1 + 𝛼 − 𝛼
1 + 𝛽(𝑠2) (2.37)

𝑣LDA
x (r) = −3

4 ( 3𝜋 )
1/3

𝜌(r)4/3 (2.38)

𝑠(r) = |∇𝜌(r)|
𝜌4/3(r) , (2.39)

where the exchange energy density 𝑣LDA
x (r) has been obtained from the

generalisation of the homogeneous electron gas to an inhomogeneous
systemunder the assumption of a locally constant electron density [18].

The correlation part also derives directly from the LDA functional by

𝑣PBEc = 𝑣LDA
c + 𝐻(𝑡), (2.40)

where 𝑡 is a dimensionless density gradient (e.g. of the form |∇𝜌|/𝜌, sim-
ilar to 𝑠 in Equation 2.39).

Even though highly parameterised (𝛼 , 𝛽 but also the parameters con-
tained in 𝐻 ), it must be stressed that those parameters are not derived
fromfitting the functional but rather from required asymptotic behaviour
of the functional in different settings and additional constraints the func-
tional should satisfy. The exact form and discussion can be found in
Perdew, Burke, and Ernzerhof [19].

TPSS

The meta-GGA Tao-Perdew-Staroverov-Scuseria (TPSS) functional adds a
dependency on 𝜏 , the Kohn-Sham orbital kinetic energy

𝐸GGA
xc [𝜌] = ∫ 𝜌(r)𝑣xc(𝜌(r), ∇𝜌(r), 𝜏 (r)) (2.41)

𝜏 (r) = 1
2

occ
∑
𝑖
|∇𝜙𝑖(r)|2. (2.42)

The exchange part again depends on the previously shown 𝑣LDA
x with the

enhancement factor now depending on 𝜏 , but similar to Equation 2.36 on
auxiliary parameters:
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𝐹x(𝑝, 𝑧) = 1 + 𝜅 − 𝜅
1 + 𝑥(𝑝, 𝑧)/𝜅 (2.43)

𝑝 = 𝑠2 (2.44)

𝑧 = 𝜏𝑊
𝜏 ,with 𝜏 = 𝜏↑ + 𝜏↓ , and 𝜏𝑊 = 1

8
|∇𝜌|2
𝜌 (2.45)

The form of 𝐹x is again chosen to obey the Lieb-Oxford bound [20] with
a fixed 𝜅.
The correlation part derives in a similar manner from the PBE correlation
energy shown above, adding a 𝜏 dependency in the process.

For this and the full form of 𝑥(𝑝, 𝑧) we are referring again to the original
source of Tao et al. [21]. What makes this functional interesting to be
used as a prototype for meta-GGAs in the following work, is its property
of correcting for the one-electron SIE, by ensuring the correlation energy
vanishes exactly in the valence region.

PBEsol

Even though the parametrization of PBE relies on general physical re-
quirements towards the functional, there is still a significant degree of
freedom when it comes to which and how well those constraints are re-
spected. While PBE respects and reproduces atomization energies well in
the process, it is far less accurate when it comes to weakly-varying den-
sities in densely packed solids, something the LDA gets right. To remedy
this issue, two parameters in the PBE functional were adjusted (part of
the 𝑏𝑒𝑡𝑎 and 𝐻 functions mentioned above), by fitting to the behaviour
of the previously mentioned TPSS functional for surface densities in a
homogeneous electron gas setup. As the GGA form itself is limited, this
worsens for example atomization energies (but not worse than LDA) and
makes it less suitable for molecular calculations, but improves upon bulk
properties like lattice constants and surface energies [22].

PBE0

The PBE0 functional is a hybrid functional, directly mixing PBE and
the exact exchange energy from Hartree-Fock in a straightforward way,
while maintaining the complete correlation energy from PBE:

𝐸PBE0
xc = 1

4𝐸
HF
x + 3

4𝐸
PBE
x + 𝐸PBE

c (2.46)

The motivation for this comes from the re-introduction of orbitals in
Kohn-Sham DFT, which allows us to define an exact Kohn-Sham ex-
change energy and one of the major differences between Hartree-Fock
and DFT when it comes to Self-Interaction Correction (SIC): While in
Hartree-Fock self-interaction is cancelled because the respective contri-
bution is present in both Hartree and Exchange terms, no equivalent
mechanism is available in DFT due to the density “intermediary” which
gets integrated over to obtain the energies. With themixing one is able to
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(partially) recover some of the properties most influenced by this, namely
atomisation energies, bond lengths and vibration frequencies [23].

Even though this way of mixing DFT and Hartree-Fock (HF) exchange
energymay look arbitrary, with mixing coefficients in hybrid functionals
either determined empirically or by required asymptotic behaviour, their
use is rigorously justified from DFT itself via the adiabatic connection of
the Exchange-Correlation energy [24]

𝐸XC = ∫
1

0
𝑈 𝜆
XC𝑑𝜆. (2.47)

Which connects a non-interacting Kohn-Sham systemwith its fully-interacting
real counterpart. In the case of PBE0, the 1

4𝐸HF
x can be exactly recovered

by an analysis of the behaviour of electron pair spin states in DFT [25].

An important part worth mentioning is that physical meaning is only
obtained for the whole of the Exchange-Correlation energy, hence a seg-
mentation into 𝐸X and 𝐸C and then replacing either does not work, as
realized by Becke [26], which subsequently led to the creation of the B88
functional [27, 28].

2.3. Basis Sets and Pseudopotentials

As mentioned in the previous section, to actually be able to solve the
Schrödinger equation numerically, we have to introduce a basis in which
we express the MOs. For the largest part of this work, we relied on the
CP2K software package, which utilises atom-centred Gaussian-type or-
bitals (GTO).

While a natural choice for a basis would be Slater functions of the type
𝑒−𝛼𝑟 as they form the analytical solution to the single particle Schrödinger
equation, we rely in several parts – like in the Fock matrix – on Electron
Repulsion Integrals (ERIs), which do not have an analytical solution for
such functions. For that purpose Gaussian functions 𝑒−𝛼𝑟2 aremuchmore
efficient to calculate as the product of two Gaussian functions around
different centres 𝐴 and 𝐵 can be rewritten as a single Gaussian function
around a common centre 𝐶 . The disadvantage of functions of the form
𝑒−𝛼𝑟2 is that they do not reproduce the cusp forming at the nucleus (e.g.
𝜕𝜙(𝑟)
𝜕𝑟 ≠ 0 at 𝑟 = 0) and that they decay too quickly in the long-range (due

to the 𝑟2 in the exponent).

For both types of functions, 𝛼 determines the diffuseness of the basis, a
larger value leading to a narrower and a lower coefficient to a broader
distribution.

Using single (or primitive) Gaussian functions in place of a Slater-type
orbital would require a lot of basis functions to recover the same char-
acteristics, which is why contracted Cartesian Gaussian basis functions
(centred around a nucleus 𝐴) are being used for a single Slater function
with the contraction coefficients 𝑐𝑖 either fitted to Slater orbitals or to
data. Such a Gaussian function is then written as
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𝜓𝜈 (r − A) =
𝐿
∑
𝑖=1

𝑐𝑖(𝑥 − 𝐴𝑥 )𝑙(𝑦 − 𝐴𝑦 )𝑚(𝑧 − 𝐴𝑧)𝑛𝑒−𝛼𝑖(r−A)2 , (2.48)

with 𝐿 determining the length of the contraction, and 𝑙 +𝑚+𝑛 corresponds
to the Cartesian angular momenta. With that, the MOs of Equation 2.15
and the Electron Repulsion Integrals of Equation 2.22 become

𝜙𝑖(r − A) = ∑
𝜈
𝐶𝜈𝑖

𝐿
∑
𝑖=1

𝑐𝑖(𝑥 − 𝐴𝑥 )𝑙(𝑦 − 𝐴𝑦 )𝑚(𝑧 − 𝐴𝑧)𝑛𝑒−𝛼𝑖(r−A)2 (2.49)

and

(𝜇𝜈 ∣ 𝜆𝜎)𝑔 =
𝐿𝐴
∑
𝑎=1

𝐿𝐵
∑
𝑏=1

𝐿𝐶
∑
𝑐=1

𝐿𝐷
∑
𝑑=1

∬ 1
|r2 − r1|

⋅ 𝑐𝑎 (𝑥 − 𝐴𝑥 )𝑙𝐴 (𝑦 − 𝐴𝑦)
𝑚𝐴 (𝑧 − 𝐴𝑧)𝑛𝐴

⋅ 𝑐𝑏 (𝑥 − 𝐵𝑥 )𝑙𝐵 (𝑦 − 𝐵𝑦)
𝑚𝐵 (𝑧 − 𝐵𝑧)𝑛𝐵

⋅ 𝑐𝑐 (𝑥 − 𝐶𝑥 )𝑙𝐶 (𝑦 − 𝐶𝑦)
𝑚𝐶 (𝑧 − 𝐶𝑧)𝑛𝐶

⋅ 𝑐𝑑 (𝑥 − 𝐷𝑥 )𝑙𝐷 (𝑦 − 𝐷𝑦)
𝑚𝐷 (𝑧 − 𝐷𝑧)𝑛𝐷

⋅ 𝑒−𝛼𝑎(r1−A)2𝑒−𝛼𝑏(r1−B)2𝑒−𝛼𝑐(r2−C)2𝑒−𝛼𝑑 (r2−D)2

𝑑r1𝑑r2,

(2.50)

each a function of length of the contraction 𝐿, the angular momenta 𝑙, 𝑚,
𝑛 and atomic centres A, B, C and D. From the above it is immediately
clear then that the number of ERIs to calculate depends heavily on the
size of the basis set, favouring small and heavily contracted basis sets
(low number of contractions).

Expanding atomic orbitals in terms of atom-centred Gaussians comes
naturally and is standard for quantum chemistry codes as it permits di-
rect insight into chemical properties like bonds. Expressing the electron
density required in KS-DFT in plane wave (PW) instead, which are inde-
pendent of the atomic positions, instead has several benefits as well. In
particular can the Hartree and Exchange-Correlation (XC) energies be
calculated more easily and the complexity of computing the Kohn-Sham
matrix follows 𝒪(𝑁 log(𝑁 )) (the underlying discrete Fast-Fourier Trans-
formation (FFT)) if combined with the Gaussian expansion approach in a
dual Gaussian and PlaneWavesMethod (GPW) approach [29]. Theweak-
ness of PWs lies in their approximation of the density near the atomic
centres: to represent the density accurately enough, a large number of
PWs must be employed (i.e. a high cutoff must be chosen), which comes
at a large cost in terms of memory and computation as the same represen-
tation must be maintained for regions where the accuracy is not needed.
This can be remedied by using pseudopotentials (PPs) which collect the
potential generated by the nucleus together with the non-valence elec-
trons into one effective core potential, often based on a frozen-core as-
sumption. The role of the PP is then to ensure that valence electrons are
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kept out of the core and within the valence space, and must thus contain
a repulsive short-range and an attractive long-range part. [30]

For both PW and Gaussian-type Orbital (GTO) approaches do PPs re-
duce the number of required basis functions within a calculation since
the (localised) core behaviour does not have to be captured anymore. For
GTOs this comes also into play during basis set construction by permit-
ting more compact basis functions. It should be noted that PP rely on
a valence and core electron partition which must be obtained prior to
the generation of PP by some other method. This is accurate enough for
many calculations but physically not fully correct. For species where this
becomes a problem (for example heavier alkali) this can be remedied by
treating more electrons as valence electrons (then called semi-core elec-
trons), resulting in fewer core electrons covered by the PP.

For heavier atoms also relativistic effects can be directly taken into ac-
count via the PP, simplifying the calculations.

While there aremany different forms of PP as illustrated by Dolg and Cao
[31], we are only going to mention the ones relevant for this work, the
norm-conserving [32] Separable Dual-Space Pseudopotentials of Goedecker,
Teter, and Hutter [33] (GTH), respectively Hartwigsen, Goedecker, and
Hutter [34] (HGH).

This means that they take the general form

𝑉 (r, r′) = 𝑉loc(𝑟)𝛿(|r − r′|) +∑
𝑙
𝑉l(r, r′) + Δ𝑉 SO

𝑙 (r, r′)L ⋅ S, (2.51)

with the local part given by

𝑉loc(𝑟) =
−𝑍ion
𝑟 erf ( 𝑟

√2𝑟loc
) + exp [−1

2 ( 𝑟
𝑟loc

)
2
]

⋅ [𝐶1 + 𝐶2 ( 𝑟
𝑟loc

)
2
+ 𝐶3 ( 𝑟

𝑟loc
)
4
+ 𝐶4 ( 𝑟

𝑟loc
)
6
] ,

(2.52)

where erf is the error function, 𝑍ion the ionic charge of the core (i.e. with-
out the charge of the valence elctrons).

The non-local part 𝑉l is given as

𝑉l(r, r′) =
3
∑
𝑖=1

3
∑
𝑗=1

+𝑙
∑
𝑚=−𝑙

𝑌𝑙 ,𝑚(r̂)𝑝𝑙𝑖 (𝑟)ℎ𝑙𝑖𝑗𝑝𝑙𝑗(𝑟 ′)𝑌 ∗𝑙,𝑚(r̂′), (2.53)

with the projectors 𝑝𝑙𝑖 being products of a polynomial and a Gaussian
function in both real and reciprocal space (dual-space) and 𝑌𝑙 ,𝑚 the spher-
ical harmonics.

A different solution than the use of PP to the issue of modelling the true
wave functions around the core is the use of separate grids. In a PW code
this can be resolved by replacing the plane-wave functions by a range-
separated basis, which uses a sum of products of radial functions again
with spherical harmonics inside a certain muffin-tin radius, and plane-
waves outside (the interstitial region). The radii are then chosen as big as
possible without overlap. This gives rise to the Full-Potential Linearized
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Augmented Plane Wave method (FP-LAPW)[35], as implemented for ex-
ample by SIRIUS, Exciting and Wien2k.

In a GPW code such as CP2K, one can use a conceptually similar ap-
proach of treating regions around atoms differently, keeping in mind
that only the density is expanded into PW, the Gaussian and Augmented
Planewave (GAPW) method [36–38]. In GAPW, the sharp variations
of the density close to the nuclei is captured on (radial) atomic grids,
while the smoothly varying density in the interstitial regions can be de-
scribed by a low amount of PW. The requirement for this is the ability
of separating the Hartree and XC functionals into independent global
and local contributions as proven possible in the Projector Augmented-
Wave method (PAW) approach by Blöchl [39]. For the local atom centred
representation one chooses again a projector basis based on Gaussians.
Despite that, by ensuring non-overlapping regions (and assuming contri-
butions by other centres are negligible), the cost of calculating the local
densities is system-size independent. Finally, even though there is a par-
titioning of space for consistency of the theory, no explicit boundaries
where functions have to match, as in the FP-LAPW approach, appear.
And, the GAPW method is not limited to All-Electron (AE) calculations
but can also employed together with PP for improved accuracy.

From the above, it becomes clear that any non-AE basis set depends on a
corresponding PP in terms of number of valence electrons. And since the
GTH-PPs depend on the functional used when obtaining their parame-
ters, so do thematching basis sets. Because basis sets are not transferable
between different computational methods (e.g. DFT and correlated wave
function methods) [40, 41], in this work we will investigate their trans-
ferability within the same rung of DFT.

Focusing on the basis functions primarily used in thiswork, we are quickly
looking at how the MOLOPT basis sets are constructed. They are gener-
ally (respectively fully) contracted[42] GTO basis sets with the general
form of

𝜑𝑗 = ∑
𝑖
𝑐𝑖,𝑗𝜒𝑖

𝜒𝑖(𝛼, 𝑛, 𝑚, 𝑙; 𝑟 , 𝜃 , 𝜙) = 𝑁𝑌𝑙 ,𝑚(𝜃, 𝜙)𝑟2𝑛−2−𝑙e−𝛼𝑟2 ,
(2.54)

meaning that the same exponents, respectively primitive Gaussians, are
shared across all contracted Gaussian functions forming the basis set,
with non-zero contraction coefficients. This is in contrast to minimal
and segmented basis sets, where contractions are carefully built based
on the anticipated representation of MOs, and diffuse Gaussians (small
exponents) are therefore often retained as single basis functions. Con-
sequently a double- or triple-𝜁 MOLOPT basis set again uses the same
exponents for the second and third contracted functions, but with differ-
ent contraction coefficients. Originally drafted as basis sets to be used
with PP, the MOLOPT basis sets contain cover only valence electrons
and must be used with matching PP. Starting at double-𝜁 they also con-
tain additional polarisation functions in the same way as the ** vari-
ants of the popular Pople 6-31G basis sets [43] (e.g. the polarisation
functions are not doubled/tripled), but again based on the full contrac-
tion instead, and denoted with a P suffix. The general series of con-
tractions in the MOLOPT basis sets is therefore: SZV (1s1p/1s), DZVP
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(2s2p1d /2s1p), TZVP (3s3p1d/3s1p), TZV2P (3s3p2d/s2p), and TZV2PX
(3s3p2d1f/3s2p1d) , whereas the newly optimised set evaluated in this
thesis only covers DZVP, TZVP and TZV2P.

The rational behind those decisions is based on the observations that for
DFT the computationally intensive task is the update of the density ma-
trix, which depends on the number of basis functions [44, 45], rather than
the primitives. More relevant are small basis set superposition errors
(BSSEs) and a small condition number1 of the overlap matrix to achieve 1: ratio of largest energy to the smallest

eigenvalue, directly affects the sparsity
and hence the performance of the over-
lap and matrices derived from it

stable optimisation. The latter is important since the usual techniques
of treating this problem is by removing eigenvectors belonging to small
eigenvalues, which may lead to discontinuities in the energy in either ge-
ometry optimisation ormolecular dynamics (MD) use cases as the system
evolves. The former can be alleviated by the addition of diffuse functions,
which also a requirement for the proper description of weak interactions
such as hydrogen bonding. It has been shown, that these highly con-
tracted MOLOPT basis sets satisfy all those criteria [46–49].

With the same primitives reused across basis functions, a final design
decision was then that larger basis sets extend their respective smaller
ones. E.g. by neglecting the third basis function of a TZVP basis for
each angular momentum, one ends up at the DZVP basis of the same
species. This makes it much easier to argue that larger basis sets extend
the quality of their respective smaller ones.

In contrast to the original MOLOPT procedure, the revised set follows
the even-tempered approach [50, 51] for selecting the exponents of the
primitive Gaussians. What this means is that rather than using 𝑁 inde-
pendent exponents, they are instead related via

𝛼𝑘 = 𝛼1𝜀𝑘−1. (2.55)

This greatly simplifies the non-linear optimisation procedure, but there
is also another aspect. The overlap of Gaussian primitives for the same
angular momentum only depends on the ratio of their exponents. If the
exponents are defined as in Equation 2.55 this means that the ratio be-
tween two adjacent primitives is exactly 𝜀. Not only that, but it can be
shown that “such a constant overlap will lead to even coverage of the
Hilbert space” [52].

The new AE variants of the MOLOPT basis sets follow the def2-SVP, -
TZVPP, -QZVPP contraction scheme [53, 54] instead.

The smaller number of basis functions is useful to reduce the size of the
density matrix important for DFT calculations. But the large number of
primitives becomes problematic for hybrid calculations inwhich theHFX
ERI must be calculated. This is due to the dependency on the primitive
Cartesian Gaussian functions as shown in Equation 2.50, whose number
is at least equal or even larger than the spherical ones [55]. Another
problem for HFX are the diffuse functions as they limit the application
of Schwarz-screening discussed in Section 2.4.1 and lead to significantly
larger number of quartets contributing.
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2.4. Periodic Hartree-Fock Exchange

One of the results of condensed matter theory is the realisation that in a
periodic system (e.g. a crystal) the solutions to the Schrödinger equation
– the wave functions – must satisfy the Bloch theorem, stating that they
can always be written as Bloch functions

𝜓k(r) = 𝑒𝑖k⋅r𝑢(r), (2.56)

with 𝑢(r) = 𝑢(r+R) being of lattice periodicity and R being a periodic cell
displacement vector. As a further consequence, the uniqueness of 𝜓k is
only guaranteed up to a displacement of a reciprocal lattice vector G

𝜓k+G(r) = 𝜓k(r). (2.57)

allowing us to restrict k to lie within the first Brillouin Zone (BZ). If we
are to introduce primitive vectors a1, a2, a3 such that

R =
3
∑
𝑖=1

𝑛𝑖a𝑖, (2.58)

with 𝑛𝑖 being integer numbers, spawns our Bravais lattice, we can also
define a set of reciprocal lattice vectors by

b1 = 2𝜋 a2 × a3
a1 ⋅ (a2 × a3)

, b2 = 2𝜋 a3 × a1
a1 ⋅ (a2 × a3)

, b3 = 2𝜋 a1 × a2
a1 ⋅ (a2 × a3)

(2.59)

in which to express k as

k =
3
∑
𝑖=1

𝑥𝑖b𝑖, (2.60)

with 𝑥𝑖 being real valued numbers, and the relationship a𝑖 ⋅ b𝑗 = 2𝜋𝛿𝑖𝑗
between the two basis.

Applying the Born-von Kármán (BvK) boundary conditions by defining
our crystal to consist of a finite number 𝑁 = 𝑁1𝑁2𝑁3 of primitive cells
such that 𝜓k(r + 𝑁𝑖a𝑖) = 𝜓k(r) then leads to

𝑒𝑖k⋅(r+𝑁𝑖a𝑖) = 𝑒𝑖k⋅r ⇒ 𝑒𝑖k⋅𝑁𝑖a𝑖 = 1 ∀𝑖 ∈ {1, 2, 3}, (2.61)

and thus

k =
3
∑
𝑖=1

𝑚𝑖
𝑁𝑖
b𝑖, (2.62)

with 𝑚𝑖 being integer numbers again. The reciprocal space can therefore
be sampled at a finite number of k-points given by the 𝑁𝑖.
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For our linear combination of atomic orbitals (LCAO) basis, this means
that the MOs are now dependent on k

𝜓𝑖(r; k) = ∑
𝜇
𝐶k𝜇𝑖𝜙𝜇(r; k) (2.63)

and are now in fact Crystalline Orbitals (COs).

Plugging those back into the HF Equation 2.18 then directly leads to

∑
𝜇
𝐹k𝜈𝜇𝐶k𝜇𝑖 = 𝜖k𝑖 ∑

𝜇
𝑆k𝜈𝜇𝐶k𝜇𝑖, (2.64)

with the important distinction that the integration for the overlap matrix
𝑆𝜈𝜇 and the Fock matrix 𝐹𝜈𝜇 is now over the space defined by the BvK
boundary condition.

While this is very convenient to evaluate in PW codes, for a GPW code
such as CP2Kwe need a real space formulation. The key to this is to start
from the atom centred functions 𝜑𝜇 in a reference unit cell and expand
them into a Bloch sum [56, 57]

𝜙𝜇(r; k) = 1
√𝑁

∑
R

𝑒𝑖k⋅R𝜑𝜇(r − R), (2.65)

which is essentially a discrete Fourier transform when taking Equation
2.62 into account. This satisfies the Bloch theorem in Equation 2.56, con-
sidering that the summation is in principle over infinite 𝑅.

Extending this to the overlapmatrix then let’s us define real space (neigh-
bour cell dependent) variants as

𝑆k𝜈𝜇 = ∑
R,R′

1
𝑁 ∫ 𝑒𝑖k(R′−R)𝜙⋆𝜈 (r − R)𝜙𝜇(r − R′)𝑑r

= ∑
Q=R′−R

1
𝑁 ∫ 𝑒𝑖kQ𝜙⋆𝜈 (r)𝜙𝜇(r −Q)𝑑r

= 1
𝑁 ∑

Q
𝑒𝑖kQ ∫𝜙⋆𝜈 (r)𝜙𝜇(r −Q)𝑑r

= 1
𝑁 ∑

Q
𝑒𝑖kQ𝑆Q𝜈𝜇 ,

(2.66)

and likewise for the density matrix, but with the integration taking place
over the Brillouin zone.

As a four-centre quantity, the same transformation becomes slightlymore
involvedwhen looking at the exchangematrix fromEquation 2.21, which
now reads as follows and where the expansion leads to additional sum-
mations over R1,R2,R3,R4 in the same way as the summation over R,R′
before:
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𝐹k𝜇𝜎 = −1
2 ∑
𝜈𝜆k′

𝑃k′𝜈𝜆 ∬𝜙∗𝜇(r1; k)𝜙𝜈 (r1; k′) 1
‖r2 − r1‖

𝜙∗𝜆(r2; k′)𝜙𝜎 (r2; k)𝑑r1𝑑r2

= − 1
2𝑁 2 ∑

𝜈𝜆k′
𝑃k′𝜈𝜆 ∑

R1,R2,R3,R4
𝑒−𝑖k(R1−R4)𝑒−𝑖k(R2−R3)

∬𝜙∗𝜇(r1 − R1)𝜙𝜈 (r1 − R2) 1
‖r2 − r1‖

𝜙∗𝜆(r2 − R3)𝜙𝜎 (r2 − R4)𝑑r1𝑑r2.
(2.67)

By translation symmetry of the crystal we can shift the entirety again
by R1 and introduce new displacement vectors Q, S,T instead, together
with the definition of the real space density matrix 𝑃Q𝜈𝜇 = 1

𝑁 ∑k 𝑒𝑖kQ𝑃k𝜈𝜇 ,
which then leads to the general expression for the exchange part of the
periodic Fock matrix of

𝐾T
x = −1

2 ∑
Q

∑
𝜈𝜆

𝑃Q𝜈𝜆 ∑
S
(𝜇0𝜈S | 𝜆T𝜎S+Q). (2.68)

Contractingwith the densitymatrix 𝑃𝜇𝜈 then leads to the periodicHartree-
Fock exchange energy

𝐸x = −1
2 ∑
𝑄,𝑇

∑
𝜈𝜆

𝑃𝑇𝜇𝜎𝑃𝑄𝜈𝜆 ∑
𝑆
(𝜇0𝜈𝑆 | 𝜆𝑇 𝜎𝑆+𝑄). (2.69)

When only taking the Γ point into consideration, the density matrix in
real space becomes the same for each periodic image, letting us simplify
the sum to

𝐸x = −1
2 ∑
𝜆𝜇𝜈𝜎

𝑃𝜇𝜎𝑃𝜈𝜆 ∑
𝑆,𝑄,𝑇

(𝜇0𝜈𝑆 | 𝜆𝑇 𝜎𝑆+𝑄), (2.70)

which is what prior to this work has been implemented in CP2K by
Guidon et al. [58]. Since the 4c-ERIs (𝜇0𝜈𝑆 |𝜆𝑇 𝜎𝑆+𝑄) do not depend on the
MOs which are being optimised in the self-consistent field (SCF) loop,
but only on the atom centre, they only have to be updated when the ge-
ometry changes, e.g. in a MD or geometry optimisation run. Together
with a precision truncation scheme, usage of symmetries and screening
at different levels of the calculation, this allowed implementation of an
in-memory and an on-disk cache between SCF cycles, speeding up the
calculation significantly.

Unfortunately, this caching implementation turns unfeasible for the gen-
eral k point case as the number of coefficients to store grows quadrati-
cally with the number of neighbour cells to consider, given that only the
sum over 𝑆 can be executed before contraction with the density matrix.

2.4.1. Screening

Reducing the number of ERIs to calculate is of utmost importance to keep
the calculations for larger systems tractable. In particular if HFX is to be
combined with DFT, which can scale quasi-linearly, an 𝒪(𝑁 4) scaling
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with the system size as derived in Equation 2.50 is undesirable. The abil-
ity to determine a-priori which integrals are significant is therefore key
to reducing the scaling. Since the Fock matrix 𝐹x is a contraction of the
density matrix 𝑃𝜆𝜈 with ERIs 𝐹𝜈𝜆 = ∑𝜇𝜎 (𝜇𝜈|𝜆𝜎), the selection of which
integrals to calculate based on their contribution – the screening – can
be based on either quantity.

For the integral screening on the ERI, themain idea is the (Cauchy-)Schwarz-
inequality

|(𝜇𝜈 | 𝜆𝜎)| ≤ |(𝜇𝜈 | 𝜇𝜈)|1/2 ⋅ |(𝜆𝜎 | 𝜆𝜎)|1/2, (2.71)

which holds for for any inner product. While the requirements for an
inner product like conjugate symmetry and linearity are fulfilled by the
integral definition, the positive definiteness has been shown by Roothaan
[59] for the Coulomb metric, while [60] have shown this to be rigorous
upper bound.

Togetherwith themaximumof the respective densitymatrix element ̄𝑃 =
max {|𝑃𝜇𝜆 | , |𝑃𝜈𝜆 | , |𝑃𝜇𝜎 | , |𝑃𝜈𝜎 |} we can then define an estimate, which when
smaller than a given threshold (named EPS_SCHWARZ in CP2K) leads to
a neglect of the integral in Equation 2.71:

EST = |(𝜇𝜈 | 𝜇𝜈)|1/2 ⋅ |(𝜆𝜎 | 𝜆𝜎)|1/2. (2.72)

This means by evaluating a subset of integrals, and continued application
of the inner product, one can obtain a hierarchy of screenings for:

1. pairs of basis functions belonging to the same atom (in fact their
atomic kinds) by evaluating their largest estimate,

2. sets of of Gaussian basis functions (a grouping based on equal an-
gular momentum) where again their maximum contribution is es-
timated,

3. and finally uncontracted primitive Gaussian functions (PGFs).

The buildup of large screening matrices can further be avoided by in-
stead calculating fitting parameters for a second-order polynomial for
the product of the co-densities at different distances

(𝜇𝜈 | 𝜇𝜈)(𝑟𝜇𝜈 ) = 𝑐2 ⋅ 𝑟2𝜇𝜈 + 𝑐0. (2.73)

2.5. The Auxiliary Density Matrix Method

In Kohn-Sham Density Functional Theory (DFT) the total energy of the
system

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝐽 [𝜌] + 𝐸xc[𝜌] + ∫ 𝑣(r)𝜌(r)𝑑r (2.74)

is defined as a functional dependency of the density



22 2. Theory

𝜌(r) =
𝑁𝑒
∑
𝑖=1

|𝜓𝑖(r)|2, (2.75)

with 𝑁𝑒 being the number of electrons in the system, and 𝜓𝑖(r) the (real-
valued) single particle wave functions. The terms in the total energy
denote (in that order) the kinetic, Hartree and exchange-correlation en-
ergies followed by the part from the external potential.

For a Hybrid DFT calculation, a fraction 𝛼 of the exchange energy 𝐸𝑥 of
the exchange-correlation potential 𝐸xc is replaced by the Hartree-Fock
exact exchange

𝐸hybrid
xc [𝜌] = 𝐸DFT

xc [𝜌] + 𝛼 (𝐸HFX
x [{𝜓𝑖}] − 𝐸DFT

x [𝜌])
= 𝐸DFT

c [𝜌] + 𝛼𝐸HFX
x [{𝜓𝑖}] + (1 − 𝛼)𝐸DFT

x [𝜌].
(2.76)

When using a LCAO as a basis set, the single-particle wave functions can
be written as

𝜓𝑖(r) = ∑
𝜇
𝐶𝜇𝑖𝜙𝜇(r) (2.77)

with 𝐶𝜇𝑖 the MO coefficients. From this, the Hartree-Fock exchange en-
ergy can be expressed as a functional of the density matrix

𝑃𝜇𝜈 = ∑
𝑖
𝐶𝜇𝑖𝐶𝜈𝑖 (2.78)

and two-electron four-centre electron repulsion integrals (4c-ERIs)

𝐸HFX𝑥 [𝑃] = −1
2 ∑
𝜆𝜎𝜇𝜈

𝑃𝜇𝜎𝑃 𝜈𝜆(𝜇𝜈|𝜆𝜎), (2.79)

With the matrix-matrix multiplication scaling as 𝒪(𝑁 3) of the number
of basis functions, the calculation of the HFX energy scales per Equation
2.79 as 𝒪(𝑁 4). We will shortly see that, while in periodic calculations
at the Γ-point sums of ERIs can be cached, effectively trading computa-
tion time with storage, the same trick can not be applied in the more
general K-point formulation. Reducing the basis set size or choosing a
basis with a larger minimal exponent to achieve a more rapidly decaying,
respectively sparser density matrix is, therefore, desirable to accelerate
the evaluation of the HFX energy. The Auxiliary Density Matrix Method
(ADMM) [61] solves this by introducing such an auxiliary density matrix
̂𝑃 ≈ 𝑃 . Together with the assumption that the difference in the exchange

energies calculated for the primary and the auxiliary density matrix (re-
spectively the corresponding density) between the DFT and the Hartree-
Fock exchange is small enough, we can rewrite the HFX energy for the
primary density matrix as
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𝐸HFX𝑥 [𝑃] = 𝐸HFX𝑥 [ ̂𝑃] + (𝐸HFX𝑥 [𝑃] − 𝐸HFX𝑥 [ ̂𝑃])
≈ 𝐸HFX𝑥 [ ̂𝑃] + (𝐸DFT𝑥 [𝜌] − 𝐸DFT𝑥 [ ̂𝜌]) .

(2.80)

While there are multiple ways to construct such an auxiliary density ma-
trix ̂𝑃 , we are restricting ourselves to the ones constructed by introducing
an auxiliary basis set ̂𝜙𝜇(r) to express the wave function

̂𝜓𝑖(r) = ∑
𝜇
�̂�𝜇𝑖 ̂𝜙𝜇(r), (2.81)

which directly leads us to an auxiliary density matrix

̂𝑃𝜇𝜈 = ∑
𝑖
�̂�𝜇𝑖�̂�𝜈𝑖. (2.82)

The MO coefficients �̂�𝜇𝑖 can be determined by minimising the square
difference for the occupied wave functions expressed in the auxiliary and
primary basis set:

min
�̂�

∑
𝑗
∫(𝜓𝑗(r) − ̂𝜓𝑗(r))

2 𝑑𝑟 . (2.83)

With the overlap matrices for the auxiliary basis and the one between
the auxiliary and primary basis

̂𝑆𝑛𝑛′ ≔ ∫ ̂𝜙𝑛(r) ̂𝜙𝑛′(r)𝑑𝑟 and 𝑄𝑛𝑚 ≔ ∫ ̂𝜙𝑛(r)𝜙𝑚(r)𝑑𝑟 (2.84)

we can write the solution for the auxiliary MO coefficients subject to the
minimising Equation 2.83 as

�̂� = ̂𝑆−1𝑄⏟
≕𝐴

𝐶 (2.85)

Additional constraints – like the required orthonormality – can be inte-
grated in Equation 2.83 using Lagrange multipliers:

min
�̃�

[∑
𝑗
∫(𝜓𝑗(r) − ̂𝜓𝑗(r))

2 𝑑r +∑
𝑘,𝑙

Λ𝑘,𝑙 (∫ ̂𝜓𝑘(r) ̂𝜓𝑙(r)𝑑r) − 𝛿𝑘𝑙] . (2.86)

Which yields the solution

�̃� = �̂�Λ−1/2 = �̂�(�̂�𝑇 ̂𝑆�̂�)−1/2. (2.87)

The density matrices required for the HFX energy are therefore analogue
to Equation 2.78 given by
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̂𝑃 = �̂��̂�𝑇 = 𝐴𝑃𝐴𝑇

̃𝑃 = �̃��̃�𝑇 = �̂�Λ−1�̂�𝑇 (2.88)

The total energy of the system can be written as a sum of the energy
depending on the primary design matrix 𝐸[𝑃] and one depending on the
auxiliary matrix �̃�[ ̃𝑃]:

𝐸total = 𝐸[𝑃] + �̃�[ ̃𝑃]. (2.89)

For the final Kohn-Sham matrix, this then means that it too can be ex-
pressed by a simple sum of the original and projected auxiliary Kohn-
Sham matrices

𝐾total = 𝐾[𝑃] + 𝐴𝑇 �̃�𝐴. (2.90)

The ADMM implementation in which the auxiliary density matrix is
obtained by solving the optimisation in Equation 2.83 is referred to as
ADMM2 or non-purified wavefunction fitting, the one based on Equation
2.86 yielding orthonormal orbitals ADMM1, or purified wavefunction fit-
ting).

A third variant ADMM3 can be derived for systems where the density
matrix is blocked due to the physical setup, i.e. where the system can be
divided into subsystems and most of the significant exchange between
those subsystems is captured by theGGA functional. In this case one can
express the auxiliary density matrix as the Hadamard product (𝐴 ∘ 𝐵)𝑖𝑗 =
(𝐴)𝑖𝑗(𝐵)𝑖𝑗 of the original density matrix and a blocking matrix

̊𝑃 ≔ 𝑃 ∘ 𝐵, (2.91)

with 𝐵𝑖𝑗 ∈ {1, 0}, and thus setting coefficients corresponding to inter-
subsystem interaction to 0.

The term purification refers to the fact that a regular or pure density ma-
trix is symmetric, idem-potent and conserves the number of particles:

𝑃 = 𝑃𝑇 ,
𝑃𝑆𝑃𝑆 = 𝑃𝑆,
tr(𝑃𝑆) = 𝑁𝑒 ,

(2.92)

which is naturally only the case for ADMM1. For ADMM2 however one
can recover the ADMM1 pure density matrix with the purification algo-
rithm by McWeeny [62], here given in its original form

̄𝑃𝑛+1 = 3 ̄𝑃𝑛𝑆 ̄𝑃𝑛 − 2 ̄𝑃𝑛𝑆 ̄𝑃𝑛𝑆 ̄𝑃𝑛,
̃𝑃 ≔ lim𝑛→∞

̄𝑃𝑛, (2.93)

with ̄𝑃0 = ̂𝑃 as initial guess. It also exists in a Cauchy integral form
instead, which permits to formulate it directly as a function of the non-
purified density matrix [61, 63].
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Since the density matrix ̃𝑃 of ADMM1 can not be calculated directly from
the original 𝑃 , theADMMQ and its variationsADMMS andADMMP have
been developed [64]. The main idea being to directly enforce the charge
conservation by modifying the Lagrangian from Equation 2.86 to forgoe
the orthogonality in lieu of an overall charge constraint 𝑁𝑒 . This results
in an ADMM where the resulting auxiliary density matrix satisfies all
but the idem-potency and where the density matrix is directly related to
the one from ADMM2 via a scaling coefficient 𝜉

𝑃𝑄 = 𝜉 ̂𝑃
𝜉 = tr(𝑃𝑆)

tr( ̂𝑃 ̂𝑆)
.

(2.94)

The unmodified ADMMQ has the issue of exhibiting a different effective
scaling for the exact andDFT exchange energy in Equation 2.80, resulting
in a larger deviation of the total energy compared to ADMM2, depending
on the functional. The remedy in ADMMS is to directly counter this dif-
ference by rescaling DFT energy contribution but otherwise maintaining
the scaled projected density from ADMMQ. ADMMP on the other hand
assumes the functional being used to be Local Density Approximation
(LDA) (or LDA being a good enough first-order approximation of the em-
ployed functional), permitting to factor out 𝜉 2 from both exact and DFT
exchange energy. As Merlot et al. [64] already mentioned, applying the
McWeeny transformation on top of ADMMQ (and by extension ADMMS,
ADMMP) is indeed possible, but brings back the non-trivial dependence
of the auxiliary density matrix on the full one.

It should also be noted that in any case the auxiliary orbitals obtained are
not directly connected to the primary ones in a physical sense, i.e. the
resulting energy eigenvalues may be different. This is particularly the
case for the purified variant which should subsequently not be used for
calculation of band gaps where correct orbital energies are relevant.

The concrete choice of the functional has been intentionally left out of
the initial definition in Equation 2.80, other than the requirement having
to be of the GGA type to capture the necessary interactions. A natural
choice – and the default in CP2K – is be the PBE Exchange functional,
adapted to the interaction potential used for the ERI in the respective
HFX calculation itself. Other popular choices are either the full PBE, the
OPTX [65, 66] or the B88 [28] Exchange functionals.

2.6. k-point-enabled Hartree-Fock Exchange
for ADMM

Finally we are going to extend the ADMM approximation to a k-point
dependent density matrix. As the density matrix 𝑃𝜇𝜈 depends on the
MO coefficients 𝐶𝜇𝑖 the extension of ̂𝑃 to the periodic case at the same
k-points as the density matrix for the full basis becomes

̂𝑃k𝜇𝜈 = ∑
𝑖
�̂�k𝜇𝑖�̂�k𝜈𝑖. (2.95)



26 2. Theory

Where �̂�k𝜇𝑖 is given by

�̂�k = ̂𝑆−1k 𝑄k⏟
≕𝐴k

𝐶k (2.96)

with ̂𝑆k and 𝑄k being the reciprocal space pure auxiliary basis and mixed
basis overlaps from in Equation 2.84 written in a similar way as the over-
lap matrix 𝑆 of the full basis from Equation 2.66,

̂𝑆k𝑛𝑛′ = ∫ ̂𝜙𝑛(r; k) ̂𝜙𝑛′(r; k)𝑑𝑟 ,

𝑄k𝑛𝑚 = ∫ ̂𝜙𝑛(r; k)𝜙𝑚(r; k)𝑑𝑟 ,
(2.97)

and then expanding 𝜙𝑘(r; k) into a Bloch sum with consistent cell dis-
placements.

Given the linearity of this transformation for each of required quanti-
ties, this means that the full ADMM fitting procedure for ADMM2 can
be done straight forward in real space (e.g. for each of the neighbours
R), after Fourier transformed real-space density matrices have been ob-
tained. By extension this also applies to the ADMMQ variations ADMMS
and ADMMP mentioned in the preceeding section.

ADMM3 on the other hand may not be properly defined, since it relies
on the notion of being able to define subsystems based on some physical
property. While this makes sense for the primary unit cell, it becomes
difficult to reason the same holds true for a density matrix 𝑃R𝜈𝜇 which
depends on an additional cell displacement vector. Whether or not the
original blocking matrix should be reused for displacements beyond the
Γ-point, is therefore unclear. Furthermore ADMM3 relies on the sparsity
of the density matrix, something which comes not as easily for the solid
state case where k-points are being used in particular.

While the orthonormality-constrained ADMM1 would be properly de-
fined, it is much more complex and would require a minimisation pro-
cedure to determine the Lagrangian coefficients in each SCF step and for
each k-point. Hence it stands to reason whether an implementation is
computationally reasonable. In particular since with ADMMS a similar
or better performing variant of ADMM is available, which is computa-
tionally less expensive [64].

It must be noted that care must be taken when it comes to building the
list of neighbour cells to consider in the calculation: Due to the different
reach of the primary and the auxiliary basis sets, the larger of both lists
must be applied consistently for both sets.

Finally, we would like to point out that while density fitting approaches
for periodic k-point-sampled HFX with atom-centred GTO have been
implemented for example in Patterson [67], ADMM differs from this ap-
proach by employing the auxiliary basis not only for the expansion of the
ERI, but also for the calculation of the DFT correction term in Equation
2.80.



Implementation 3.
3.1. The revised MOLOPT protocol for Basis Set

and Pseudopotential generation

Unless otherwise noted, we have used newly generated GTH PP for all
non-all-electron calculations, and a new family of GTO basis sets for all
CP2K calculations. As they have not been formally published before, we
are giving some overview of the generation procedure and their general
properties, here where not already covered by Section 2.3.

The MOLOPT PP are norm-conserving separable dual-space Pseudopo-
tentials as shown in Equation 2.51 and Equation 2.53, but with neglected
spin-orbit part, i.e.

𝑉l(r, r′) =
3
∑
𝑖=1

3
∑
𝑗=1

+𝑙
∑
𝑚=−𝑙

𝑌𝑙 ,𝑚(r)𝑝𝑙𝑖 (𝑟)ℎ𝑙𝑖𝑗𝑝𝑙𝑗(𝑟 ′)𝑌 ∗𝑙,𝑚(r′). (3.1)

This means they contain all scalar parts of the relativistic PP, but not
more.

Their generation followed the same procedure as the previously pub-
lished GTH potentials by Krack [68], which involves fitting of the lo-
cal and non-local coefficients 𝑟loc, 𝐶𝑖 and ℎ𝑖𝑗 𝑙 (see Equation 2.52) against
atomic scalar-relativistic AE calculations. The pseudopotentials were
generated up to Radon and are included in the file POTENTIAL_UZH of the
CP2K software package. As mentioned before, the dual-space PP have
a dependency on the DFT functional being used during optimisation.
Therefore three sets of PPwere generated, for the functionals PBE, SCAN
and PBE0 as representatives for GGA,Meta-GGA andHybrid functionals.
Following the discussion about the the split into valence and core elec-
trons, for several elements one more semi-core PP have been generated.
This includes all the alkali, as well as all elements starting from Scan-
dium onward. The reference wave functions were generated using the
CP2K integrated ATOM code within KS-DFT, and a third-order Douglas-
Kroll Hamiltonian [69, 70]. For the optimisation, Powell’s method [71]
was employed with a target accuracy of 0.003 eV for valence, semi-core
and virtual state eigenvalues.

The procedure for generating the accompanying basis set family has been
slightly altered compared to the previously published MOLOPT basis
sets [46] as explained in Section 2.3. While the basis set family covers
all chemical elements up to Rn as well, not all semi-core configurations
have been included. The new valence basis set family (DZVP, TZVP,
TZV2P) is therefore released as a revision and extension of the existing
MOLOPT basis set family. As with the PP, the basis sets have been op-
timised with the three functionals PBE, SCAN and PBE0 as representa-
tives for GGA, Meta-GGA and Hybrid functionals, as can be seen from
their aliases. They are included in the CP2K package in the file BASIS_-
MOLOPT_UZH.
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Figure 3.1.: Number of molecules from
the SMDB covering an individual ele-
ment.
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The contraction schemes for the all-electron variants (SZV, TZVPP, QZVPP)
follow theAhlrichs def2 [53] basis sets and are available for usewith GGA
functionals (obtained with PBE) and with the GAPW method. Their op-
timisation scheme followed the same protocol outlined below.

First, as a reference set of molecules, the database published by Weigend
and Ahlrichs [53] – in the following referred to as the Small Molecules
Database (SMDB) – was used. This database covers most of the periodic
table Figure 3.1, except for the Lanthanides, and ensures optimising the
basis set for use within a molecular environment rather than just an iso-
lated atomistic one. For elements not (sufficiently) covered by the SMDB,
in particular the noble gases, the set of structures was augmented by sin-
gle atomic systems.

The reference calculations were done with sufficiently large and fully un-
contracted basis sets obtained from atomistic calculations with the ATOM
code contained in CP2K.

Secondly, for the optimisation procedure, the new (to be optimised) basis
was treated as an auxiliary basis set for the uncontracted one in the same
way as an ADMM auxiliary basis for the primary basis set. The optimi-
sation procedure then involved simultaneously maximising the overlap
and minimising the condition number, as well as the difference in the
generated electronic densities.

While the optimisation relied on the SMDB for the selection of molecu-
lar systems to obtain reference calculations, it must be stressed that this
part of the optimisation procedure did not aim for reproduction of any
particular quantity other than the generated density itself.

3.2. The FLexible Automated Testing MANager

Orchestrating thousands of calculations while maintaining reproducibil-
ity and load balancing across different systems is a complex problem,
as the vast number of available workflow managers illustrates [72], of
which many target data science or bioinformatics in particular. Adap-
ating such a workflow manager is possible, but as the integration with
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AiiDA later in this chapter shows, requires much adaption to generate
input for or parse output from electronic structure codes while making
structures and parameter sets, like basis sets or pseudopotentials, trace-
able. In the realm of materials science, available codes are Python ASE
– which gained workflow capabilities rather recently –, AiiDA and py-
matgen, with an additional number of more specialised solutions. Some
larger computational materials science consortia concerned with high-
throughput calculations and computational studies have setup online
data sharing platforms, like Materials Cloud1, Materials Project2, NO- 1: https://www.materialscloud.

org/

2: https://materialsproject.org
MAD3 and AFLOW4. While some of them existed when this project

3: https://nomad-lab.eu/
4: https://aflow.org/

started, many of them were still heavily in flux, had or still have a dif-
ferent focus, and were, as such, not directly usable for our purpose or
required extra infrastructure for the deployment.

In particular, we needed the following functionality covered:

▶ Explicit management of parameters like pseudopotentials and ba-
sis sets, including different versions of a basis set or pseudopoten-
tial in the same family as they are being tested and had to be occa-
sionally reoptimised.

▶ Integration of unmanaged computes nodes (e.g. without a queue-
ing manager like SLURM or PBS) is crucial to incorporate local
resources in high-throughput calculations.

▶ Load balancing over multiple single nodes to employmultiple local
disconnected compute nodes.

▶ Integration of computing centres with queueing systems to accel-
erate calculations for structures with a high number of basis func-
tions.

▶ Asset tracking (in- and output) across all calculations for repro-
ducibility across compute nodes and code versions.

▶ Templating of input configurations for CP2K.

Some of the required features, like the asset tracking (Data Provenance),
would have been already covered by domain-specificworkflowmanagers
like AiiDA [73] when the project started. Others, like the load balancing
across multiple disconnected nodes, are still not natively supported in
their latest version [2] but would be achievable with additional plugins,
some of which we have implemented as part of this work.

This has led us to develop the lean custom workflow management sys-
tem “FLexible Automated Testing MANager” (FLATMAN), specifically
tailored to testing computational chemistry parameters like basis sets
and pseudopotentials. Given that many computational chemistry or ma-
terials science tools arewritten in Python, including the prominent Python
ASE [74], the AiiDA workflow tool, and the pymatgen library [75], we
followed the same direction and chose Python as the primary language.
By an ongoing collaborationwith the AiiDA community we ensured that
components developed for FLATMAN could be reused in AiiDA or as
standalone tools independently of FLATMAN to foster a growing soft-
ware ecosystem around the CP2K software package. An excellent exam-
ple of a similar endeavour for the Abinit code is the AbiPy 5 package, 5: https://github.com/abinit/

abipywhich has been instrumental for the setup ofmany high-throughput anal-
yses, such as a large-scale validation study for GW [76].

https://www.materialscloud.org/
https://www.materialscloud.org/
https://materialsproject.org
https://nomad-lab.eu/
https://aflow.org/
https://github.com/abinit/abipy
https://github.com/abinit/abipy
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3.2.1. Architecture

The basic architecture of FLATMAN is based on the client-server model,
with a communication protocol based on Representational state transfer
(REST) [77] over encrypted HTTP with the JavaScript Object Notation
(JSON) file format as the data interchange format. As a direct conse-
quence must the web-, respectively, the application-server running the
FLATMAN Application Server be accessible by all clients. This is illus-
trated in Figure 3.3.

newstart

pending

cancelled

deferred

running

done

error

allocation

manual upload

Figure 3.2.: Lifecycle of (calculation)
tasks within FLATMAN. Deferring a
task can prevent it from being run mo-
mentarily, but it is also used for import-
ing already-run calculations for further
processing. The transition from new to
pending is used for nodes to allocate
tasks to be run. The running state is syn-
chronized with that of a workload man-
ager (if used).

For task distribution over single compute nodes (as available in many lab
setups), the easiest principle we found was a single task queue of jobs
with each node running a worker (in FLATMAN called runners) picking
tasks from that queue in a First In First Out (FIFO) order. Sites with
workload managers like SLURM can be easily integrated by running a
separate runner targeting that queuing manager and using a specific ac-
count for submission. And although not implemented, this same princi-
ple could be used to push jobs to sites from which the FLATMAN Ap-
plication Server is not accessible, lifting the restriction of the FLATMAN
Application Server having to be publicly available. To avoid a runner
fetching jobs it can not run (e.g. due to missing code setup), jobs can be
restricted to certain hosts and users, with the runners having to submit
their hostname and the credentials of the FLATMAN user when request-
ing a new job from the task queue.

As typical in a RESTful architecture, the clients – including the FLATMAN
runners – are mostly stateless with the task state tracked on the server
as illustrated in Figure 3.2. By tracking the activity of runners by host-
name and monitoring the task queue, interrupted runners (for example,
due to node failures) can be easily determined and their work resched-
uled. While this does not allow more complex automated error recovery
as can be achieved with a more general solution like the work chains in
AiiDA, this design has proven quite resilient to intermittent node failure
while achieving a good task distribution over heterogeneous compute
nodes and sites.

The stateless architecture of the clients also requires that most of the out-
put data processing occurs on the server side. Since this data processing,
which involves output parsing as well as fitting procedures, can be time-
consuming in terms of HTTP requests, this work is controlled by using
a separate task queue managed by Celery6 as illustrated in Figure 3.46: https://celeryproject.org

and can be scaled as needed by adding more workers. The drawback of
such a solution is that FLATMAN Workers (subprocesses started by Cel-
ery) must contain explicit support for each test type. In contrast to an
architecture like AiiDA, where a code plugin contains the code to parse
its code’s output and parsing is done when fetching the output from the
remote side (and that data node becoming immutable), FLATMAN al-
lows regenerating results from the original as needed. The architecture
makes use of the possibility to specify dependencies and event listeners
in the Celery task queue such that a forced refresh of the parsed data
automatically leads to the regeneration of dependent values, such as a
Birch-Murnaghan equation of state fitting procedure to obtain an equi-
librium volume and bulk modulus. This allowed us to add additional
code output parsers (like the one to parse condition numbers from the
CP2K output) later in the project or improve our existing parsers without

https://celeryproject.org
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FLATMAN Service

Remote

User PC HPC Login Node/Single Server

HTTP

uWSGI

WSGI

FLATMAN Application Server

PostgreSQL Redis

FLATMAN Task Runner FLATMAN Web Application

FLATMAN Command Line Interface Browser FLATMAN Runner Daemon

via Celeryvia Celery
static file

serve

Figure 3.3.: FLATMAN software com-
ponents and their dependencies. Items
set in italic are off-the-shelf components.
The FLATMAN web application can be
served by the same server, which in turn
uses the Javascript XMLHttpRequest
method to make a request to the
FLATMAN REST API served by the
FLATMANApplication. While some code
is shared between the Worker and the
Application Server, the communication
between them is strictly asynchronous
via Celery, which in turn uses Redis as
its backend.

having to rerun calculations or having to resort to more complex caching
mechanisms.

To verify the format of the JSON data in the communication and parse
additional data (query parameters, extra HTTP headers) in the requests,
a serialization/deserialization schema using the webargs and marshmal-
low7 packages were used, with the venerable Flask8 web development kit 7: https://marshmallow.

readthedocs.io/

8: https://flask.palletsprojects.
com/

to implement a WSGI-compatible application served by uWSGI9. Strict

9: https://uwsgi-docs.
readthedocs.io

use of database transactions have been implemented to ensure data in-
tegrity. When a runner allocates a task (e.g. a task is set to pending), files
need to get generated and corresponding database records stored. Only
when all succeed is the whole transaction committed. This transactional
functionality is provided by the underlying PostgreSQL SQL Database
Management System (DBMS) and made readily accessible within Python
by the Object Relational Mapper (ORM) of SQLAlchemy10. While inter- 10: https://www.sqlalchemy.org/

mittent failures mean that files are temporarily stored in the data direc-
tory which lack a reference in the database These can easily be cleaned
out by a periodic task pruning orphaned files. On the other hand it can
never occur that a database entry is created with missing files, which we
consider much more important. This improves robustness significantly,
while allowing us to keep the database and data tree compact.

The web frontend (FLATMAN Web Application) is written as a Single
Page Application (SPA) in TypeScript with the Angular11 web frame- 11: https://angular.io/

work. It uses the same RESTApplication Programming Interface (API) as
the FLATMAN runners and the command line client (CLI) to get the data
from the application server. Such an architecture avoids a divergence
in functionality between the different interfaces and forces proper asyn-
chronous task management on the server side to avoid blocking requests.
However it requires synchronisation of the front- and backend-code to
be able to give the user early feedback on input validation. With the
web-interface implemented mainly for browsing, this could be kept min-
imal.

https://marshmallow.readthedocs.io/
https://marshmallow.readthedocs.io/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://uwsgi-docs.readthedocs.io
https://uwsgi-docs.readthedocs.io
https://www.sqlalchemy.org/
https://angular.io/
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Figure 3.4.: Sequence diagram of the
FLATMAN calculation output upload
on the user’s behalf by either the
command line interface (CLI) or the
fdaemon service to generate a test
result (Δ-test, GW100). The calls to
Celery/Redis from the application are
done asynchronously and are linked:
Only if the function execution of
generate_calculation_results in
the context of the FLATMAN Worker
succeeds, will Celery schedule the execu-
tion of generate_test_result. Only
the initial call and the link are specified
in the FLATMAN Application context.
Also, the execution of the functions
generate_calculation_results,
generate_test_result and
generate_test_result_<X> do
not have to be run by the same worker
but can be executed by any of the work-
ers in the worker pool. By locking the
database for an update, the execution of
the actual test result generation (consist-
ing of a fitting procedure and database
record generation) is serialized.
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3.3. Comparison of automation approaches

In this work, we have implemented three different methods of calcula-
tion automatisation: With the bespoke workflow management solution
FLATMAN, the more general but materials science specific AiiDA and a
manual approach using CP2K preprocessor directives. The Δ-test values
for the previously published MOLOPT basis sets [1, 46] as well as prelim-
inary results for the SMDB have been obtained with FLATMAN. At the
same time, AiiDA has been used for running the Δ-test with the revised
MOLOPT basis sets, and the CP2K preprocessor directives approach was
used for the molecular database calculations.

With hundreds of available workflow projects, as we uncovered in a re-
cent survey [72], the development of any new general-purpose workflow
management system must be met with scrutiny. As already observed
by da Silva et al. [78], workflow management tools are often spun out
of scripting frameworks already in use in a workgroup, rather than de-
veloped from scratch. Gradually adding additional features which may
cover features otherwise found in full-fledged workflow management
tools is from that perspective then only part of the progress to satisfy
immediate needs. In particular, since often thought-after features such
as running commands or copying data are easily implemented in any
scripting language, if only a very limited number of methods must be
supported (e.g. only running calculations directly via mpirun). In con-
trast, many general purpose workflow managers for High-performance
computing (HPC) have a rather steep learning curve due to the higher
abstraction, or non-negligible setup cost, and are often coupled with
nomenclature likely foreign to a domain scientist [79]. General-purpose
workflow managers often lack support for tools and applications used
in a scientific domain, increasing the initial cost of adoption. After that
initial hurdle though, they quickly start to outpace bespoke frameworks
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since they often provide rich ecosystems of plugins (such as the AiiDA
registry 12) and support for various transport mechanisms and workload 12: https://aiidateam.github.io/

aiida-registry/managers (SLURM, PBS, etc.). But if bespoke frameworks are developed
in a way such that their components are reusable components, as in the
design of FLATMAN, which now shares code with the AiiDA CP2K plu-
gin and other tools, transitioning between the two paradigms as-needed
becomes easier.

While this work shares many characteristics with the high-throughput
efforts mentioned above, its immediate goals are different. While differ-
ent model systems are calculated, we are mainly interested in the evalua-
tion of the codes (CP2K, SIRIUS) and their respectively calculation param-
eters (basis sets, pseudopotentials, functional). More explicitly stated, we
are not varying the structures under investigation for the same parame-
ter set, but we are varying the parameters for the same structures. This
directly implies that the database (the molecular or solid-state descrip-
tion) remains largely unchanged over the course of the project. Instead,
it must be expected that manual adjustments to parameters are required
more frequently in the initial stage of such a project. This covers both
parameters applied to all calculations in a test, like the calculation of
initial magnetisation parameters or reference cells, as well as system-
specific corrections. In a suitable workflow system, the possibility of
quickly iterating between modifications of the templating engine (tak-
ing the abstract input parameters, a specification of the physical system,
and a description of the target machine on which to run the workload) is
therefore crucial. The templating engine itself must be flexible enough to
allow the specification of custom rules to make per-system parameters
possible in the first place. An a-posteriori connection between the ab-
stract input, the generated input for the code, and the output of both the
electronic structure code and the fitting procedure must be establishable
for publication. Another important feature is the efficient usage of avail-
able resources, which can vary over the course of such a project from
local compute nodes to running on clusters and mixed environments. Fi-
nally, it must be assumed that codes have many failing modes, requiring
proper output parsing to detect them properly. Any workflow manager
relying on caches to determine whether to rerun calculations must be
able to determine whether a calculation has finished correctly.

CP2K preprocessor directives Relying purely on the CP2K preproces-
sor and a small number of scripts (shell scripts, GNUMakefiles) can avoid
any friction introduced by intermediate layers like templating layers. It
allows for quick iteration between running codes and adjusting runtime
parameters. It is suitable for calculations running onmostly onemachine
and where calculations can be assumed to be robust enough to succeed.
The drawback of this approach is that one must manually track reruns
in case of changed parameters (including basis sets) and overall progress
itself. Distribution of the work on multiple compute nodes must be done
manually unless a workflow manager specialised only in task distribu-
tion is introduced at this point. This incurs the least upfront cost while
shifting most of the required time to manual a-posteriori evaluation of
the output.

https://aiidateam.github.io/aiida-registry/
https://aiidateam.github.io/aiida-registry/
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Bespoke workflowmanager FLATMAN This approach had the advan-
tage of combining much of the simplicity of the simple scripting ap-
proach above with a high degree of automation, enabled by the design of
FLATMAN. It allows for both manual single runs making it possible to
inspect automatically generated code input and trial runs, and fully auto-
mated load-balanced task distribution across single node instances and
workload manager (SLURM) driven supercomputing centres. The task
queuemodel permits automated parameter fitting as soon as enough data
is generated and live status overview to detect sudden systematic errors
early. It still has limited retry capabilities in case of intermittent failures,
yet the task pull architecture limits the effect of such failures. Automated
reruns due to changed parameters must still be done manually and thus
require careful tracking of changes. The drawback of this approach was
clearly the time required for development of basic facilities and exten-
sions, even if a large part of it could be salvaged by the component based
architecture.

AiiDA with CP2K and custom workflow plugins The AiiDA work-
flow manager provides facilities for automated task submission to vari-
ous types of computing resources. It features strong provenance tracking
allowing for graph-assisted tracking of input parameters to output data
and automated export and publishing capabilities to the Materials Cloud
project. While this resolves various tedious tasks around running calcula-
tions, additional plugins are needed to handle other aspects. An extended
version of the aiida-cp2k plugin and a separate data plugin were devel-
oped to manage GTO basis sets and pseudopotentials. Relying solely on
the built-in file data plugin was not possible as this would track basis sets
and pseudopotentials only via implicit code parameters and file content,
requiring either manual tracking of calculations to rerun in the case of
updated basis sets or having to avoid rerunning unaffected calculations
due to the changed file contents. This is due to how the caching of calcu-
lations within AiiDA works: based on changes in the input AiiDA deter-
mines whether a calculation step needs to be rerun (and which generates
new output nodes) or whether the existing output nodes can be reused.
If all calculations were to use the same data file, an update or extension to
this file would trigger AiiDA to rerun all calculations using this data file
if the workflow were to be called again. Another restriction imposed by
the architecture of AiiDA is using specific resources for a single work-
flow rather than distributing tasks onto available resources at runtime.
E.g. a code node is always directly tied to a computing resource. Hence
the computing resource being used is determined for all sub-workflows
and steps at the beginning of a workflow, together with the code. Load-
balancing over different computing resources, therefore, must be done
externally to the workflow. The immutability of the code or compute
nodes requires a manual restart of whole workflows, in case of changes
to the compute or code configuration. This invalidates any already run
single-point energy calculation and requires them to be rerun in such
an event. Therefore, the implemented workflow in the forked aiida-cp2k
plugin still requires explicit specification of the chemical element to run
the Δ-test workflow for, with the iteration over elements having to be
scripted separately. While this separate scripting was also used as an
opportunity for load-balancing on the level of model systems, it partially
defies the point of workflow automation. A workflow management sys-
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tem should be efficiently usable beyond final benchmark runs. A final
point in which the caching failed was the parsing of code output. The ex-
perimental nature of our protocol again influenced this and is unlikely to
occur in a setting where the focus is on the simulated systems instead. In
our case, we encountered many cases where the code (CP2K and SIRIUS)
could not converge but also did not return proper error codes due to in-
termittent failures (e.g. compute node errors, scientific libraries). Such
cases AiiDA (together with the present version of the aiida-cp2k plugin)
considered successful runs, requiring time-consuming post-processing
and analysis, followed by manually invalidating (e.g. deleting) affected
calculations.

This comparison hopefully also illustrates how quickly the complexity of
running seemingly simple tasks can increase. If strong data provenance
is required or complex workflows must be orchestrated, a fully-fledged
workflow manager like AiiDA has a clear advantage. Its current limita-
tions considering task distribution make it difficult to be used in mixed
computing environments and projects where the object under investi-
gation is the code rather than the simulated system. Automation via
code-provided tools (like the CP2K preprocessor definitions to include
shared definitions) has the advantage of being easily accessible to any
domain specialist, which is the intended audience in a project like ours.
Combining this with a workflow manager to automate the process of
task distribution (including up- and download to computing centres) will
likely solve most issues. And in our case, the modular development of
the FLATMAN components has proven invaluable.

3.4. CP2K Input Tools Python Package

While runningCP2K calculationswith the twoworkflowmanagers FLATMAN
introduced in Section 3.2 and AiiDA [73], a common challenge emerged:
validating, converting and importing CP2K input configuration. When
running high-throughput calculations, a scientist will eventually use the
workflow tools and language – in the example of AiiDA, the Python lan-
guage and its dictionary syntax or YAML in the protocols, for FLATMAN,
a JSON representation – to write the CP2K input as part of their larger
workflow. But more often than not, scientists will already have some
CP2K configuration they would like to run via a workflow manager like
AiiDA or FLATMAN or use as a template for a new project with a work-
flow management tool. Furthermore, CP2K writes its restart files in the
same input format, making it possible to parse output data from it, given
a CP2K input format parser. And last, tools which integrate CP2K as
part of their workflow (e.g. as a force calculator) must be able to parse
a CP2K input file to obtain required data like the cell information and
then generate modified CP2K input files. An example of this class of ap-
plications is Phonopy [80], where the user specifies an input file of their
code, and Phonopy will generate derived inputs for single site displace-
ments to obtain the forces. For codes where the geometries are easily
parseable because they are either in a specific place of the input configu-
ration with a limited syntax variability (Quantum-Espresso) or even kept
in a separate file (PODCAR) this is an easy enough task, but CP2K offers
a much richer syntax when it comes to its input configuration which is



36 3. Implementation

readily exploited by its users and thus requires greater care when pars-
ing. A pure-Python package that can parse the CP2K input configuration
and different data files like the basis set and pseudopotential formats is,
therefore, crucial for the continued support of CP2K in the expanding
quantum chemistry and material science software ecosystem.

The overall design of the input parsing framework is shown in Figure
3.5. A layered approach has been taken, using Python iterators exten-
sively to separate the different parsing tasks and to avoid extra copies
of data structures. CP2K also features a preprocessor which allows for
including other files, conditional blocks and variable assignments. The
CP2KInputTokenizer class responsible for parsing a single configura-
tion key is a state machine, making the whole architecture a one-pass
parser which uses a stack to track any preprocessor variables and state,
building a kind of syntax tree of the input configuration. Implementa-
tions of the CP2KInputParser will then use this tree to provide differ-
ent representations of the CP2K input configuration. We are constantly
maintaining the source context to give the user proper feedback on syn-
tax errors, as seen in the screenshot in Figure 3.6, including the specific
line and column. Together with a base language server protocol (LSP),
this made it possible to easily implement a CP2K language server, per-
mitting syntax checking of CP2K input directly in any editor supporting
the LSP.

To validate a CP2K input configuration against a specific version of CP2K,
the parsing framework uses the CP2K input configuration XML, which is
a description of the available options and the input structure that CP2K
can generate with the --xml, initially intended for the CP2K manual
generation. In contrast to most other quantum chemistry code config-
urations, the CP2K configuration consists of not only sections with key-
words but also nested sections (a tree-like structure). This generally
maps very well to maps (dictionaries in Python) and lists available in
most programming languages, together with their primitive datatypes.
Complications for a simple one-to-one mapping without further descrip-
tive elements (e.g. explicit section or keyword tags) arise in the case of
having in the same section the identical word for both a section and a
keyword (which within CP2K is resolved by the &marker to indicate the
start of a section). Further inconsistencies are introduced by repeatable
(parametrised) sections like the usual &KIND section, which calls either
for a list of maps or a map of maps since the parameters must still be
unique. The latter requires a special being introduced to capture the sec-
tion parameter. This leads to the following rules for a (canonical) repre-
sentation of the CP2K input configuration in Javascript Object Notation
(JSON) in terms of Python objects as illustrated in Figure 3.713:13: The following rules and the refer-

enced code examples have also been
published as part of the cp2k-input-tools
package.

▶ repeatable sections are mapped to dictionaries
▶ keywords or subsections are key/value entries in sections
▶ all repeatable elements (sections and keywords) are mapped to lists

of their respective mapped datatype
▶ section parameters are mapped to a special key named _

▶ default section keywords are mapped to a special key name *
▶ sections in JSON must be prefixed to avoid the double definition of

a key in case of the same name for a section and a keyword (like the
POTENTIAL in KIND), to avoid quotation marks, instead of CP2K’s
& we are using the + character
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▶ keyword values are mapped based on their datatypes: a list of val-
ues is always mapped to a list of their respective datatypes

Based on the above restrictions, the format specification can be relaxed
under the conditions followed below, leading to a simplified format as
illustrated with JSON and YAML14 (YAML Ain’t Markup Language™) in 14: https://yaml.org/

Figure 3.8. A derivation of this simplified object notation (with small dif-
ferences in how multi-valued values for keywords are specified) is used
in the AiiDA CP2K Plugin. It can also be emitted by the cp2k-input-tools
library and command line interfaces.

▶ a section only has to be prefixed with a + if a keyword with the
same name is present at the same time in the same section. Given
the XML input specification, we can resolve any ambiguities while
parsing

▶ if a repeated keyword or section contains only one entry, the list
can be omitted. In case of ambiguity, priority is given to multiple
values per keyword rather than keyword repetition

▶ sections with default parameters can be formulated as dictionar-
ies as long as the default parameter values are unique and do not
match section keywords or subsection names

Using a JSON or YAML-derived format rather than the original CP2K
input format in orchestration tools like FLATMAN or AiiDA has other
advantages than a direct mapping to language constructs. They can be
syntactically validated before the logical validation, they can be stored
directly in JSON database columns as implemented in PostgreSQL or
SQLite (as opposed to opaque text objects on disk or in a textual col-
umn), and last, there are already tools available to manipulate structured
data like JSON (e.g. jq) which facilitates the integration of CP2K itself in
workflow orchestration tools.

The functionality described is implemented as a library, together with
the command line tools (converters, language server, linters, prettifiers)
on Github 15 under the MIT license. Release versions are automatically 15: https://github.com/cp2k/

cp2k-input-toolsdeployed on Pypi 16, after successful testing with code coverage above
16: https://pypi.org/project/
cp2k-input-tools/

90%. This library is used in Phonopy [80] to read and generate CP2K
input and has been integrated into the aiida-gaussian-datatypes plugin
to parse CP2K basis set and pseudopotential files.

https://yaml.org/
https://github.com/cp2k/cp2k-input-tools
https://github.com/cp2k/cp2k-input-tools
https://pypi.org/project/cp2k-input-tools/
https://pypi.org/project/cp2k-input-tools/
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Figure 3.5.: Class diagram of the main
CP2K input tools classes. Different core
parts of the parser have been split into
separate classes to use separation of con-
cerns, using Generators to avoid full stor-
age of parsed segments. The parsed op-
tions are stored in a tree-like structure
with the Section and Keyword data-
classes. The Context class stores origi-
nal source file, line and character num-
bers across the complete input, allow-
ing exact determination and feedback of
parsing errors, including tracking of ref-
erences of preprocessor variables and re-
spective sections of the input schema
definition.
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C CP2KInputParserAiiDA

C CP2KInputParserSimplified

nested_dict

C CP2KInputTokenizer
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begin_basic_token(_, colnr)
begin_string_token(content, colnr)
end_basic_token(_, colnr: int)
end_string_token(content, colnr)
invalid_token_char(content, colnr)
is_matching_quote(content, colnr)
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unterminated_string(_, colnr)
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Figure 3.6.: Example of a cp2klint out-
put returning exact line number and col-
umn indicator.

1 $ cp2klint mysystem.inp
2 Syntax error: unterminated string detected, in mysystem.inp:
3 line 14: BASIS_SET_FILE_NAME "BASIS_MOLOPT_UCL
4 ~~~~~~~~~~~~~~~~~^
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1 &GLOBAL
2 PRINT_LEVEL MEDIUM
3 PROJECT test
4 RUN_TYPE ENERGY
5 &END GLOBAL
6 &FORCE_EVAL
7 METHOD Quickstep
8 &DFT
9 BASIS_SET_FILE_NAME ./BASIS_SETS

10 POTENTIAL_FILE_NAME ./POTENTIALS
11 &XC
12 &XC_FUNCTIONAL PBE
13 &END XC_FUNCTIONAL
14 &END XC
15 &END DFT
16 &SUBSYS
17 &CELL
18 A [angstrom] 4.07 0.0 0.0
19 B [angstrom] 2.03 3.52 0.0
20 C [angstrom] 2.03 1.17 3.32
21 PERIODIC XYZ
22 &END CELL
23 &KIND Ge
24 ELEMENT Ge
25 POTENTIAL ALL-q32
26 BASIS_SET ORB pob-TZVP
27 &END KIND
28 &TOPOLOGY
29 COORD_FILE ./struct.xyz
30 COORD_FILE_FORMAT XYZ
31 &END TOPOLOGY
32 &END SUBSYS
33 &END FORCE_EVAL

{ 1

"+global": { 2

"print_level": "medium", 3

"project_name": "test", 4

"run_type": "energy" 5

}, 6

"+force_eval": [ 7

{ 8

"method": "quickstep", 9

"+DFT": { 10

"basis_set_file_name": [ 11

"./BASIS_SETS" 12

], 13

"potential_file_name":
"./POTENTIALS"↪

14

}, 15

"+XC": { 16

"+xc_functional": { 17

"_": "PBE" 18

} 19

}, 20

"+subsys": { 21

"cell": { 22

"A": [ 4.07, 0, 0 ], 23

"B": [ 2.03, 3.52, 0 ], 24

"C": [ 2.03, 1.17, 3.32], 25

"periodic": "XYZ" 26

}, 27

"+kind": [ 28

{ 29

"_": "Ge", 30

"element": "Ge", 31

"potential": "ALL-q32", 32

"basis_set": [ 33

[ "ORB", "pob-TZVP" ] 34

] 35

} 36

], 37

"+topology": { 38

"coord_file_name":
"./struct.xyz",↪

39

"coord_file_format": "XYZ" 40

} 41

} 42

} 43

] 44

} 45
Figure 3.7.: Comparison of a CP2K input
and its canonical JSON representation.
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Figure 3.8.: Example of the same CP2K
input as in Figure 3.7, but with simpli-
fication rules applied. The YAML for-
mat (used for the example on the right)
as a superset of JSON can contain the
same information, but due to its rules
for structured indentation and quoting,
it becomes even more condensed as the
CP2K original in Figure 3.7 but retains
the same legibility.

1 {
2 "global": {
3 "print_level": "medium",
4 "project_name": "test",
5 "run_type": "energy"
6 },
7 "force_eval": {
8 "method": "quickstep",
9 "DFT": {

10 "basis_set_file_name":
"./BASIS_SETS",↪

11 "potential_file_name":
"./POTENTIALS"↪

12 },
13 "xc": {
14 "xc_functional": {
15 "_": "PBE"
16 }
17 },
18 "subsys": {
19 "cell": {
20 "A": [ 4.07, 0.0, 0.0 ],
21 "B": [ 2.03, 3.52, 0.0],
22 "C": [ 2.03, 1.17, 3.32],
23 "periodic": "XYZ"
24 },
25 "kind": {
26 "_": "Ge",
27 "element": "Ge",
28 "potential": "ALL-q32",
29 "basis_set": [ "ORB", "pob-TZVP"

]↪
30 },
31 "topology": {
32 "coord_file_name":

"./struct.xyz",↪
33 "coord_file_format": "XYZ"
34 }
35 }
36 }
37 }

global: 1

print_level: medium 2

project_name: test 3

run_type: energy 4

force_eval: 5

DFT: 6

basis_set_file_name: ./BASIS_SETS 7

potential_file_name: ./POTENTIALS 8

XC: 9

xc_functional: 10

_: PBE 11

method: quickstep 12

subsys: 13

cell: 14

A: [ 4.07, 0.0, 0.0] 15

B: [ 2.03, 3.52, 0.0] 16

C: [ 2.03, 1.17, 3.32] 17

periodic: XYZ 18

kind: 19

Ge: 20

basis_set: [ORB, pob-TZVP] 21

element: Ge 22

potential: ALL-q32 23

topology: 24

coord_file_format: XYZ 25

coord_file_name: ./struct.xyz 26
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3.5. CP2K and Gaussian Output Tools Python
Packages

In high-throughput calculations, being able to parse the output of codes
efficiently, correctly and in a fault-tolerant way is vital as it directly
affects further calculations and hence compute resources. While some
codes like BigDFT [81] have implemented a human andmachine-readable
output by adopting YAML as their primary format, this becomes quickly
unfeasible with a highly complex code as CP2K and impossible for a
closed source code like Gaussian [82].

With the implementation of the cp2k-output-tools17 package, we provide 17: https://github.com/cp2k/
cp2k-output-toolsa Python library and command line tools which implement parsing the

most common blocks of CP2K output in an efficient way using regular
expressions (regex). The package is organised as a set of parser functions
acting on a string and which can be reused individually by any Python
project as needed. The parsed data is stored in Python dataclasses as they
provide a clear advantage over simple dictionaries in the form of seman-
tic completion within text editors and, by integrating typing annotations,
allow for additional correctness checks. Based on the integration of the
Pint18 library, the data fields carry physical units to incorporate unit doc- 18: https://pint.readthedocs.io

umentation in the code, making unit conversion easier and avoiding unit
conversion errors in the process. In addition to the parsing blocks, the
library also contains a more structured parser which returns a tree struc-
ture containing the various data objects. An example of such a tree struc-
ture in textual representation is shown in Figure 3.9. This tree structure
corresponds to the nested method calls of CP2K, for example, employed
in a geometry optimisation where each geometry optimisation step con-
sists of an SCF loop, which may be split into an inner and outer loop.
Monitoring quantities and outputs across levels allows for quick analy-
sis in high-throughput calculations, even in the presence of errors.

Additional tools – for example, Projected Density of States (PDOS) in-
terpolation or bandstructure conversions – have also been implemented.
Still, among those tools, the technique behind the trajectory restart cleaner
is worth highlighting. When running MD simulations, CP2K continu-
ously writes trajectory files in XYZ format, which can be used to evaluate
observables statistically. Upon restarts of the calculation, the restoration
point may be several frames before the last entry in the trajectory, lead-
ing to multiple duplicated frames and statistically noticeable noise. As

1 CP2K:
2 started at: 2021-02-23 22:57:53.427000
3 ended at: 2021-02-23 22:58:11.587000
4 CellInfoType.top cell volume: 39.167875 angstrom ** 3
5 CellInfoType.default cell volume: 39.167875 angstrom ** 3
6 CellInfoType.reference cell volume: 39.167875 angstrom ** 3
7 SCF:
8 converged: True
9 Total FORCE_EVAL energy: -7.944253454478329 hartree

10 Mulliken Population Analysis:
11 (present)
12 [warning]: Print MO Cubes not implemented for k-point calculations!!
13 [warning]: Localization and MO related output not implemented for k-point

calculations!↪
14 Inner SCF:
15 converged: True
16 number of steps: 8

Figure 3.9.: Shortened example of a
parsed CP2K output, showing proper In-
ner and Outer SCF loop detection with
correct warning assignment.

https://github.com/cp2k/cp2k-output-tools
https://github.com/cp2k/cp2k-output-tools
https://pint.readthedocs.io
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CP2K includes a step number in the XYZ comment line, filtering the du-
plicated frames is possible. The challenge is the trajectories’ size, which
can easily grow to a couple of gigabytes. Handling huge text files effi-
ciently is still an ongoing research topic [83]. However, the challenges
we face here are limited computer memory and avoiding costly conver-
sion operations and string handling by Python due to its extra conver-
sion steps, often a performance bottleneck. To avoid the costly Python
string operations, we are again resorting to regular expressions to find
frames in the output, implemented behind Python iterator objects. The
regex library is implemented in C and acts directly on text buffers, with
string conversion to Python delayed until needed. To avoid loading the
entire content of the trajectory into memory as a Python string and work
around limited memory, we are directly using the operating systems (OS)
memorymapping capabilities (mmap) inwhich the file getsmapped to an
OS-managed buffer. As the regex engine sequentially accesses bytes in
the array, the operating system automatically loads only required parts
of the file in page units into memory, evicting previous pages. Buffer-
ing the loaded frames before writing until a restart point is detected (or
a maximum number of frames has been buffered in memory) prevents
high-frequency seeking, which for network filesystems like NFS works
around the issue of higher latency for quick file system access. Com-
bining those two techniques allowed us to clean gigabyte-sized trajec-
tories several times faster than a previously implemented naive parsing
approach based on line-based file iteration.

The cp2k-output-tools library and its accompanying command line utili-
ties are published under the MIT license on Github, including a Contin-
uous Integration setup with high coverage and released as an installable
Python package on Pypi. It has been integrated into the aiida-cp2k plugin
to parse additional data from CP2K output files in AiiDA workflows.

Since we also needed to parse Gaussian output as part of this thesis (see
Chapter 4), a package following the same design principles as the cp2k-
output-tools was implemented, the gaussian-output-tools19.19: https://github.com/dev-zero/

gaussian-output-tools

3.6. Software Engineering in Computational
Science

Software engineering techniques have not only played a role in the devel-
opment of the FLATMAN workflow manager and its component-based
architecture, which allowed the reuse of components across different
projects. With long-running open-source projects like CP2K with many
contributors, organisation and code quality become increasingly impor-
tant to enable continued development. To that end the author contributed
significantly to three aspects: the migration of the CP2K from the Sub-
version to the Git version control system, making the embedded Dis-
tributed Block Compressed Sparse Row (DBCSR) Matrix library a stan-
dalone project, and the introduction of the CMake build system first for
said DBCSR library and then CP2K itself.

On Version Control Systems While collaboration and development do
not necessarily rely on a Version Control System (VCS) to manage the

https://github.com/dev-zero/gaussian-output-tools
https://github.com/dev-zero/gaussian-output-tools
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project’s source code or parameter data, using a VCS has significant ad-
vantages. Tracking changes to the source code alongside meaningful
comments not only serves as a documentation of labour but also as an
implicit form of documentation since most VCS provide an annotated
source code view in which source code lines are shown next to the com-
ment entered for that code change (e.g. for Git: git blame). This, in
turn, allows tracing bugs back across releases and identifying copyright
holders for individual files. The former is important for the reproducibil-
ity of results. At the same time, the latter becomes important in the case
of relicensing, sometimes required to ensure collaboration with industry,
which relies on more permissive licensing than potentially chosen at the
beginning of a project (e.g. BSD-style license instead of GPL). The con-
tinuous recording of authorship also permits easy tracking down people
for collaborative work within a specific area. Something which becomes
increasingly difficult for a large project like CP2K.

For new projects, the choice of VCS is often not done consciously but
decided based on what the original authors are familiar with, which VCS
is most popular or for which free online resources for sharing are avail-
able. For CP2K, the collaborative platform chosen at the timewas Source-
forge, which initially offered the hosting of CVS and later Subversion
code repositories. Both VCS have a clear client-server model in which
the server hosts the master version, and each commit done by a contrib-
utor is uploaded to the server (on the master version or a branch). Any
conflicts arising due to the master version having advanced while the
changes in a commit still rely on a previous state of the source code have
to be resolved at the time of commit by the user. While this client-server
paradigm makes for a linear development model with a low entry bar-
rier, it has shortcomings when it comes to collaboration and ensuring
coding standards. The dedicated master service requires everyone who
wants to commit on either the master or a separate branch to have an
account with the service, often leading to patches being sent by email to
the maintainers who then commit the changes with their credentials. Be-
sides the time required by the maintainers to adapt and incorporate such
patches, it also meant the occasional loss of authorship since credentials
for committing and author of the commit are coincident in such systems.
A second challenge arises from the fact that branching in either CVS or
Subversion – while possible – is rather cumbersome and again requires
the personwhowishes to create such a branch certain access rights to the
repository. It furthermore makes running tests such as code style com-
pliance checks before a commit unfeasible, often requiring a-posteriori
work.

Distributed Version Control Systems (DVCS) like Git, together with pub-
licly hosted services like Github or Gitlab, solve the issues mentioned
above. The distributed aspect of a DVCS means that every participant
will automatically get a fully separate copy of a project’s complete ver-
sioned source code. On this copy, a contributor can then create branches
and submit commits. The implication of such a model is that conflicts
arising when merging changes from one repository to another (in what-
ever fashion) need to be resolved at the time of the merge rather than
at the time of commit, potentially requiring multiple conflict resolutions,
one for each commit. This further implies that the immutability of com-
mits from non-distributed VCS is relaxed so that commits can be rear-
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ranged and altered. Each commit then also carries both an author and
a committer, solving the problem of losing authorship. Services like
Github not only host repositories, but they also provide workflows to
send and incorporate commits from other copies (called forks) in what
the services call Pull orMerge Requests. Furthermore, they provide tasks
to be run on such requests, allowing for a priori checks to be run, solving
the other mentioned challenge of non-distributed VCS. Altogether this
allows for a much more dynamic development in which different par-
ties can work largely independently while making their changes publicly
available once they see fit. Being able to commit independently results
in commits being more atomic rather than lumping multiple unrelated
changes together into one, helping with code review and therefore code
quality.

The migration of CP2K from Subversion to Git involved not only a sim-
ple import (for which tools are available) but to preserve copyright hold-
ers and history. Care had to be taken to mirror each commit. This re-
quired several passes in which usernames were mapped, directory re-
organizations had to be correctly tracked, and tags and branches to be
recreated. With the service migration, existing workflows (both auto-
mated and manual) had to be adjusted, and users were guided towards
using the new system. It must also be noted that even though Git is cen-
tred around the concept of merging in which changes can be pulled into
a copy with many conflicts being resolved automatically, this has the
negative effect of rendering the commit history of a project quickly un-
readable as it becomes unclear where a specific commit originated from.
To avoid this cluttering of the history, it was decided for the main repos-
itory only to permit a linear history, requiring authors to rebase their
work onto the latest master before sending a Pull Request. Incidentally,
this also prevents the issue common in DVCS in which tests on Pull Re-
quests succeed, but once merged into the main branch, they start to fail
despite not having generated any conflicts during the said merge. In the
rebase development workflow, the Pull Request becomes the new state
of the main branch once merged and thus prevents this corner case as
well as shifts the integration work to the submitter of the Pull Request.
Unfortunately, this rebasing workflow was, and occasionally still is, the
source of some confusion within the developer community as it often
requires more manual adjustment of commits than the more prominent
merge strategy.

On Build Systems The scientific software ecosystem has seen drastic
changes within the last twenty years. While most HPC software like
CP2Kwas previously buildable with just BLAS/LAPACK,MPI and ScaLA-
PACK, modularization and consolidation have led to large dependency
trees. While this has allowed the field to advance more quickly by al-
lowing to easily share common code like implementations of integration
routines, correlation-exchange functionals and others, building software
has become much more difficult. This can easily be illustrated by a de-
pendency tree in Figure 3.10, generated with the Spack package manager
for the CP2K package, which the author maintains. Such a dependency
tree depends not only on the available packages on a system (compiler,
scientific libraries) but also on the project’s configuration. Advancing
language standards while providing the developers with more advanced
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constructs and simplifying development also have the potential of break-
ing unexpectedly with untested compilers.

A build system is therefore not only used to invoke the compiler and
linker to build an executable reproducibly but also to configure the soft-
ware (e.g. enable or disable code passages) based on features requested
by the user via flags, check the consistency of the requested features, and
to check whether the environment (compiler, provided libraries) satisfy
the requirements. CP2K has been using a custom build system based on
GNU Make and Python, focusing primarily on the building. The user
then writes a configuration file specifying the preprocessor directives
and compiler and linker flags. The separation of the DBCSR library into
a separate project opened up the possibility of introducing the CMake
build system for DBCSR, which is a slightly smaller codebase than CP2K
itself, before adapting it for CP2K itself.

The CMake-based build system for DBCSR has the following additional
features compared to the custom CP2K build system. It checks at config-
uration time for a series of required Fortran language constructs. This
helps the user to identify potentially incompatible compilers before start-
ing the compilation with an understandable error message. Required li-
braries are automatically discovered based onmultiple mechanisms (pkg-
config, CMake, common library paths), accommodating most setups, in-
cluding the Cray Programming Environment. Preprocessing the source
code with the Fortran preprocessor Fypp has been integrated. The use of
accelerator software development kits (CUDA, HIP/ROCm, OpenCL) has
been integrated, and their use can be controlled via a single build config-
uration, which triggers respective discovery mechanisms. Likewise, for
different small matrix multiplication libraries. The discovered BLAS li-
brary is checked for OpenMP compatibility, avoiding hard-to-debug nu-
merical errors due to concurrency issues when using non-thread-safe
libraries. The build system automatically builds complete API documen-
tation with the FORD documentation tool, which gets automatically de-
ployed via a CI/CD system on GitHub. This makes it possible that most
users can get a working configuration of DBCSR with a single command,
avoiding common mistakes and potentially devastating inconsistencies
in the library configuration.

Based on the above principles of the CMake build system adoption for the
DBCSR library, a CMake-based build system for the whole CP2K project
has been recently added.
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Figure 3.10.: Dependency tree for CP2K 2022.1 as generated with the Spack package manager for the spec cp2k +cosma +cuda +elpa
+libint +libvori +libxc +mpi +openmp +pexsi +plumed +sirius +spglib cuda_arch=70 smm=libxsmm. The edges of the
graph are colour coded depending on the type of dependency (build, link, run, test). Such a graph depends on available compilers and
scientific libraries, in this case on OpenBLAS, Netlib ScaLAPACK, and OpenMPI with the GNU Compilers.
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4.1. Motivation

While localised basis sets like the Gaussian basis sets have been success-
fully used for decades in quantum chemistry and materials science, they
do have some limitations. Unlike with plane-waves, it is not possible to
increase the precision at will by simply increasing a cutoff, but larger
basis sets must be explicitly generated. This is done by optimising con-
traction coefficients and exponents in the Gaussian basis sets such that
calculations adequately reproduce specific properties (often the energy),
obtained for example from databases ofmolecular energies or other quan-
tities. Since optimising a larger number of exponents is still difficult,
multiple approaches exist to directly construct them via recursion for-
mulas [51, 52, 84, 85]. By now, a vast number of of basis sets have been
published [86, 87]; the Basis Set Exchange [88] lists almost 700 families
of basis sets. Although many of them are attuned to specific systems or
methods, and often cover only a subset of the elements on the periodic
table. Yet, new basis sets are still developed [89, 90].

Additionally, they are closely tied to the underlying method of handling
the core electrons and the charge distribution near the nucleus, segment-
ing them into either all-electron or pseudopotential (resp. valence) basis
sets. Finally, the specific method (Density Functional Theory or Hartree-
Fock and post-HF) to approximate the wave function is inherently re-
flected in the generated coefficients. This becomes clearer when looking
at correlation-consistent basis set families attuned to post-Hartree-Fock
calculations, but also for DFT basis sets this may add a dependency on
the functional being used. Failure to use the correct basis sets for the
respective methods [40] may then in fact lead to unreasonably large er-
rors [41]. Finally, optimising basis sets with respect to energy alone does
not guarantee convergence for other properties as they may not be cor-
related [91], thus careful validation is required. A basis set family describes a collection

of basis sets for a number of chemical el-
ements. Often with multiple sets per el-
ement, where the different sets contain
an increasing number of exponents 𝜁 for
the same momenta and/or cover increas-
ingly higher momenta. A family basis
set on the other hand describes a gen-
erally contracted basis set in which the
exponents are shared between the con-
tractions.

In this work we will benchmark a revised edition of the MOLOPT fam-
ily of basis sets and pseudopotentials [46], particularly quantifying their
improvements for increasing numbers of exponents and added polarisa-
tion terms, covering three rungs of Jacob’s ladder (see Chapter 2). This
revised MOLOPT set now also features an AE basis set, generated in
the tradition of the Karlsruhe def2 basis sets[53]. A special focus will
also be given towards assessing how well such a benchmark can be au-
tomated.

These MOLOPT basis sets and pseudopotentials are extensively used in,
and shipped with the CP2K software package [1].
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4.2. Methodology

To assess the quality of the MOLOPT basis sets and pseudopotentials we
are looking at both a quantum chemical and a solid-state setting. There
exist many different data bases of molecules along with referenced num-
bers for various use cases, quantities, functionals, or methods (of which
[92–98] cover a mere fraction), sometimes collected into even larger sets
[99]. For this work we used as database for the quantum chemical case
the already mentioned SMDB by Weigend and Ahlrichs [53], which con-
sists of more than 300 small molecules. The reason is that it has a good
coverage of most of the periodic table (excluding the Lanthanides, see
also Figure 3.1 for coverage of elements by structures) and has been used
in a similar function before.

This set of small moleculeswas also instrumental in the generation of this
basis set family, but given the optimisation procedure outlined in Section
3.1, there is no direct correlation between the calculated properties of
those molecules and the basis set itself and it can therefore still serve as
a reference database for performance comparison.

Table 4.1.: Overview of available cal-
culation sets for the Small Molecules
Database

G16 CP2K CP2K
GPW GAPW

PBE • • •
TPSS • •
PBE0 • •

ADMM •

For the molecular database, we compare multiple properties for the GGA
functional PBE, the meta-GGA TPSS and the hybrid PBE0 functionals of
DFT which are described in Chapter 2, each with the three different sizes
of the basis setDZVP, TZVP and TZV2P and their respective pseudopoten-
tials. The properties range from simple geometric comparisons of how
well bond lengths and angles are reproduced to electronic properties like
dipole moments, polarisability, as well as vibrational frequencies. For
PBE this is done in a three-way comparison between G16 reference calcu-
lations, all-electron and pseudopotential calculations with CP2K, while
the comparison for TPSS and PBE0 is between the G16 reference and the
CP2K pseudopotential-based approach as shown in table Table 4.1.

The external reference values for these molecules have been obtained
from calculationswith the G16 software package [82] and the all-electron
Def2-QZVP basis set of Ahlrichs [53] with tight SCF conditions and an
ultrafine integration grid.

To run the calculations with CP2K a cutoff and relative cutoff of 720Ry
and 60Ry were used, with a decreased default epsilon of 1 × 10−14 for
improved precision in integration grids. The convergence criteria for
the energy was set to 1 × 10−7.
To assess the quality of the basis set and pseudopotentials for the solid-
state use case, we relied on the Δ-test database of elemental solids [100]
and the Δ-gauge[101] given by

Δ𝑖(𝑎, 𝑏) ≔
√

∫1.06𝑉0,𝑖0.94𝑉0,𝑖 (𝐸𝑏,𝑖(𝑉 ) − 𝐸𝑎,𝑖(𝑉 ))2 𝑑𝑉
0.12𝑉0,𝑖

, (4.1)

and where 𝑖 denotes a chemical element and 𝑎 and 𝑏 for two results ob-
tained with different codes, methods or parameter sets.

The function 𝐸(𝑉 ) is the internal energy function derived from the Birch-
Murnaghan equation of states [102]
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𝑃(𝑉 ) = 3
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𝑉 )

7/3
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by integration over 𝑃 , as

𝐸(𝑉 ) = 𝐸0 + 9
16𝑉0𝐵0{ [(

𝑉0
𝑉 )

2/3
− 1]

3
𝐵1
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2
[6 − 4 (𝑉0𝑉 )
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(4.3)

with 𝐵1 = 𝜕𝐵
𝜕𝑃 |𝑃=0 the derivative of the bulk modulus 𝐵0. 𝐵0, 𝐵1 and 𝑉0

are determined from a fit on the energy of a bulk system for different vol-
umes and the energy 𝐸0 aligned such that the curves have their minimum
at the same energy. The difference expressed in the Δ-gauge, therefore,
comes from a shift in 𝑉0 and skewness and opening of the slopes.

While this metric has been proven useful as a way to broadly assess differ-
ences in method implementations, it can not be used as a fitness function
for optimisation, nor are values between different elements meaningfully
comparable. The latter is a result of the naturally varying energies per
atom around 𝑉0 (and thus the integral value) for the different elements
and the missing normalisation in Equation 4.1. Hence a direct compari-
son of the equilibrium volumes or bulk moduli may still be required to
recover the full picture or to verify the quality of a pseudopotential or
basis set for the required quantity to be reproduced.

For the calculations with CP2K (both GPWandGAPW), we have been us-
ing a high cutoff of 1000Ry and relative cutoff of 200Ry (for GAPWCP2K
automatically reduces this, the stated numbers are the specified values in
the input). To avoid spurious numerical artefacts in the integration, we
are using a fixed reference cell for all the volume points based on 120 %
of the anticipated 𝑉0 cell. For GAPW we used 100 and 250 grid points for
the Lebedev and radial grids and decreased the default epsilon to 1×10−14.
The energy convergence threshold was set to 1 × 10−8 except for a small
number of elements which would otherwise not have succeeded. The
k-point-mesh densities for the different elements are based on the initial
suggestions of the Δ-test protocol used for the Wien2k reference calcu-
lations.

To obtain pure pseudopotential calculations without Gaussian basis sets
we used the CP2K-integrated SIRIUS plane-wave code which was able to
make use of the GTH pseudopotentials. The aforementioned reference
grid was not employed for these calculations. The 𝐺𝑘 and plane-wave
cutoffs were set based on plane-wave Δ-test calculations with Quantum
Espresso [103] leading up to the SSSP library of pseudopotentials [104],
the same holds for the cold smearing and the k-point-mesh density.

To test the full potential linearized augmented plane wave (FP-LAPW+lo)
implemention in SIRIUS as a means to obtain a full set of reference cal-
culations from within one code (CP2K + SIRIUS), we used settings based
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on the Exciting code as published in [105], since SIRIUS’ FP-LAPW fa-
cilities were carefully verified against the Exciting code. At this point it
must be noted that the effectively used values for the calculation differ
from the summarised report at 1, the effectively employed values were1: https://molmod.ugent.

be/sites/default/files/

deltadftcodes/supplmat/

SupplMat-Exciting.pdf

taken for this work and IORA [106] was used as the relativistic scheme.
The Muffin-tin basis functions were generated with SIRIUS’ atom com-
mand line utilitywith --auto_enu --order=2 --type=lo1,lo2,lo3,LO1,LO2

to allow an automatic search of the linearisation energy and include the
maximumorder of available local orbitals. While the Exciting basis used
for the Δ-test reference calculations could be used after a format con-
version, practical usage failed due to unsupported higher-order energy
derivatives within SIRIUS at the point of the experiment.

Table 4.2.: Overview of available CP2K
(+SIRIUS) calculation sets for the solid-
state benchmark in this work.

PBE PBEsol

LAPW • •

PW • •

GPW, MOLOPT
DZVP • •
TZVP • •
TZV2P • •

GAPW, MOLOPT
SVP •
TZVPP •
QZVPP •

GAPW, POB
DZVP-rev2 •
TZVP-rev2 •
TZVPP •

For the PBE GPW calculations, we used the CP2K built-in implementa-
tion of the Exchange-Correlation functional, while the rest of the calcu-
lations (for CP2K with GAPW, SIRIUS) use the implementation provided
by the libxc library [107].

For the extraction of the data from CP2K and G16 output files the cp2k-
output-tools and gaussian-output-tools from Section 3.5 have been used,
and the procedure to automate the Δ-test calculations is described in
Chapter 3.

4.3. Solid state benchmark results

To assess the quality of the newly generated MOLOPT basis sets and
pseudopotentials and to some extent, the CP2K and SIRIUS codes them-
selves for the solid-state case we are relying on the Δ-test-metric [101]
and the Δ-test-database [100] since it provides a well-researched and cu-
rated database of values to compare against. Table 4.2 shows the different
test sets generated for this evaluation, based on variations of the func-
tional, method and basis set. In the following we are conducting a more
thorough discussion of the results. The raw data is available at [108]
and tables with the fitted Birch-Murnaghan coefficients can be found in
Chapter B. To complete the picture we also compare our all-electron ba-
sis sets with the second revised pob basis set family [109–112] which has
been optimised for the use in, and verified against, crystalline systems.

Table 4.3.: Mean Δ-values across the
periodic table (rows 1-4 for GAPW)
against the official Wien2k and SIRIUS
LAPW and PW references from this
work. Where multiple pseudopotentials
with different numbers of valence elec-
trons are available, the better one (usu-
ally the smaller core) has been used.

Reference Wien2k LAPW PW
Functional Method Basis meV meV meV

PBE LAPW 4.3151
GAPW SVP 54.7378 68.3858

TZVPP 8.5953 2.5056
QZVPP 0.8970 1.2412

PW 2.9916 5.9902
GPW DZVP 6.5652 8.4550 4.2647

TZVP 4.6304 6.7797 2.3271
TZV2P 4.3104 6.5978 1.9027

PBEsol PW 5.9654
GPW DZVP 10.6000 5.0073

TZVP 7.8192 2.8048
TZV2P 7.3738 2.4362

https://molmod.ugent.be/sites/default/files/deltadftcodes/supplmat/SupplMat-Exciting.pdf
https://molmod.ugent.be/sites/default/files/deltadftcodes/supplmat/SupplMat-Exciting.pdf
https://molmod.ugent.be/sites/default/files/deltadftcodes/supplmat/SupplMat-Exciting.pdf
https://molmod.ugent.be/sites/default/files/deltadftcodes/supplmat/SupplMat-Exciting.pdf
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Figure 4.1.: Δ-values for FP-LAPW ob-
tained with SIRIUS compared against
the published Wien2k reference.

H
0.32

He
0.02

Li
0.33

Be
1.00

B
1.76

C
0.17

N
0.50

O F
3.06

Ne
0.42

Na
0.12

Mg
2.13

Al
0.16

Si
1.86

P
3.08

S
2.61

Cl
2.60

Ar
0.04

K
0.15

Ca
2.54

Sc
0.85

Ti
1.99

V
6.79

Cr Mn Fe Co Ni Cu
5.35

Zn
5.60

Ga
0.64

Ge
0.73

As
0.21

Se
0.10

Br
0.48

Kr
0.02

Rb
0.20

Sr
0.12

Y
0.06

Zr
2.19

Nb
4.16

Mo
7.61

Tc
15.08

Ru
11.01

Rh
27.49

Pd
16.86

Ag
1.56

Cd
1.05

In
1.59

Sn
2.21

Sb
2.75

Te
1.88

I
1.32

Xe
0.02

Cs
0.14

Ba
0.32

Hf
0.28

Ta
4.80

W
7.78

Re
9.44

Os
8.74

Ir
9.84

Pt
1.12

Au
4.30

Hg
0.33

Tl
0.32

Pb
0.56

Bi
0.23

Po
0.41

Rn
0.06

0

5

10

15

20

25

30

35

40
-value m

eV
/atom

Figure 4.2.: Δ-values for the GTH pseu-
dopotentials obtained with the plane-
wave code of SIRIUS integrated within
CP2K compared against the published
Wien2k reference. O, Cr-Ni are unavail-
able due to a bug in the interface be-
tween CP2K and SIRIUS while Sc, Ti are
outliers under investigation.

4.3.1. FP-LAPW

The breakdown of the Δ-values for the FP-LAPW method provided by
SIRIUS within CP2K with the automatically generated muffin tin basis
can be seen in Figure 4.1. For most of the periodic table, an excellent
match can be observed, especially for the first four rows which are well
within the range of best-in-class codes with usually < 1meV /atom. For
the heavier elements in the sixth row of the transition metals, an unusual
discrepancy can be observed, which could be attributed to either the gen-
erated muffin tin basis (and missing higher-order energy derivatives) or
differences in how the relativistic effects are calculated. Another oddity
is the failures in convergence for the lower part of the noble gases due to
numerical issues, which, together with aluminium, phosphorus, chlorine
and bromine, should be investigated further.

4.3.2. GTH Pseudopotentials

The verification of the GTH pseudopotentials is done via the plane-wave
capabilities within CP2K provided by the SIRIUS integration and shown
in Figure 4.2, withmean andmedian values of 3.04meV /atom and 1.08meV /atom
respectively. When comparing this to the best-in-class GTH pseudopo-
tentials at 2 which are around in average 1meV /atom, with non-linear 2: https://molmod.ugent.be/

deltacodesdftcore correction (NLCC) [113], we fail to reproduce this value when in-
cluding all converged and fitted systems. Removing the most obvious
outliers (V, Cu, Zn, Nb-Pd, Ta-Ir, Au) from the comparison as similarly
done in the published values, we can reproduce an average of 1meV /atom

https://molmod.ugent.be/deltacodesdft
https://molmod.ugent.be/deltacodesdft
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Table 4.4.: For most systems a pseu-
dopotential with a larger number of va-
lence electrons (q number) improves the
agreement with the high-precision cal-
culations as indicated for the selected
elements with the Wien2k reference.
Likely due to the more accurate mod-
elling of delocalized electrons in the
crystals. The opposite can be observed
for a minor number of elements, likely
due to effects previously captured in
their pseudopotentials.

Pseudopotential 1. 2. 3.
Element meV /atom meV /atom meV /atom

Li q1, q3 3.7306 0.3292
Ca q2, q10 17.0983 2.5430
Ti q4, q12 19.8556 1.9903
Ga q3, q13, q21 1.0839 1.6320 0.6406
Au q1, q11, q19 1298.8153 13.9142 4.3021
Mg q2, q10 2.1262 11.8316
Zr q4, q12 2.1899 3.1396
Hg q12, q20 0.3268 5.1893
Po q6, q16, q24 0.4112 2.7833 5.9985

without applying NLCC. Limiting our analysis to the main group alone
even yields an average of 0.93meV /atom. As Table 4.4 shows, the pseu-
dopotential selection can make a significant difference for the Δ-test
value and possibly condensed systems in general.

4.3.3. MOLOPT Basis Sets

The results for the different sizes of the newly generated MOLOPT basis
sets are shown in Figure 4.4, against the Wien2k and SIRIUS plane-wave
references from Lejaeghere et al. [100] and Section 4.3.2 respectively.

Table 4.5 shows a deviation of less than 10 % for the largest TZV2P basis
sets compared to the plane-wave results. It is furthermore clear that the
errors originating from the GTO basis sets are in the same order of mag-
nitude as from the pseudoization approach. This is further confirmed by
the detailed analysis in Figure 4.4, often showing a minor error as in the
H-C, Si-Ti, Kr-Sn ranges. For some element ranges, an “overcorrection”
can be observed, as in F case or the Cu-Ge series or in the stark case of
Vanadium. This is not entirely surprising as the Δ-test does not allow a
normalisation on the single atom energy and a small shift of 𝑉0 can have
a disproportionate effect.

Nonetheless, this analysis indicates elements for which further optimisa-
tion may be required to achieve more accurate results in the solid-state
case. We can easily identify two categories: the first is elements with
a significant difference but which improve measurably when increasing
the basis set size. In the first three rows, Nitrogen and Oxygen fall into
this category. The second is elements with a significant deviation from
the mean but which do not improve with a larger basis, like the series
As-Br.

Fluorine and Iridium require a short discussion as they allow additional
insight. The first is an example of the overcorrection in the GPWapproach
compared to the plane-wave approach as illustrated in Figure 4.3. In
the plane-wave approach, the volume is underestimated while the GPW
approach overestimates by almost the same percentage. This leads to
error accumulation when comparing the GPW values against the PW
values directly as verified in Figure 4.4. It also serves as an example
in which the bulk modulus and its derivative deviate significantly from
the reference, yet this is not reflected in the Δ-value (Table 4.6). The
GPW results for Iridium on the other hand have been omitted from the
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comparison in Figure 4.4 due to its large error on the Δ-value as reported
in Table 4.6. The likely cause of this poor behaviour on the basis sets
is the underrepresentation of Iridium in the Small Molecules Database
(Figure 3.1). Comparing the Δ-value for Iridiumwith the TZV2P basis set
and Flourine in the plane-wave basis unearths a more critical deficiency
in the Δ-test itself: despite a similar error in the equilibrium volume 𝑉0
between Flourine and Iridium and smaller errors in 𝐵0 and 𝐵1 for Iridium
is the Δ-value for Iridium an order of magnitude larger. The root cause
is an absent energy normalisation which can not be implemented due
to the missing general reference energy within electron structure theory.
This leads to larger deviations in the Δ-value than would be expected
due to the change in one of the parameters, and questions the meaning
of an unweighted global average of Δ-values across the periodic table.
Finally, for the practitioner, this again highlights the importance of direct
quantity comparison rather than relying solely on Δ-values.

all elements main group
Reference Wien2k PW Wien2k PW
Basis meV /atom meV /atom meV /atom meV /atom

DZVP 5.2984 3.0119 3.3017 2.9722
TZVP 4.0642 1.8537 2.1544 1.8687
TZV2P 3.9651 1.6758 1.8911 1.5983
PW 3.6331 1.2960

Table 4.5.: Mean Δ-values for the
MOLOPT basis sets and pseudopoten-
tials across all elements, respectively
only the main group. The values for
systems with non-vanishing magnetic
moments are missing for the plane-
wave values and reference due to
initialisation issues in the code.
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Figure 4.3.: Energy-Volume curve for
Fluorine and Iridium, for Wien2k,
SIRIUS and CP2K with the MOLOPT
basis set for the q7, q17 pseudopotential
variants respectively.

Fluorine Iridium
𝛿𝑉0 𝛿𝐵0 𝛿𝐵1 Δ 𝛿𝑉0 𝛿𝐵0 𝛿𝐵1 Δ

PW 2.08 11.87 88.00 3.06 0.88 2.00 2.69 9.84
DZVP 1.95 0.94 4.66 2.83 6.89 55.55 16.72 96.07
TZVP 2.09 0.14 4.36 3.02 3.52 24.72 11.69 43.16
TZV2P 1.69 0.80 2.55 2.42 2.40 13.98 8.13 28.11

Table 4.6.: Percent error for 𝑉0, 𝐵0 and 𝐵1,
and Δ-values with respect toWien2k for
Fluorine and Iridium for SIRIUS plane-
wave and CP2K GPW for the q7, q17
pseudopotential variants respectively.

4.3.4. All-Electron MOLOPT Basis Sets

Besides the pseudopotential-based MOLOPT basis sets explored in the
previous section, we also report the behaviour of the newly generated
MOLOPT all-electron basis sets SZV, TZVPP and QZVPP. As the naming
indicates, these basis sets use the same contraction patterns as the def2
basis sets by Weigend and Ahlrichs [53] and Weigend [54]. For CP2K,
the GAPW method [36] must be employed to model electron density
around the atom centre with high enough accuracy without requiring an
impractical amount of plane waves. At this point we are only interested
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GAPW GPW
Family Mean Median Family Mean Median

SVP 3.779 1.599 DZVP 3.599 1.796
TZVPP 1.116 0.689 TZVP 2.575 1.718
QZVPP 0.897 0.517 TZV2P 2.358 1.512

Table 4.7.: Average Δ-values for the first
four rows of the periodic table for the all-
electronMOLOPT basis set families SVP,
TZVPP & QZVPP in meV /atom and the
respective values of the GPW MOLOPT
families DZVP, TZVP and TZV2P for the
same subset of elements (see also Fig-
ure 4.5a), both against the Wien2k ref-
erence.

in the all-electron basis sets, hence we limit ourselves to the first four
rows of the periodic table since for rows five and six a pseudoization
approach is used. Some transition metal values are further excluded due
to challenges in reaching convergence.

As with the GPW approach before, we can first note the consistent im-
provement of the Δ-values with larger basis sets, with a minor number
of exceptions like nitrogen and sodium as shown in Figure 4.5a. In par-
ticular, the averages for the QZVPP family are below 1meV /atom as in-
dicated in Table 4.7, placing this family and method amongst the best-
performing codes of the Δ-test benchmark. Comparing averages for the
same subset of elements furthermore shows a significant improvement
over the (GPW) families DZVP, TZVP & TZV2P. One can further observe
the significantly larger error for the SVP family, drastically corrected at
the TZVPP level.

4.3.5. All-Electron POB Basis Set

To obtain an additional external point of reference for the improvements
of our MOLOPT family, we selected the revised POB basis set families
DZVP and TZVP, and TZVPP [111, 112]. Besides the fact that these ba-
sis sets have been optimised for use in solid-state calculations, they also
follow the same contraction scheme as the def2 families and thus our
own MOLOPT basis sets, but they use less diffuse primitives in general.
We again restrict the comparison to the first four periods as the fifth and
sixth periods employ effective core potentials (ECP), for which CP2K has
only basic support, and which has been shown to require further im-
provements. Figure 4.5b contains the overview of the converged calcula-
tions. The optimization procedure behind the generation of the POB ba-
sis set relied on a variational optimization approach for a database of com-
pounds with single point energies obtained with the CRYSTAL09 code
with the hybrid functional PW1PW. The verification was done against
the CRYSTAL09-provided basis set by comparing lattice constants and
other properties for both the PW1PW functional and Hartree-Fock cal-
culations.

We observe an error which is on average an order of magnitude larger
than obtained with any of the MOLOPT basis set families. Additionally,
we do not observe the same systematic improvement for larger basis sets
seen from the MOLOPT family. For the TZVPP variant, this may not be
necessarily expected since it has not yet been revised, but also a compari-
son between the revised DZVP and TZVP does not exhibit this behaviour.
A reason for this difference could be the optimization for hybrid calcula-
tions rather than plain DFT functionals.
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(a) Δ-test values for the MOLOPT SVP, TZVPP, QZVPP all-electron basis sets against the Wien2k reference.
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Figure 4.5.: GAPW-based all-electron Δ-test calculation results for MOLOPT and POB basis sets for the first 4 rows of the periodic table.

4.3.6. PBEsol

The support for FP-LAPW calculations directly available within CP2K
via the SIRIUS integration opens up a route to a complete chain of verifi-
cation for arbitrary supported functionals within the same code (Figure
4.6).

FP-LAPW

GAPW PW

GPWCP2K

SIRIUS

Figure 4.6.: The route to a fully auto-
mated GTH pseudopotential and GTO
basis set verification within a single
code.

As a first example, we have chosen PBEsol due to its similarity to the
well-validated PBE functional. As the overview in Table 4.3 illustrates,
the difference in the mean Δ-value between plane-wave and LAPW val-
ues is less than 0.05meV /atom. Unfortunately, this hides the fact that
numerical instabilities in the SIRIUS LAPW code have thinned out the
number of converged calculations across the periodic table from 56 to
35 elements. The results are therefore now limited to rows 1-3, 5 and
the first two groups of the periodic table as shown in Figure 4.7. Casual
testing has shown that some of those instabilities vanish with smaller
cutoffs than employed with our high accuracy settings.

The exact source of these instabilities could not be determined as for all
calculations involving SIRIUS the libxc library has been used for the im-
plementation of the exchange-correlation functional. With PBEsol being
a reparametrisation of PBE and similar numerical issues having occurred
for a smaller number of elements with the PBE functional, this may hint
to a more fundamental issue with the numerics in the SIRIUS LAPW im-
plementation in combination with the employed high precision settings
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Figure 4.7.: PBEsol Δ-values for plane-
wave with MOLOPT pseudopotentials
with SIRIUS LAPW as a reference.

or the automatically generated muffin tin basis. Further investigation of
these issues, which have to be resolved to succeed at a fully automated
benchmark with SIRIUS within CP2K, will be part of future work.

4.4. Molecular benchmark results

While for the solid-state benchmark only the alignment of the energy-
volume curve was evaluated as a proxy for the overall performance of
code and parameters, does themolecular benchmark permit amuchmore
nuanced analysis.

4.4.1. Geometry

For the comparison of purely geometric properties, we are looking at
relative errors for the bond lengths, and at absolute errors for the angles.
Due to convergence issues when obtaining the reference values with G16
or comparison values with CP2K, not all molecules from the database are
taken into account in the statistics. The frequency analysis in the follow-
ing Section 4.4.3 has furthermore been used to filter molecules where
the calculation inadvertently converged to a transient state rather than a
minimum. Appendix Chapter A and the data set [114] contain the details
of the setup and the raw data of the included molecules.

Analysis of the relative errors of bonds to their respective all-electron
reference for each of the functionals PBE, TPSS and PBE0 in Figure 4.8
shows a consistent improvement for larger basis sets, reflected in lower
median values and narrower interquartile ranges. The median values
are consistently below 6‰ which corresponds to a difference of 0.01Å
on the average bond length of 1.73Å in the database.

To verify this behaviour across different chemically important bonds, the
same analysis has been repeated in Figure 4.13 for hydrogen and carbon
bonds, the first 2 rows of the oxygen, nitrogen and fluorine groups, and
metal complexes. The results from the inter-group comparison do not
show a significant deviation for any particular element. We nonetheless
observe larger errors for the oxygen and fluorine groups for the smaller
basis sets DZVP and TZVP, which are only recovered when introducing
an additional polarisation term in the TZV2P set. Carbon bonds are in
general reproduced at a relative error of an order of magnitude lower
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functional PBE TPSS PBE0
basis ⋅10−3 ⋅10−3 ⋅10−3
DZVP 7.2864 7.9210 6.8635
TZVP 6.3310 6.8225 6.3875
TZV2P 5.3635 5.5192 4.8449
SVP 7.8845
TZVPP 6.1766
QZVPP 5.0116

(a) Mean relative errors across all bonds.
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(b) Distribution of relative errors across all bonds. The outliers have
been hidden to focus on the behaviour around the median, whiskers
are drawn at 1.5𝑥 of the interquartile range 𝑄3 − 𝑄1.

(c) Histograms are normalised to account for different availability of calculations across basis sets.
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Figure 4.8.: Both (b) and (c) show the same trend, larger basis sets leading to a narrower spread as they reproduce the all-electron bond
lengths much more accurately.

than the average, although the number of such bondswithin the database
is rather low.

CP2K, DZVP

CP2K, TZVP

CP2K, TZV2P

Figure 4.9.: For NiF3 the largest angle
may not always be located between the
same Fluorine atoms, applying also to
other highly symmetric molecules in the
database like AuCl3, AlH3, etc.

To automatically identify non-linear and dihedral angles we relied on the
facilities of the G16 software package. As shown in Figure 4.10 the previ-
ously observed and anticipated trend for larger basis sets leading to nar-
rower spread continues, in particular for the all-electron basis sets. The
one notable exception here would be the TPSS functional, where larger
basis sets tended to reproduce dihedral angles slightly worse. Comparing
angles in a fully automated fashion and without additional chemical in-
formation has its difficulties: for highly constraint or even linear systems,
many if not all angles are essentially fixed due to symmetries. Compar-
ing such angles is then rather akin to a sanity check but its expressive
power is reduced. Furthermore, for almost symmetrical systems, numer-
ical noise can lead to obtuse angles occurring between different sites of
the same kind, even with the same functionals but different basis sets,
as the example of NiF3 in Figure 4.9 illustrates. This could be solved
on a case-by-case basis by simple permutation of equivalent sites if this
information would be available in the database. We, therefore, limited
ourselves to looking at the distribution of the maximum relative angle
error and keeping trivial angles in the statistics.
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(a) Distribution of the maximum relative error of angles per
structure.
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(b) Distribution of the maximum relative error of dihedral an-
gles per structure.

Figure 4.10.: Relative errors of angles (non-linear and dihedral) for the small molecules database across functionals and basis sets.

4.4.2. Dipole moments and polarizability

For a number of selected molecules with non-vanishing dipole (and avail-
ability across all functionals), we compare the magnitude of the dipole
moments with the resulting statistics of the relative errors plotted in Fig-
ure 4.11a. Comparing just the order of the relative errors to the purely
geometric quantities from Section 4.4.1 we see a much larger variance in
the results, which is not completely resolved by employing the GAPW
method in the same manner as for the vibrational modes discussed in
Section 4.4.3. The general trend for larger basis sets to improve the error
continues nonetheless here, leading to median relative errors well below
2 %.

The comparison of the average molecular polarizability reveals the effect
of basis set quality and size in the most striking manner, as illustrated
in Figure 4.11b. The error continuously and significantly improves go-
ing from smallest to largest basis set within the same functional and
method (pseudopotential vs. all-electron). On the other hand, the sen-
sitivity of this quantity due to second-order derivatives and high-order
geometric dependency leads to the largest relative errors of the studied
properties.
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(a) Distribution of the relative error of dipole moments (for
87 converged structures with non-vanishing dipole moment).
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(b)Distribution of the relative error of the trace, TPSSmissing
due to unavailability of this property in CP2K for meta-GGA.

Figure 4.11.: Relative errors of dipole moments & average molecular polarizability.
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4.4.3. Vibrational Spectra

When calculating and comparing vibrational spectra in a high-throughput
fashion, the difficulty lies in correctly identifying and pruning low fre-
quencies and matching the remaining ones. Pruning is required because
different codes may not identify the same degenerate frequencies, and
collapse them into one. Matching is needed since the list of frequen-
cies produced by the codes are unlikely to agree in order or exact value.
One reason for suchmismatches to occur is the numerical differentiation,
which may amplify differences in geometric properties or lead to non-
negligible low frequencies, indicating either an underlying problemwith
the structure itself or requiring even finer integration grids. Others are
when a simulation inadvertently converged to a transient state instead
of the true minimum, identifiable by significant negative frequencies. In
either way, we have used a pre-screening on the vibrational spectra to ex-
clude such structures completely from the analysis, assuming any good
agreement in geometry (or other properties) would have been incidental
and further manual investigation would be required to assess whether
or not a structure is still meaningfully converged. Doing this in an auto-
mated fashion would require more elaborate machinery and likely more
than just geometrical information in the database (e.g. validated chemi-
cal information). To compare the frequencies we are thus looking at the
minimal relative error per frequency (when compared to the list of fre-
quencies obtained from the reference), with the final comparison shown
in Figure 4.14 based on the mean of the relative errors of the matched
frequencies.

What can be observed in Figure 4.14 is the much larger average relative
error as compared to the bond length comparisons, and while the median
gradually improves for TPSS and PBE0, the same can not be observed for
PBE with GPW (e.g. pseudopotentials), or for the spread for all function-
als with GPW. With the all-electron basis sets SVP, TZVPP and QZVPP,
which employ the GAPW method, we can recover the usual behaviour
of significantly improved spread and median when going to larger ba-
sis sets. While the aforementioned difficulties for obtaining frequencies
could be at play here, it is also possible that the improved precision by
using GAPW – which gives a finer radial grid around the atom to model
the core charge distribution – resolves some of the numerical issues often
plaguing frequency calculations.

4.4.4. ADMM

When applying Hartree-Fock exchange as part of a hybrid-functional cal-
culation like PBE0, the computation becomesmore expensive than a pure
DFT calculation. Indeed, a 𝒪(𝑁 4) dependency on the system size as pre-
viously outlined in Section 2.5 is introduced. This makes methods like
the Auxiliary Density Matrix Method (ADMM) worthwhile to consider
as it allows us to replace the basis used to calculate the Hartree-Fock ex-
change energy with a smaller one, provided it is able to reproduce the
required observables accurately enough. Even though the systems in the
SMDB will not profit from a significant speedup, they will allow us to as-
sess the quality of ADMM and the newly generated ADMM basis. This
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Figure 4.12.: Comparison of relative
errors for PBE0+ADMM calculations
against PBE0, with CP2K.

new basis was generated with a matching size for each of the Hybrid sub-
sets of the DZVP, TZVP and TZV2P of MOLOPT basis sets. Interesting in
this case is therefore not only the error against the G16 reference value
but also the error compared to the CP2K PBE0 calculation.

Figure 4.15 contains the comparison of a subset of 200 molecules for
which ADMM calculation data was available for both PBE0 and PBE0
with ADMM, against the G16 reference values. While minor deviations
and shifts in spread and median can be be observed for the smaller DZVP
basis set, this effect vanishes for the larger TZVP and TZV2P basis sets
completely. This is confirmed by a direct comparison of the ADMM
data against the CP2K PBE0 calculations in which the average errors for
purely geometric values like bond lengths and angles drop below 2‰
and the more sensitive electronic properties below 1 %, as shown in Fig-
ure 4.12.

The indicated sizes describe the main basis set. For the auxiliary basis
set we used the admm-dzp together with DZVP, and admm-tzp for both
TZVP and TZV2P.

4.4.5. GAPW/All-Electron comparison

While the first sections have been focused on comparing CP2K and its ba-
sis sets and pseudopotentials against reference values obtained from G16
with an all-electron def2 basis set, we are now focusing on an intra-CP2K
comparison by comparing the pseudopotential MOLOPT basis sets for
PBE against AE QZVPP reference values. Since the previous evaluations
have shown a very narrow error between QZVPP and the G16 values we
believe that QZVPP can itself serve as a reference and will allow us to
verify the consistency of the data within CP2K itself. Indeed, the side-
by-side comparison in Figure 4.16 shows only small statistical deviations
between the MOLOPT basis sets DZVP, TZVP, TZV2P and G16 on the
left and CP2K with the QZVPP as a reference on the right.
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Figure 4.13.:Distribution of relative errors across all bonds (with outliers hidden) for different groups of bonds, comparing different basis
set sizes. For C-C bonds the range has been adjusted as their error is at an order of magnitude lower, but given the low number of such
bonds, the results are skewed, especially for the all-electron basis sets. A similar situation occurs at the distribution for the SVP basis and
bonds involving Fluorine or Chlorine where the spread is higher than for all other basis sets and functionals. For easier comparison and
legibility reasons, we refrained from rescaling the axis again to accompany this specific boxplot where the upper whisker is at 𝐸𝑅 = 0.033.
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functional PBE TPSS PBE0
basis

DZVP 0.1205 0.1790 0.1203
TZVP 0.1300 0.1455 0.1274
TZV2P 0.1398 0.1556 0.1667
SVP 0.1956
TZVPP 0.1149
QZVPP 0.1898

(a) Mean relative errors across a mean of minimal rel-
ative errors of frequencies.
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(b) Distribution of minimal relative errors. The outliers have been
hidden to focus on the behaviour around the median, whiskers are
drawn at 1.5𝑥 of the interquartile range 𝑄3 − 𝑄1.

(c) Histograms are normalised to account for different availability of calculations across basis sets.
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Figure 4.14.: Distribution of averages of minimal relative errors of vibrational modes.
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Figure 4.15.: Comparison of relative (for angles: absolute) errors between PBE0/PBE0+ADMM and G16.
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4.5. Conclusion

We have shown that the revised MOLOPT basis sets are well-defined for
a broad number of quantities and for both solid-state and molecular sys-
tems. As expexted, the results improve as one adds more functions or an-
gular momenta. This behaviour has been shown to hold across the three
functionals PBE, TPSS and PBE0, as well as with an ADMM calculation
for PBE0. For the meta-GGA TPSS, it even shows that a pseudopoten-
tial and basis set optimised for a different functional of the same rung
(SCAN) performs at a high enough precision to warrant its usage despite
being optimised for a different functional.

For the solid-state case, we observed that semi-core pseudopotentials
tend to lead to better results, likely due to the delocalization of electrons.
The all-electron MOLOPT basis sets perform exceptionally well, also in
cross-comparisonwith other basis sets based on similar principles of gen-
eration. This may indicate that the pseudopotentials can be a substantial
source of deviation in such a high-accurracy calculation.

To be able to automate this analysis further, several improvements to
either the database itself or the analysis tools must be made. For the
database one likely has to follow the tradition of quantum chemistry data
bases (like the GMTKN) and include validated reference data. This is in
particular relevant for integer data, such as the number of vibrational
frequencies and their degeneracies. But also identifying only (chemical)
relevant frequencies would help to discover transition states. Other re-
quired data are symmetries, which can then be used to automatically
validate the configuration and to match results between codes by e.g. au-
tomatic rotation of the molecules to minimize the RMSE of the position
differences. Relying only on heuristic approaches, such as the ones we
have implemented, is ultimately error-prone.



ADMM with k-point support in
periodic Hartree-Fock Exchange 5.

In the previous Chapter 4 we have been using PBE0 as an example for
a hybrid DFT functional, testing the portability of basis sets and pseu-
dopotentials otherwise optimized for the GGA functional PBE on a set
of molecular structures. It is in this context of Hybrid functionals that
HFX – despite its early introduction in Computational Chemistry[115,
116] – is still a very relevant target for optimization as it becomes the
rate-limiting factor in the calculation of larger systems.

One aspect which has not been discussed previously in Section 2.4 is the
challenge arising in the calculation of the HFX energy in the reciprocal
space, i.e. the sum of the diagonal terms of the ERI

𝐸X = − 1
𝑁 2 ∑

𝜇𝜈kk′
𝑃k𝜇𝜈𝑃k′𝜈𝜇 ∬𝜙∗𝜇(r1; k)𝜙𝜈 (r1; k′) 1

‖r2 − r1‖
𝜙∗𝜈 (r2; k′)𝜙𝜇(r2; k)𝑑r1𝑑r2,

(5.1)

whichwhen expandedwith Bloch functions for the 𝜙𝜇 as in Equation 2.56
becomes a divergent series due to non-vanishing co-densities for k = k′,
e.g.

∫ 𝑒(k′−k)⋅r1 u(r1). (5.2)

There are different ways to resolve this divergence, one of them is based
on adding an auxiliary function to the Exchange energy which cancels
the divergent term and separately subtract it [117]. The disadvantage of
this auxiliary function is that it must match the crystal class for which
𝐸X is to be calculated. Instead, we follow the Γ-point periodic HFX im-
plementation of CP2K, which directly replaces the Coulomb metric in
the integration with a truncated Coulomb operator, based on the work
by Spencer and Alavi [118]. That is, the 1/‖r2 − r1‖ in Equation 5.1 gets
replaced by

𝑔TC(r) = {
1
|r| if |r| ≤ 𝑅𝑐 ,
0 otherwise .

(5.3)

A well established value for this truncation radius is found to be at half
the cell distance 𝐿/2. For the DFT correction in ADMM (the DFT Ex-
change functional, see Equation 2.80) it is then only natural to apply the
same truncation as for the Exchange energy. This is also the default
within CP2K.

As we have shown in Chapter 2, actually calculating the HFX energy in
a Gaussian-Type basis set based code for a periodic system with k-point
sampling is not entirely trivial and computationally expensive. Yet, there
are some codes which have supported this for some time [119] or have
gained experimental support as of late [120]. Our contribution, which
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we are going to discuss here is not only the addition of HFX implemen-
tation which supports k-point sampling to CP2K, but also its novel com-
bination with ADMM. The latter allows us to use a significantly smaller
basis without a noticeable reduction in accuracy, which is crucial to re-
duce the number of four-centre integrals to calculate.

We consider the implementations above, as well as our own, canonical
implementations. In the sense that besides employing usual identities
like 𝑃𝑇𝜇𝜈 = 𝑃−𝑇𝜈𝜇 (and corresponding for the Exchange matrix) as well as
applying required truncation schemes to avoid the divergence and limit
the problem to a finite number of neighbour cells, no other optimisations
are being used to tackle the actual computational complexity.

This is in contrast to Resolution of Identity (RI) approaches with suitable
auxiliary basis sets to reduce the ERIs from 4- to 3 or 2-centre integrals
in HF [121, 122] or Post-HF methods [123–125], as well as the more re-
fined approaches developed in the group of Head-Gordon [126, 127]. In
their occupied orbital RI-K (occ-RI-K) approach, several components are
combined to obtain a very efficient (in both compute and memory usage)
algorithm. The focus herein lies on the efficient construction of the ex-
change matrix 𝐾 since fast methods for the 𝐽 matrix which covers the
classical Coulomb interaction have already been established prior [128–
130]. The RI approach reduces the the ERI to a 2-centre quantity by in-
troducing an auxiliary basis in which to expand the co-densities

𝜙∗𝜇 (r1) 𝜙𝜆 (r1) = ∑
𝑄

𝐶𝜇𝜆𝑄 𝜒𝑄 (r1) , (5.4)

leading to a simpler expression for 𝐾

𝐾𝜇𝑣 = ∑
𝜆𝜎

∑
𝑃𝑄

𝐶𝜇𝜆𝑃 𝐶𝑣𝜎𝑄 (𝑃 | 𝑄)𝑃𝜆𝜎𝑟 . (5.5)

The improvement then comes by exploiting the fact that for both the
energy (which requires only the diagonal elements of the exchange ma-
trix in the first place) and gradient only the occupied MO must be taken
into account. When employing the Direct Inversion of the Iterative Sub-
space (DIIS) method, this finds direct application as in that case only the
product of the Fock and density matrix are required to construct the DIIS
error vector, and thus only elements corresponding to occupied MO con-
tribute. The combination of this compression of the 𝐾 matrix together
with RI approach then loads to a reported speed-up from 3-5x compared
to other RI approaches [131] in a molecular setting. This can then be
extended to the solid state use case [126, 132] by following the same con-
struction of the periodic HFX in a GTO framework. Going further, the
group then progresses by combining this with the Tensor Hypercontrac-
tion framework [133–135] (respectively, interpolative separable density
fitting (ISDF)) into a THC-oo-K algorithm. The main idea being the ex-
pansion of products of atomic orbitals into a sum of interpolation vectors,
weighted by the orbitals

𝜙𝜇(r)∗𝜙𝜈 (r) ≈
𝑁ISDF

∑
𝑃

𝜙𝜇 (r𝑃 )∗ 𝜙𝜈 (r𝑃 ) 𝜉 [𝑛𝑛]𝑃 (r), (5.6)
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which then leads to a simplified (approximated) exchange matrix which
only needs the basis functions at a set of interpolation points 𝑁ISDF and
integration between the the interpolation vectors 𝜉𝑃 (𝑟)

𝑀𝑃𝑄 = ∬𝑑r1𝑑r2
𝜉𝑃 (r1) 𝜉𝑄 (r2)

𝑟12
. (5.7)

This is then extended towards a periodic k-point ISDF and adapted to fit
only occupied orbitals.

HFX ADMM-HFX

HFXk ADMM-HFXk

RI-HFXk RI-ADMM-HFXk

Figure 5.1.: With the addition of the
Hartree-Fock Exchange with k-point
(HFXk) implementation together with
the ADMM integration we are validat-
ing the different code parts as illustrated.
While the the practical use of (ADMM-
)HFXkmay be limited for larger systems,
it serves as a stepping stone for other
methods within CP2K.

5.1. Verification of HFXk

As base for the verification path as depicted in Figure 5.1 we are using the
well-studied Hexagonal boron nitride (h-BN) and Lithiumhydrid (LiH)
systems as examples for 2D and 3D systems. We are furthermore using
the fact that when taking the supercell or superlattice of a primitive unit
cell and calculating the system at the Γ-point, this corresponds to a sam-
pling of the reciprocal space. Due to the Fourier transformation between
real and reciprocal space, identifying special points relevant for studying
bulk or surface materials is not as easily done in the supercell approach
as when employing solely k-point sampling [136]. Likewise, band struc-
tures obtained from supercell calculations are folded upon themselves,
requiring extra treatment [137, 138]. To sample the k-point space we are
using a regularMonkhorst-Pack [139] grid. The issue of the band-folding
or explicitly identifying relevant symmetry points in reciprocal space is
not relevant for achieving converged total energies given fine enough
mesh grids, number of supercells respectively. The detailed results of
this can be seen in Figure 5.2 and Figure 5.3, respectively. We can con-
clude that an MKP grid of 9x9(x9), respectivly a supercell of 5x5(x5) is
enough to achieve convergence for both systems as well as an agreement
between the total energies of 1.106×10−5 Eh for LiH and 1.254×10−4 Eh for
h-BN, using the revised all-electron POBDZVP basis set [112] employing
the GAPW method, and a moderate EPS_SCF of 1 × 10−6. The truncation
radius was kept constant across the different supercells. As the timing
plots in Figure 5.4 illustrate do the different calculations exhibit different
scaling behaviour for constant resources. As long as the primitive inte-
grals fit into the cache, only the first SCF cycle of the periodic HFX takes
a significant amount of time. But once the cache is exhausted, the scaling
of the HFXk implementation becomes significantly more favourable in
terms of sampling of the reciprocal space.

5.1.1. Schwarz-Screening

While we are not relying on additional screening methods, including
screening on the density matrix, for now in this reference implementa-
tion, we are still using the Schwarz-inequality to reduce the number of
4-center ERI to calculate [60, 140–143].

As Figure 5.5 illustrates, the default value of CP2K for EPS_SCHWARZ of
1×10−10 which has been used throughout the calculations is still justified.
Making it larger leads to unphysical energies, while lowering it increases
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Mesh 𝐸tot [a.u.] Supercell 𝐸tot [a.u.]
3x3x3 -7.718231 1x1x1 -7.94597
6x6x6 -7.717316 2x2x2 -7.697665
9x9x9 -7.717312 3x3x3 -7.718219
12x12x12 -7.717312 4x4x4 -7.717115
15x15x15 -7.717312 5x5x5 -7.717323
18x18x18 -7.717312
21x21x21 -7.717312
24x24x24 -7.717312
27x27x27 -7.717312
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Figure 5.2.: Convergence of the total energy for ever finer k-point meshes, larger supercell configurations respectively, of LiH. Themesh
column refers to the MKP grid, while the supercell refers to the supercell configuration. The respective energies (per cell) are given next
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the time to solution significantly without any significant improvement
on the total energy.

5.1.2. ADMMk

For the verification of the ADMM implementation with k-point support
with HFX we are limiting ourselves to the h-BN system. As shown in
Figure 5.6, the energy converges continuously with the increased size of
the ADMM basis up to an agreement of −0.035 Eh with admm-tz2p. We
also show the speedup and total timing in Figure 5.6 and conclude that
the time savings by using smaller ADMM basis sets are significant given
the small improvement in total energy. Detailed analysis during calcula-
tions has shown that the simple parallelisation scheme occasionally leads
to sub-optimal core utilisation, which becomesmore important for larger
basis sets. While the timing for the reference calculation at the full TZVP
basis could therefore be improved, the speedups seen between the the
different ADMM basis sets will remain.



5.1. Verification of HFXk 71
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Figure 5.4.: Average SCF timings for each system, with an integral cache of 128GB.
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Basis Set Size Energy [a.u.] Avg. SCF [s]

admm-dz −12.4270 46.8
admm-dzp −12.4349 122.6
admm-tzp −12.4768 300.3
admm-tz2p −12.4784 1117
TZVP (ref) −12.5133 43 207 dz dzp tzp tz2p
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Figure 5.6.: Convergence of the total energy of h-BN with HFX, k-point mesh of 18x18, a cut-off of 2Å and for different sizes of the
respective ADMM MOLOPT basis set compared to the reference with a MOLOPT TZVP basis. Speedup is given in respect to the non-
ADMM reference calculation.



5.2. Basis Set Convergence 73

5.2. Basis Set Convergence

As mentioned in Section 2.5 is the scaling of the number of primitive in-
tegrals to calculate with regard to the size of the basis set unfavourable.
A demonstration of this can be seen in Figure 5.7, indicating that with
increasing size of the MOLOPT basis, the total energy is indeed converg-
ing. At the same time is the time to solution (TTS) increasing, following
the 𝑁 4 dependence. While TTS might not be the right quantity as it is
dependent on algorithmic and implementation factors, as Chapter C illus-
trates, it is the measure the user is usually interested in. The respective
total number of calculated ERIs is given in Table 5.1 for completeness.
While caching the cartesian primitive integrals at TZVP level may still
be feasible at single precision where it amounts to ≈10TB, this becomes
quickly unfeasible if higher precision and larger basis sets are needed or
more complex systems are to be investigated.
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] Figure 5.7.: Behaviour of the total en-

ergy for h-BN using HFX with the
MOLOPT-HYB-GTH basis set family and
its corresponding pseudopotential. On a
dual AMD EPYC 7742 64-Core Proces-
sor, running with 256 OpenMP threads
and an MKP grid of 18𝑥18𝑥1. Slow con-
vergence of the total energy is indicated.
The scaling of the average SCF dura-
tion follows the expected 𝑁 4 scaling, al-
though with some minor deviation.

For a comparison of different sizes of MOLOPT-ADMM basis sets, we
are again using the Δ-test metric [101]. As an example for a hybrid func-
tional, we selected HSE06, an improved parametrisation of the original
Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional [144]. It is a
range separated functional of the form

𝐸HSE
xc = 𝑎𝐸HF,SR

x (𝜔) + (1 − 𝑎)𝐸PBE,SR
x (𝜔)

+ 𝐸PBE,LR
x (𝜔) + 𝐸PBE

c ,
(5.8)

where SR and LR refer to the short- and long-range components of the the
PBE exchange functional, based on the partition of the Coulomb potential
by

MOLOPT Cartesian Spherical

DZVP 3.04 × 1012 6.26 × 1011
TZVP 3.10 × 1012 1.83 × 1012
TZV2P 9.18 × 1013 2.64 × 1013

Table 5.1.: Total number of calculated
cartesian primitive ERIs, resp. spherical
ERIs for different sizes of the MOLOPT
basis for h-BN.
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1
𝑟 = 1 − erf(𝜔𝑟)

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
SR

+ erf(𝜔𝑟)
𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟
LR

. (5.9)

The system is again h-BN, and as the main orbital basis set we are using
the MOLOPT TZVP, to account for the observation that hybrid function-
als require basis sets at least at the triple-𝜁 (or larger) quality level [145,
146].

The results for this experiment can be seen in Figure 5.8. We have used
the MOLOPT TZVP as the main basis for all calculations, with varying
ADMM basis set sizes. The truncation radius was adjusted to the scaling
of the volume.

The total energy converges towards the non-ADMM case with a delta of
0.0208 Eh with admm-dz down to 0.0089 Eh at adm-tzp. The equilibrium
volume converges in a similar manner with a final Δ-value of 5.2 eV for
the complete system.

For all the series not denoted with corrwe used the PBE Exchange func-
tional adapted to the truncated coulomb operator and its radius, while
the corr series employs a full PBE Exchange operator in the ADMM cor-
rection term

𝐸HFX𝑥 [𝑃] = 𝐸HFX𝑥 [ ̂𝑃] + (𝐸HFX𝑥 [𝑃] − 𝐸HFX𝑥 [ ̂𝑃])
≈ 𝐸HFX𝑥 [ ̂𝑃] + (𝐸DFT𝑥 [𝜌] − 𝐸DFT𝑥 [ ̂𝜌]) .

(5.10)

Using the full PBE exchange operator improves the energy towards the
non-ADMM reference, and better than the admm-dzp. It also increased
the average SCF time significantly, but still remained below that of admm-
dzp.
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Figure 5.8.: Energy-volume curves fitted to the Birch-Murnaghan equation of states with scalings of 0.98, 0.99, … , 1.04 of the volume
corresponding to the lattice parameter 𝑎 = 2.503Å. The Δ-values are given for the complete system rather than normalised for a single
atom as in Section 4.3. The table shows the Δ-value between each of the ADMM basis sets (with the MOLOPT TZVP as primary basis),
resp. between the ADMM basis sets and the non-ADMM reference with the TZVP basis set.

5.3. Conclusion

We have shown an implementation of the Hartree-Fock Exchange with
k-point support for the Auxiliary Density Matrix Method, with verifi-
cation using the LiH and h-BN systems. The comparison has shown a
well-defined behaviour in terms of convergence with reasonable cutoffs
for the Truncated Coulomb operator with a mix of direct density mixing
and DIIS in the SCF iterations. Significant instabilities with the Trun-
cated Coulomb (TC) operator as mentioned in Irmler, Burow, and Pauly
[147] have not been observed. The ADMM implementation shows clear
advantage in terms of number of ERI to calculate and therefore timing,
compared to the reference HFX k-point implementation. An advantage
in timing of the k-point-enabled implementation could also be observed
in terms of convergence for sampling of the reciprocal space when com-
pared to the Γ-point supercell approach. Although it must be stressed
that this advantage occurs in the limited setup of a primitive cell and does
not necessarily apply to cases where a supercell or a mixed approach is
needed, such as adsorption and surface effect studies. Possible improve-
ments to this reference implementation could be made in the following
areas:

▶ Quantization and compression: the usual avenue of accelerating
HFX calculations is the separation of the primitive integrals and the
contraction with the density matrix, allowing to cache the result of
the ERI calculation between SCF iterations. While it was still pos-
sible to implement this technique for the periodic implementation
by Guidon, Hutter, and VandeVondele [148], the 𝑁 2 dependency
in terms of neighbor cells makes this more challenging for the
k-point implementation. Nonetheless, if a reduction of precision
(Quantization) can be applied, together with improved screening
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methods (possibly on the basis of density matrix for extended sys-
tems), newer memory sharing paradigms like disaggregated and
Fabric-attached memory could be applied to successfully continue
the implementation of caches.

▶ Using the occupation: approaches like the Adaptively Compressed
Exchange operator by Lin [149] but also the RI-occ-K approach suc-
cessfully exploit locality and reduce the computational complexity
by limiting the calculation to occupied orbitals.

▶ Resolution of Identity approaches: the RI approaches already present
within CP2K could be extended towards k-point-enabledHFX (with
or without ADMM). As recent work shows [126, 127, 131] is the
reduction of the ERI to a 3- or 2-center quantity a lucrative ap-
proach. While the choice of an additional basis may add an addi-
tional set of parameters which must be studied and controlled for
well-defined behaviour, this basis must not necessarily follow the
same construction scheme (safe for some properties) as a full basis
sets but can be generated on-the-fly. We note here that the imple-
mentation of such an RI scheme is likely to be done in separate
algorithm as it changes the algebraic form of the overall schema
and provides different possibilities in terms of parallelisation. As
shown in the aforementioned references a direct analysis and op-
timisation of the required quantities for specific iteration schemes
proof fruitful as well.

There are also more recent proposals on accelerating HFX calculations,
such as combining a range-separated operator with the advantages of
the dual-nature of the GPW approach itself [150].

Overall this shows that despite the decades passed since the first imple-
mentations HFX in computer codes, the field is still very active and the
final optimisation has not yet been reached. We think that this reference
implementation serves as another stepping stone towards more efficient
HFX implementations, in particular within CP2K.



Summary and Outlook 6.
6.1. Summary

This work was divided into three parts, all evolving around the use of
Gaussian-typeOrbital (GTO) as the basis to solving the time-independent
Schrödinger equation within electronic structure theory using the soft-
ware package CP2K.

In the first part we have illustrated the generation of the revisedMOLOPT
pseudopotential and basis set family, the latter now being available as
an all-electron basis set. From there we have analysed the performance
of both pseudopotential and basis sets in a molecular setting, comparing
the accuracy of both code and parameters against well-known references.
In doing so, we were able to confirm once more the well-behaved nature
of the MOLOPT basis set towards the complete basis set limit. This be-
haviour has been shown to hold consistently across the three functionals
PBE, TPSS and PBE0, as well as with ADMM. With the meta-GGA TPSS
we could also show the transferability of the basis set to other functionals
in the same rung.

Since software packages like CP2K excel at the intersection of quantum
chemistry and solid state physics, evaluating the performance of both
the software package and its underlying simulation parameters in a con-
densed matter setting is crucial. To that end, we employed the Δ-test
and not only compared against literature values, but also established a
full workflow to obtain reference values from within CP2K, with help
of the SIRIUS library for implementation of the Full-Potential Linearized
Augmented Plane Wave method (FP-LAPW) and plane wave (PW) meth-
ods. This we have demonstrated for the PBEsol functional. We could
again observe well-defined behaviour for most elemental crystals with
some minor exceptions for elements with more difficult electronic struc-
ture (magnetisation) or some heavier elements. In particular with the
newly generated all-electron basis set together with Gaussian and Aug-
mented Planewave (GAPW), we were able to obtain results in very good
agreement with other state-of-the-art codes.

These sort of benchmarks require a considerable amount of calculations,
as well as proper tracking of the parameters such as the pseudopoten-
tials and basis sets under test, as these may be revised during the testing.
Hence, a significant effort was made towards automation and therefore
counted as a separate part in this thesis. Molecular calculations were far
easier to converge and computationally not as demanding, hence they
could be run directly on local machines and thus required far less au-
tomation. Nonetheless, in the spirit of improving the software ecosystem
around CP2K, we developed and released extendable open-source pars-
ing libraries for both CP2K andG16. Automating themore complex solid-
state benchmarks tookmore effort. While at the beginning of the project,
the AiiDA framework was still in early development and lacked tracking
functionalities for different versions of GTO basis sets, a bespoke work-
flowmanager was written. To make the transition to AiiDA easier, its ar-
chitecture was again based on separately released open-source libraries
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to handle CP2K input and output. This workflow manager was used for
the initial batch of Δ-test results, while the latter were obtained using
an AiiDA workflow with additional plugins. We compared the different
approaches of running benchmarks, from simple ad-hoc scripting over
custom to adaption of a larger existing workflow manager. In that com-
parison it has become clear that established workflow managers hold a
clear advantage when it comes to standardised tasks in a more complex
workflow, such as data transport, scheduling, error recovery. On the
contrary, the process of adoption can grow more complex as a conse-
quence of the levels of abstraction and the idiosyncratic design of any
given workflow management tool. We have also seen that the availabil-
ity of well-designed code interface libraries, such as the cp2k-input-tools
and cp2k-output-tools developed as part of this thesis, make it signifi-
cantly easier to transition between the different approaches and to retain
a high grade of automation for directly code related tasks (such as pars-
ing or input generation). Despite appropriate tooling, endeavours such
as large scale benchmarking still retain some of their complexity. Both
the setup of a workflow management system, but also the full automa-
tion still require considerable amount of work and respective know-how.
Based on our work, it should be possible to create a simple and fully
automated validation suite based on small molecular benchmarks, such
as the Small Molecules Database (SMDB) with additional information.
More intricate benchmarks necessitating greater orchestration or com-
pute resources still elude simple usability and execution. Several of the
improvements as well as the libraries and tools developed as either effort
are now directly available to the community, either as plugins for AiiDA
or within the software itself [2, 3].

To be able to extend the aforementioned solid state benchmarks towards
Hybrid functionals such as PBE0, a periodic k-point Hartree-Fock Ex-
change (HFX) implementation is necessary. As has been shown is the
scaling of a naïve implementation in the order of 𝑁 4 of the system size.
Even though this can be improved by appropriate screening of the inte-
grals, many problems still remain out of reach. As a remedy, the existing
Auxiliary DensityMatrixMethod (ADMM) implementationwithin CP2K
was extended to support periodic calculations with k-points as well, and
validated with systems commonly found in literature. This concluded
the third and final part of this thesis.

6.2. Outlook

6.2.1. Benchmarking

The need for validating results in terms of accuracy and agreement amongst
different electronic structure codes will remain high. For GTO based
codes, this does not only include the implementation and any pseudopo-
tential (PP) involved, but also the basis set employed in such calculations.
While we have shown that the MOLOPT basis sets are qualitatively high
performing basis sets for many different use cases able to reproduce var-
ious quantities accurately enough, further work may be needed to ex-
tend this in different directions. A next step towards automation of such
benchmarks has already been taken with the aiida-common-workflows
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package [151] which has been used for a new verification study encom-
passing the whole periodic table from Z=1 to 96 and characterising 10
prototypical cubic compounds for each element (4 unaries and 6 oxides),
spanning a wide range of coordination numbers and oxidation states.
This resulted in a vast collection of equations of state, verified between
all-electron and PP-based approaches [3]. In doing so, this also expands
the landscape towards system beyond simple solids. Another direction
would be to try for different functionals. While this is often explored
in the context of new basis sets or computational methods, it is rarely
explored across different codes and approaches (PW, GTO). Finally, in
particular towards the basis set limits, many codes exhibit unclear insta-
bilities when it comes to convergence of the self-consistent field (SCF).
Monitoring of specific observables during a calculation run could proof
very useful to avoid losing compute time in such cases, in particular for
high-throughput calculations. The difficulty lies in identifying which
quantities to monitor and detecting anomalies reliably.

6.2.2. ADMM-HFXk Implementation

The primary intention of the implementation given in this work was that
of a reference code, in the sense of correctness. As such it is thought to
serve as a stepping stone to improved-scaling methods such as the men-
tioned Resolution of Identity (RI) approaches. Since these improvements
will always have to start at the level of the k-point enabled HFX imple-
mentation itself, the combination with ADMM will most likely automat-
ically benefit from the improvements as well. As outlined in the occ-RI-K
approach, optimising for SCF methods which require only a subset of the
full HFX matrix has some potential as well, in particular with larger or
more diffuse basis sets such as the MOLOPT.

The reference implementation itself could also be improved. One such
area of improvement could be the screening, for which we relied mostly
only on the classical Schwarz-screening. Extending the integral esti-
mates to Multipole-methods [141, 143, 152–154] as in the work of Irm-
ler [155] has the potential of reducing the number of Electron Repul-
sion Integral (ERI) to calculate further by providing stricter bounds. Al-
gorithmic improvements could be considered as well. Another avenue
could be new computer architecture techniques of pooling memory be-
tween nodes using fabric-attached memory, which greatly enhances the
amount of memory available to each node. Such an architecture would
have the potential to simplify the otherwise explicit distribution of ma-
trices and permit to cache the full list of ERI (whether obtained in an
RI-approximation or with the reference four-centre approach) in a trans-
parent fashion. Furthermore, with the data cached on memory-like stor-
age, accessing it in a variable ordering without performance penalty as
for example required by post-Hartree-Fock methods such as MP2 would
be directly supported.

6.2.3. Tooling

Finally, the development of external integration libraries such as the cp2k-
input-tools and cp2k-output-tools for CP2K has already proven useful. By
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collecting common tasks, they can greatly accelerate the development
of simple custom workflows, which despite the existence of larger and
all-encompassing frameworks such as AiiDA still have their place, as
we have seen in this thesis. While a proper understanding of the un-
derlying physics and methods of electronic structure theory will always
be necessary to setup and run calculations and interpret their results, the
commoditisation ofHigh-performance computing (HPC)makes software
such as CP2K more accessible in general. By providing corresponding
tooling around it, such as a Language Server Protocol implementation,
which provides live feedback in a text editor when crafting the input for
a calculation, adaption could be accelerated even further.



Small Molecules Database
Calculation Details A.

The full data set for our benchmark with the SMDB can be found in
Hutter and Müller [114] and the original geometries in the appendix to
Weigend and Ahlrichs [53].

The protocol is run in four steps

1. Gaussian reference calculation, with OPT and FREQ keywords to
optimise the geometry and obtain the vibrational frequencies.

2. Geometry optimisation with CP2K.
3. Properties calculation with the wave function and positions from

the previous step as initial guess, using the LINEAR_RESPONSE run
type.

4. Vibrational Analysis with the VIBRATIONAL_ANALYSIS run type,
again with initial guess for wave function and positions obtained
from the previous steps.

In Listings 1 and 3 we are reproducing exemplary G16 and CP2K input
configurations (for the latter only for the geometry optimisation).

The file included as kinddef contains CP2K basis set and PP definitions
for all elements, for the basis set size and type under test. The xcdef

contains the definition of the functional to be used for a specific test run,
here we reproduce the one used for the ADMM as it the most complex
and complete one in Listing 2. The ADMM input illustrates the use of
ADMM2 with the full PBE exchange functional.
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Listing 1: CP2K input for the geometry
optimisation of the Ag2 structure from
the SMDB

1 &GLOBAL
2 PROJECT ag2
3 PRINT_LEVEL low
4 RUN_TYPE GEO_OPT
5 PREFERRED_DIAG_LIBRARY SL
6 &END GLOBAL
7 &MOTION
8 &GEO_OPT
9 MAX_ITER 50

10 &END GEO_OPT
11 &END MOTION
12 &FORCE_EVAL
13 METHOD Quickstep
14 &DFT
15 CHARGE 0
16 MULTIPLICITY 1
17 BASIS_SET_FILE_NAME BASIS_MOLOPT_UZH
18 POTENTIAL_FILE_NAME POTENTIAL_UZH
19 &MGRID
20 CUTOFF 720
21 REL_CUTOFF 60
22 &END MGRID
23 &QS
24 EPS_DEFAULT 1.E-14
25 &END QS
26 &SCF
27 SCF_GUESS ATOMIC
28 NOTCONV_STOPALL
29 MAX_SCF 15
30 EPS_SCF 1.E-7
31 &OT
32 PRECONDITIONER FULL_ALL
33 MINIMIZER DIIS
34 &END OT
35 &OUTER_SCF
36 MAX_SCF 5
37 EPS_SCF 1.E-7
38 &END OUTER_SCF
39 &END SCF
40 &POISSON
41 PERIODIC NONE
42 POISSON_SOLVER MT
43 &END POISSON
44 @include xcdef
45 &END DFT
46 &SUBSYS
47 &CELL
48 ABC 14.00000000 14.00000000 14.00000000
49 PERIODIC NONE
50 &END CELL
51 &COORD
52 Ag 8.50000000 8.50000000 7.21259135
53 Ag 8.50000000 8.50000000 9.78740865
54 &END COORD
55 &TOPOLOGY
56 &CENTER_COORDINATES
57 &END CENTER_COORDINATES
58 &END TOPOLOGY
59 &PRINT
60 &ATOMIC_COORDINATES
61 &END ATOMIC_COORDINATES
62 &END PRINT
63 @include kinddef
64 &END SUBSYS
65 &END FORCE_EVAL
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1 BASIS_SET_FILE_NAME BASIS_ADMM_UZH
2 &AUXILIARY_DENSITY_MATRIX_METHOD
3 METHOD BASIS_PROJECTION
4 ADMM_PURIFICATION_METHOD NONE
5 EXCH_CORRECTION_FUNC PBEX
6 &END
7

8 &XC
9 &XC_FUNCTIONAL

10 &GGA_C_PBE
11 &END GGA_C_PBE
12 &GGA_X_PBE
13 SCALE 0.75
14 &END GGA_X_PBE
15 &END XC_FUNCTIONAL
16 &HF
17 FRACTION 0.25
18 &HF_INFO ON
19 &END
20 &SCREENING
21 EPS_SCHWARZ 1.0E-10
22 &END
23 &MEMORY
24 MAX_MEMORY 4000
25 &END
26 &END HF
27 &END XC

Listing 2: A CP2K input segment for
the ADMM calculations for the SMDB
benchmark.

1 %mem=8GB
2 %NProcShare=8
3 #N RPBEPBE/Def2QZVPP scf=tight Int(Grid=ultrafine) OPT FREQ
4

5 Mol job 1
6

7 0 1
8 Ag 8.50000000 8.50000000 7.21259135
9 Ag 8.50000000 8.50000000 9.78740865

Listing 3: G16 input for the Ag2 struc-
ture from the SMDB





Solid State Calculation Details B.
We have been using single point energy calculations at seven volume
scales. Non-convergent single point energies were ignored if a fit could
be obtained with the remaining points. The fitted coefficients can be
found in Table B.2 and Table B.1, unphysical values were filtered out in
a later stage.

In Listing 4 we have reproduced an exemplary input for the Δ-test with
CP2K for Ag with the DZVP MOLOPT basis set and a corresponding
GTH PP, run with Gaussian and Plane Waves Method (GPW). Inputs for
other basis sets have been prepared in the same manner and with similar
tolerances, with specific parameters as given in the main text. The raw
data set can be found in Müller [108].
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Table B.1.: Fitted Birch-Murnaghan coefficients for all PBEsol calculations.

E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

H LAPW -15.8832 17.3904 10.2642 2.6260
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -15.8215 17.5038 10.2292 2.7158

pob-DZVP-rev2 -15.8218 16.9765 11.2995 2.6064
pob-TZVP-rev2 -15.8504 17.1372 10.8926 2.6248
pob-TZVPP -15.8577 17.1932 10.7337 2.6206
TZVPP-MOLOPT-PBE-ae -15.8745 17.4498 10.3691 2.6673
QZVPP-MOLOPT-PBE-ae -15.8756 17.2370 10.6106 2.6528

PW GTH-PBE-q1 -15.8606 17.5328 10.1536 2.6781
GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -15.8600 17.3228 10.5428 2.6588

TZVP-MOLOPT-PBE-GTH-q1 -15.8609 17.3825 10.4206 2.6382
TZV2P-MOLOPT-PBE-GTH-q1 -15.8724 17.3135 10.6523 2.6499

He LAPW -78.7356 17.9370 1.0545 -8.2822
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -78.3849 17.4150 0.8403 5.7855

TZVPP-MOLOPT-PBE-ae -78.6670 17.0639 0.9659 6.3705
QZVPP-MOLOPT-PBE-ae -78.5936 17.4560 0.9606 6.0447

PW GTH-PBE-q2 -78.5467 17.9247 0.6953 2.5338
GPW GTH-PBE-q2 DZVP-MOLOPT-PBE-GTH-q2 -78.6792 17.9204 0.8878 6.4982

TZVP-MOLOPT-PBE-GTH-q2 -78.6793 17.9139 0.8886 6.4985
TZV2P-MOLOPT-PBE-GTH-q2 -78.6793 17.8734 0.8892 6.4816

Li LAPW -204.6818 20.2698 13.6981 2.5288
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -204.4918 20.4537 13.3782 3.3446

pob-DZVP-rev2 -204.3497 17.0080 29.6925 -2.9236
pob-TZVP-rev2 -204.5433 20.9549 16.1886 2.4483
pob-TZVPP -204.3579 17.8019 22.1851 2.8218
TZVPP-MOLOPT-PBE-ae -204.6549 20.2154 13.8489 3.3468
QZVPP-MOLOPT-PBE-ae -204.6583 20.2252 13.8801 3.3109

PW GTH-PBE-q1 -7.1285 18.9798 13.7378 3.1565
GTH-PBE-q3 -202.5001 20.3413 14.1607 1.2658

GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -7.0617 20.1839 13.4990 2.9430
TZVP-MOLOPT-PBE-GTH-q1 -7.0620 20.1415 13.4348 3.0185
TZV2P-MOLOPT-PBE-GTH-q1 -7.0834 19.4188 13.0134 2.8825

GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -203.3115 20.8098 13.8358 3.4133
TZVP-MOLOPT-PBE-GTH-q3 -203.3249 20.3104 13.8473 3.3894
TZV2P-MOLOPT-PBE-GTH-q3 -203.3372 20.2359 13.8296 3.3715

Be LAPW -401.9007 7.9159 122.9020 3.2637
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -401.5361 7.8504 130.2762 3.3814

pob-DZVP-rev2
pob-TZVP-rev2 -398.9713 7.4612 96.2436 2.8771
pob-TZVPP
TZVPP-MOLOPT-PBE-ae -401.7877 7.9288 123.8557 3.3172
QZVPP-MOLOPT-PBE-ae -401.8009 7.9004 124.8591 3.2406

PW GTH-PBE-q2 -30.9002 7.7154 117.2288 3.1137
GTH-PBE-q4 -396.2395 7.9407 123.6585 5.1810

GPW GTH-PBE-q2 DZVP-MOLOPT-PBE-GTH-q2 -30.7234 7.6459 127.0702 3.1539
TZVP-MOLOPT-PBE-GTH-q2 -30.7707 7.7486 121.2237 3.1072
TZV2P-MOLOPT-PBE-GTH-q2 -30.8910 7.7063 118.1171 3.1517

GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -398.9432 7.9481 128.7689 3.2860
TZVP-MOLOPT-PBE-GTH-q4 -398.9580 7.9506 124.2816 3.2812
TZV2P-MOLOPT-PBE-GTH-q4 -399.0773 7.9192 120.2699 3.1987

B LAPW -676.1914 7.2389 237.1675 3.5223
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -675.5680 7.2551 240.9741 3.4824

pob-DZVP-rev2 -675.2857 7.0780 263.7309 3.3132
pob-TZVP-rev2 -675.8314 7.0259 275.5157 3.1902
TZVPP-MOLOPT-PBE-ae -675.9011 7.1854 246.1147 3.4358
QZVPP-MOLOPT-PBE-ae -675.9672 7.2292 236.6390 3.4371

PW GTH-PBE-q3 -77.1467 7.2061 235.4008 3.4577
GPW GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -77.1033 7.2057 236.2925 3.4337

TZVP-MOLOPT-PBE-GTH-q3 -77.1130 7.2022 235.9625 3.3985
TZV2P-MOLOPT-PBE-GTH-q3

C LAPW -1036.8699 11.6309 208.6473 3.5853
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -1035.2359 11.7654 206.5785 3.5702

Continued on next page
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

pob-DZVP-rev2 -1035.1413 11.7338 215.3833 3.5070
pob-TZVP-rev2 -1036.1545 11.5334 214.3296 3.5387
TZVPP-MOLOPT-PBE-ae -1036.2264 11.5912 214.7666 3.5411
QZVPP-MOLOPT-PBE-ae -1036.3725 11.5938 210.8468 3.5728

PW GTH-PBE-q4 -155.0295 11.6332 208.3696 3.6104
GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -154.9481 11.6651 207.9134 3.5640

TZVP-MOLOPT-PBE-GTH-q4 -154.9566 11.6789 206.9634 3.5502
TZV2P-MOLOPT-PBE-GTH-q4 -154.9931 11.6503 206.3905 3.5524

N LAPW -1490.1516 28.7916 53.9455 3.6231
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -1486.6470 28.8358 57.1474 3.6915

pob-DZVP-rev2 -1487.1295 30.4175 52.6102 3.6902
pob-TZVP-rev2 -1488.6195 29.9396 47.8866 3.8477
TZVPP-MOLOPT-PBE-ae -1488.9546 29.0064 54.0176 3.7273
QZVPP-MOLOPT-PBE-ae -1489.2352 28.7228 54.4347 3.7044

PW GTH-PBE-q5 -270.8419 28.8465 53.6068 3.5190
GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -270.7173 30.0906 53.0153 3.7058

TZVP-MOLOPT-PBE-GTH-q5 -270.8029 29.2220 52.4930 3.6520
TZV2P-MOLOPT-PBE-GTH-q5 -270.8311 29.0935 52.5927 3.6590

O LAPW -2045.8897 18.4622 51.9055 3.9102
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -2040.2986 19.2874 45.8991 3.8356

pob-DZVP-rev2 -2041.6623 19.3064 50.7557 3.9718
pob-TZVP-rev2 -2043.6676 21.1491 38.8501 3.6953
pob-TZVPP -2044.0588 18.9558 49.4192 3.9582
TZVPP-MOLOPT-PBE-ae -2043.6961 18.1665 56.0228 3.8381
QZVPP-MOLOPT-PBE-ae -2044.3144 18.6712 50.7753 3.7550

PW GTH-PBE-q6
GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -434.3855 19.4037 50.3916 3.8928

TZVP-MOLOPT-PBE-GTH-q6 -434.4011 19.2592 48.7263 3.8354
TZV2P-MOLOPT-PBE-GTH-q6 -434.4447 19.1079 49.0029 3.8161

F LAPW -2716.0340 19.1304 34.2757 3.9263
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -2705.9806 19.6422 33.2514 3.9768

pob-DZVP-rev2 -2709.8371 19.2131 32.4534 4.1914
pob-TZVP-rev2 -2713.1254 20.0473 33.2274 3.9851
pob-TZVPP
TZVPP-MOLOPT-PBE-ae -2712.1296 19.0564 31.4353 -0.0014
QZVPP-MOLOPT-PBE-ae -2713.3961 19.2264 34.8659 4.1113

PW GTH-PBE-q7 -649.5895 18.7676 30.2494 0.4722
GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -657.4806 19.5405 34.6492 4.1183

TZVP-MOLOPT-PBE-GTH-q7 -657.4835 19.5681 34.3740 4.1067
TZV2P-MOLOPT-PBE-GTH-q7 -657.5103 19.4914 34.0509 4.0355

Ne LAPW -3510.6585 25.4049 12.7550 -24.0795
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -3503.6509 24.3358 1.4059 5.3171

TZVPP-MOLOPT-PBE-ae -3506.4273 22.8442 0.8975 -1.5239
QZVPP-MOLOPT-PBE-ae -3506.5521 23.8946 1.4581 6.7434

PW GTH-PBE-q8 -944.9968 23.7488 5.6261 22.7700
GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -950.1891 23.6746 1.2345 8.3563

TZVP-MOLOPT-PBE-GTH-q8 -950.1917 23.6994 1.2591 8.1334
TZV2P-MOLOPT-PBE-GTH-q8 -950.1918 23.6668 1.2776 8.2233

Na LAPW -4420.0773 37.2015 7.9292 1.8615
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -4411.3506 37.8887 7.8512 3.6380

pob-DZVP-rev2 -4412.0485 30.1301 22.5778 1.3088
pob-TZVP-rev2 -4413.6100 32.3587 13.8176 1.1454
pob-TZVPP -4413.6488 32.1241 14.2638 1.1356
TZVPP-MOLOPT-PBE-ae -4413.6908 36.7999 7.9263 3.8570
QZVPP-MOLOPT-PBE-ae -4413.9719 36.2457 8.4849 3.6817

PW GTH-PBE-q1 -6.1950 37.9716 7.2285 3.6726
GTH-PBE-q9 -1254.8853 37.3276 7.3523 15.3515

GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -6.1735 38.6459 7.0372 3.6326
TZVP-MOLOPT-PBE-GTH-q1 -6.1800 38.7735 7.2287 3.4908
TZV2P-MOLOPT-PBE-GTH-q1 -6.1921 37.9859 7.2299 3.6448

GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -1304.0790 38.9538 6.7858 3.5000
TZVP-MOLOPT-PBE-GTH-q9 -1304.0817 38.6250 6.7616 3.5544
TZV2P-MOLOPT-PBE-GTH-q9 -1304.0869 38.4423 6.6965 3.5513

Continued on next page
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

Mg LAPW -5451.3968 22.9660 36.0507 4.0055
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -5440.4647 22.8030 36.9186 4.0303

pob-DZVP-rev2 -5439.2867 17.8998 220.2267 7.2914
pob-TZVP-rev2 -5440.4657 13.6408 48.5830 -14.6618
TZVPP-MOLOPT-PBE-ae -5442.2670 22.9949 35.9941 4.0405
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q2 -23.9916 23.2149 34.7533 3.9538
GTH-PBE-q10 -1637.8867 24.3920 48.9855 -4.1965

GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -1723.0894 23.6044 33.5330 4.0434
TZVP-MOLOPT-PBE-GTH-q10 -1723.1057 23.6727 32.9018 3.9795
TZV2P-MOLOPT-PBE-GTH-q10 -1723.2320 23.1172 34.4829 4.1657

Al LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -6592.3451 15.9798 83.5647 5.1990

pob-DZVP-rev2 -6592.6524 16.9295 73.1317 4.6810
pob-TZVP-rev2 -6593.4372 10.9805 40.2847 -26.1470
TZVPP-MOLOPT-PBE-ae -6594.7179 16.4696 78.8214 4.6754
QZVPP-MOLOPT-PBE-ae -6594.9780 16.4603 78.8063 4.7080

PW GTH-PBE-q3 -56.4348 16.4744 76.7742 4.5787
GPW GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -56.3601 16.4088 79.1315 4.6433

TZVP-MOLOPT-PBE-GTH-q3 -56.3925 16.4269 78.9152 4.6809
TZV2P-MOLOPT-PBE-GTH-q3 -56.4132 16.4388 78.4769 4.6959

Si LAPW -7892.2879 20.5224 86.4086 5.2519
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -7872.0034 20.1227 99.9992 4.1453

pob-DZVP-rev2 -7872.1517 20.6279 91.3889 4.1109
pob-TZVP-rev2 -7874.0270 19.7811 91.2406 4.6695
pob-TZVPP -7874.0889 19.8313 91.5886 4.5303
TZVPP-MOLOPT-PBE-ae -7874.6712 20.5116 89.1866 4.2638
QZVPP-MOLOPT-PBE-ae -7874.9390 20.3381 91.1498 4.2942

PW GTH-PBE-q4 -107.1747 20.3573 88.2776 4.2780
GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -107.0801 20.4052 87.8711 4.2617

TZVP-MOLOPT-PBE-GTH-q4 -107.0934 20.4246 87.1143 4.2758
TZV2P-MOLOPT-PBE-GTH-q4 -107.1299 20.3384 88.1904 4.2975

P LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -9282.2740 21.5018 68.3008 4.4405

pob-DZVP-rev2 -9282.1720 20.7033 87.4301 4.2061
pob-TZVP-rev2 -9285.0416 21.7842 69.7421 4.2946
TZVPP-MOLOPT-PBE-ae -9285.2366 21.5551 68.1752 4.3025
QZVPP-MOLOPT-PBE-ae -9285.6387 21.3973 68.1825 4.3788

PW GTH-PBE-q5 -179.4299 21.2659 68.6570 4.1869
GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -179.2151 21.6443 64.4372 4.3428

TZVP-MOLOPT-PBE-GTH-q5 -179.2469 21.5854 65.2551 4.3119
TZV2P-MOLOPT-PBE-GTH-q5 -179.3532 21.3362 67.5744 4.3244

S LAPW -10862.1886 17.1580 77.7122 16.7882
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -10826.9326 17.3399 85.4391 4.3051

pob-DZVP-rev2 -10827.0847 18.9541 80.3028 4.1192
pob-TZVP-rev2 -10827.8508 16.7690 105.9676 4.3706
pob-TZVPP -10828.2880 16.7244 109.3671 4.6993
TZVPP-MOLOPT-PBE-ae -10830.9052 17.2326 83.8572 4.0912
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q6 -277.4321 17.0411 83.4896 4.1901
GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -277.2984 17.2578 83.7300 4.1460

TZVP-MOLOPT-PBE-GTH-q6 -277.3067 17.2050 83.0642 4.1502
TZV2P-MOLOPT-PBE-GTH-q6 -277.3644 17.0664 84.7653 4.0746

Cl LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -12512.8428 41.3032 17.7753 4.1451

pob-DZVP-rev2 -12512.2673 40.9315 25.7571 -0.0162
pob-TZVP-rev2 -12516.8495 44.2736 17.0903 4.4545
pob-TZVPP -12516.9784 43.4143 19.1358 4.0264
TZVPP-MOLOPT-PBE-ae -12517.5330 38.8550 19.4832 4.3934
QZVPP-MOLOPT-PBE-ae -12517.9438 38.8660 18.9442 4.3820

PW GTH-PBE-q7 -407.4189 38.2670 19.3079 4.3728
GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -407.2015 39.2855 19.4587 4.4362

TZVP-MOLOPT-PBE-GTH-q7 -407.2066 39.2340 19.4294 4.4545
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

TZV2P-MOLOPT-PBE-GTH-q7 -407.2847 38.5691 19.7077 4.3912
Ar LAPW -14401.4009 53.5168 0.7277 3.5107

GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -14345.6766 52.0692 0.5060 3.6099
TZVPP-MOLOPT-PBE-ae -14338.3649 45.4402 0.5358 -5.1931
QZVPP-MOLOPT-PBE-ae -14349.3944 51.1558 0.7212 3.3586

PW GTH-PBE-q8 -573.4247 52.1382 0.7340 8.9418
GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -573.4101 49.8795 0.9045 7.9615

TZVP-MOLOPT-PBE-GTH-q8 -573.4115 49.9480 0.8729 7.6659
TZV2P-MOLOPT-PBE-GTH-q8 -573.4116 49.9592 0.8689 7.6769

K LAPW -16384.7174 72.2149 6.7689 28.5580
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -16316.8670 74.0597 3.6624 3.5182

pob-DZVP-rev2 -16315.7124 46.6820 74.3901 6.6250
pob-TZVP-rev2 -16318.5581 53.4494 37.1556 4.9363
pob-TZVPP -16318.7868 54.1243 35.9046 4.5592
TZVPP-MOLOPT-PBE-ae -16319.4228 74.2621 3.6394 3.5773
QZVPP-MOLOPT-PBE-ae -16319.6802 72.6539 3.8371 3.7254

PW GTH-PBE-q1 -5.0872 75.3082 3.2991 3.6513
GTH-PBE-q9 -769.2741 73.4869 3.6629 4.7954

GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -769.2143 75.7127 3.5828 3.4459
TZVP-MOLOPT-PBE-GTH-q9 -769.2290 73.4891 3.6015 3.4745
TZV2P-MOLOPT-PBE-GTH-q9 -769.2297 73.5015 3.5927 3.9296

Ca LAPW -18514.6121 42.2549 16.8036 2.8342
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -18430.2829 44.3617 17.4465 3.6403

pob-DZVP-rev2 -18428.4917 34.3641 69.8131 2.3605
pob-TZVP-rev2 -18430.1094 34.1258 79.2187 0.7484
pob-TZVPP -18418.9901 27.2111 118.1119 6.2843
TZVPP-MOLOPT-PBE-ae -18433.1229 42.0201 17.7952 3.2745
QZVPP-MOLOPT-PBE-ae -18433.3207 42.1094 17.6075 3.1773

PW GTH-PBE-q2 -19.7780 37.5599 16.4737 3.0679
GTH-PBE-q10 -999.2612 42.8601 17.4123 3.9946

GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -999.1915 44.0666 17.1717 3.3888
TZVP-MOLOPT-PBE-GTH-q10 -999.2492 43.2273 17.6843 3.4175
TZV2P-MOLOPT-PBE-GTH-q10 -999.2639 43.1298 17.4132 3.4277

Sc LAPW -24752.5438 3.9153 3182.3725 -241.5389
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -20691.8456 24.7021 57.3891 3.2285

pob-DZVP-rev2 -20692.4037 20.9823 51.9912 -7.3226
pob-TZVP-rev2 -20694.9945 21.0576 46.2838 -10.2562
TZVPP-MOLOPT-PBE-ae -20695.2005 24.6296 54.0749 3.3800
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q3 -46.7663 25.8714 50.1385 3.2352
GTH-PBE-q11 -1267.1305 24.6206 47.4213 5.4860

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1269.1217 24.6620 55.4702 3.3440
TZVP-MOLOPT-PBE-GTH-q11 -1269.1782 24.5810 54.3681 3.3965
TZV2P-MOLOPT-PBE-GTH-q11 -1269.1831 24.5750 54.5076 3.3983

Ti LAPW -24631.7885 17.8752 6385.1130 14116.1892
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -23100.3653 16.0752 587.6793 16.6887

pob-DZVP-rev2 -23107.8611 16.3902 140.0910 0.0773
pob-TZVP-rev2 -23107.8852 12.8275 777.2526 4.4044
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q4 -93.6653 18.2366 104.6754 3.4649
GTH-PBE-q12 -1576.8055 17.2868 109.3539 7.5673

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1580.0234 17.3979 114.5387 3.5100
TZVP-MOLOPT-PBE-GTH-q12 -1580.0558 17.4071 111.6865 3.6114
TZV2P-MOLOPT-PBE-GTH-q12 -1580.0605 17.4182 111.5357 3.5995

V LAPW -25832.4142 13.4720 181.5373 3.8876
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -25667.9085 13.8161 12801.9119 -28.3937

pob-DZVP-rev2 -25672.3607 14.2021 4789.2105 -23.9172
pob-TZVP-rev2 -25683.5768 12.6031 259.2206 2.3610
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q5 -164.9700 14.0344 163.4427 3.9376
GTH-PBE-q13 -1935.4361 13.2350 176.1863 14.1838
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1940.2561 13.5200 183.9794 3.6972
TZVP-MOLOPT-PBE-GTH-q13 -1940.2964 13.5171 181.6041 3.8582
TZV2P-MOLOPT-PBE-GTH-q13 -1940.2990 13.5222 181.2874 3.8545

Cr LAPW -28596.2273 11.7494 193.0643 6.8255
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -28397.3115 12.2635 11635.2963 -15.3822

pob-DZVP-rev2 -28399.8687 11.3779 61578.7764 28.6375
pob-TZVP-rev2 -28414.3671 11.4605 46514.7704 33.8671
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q6
GTH-PBE-q14

GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -2321.6068 12.3673 148.6561 6.6212
TZVP-MOLOPT-PBE-GTH-q14
TZV2P-MOLOPT-PBE-GTH-q14

Mn LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -31277.8960 9.3826 75.5822 -5.2540

pob-DZVP-rev2 -31291.2666 9.7572 114.3377 -105.8516
pob-TZVP-rev2 -31316.5241 11.3354 3548.6184 37.3484
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q7
GTH-PBE-q15

GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2816.5167 12.2273 116.7321 5.5686
TZVP-MOLOPT-PBE-GTH-q15 -2816.5709 12.2322 111.5940 5.9163
TZV2P-MOLOPT-PBE-GTH-q15 -2816.5717 12.2326 111.7111 5.9169

Fe LAPW -34634.7911 11.3153 199.1108 4.8661
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae

pob-DZVP-rev2 -34360.2679 6.7124 130.6761 -7.7296
pob-TZVP-rev2
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q8
GTH-PBE-q16

GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -3362.3163 11.4877 182.2544 6.4381
TZVP-MOLOPT-PBE-GTH-q16 -3362.3958 11.4974 170.0512 8.2152
TZV2P-MOLOPT-PBE-GTH-q16 -3362.4104 11.4997 168.7266 8.3425

Co LAPW -37918.4805 10.8516 212.6994 4.8522
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -37581.2149 11.3055 49208.8731 -32.3308

pob-DZVP-rev2 -37586.8463 9.6822 4163.0632 10.4383
pob-TZVP-rev2 -37520.5903 9.1949 465.6776 -26.1644
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q9
GTH-PBE-q17

GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -3955.6803 10.8407 228.0858 3.8444
TZVP-MOLOPT-PBE-GTH-q17 -3955.7399 10.9248 211.5322 5.3751
TZV2P-MOLOPT-PBE-GTH-q17 -3955.7412 10.9239 207.7918 6.2607

Ni LAPW -41384.0119 10.9056 198.1051 4.8247
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -41008.0059 11.0791 79951.8624 9.5212

pob-DZVP-rev2
pob-TZVP-rev2
TZVPP-MOLOPT-PBE-ae
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q10
GTH-PBE-q18

GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -4620.3982 10.8627 197.9677 4.8579
TZVP-MOLOPT-PBE-GTH-q18 -4620.4496 10.8856 198.7912 3.3097
TZV2P-MOLOPT-PBE-GTH-q18 -4620.4516 10.8839 194.6025 4.9001

Cu LAPW -45035.7586 11.9859 140.3096 4.8144
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -44616.8409 12.2348 9021.7156 -37.6415

pob-DZVP-rev2 -44655.6882 12.2161 3332.6517 0.0525
pob-TZVP-rev2
TZVPP-MOLOPT-PBE-ae
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QZVPP-MOLOPT-PBE-ae
PW GTH-PBE-q1

GTH-PBE-q11 -1283.5713 12.0993 228.0067 -9.5291
GTH-PBE-q19 -5246.4965 11.2939 22.1959 -251.1812

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1300.4918 12.0711 141.4677 5.0290
TZVP-MOLOPT-PBE-GTH-q11 -1300.5211 12.0746 141.6981 5.3956
TZV2P-MOLOPT-PBE-GTH-q11 -1300.5225 12.0747 142.1636 5.0380

Zn LAPW -48874.8419 15.2440 73.5165 5.2441
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -48389.4508 14.5649 88.7800 2.9605

pob-DZVP-rev2 -48406.4643 12.6267 291.2088 5.3469
pob-TZVP-rev2
TZVPP-MOLOPT-PBE-ae -50950.8147 9.7724 16964.9520 -238.6189
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q2 -29.0509 13.4572 84.0158 5.0079
GTH-PBE-q12 -1611.5535 15.2201 144.8093 5.1155
GTH-PBE-q20 -6008.5549 14.4676 181.7431 -3.5463

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1648.0874 15.3072 74.1344 5.3337
TZVP-MOLOPT-PBE-GTH-q12 -1648.1153 15.3098 74.5469 5.3061
TZV2P-MOLOPT-PBE-GTH-q12 -1648.1168 15.3107 74.4922 5.3025

Ga LAPW -52902.1015 20.4824 47.5200 5.4402
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -52364.9438 19.2522 57.4039 -0.6197

pob-DZVP-rev2 -52365.0445 19.8653 56.3976 -0.1934
pob-TZVP-rev2 -51721.8374 20.5386 35161.5376 -54.3024
TZVPP-MOLOPT-PBE-ae -52371.3612 19.7894 438.8576 35.8659
QZVPP-MOLOPT-PBE-ae -51761.0279 21.9255 38708.1644 -16.7032

PW GTH-PBE-q3 -59.8629 20.4143 47.0110 5.0577
GTH-PBE-q13 -2027.2111 20.4782 52.4422 1.2904
GTH-PBE-q21 -6886.1801 20.3593 48.8396 6.4117

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -2029.8579 20.5291 47.6711 5.4149
TZVP-MOLOPT-PBE-GTH-q13 -2029.8753 20.4708 47.4701 5.4622
TZV2P-MOLOPT-PBE-GTH-q13 -2029.8769 20.4635 47.5036 5.4779

Ge LAPW -57119.0868 24.0484 58.2416 4.9688
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -56503.6368 21.3411 48.5815 -5.1204

pob-DZVP-rev2
pob-TZVP-rev2
TZVPP-MOLOPT-PBE-ae -56509.7772 23.5487 91.0848 15.3534
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q4 -107.0346 24.0876 57.3302 4.8027
GTH-PBE-q14 -2408.0346 23.7966 57.3622 16.7275
GTH-PBE-q22 -7750.3315 23.2924 100.7769 24.8427

GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -106.9266 24.0560 59.3451 4.7464
TZVP-MOLOPT-PBE-GTH-q4 -106.9638 23.9927 60.0263 4.7082
TZV2P-MOLOPT-PBE-GTH-q4 -106.9678 24.0003 59.6854 4.7212

As LAPW -61527.3169 22.7726 68.6159 -0.6460
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -60825.8067 22.2598 75.1267 4.0104

pob-DZVP-rev2 -60825.8247 22.5209 103.3910 -20.6797
pob-TZVP-rev2 -60833.2179 22.0496 73.6982 3.9439
TZVPP-MOLOPT-PBE-ae -60833.4578 22.4930 70.4376 4.4930
QZVPP-MOLOPT-PBE-ae -60834.6710 22.3740 72.1998 6.8126

PW GTH-PBE-q5 -171.8218 22.5743 68.5830 4.2677
GTH-PBE-q15 -2500.8113 20.7635 290.6755 14.4549
GTH-PBE-q23 -8257.1996 18.9559 82.2489 -0.4831

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -171.7199 22.8143 67.8998 4.2170
TZVP-MOLOPT-PBE-GTH-q5 -171.7269 22.7778 68.0080 4.2269
TZV2P-MOLOPT-PBE-GTH-q5 -171.7318 22.7618 67.9921 4.2238

Se LAPW -66129.8018 29.8919 46.2620 4.0165
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -65332.4232 29.8645 48.3635 4.4760

pob-DZVP-rev2 -65331.7064 30.8809 43.5990 4.0573
pob-TZVP-rev2 -65338.8805 26.8947 71.4343 5.3258
TZVPP-MOLOPT-PBE-ae -65340.7182 29.8011 48.1094 4.8336
QZVPP-MOLOPT-PBE-ae -65341.9720 29.8219 46.8656 4.5314

PW GTH-PBE-q6 -256.7435 29.7341 47.1912 4.4446
GTH-PBE-q16 -3275.9888 25.6804 9.0943 -15.5984
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E0 V0 B0 B1
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GTH-PBE-q24 -9530.6610 25.9890 13.3552 -8.3344
GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -256.5321 30.1975 47.0078 4.3976

TZVP-MOLOPT-PBE-GTH-q6 -256.5405 30.1868 46.7190 4.4010
TZV2P-MOLOPT-PBE-GTH-q6 -256.5480 30.1593 46.6705 4.4079

Br LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -70026.8755 40.7142 20.5932 4.8628

pob-DZVP-rev2 -70027.1760 40.9208 21.8707 4.9529
pob-TZVP-rev2 -70035.5050 39.3252 22.9714 4.0830
TZVPP-MOLOPT-PBE-ae -69245.3357 35.3325 72.9323 -92.5946
QZVPP-MOLOPT-PBE-ae

PW GTH-PBE-q7 -365.2062 39.3484 22.5617 4.8391
GTH-PBE-q17 -3854.9810 37.2014 35.8380 11.3761
GTH-PBE-q25 -10654.3520 37.0584 23.6454 -0.8834

GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -364.9852 40.0007 21.8293 4.9208
TZVP-MOLOPT-PBE-GTH-q7 -364.9934 39.9853 21.7494 4.9053
TZV2P-MOLOPT-PBE-GTH-q7 -365.0078 39.9261 21.7632 4.9085

Kr LAPW
GAPW ALLELECTRON SVP-MOLOPT-PBE-ae -74909.6363 95.4197 -0.1345 1.0146

TZVPP-MOLOPT-PBE-ae -74922.6949 66.4989 0.1711 1.6345
QZVPP-MOLOPT-PBE-ae -73568.6689 57.3050 91.8538 -308.0157

PW GTH-PBE-q8 -500.6643 65.8763 0.6497 7.2689
GTH-PBE-q18 -4456.9037 65.6646 9.0162 8.3833
GTH-PBE-q26 -11700.6840 65.0890 15.9500 13.9862

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -500.5068 64.7460 0.5411 7.2646
TZVP-MOLOPT-PBE-GTH-q8 -500.5106 62.5483 0.6201 6.1733
TZV2P-MOLOPT-PBE-GTH-q8 -500.5112 62.1104 0.6437 6.2586

Rb LAPW -81129.8272 92.0981 2.7461 3.1845
GAPW GTH-PBE-q9 SVP-MOLOPT-PBE-GTH-q9 -651.5563 90.0933 2.8692 3.6736

TZVPP-MOLOPT-PBE-GTH-q9 -653.0066 74.7063 3.6456 -0.0245
QZVPP-MOLOPT-PBE-GTH-q9 -653.1290 78.6174 13.9912 3.2770

PW GTH-PBE-q1 -4.8116 93.0440 2.5693 3.6856
GTH-PBE-q9 -654.9276 91.2049 2.7948 3.6838

GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -654.9021 94.3547 2.8608 3.8769
TZVP-MOLOPT-PBE-GTH-q9 -654.9198 91.8211 2.8448 3.8370
TZV2P-MOLOPT-PBE-GTH-q9 -654.9202 91.8513 2.8233 3.7768

Sr LAPW -86527.6884 54.9955 10.6029 4.2525
GAPW GTH-PBE-q10 SVP-MOLOPT-PBE-GTH-q10 -831.7988 59.0842 11.4846 2.4754

TZVPP-MOLOPT-PBE-GTH-q10 -832.4314 51.5009 13.6659 4.0255
QZVPP-MOLOPT-PBE-GTH-q10 -831.6793 32.6719 3.9719 3.2589

PW GTH-PBE-q2 -17.8859 53.4071 10.7449 3.0206
GTH-PBE-q10 -834.1201 54.5556 11.5063 3.9123

GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -833.9005 56.9282 10.7992 2.9846
TZVP-MOLOPT-PBE-GTH-q10 -833.9589 55.0517 11.4562 3.2321
TZV2P-MOLOPT-PBE-GTH-q10 -833.9983 54.7255 11.5565 3.9040

Y LAPW -92130.4108 33.0776 40.5754 4.2465
GAPW GTH-PBE-q11 SVP-MOLOPT-PBE-GTH-q11 -1038.2627 32.2068 48.9834 2.6694

TZVPP-MOLOPT-PBE-GTH-q11 -1038.5534 32.3690 43.4974 2.6356
QZVPP-MOLOPT-PBE-GTH-q11

PW GTH-PBE-q3 -42.3562 32.7431 38.7292 2.5899
GTH-PBE-q11 -1038.8985 32.8459 41.2468 3.0675

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1038.9518 33.1871 41.4001 3.1381
TZVP-MOLOPT-PBE-GTH-q11 -1039.0185 32.8953 41.2579 3.0320
TZV2P-MOLOPT-PBE-GTH-q11 -1039.0246 32.9129 41.1240 3.0100

Zr LAPW -97940.1661 23.5350 93.7871 1.7957
GAPW GTH-PBE-q12 SVP-MOLOPT-PBE-GTH-q12 -1268.7395 23.5031 99.0107 2.8994

TZVPP-MOLOPT-PBE-GTH-q12 -1268.6678 22.6655 97.7125 3.3004
QZVPP-MOLOPT-PBE-GTH-q12 -1268.6676 22.9563 97.9211 3.2649

PW GTH-PBE-q4 -82.1015 23.2783 92.3712 3.1868
GTH-PBE-q12 -1269.2119 23.5412 93.3070 3.0292

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1269.2911 23.7180 94.6828 3.3921
TZVP-MOLOPT-PBE-GTH-q12 -1269.3507 23.5606 93.2574 3.2967
TZV2P-MOLOPT-PBE-GTH-q12 -1269.3564 23.5670 93.0691 3.2958

Nb LAPW -103961.0230 18.2270 170.6344 2.9425
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GAPW GTH-PBE-q13 SVP-MOLOPT-PBE-GTH-q13 -1539.1646 17.9445 172.5274 3.4716
TZVPP-MOLOPT-PBE-GTH-q13 -1539.5935 17.5570 179.5144 3.9489
QZVPP-MOLOPT-PBE-GTH-q13

PW GTH-PBE-q5 -137.9394 19.4597 147.3837 3.6098
GTH-PBE-q13 -1540.9654 18.2507 167.5931 3.5326

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1540.7734 18.2987 170.1492 3.7053
TZVP-MOLOPT-PBE-GTH-q13 -1540.8092 18.2300 169.4620 3.7214
TZV2P-MOLOPT-PBE-GTH-q13 -1540.8215 18.2512 168.6857 3.7221

Mo LAPW -110195.7119 15.8871 261.6172 2.9066
GAPW GTH-PBE-q14 SVP-MOLOPT-PBE-GTH-q14 -1843.5188 15.6807 262.3867 4.0819

TZVPP-MOLOPT-PBE-GTH-q14 -1844.5570 15.6839 263.6758 4.0858
QZVPP-MOLOPT-PBE-GTH-q14

PW GTH-PBE-q6 -212.4822 17.4596 233.4783 3.8265
GTH-PBE-q14 -1845.7719 15.9182 258.1047 4.7304

GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -1845.4385 15.9215 259.4148 4.2400
TZVP-MOLOPT-PBE-GTH-q14 -1845.5112 15.9069 258.4687 4.2234
TZV2P-MOLOPT-PBE-GTH-q14 -1845.5154 15.9095 258.4475 4.2147

Tc LAPW -116647.1203 14.5188 297.5740 5.7451
GAPW GTH-PBE-q15 SVP-MOLOPT-PBE-GTH-q15 -2173.4575 14.4925 310.4461 3.3336

TZVPP-MOLOPT-PBE-GTH-q15 -2174.0060 14.1446 315.2489 4.5748
QZVPP-MOLOPT-PBE-GTH-q15

PW GTH-PBE-q7 -315.1877 15.4045 288.8086 4.5224
GTH-PBE-q15 -2175.8540 14.6692 295.9129 4.4642

GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2175.5391 14.6218 302.7981 4.5348
TZVP-MOLOPT-PBE-GTH-q15 -2175.5771 14.6844 294.7529 4.5366
TZV2P-MOLOPT-PBE-GTH-q15 -2175.5803 14.6849 294.9145 4.5320

Ru LAPW -123318.1865 13.7822 311.6958 5.0358
GAPW GTH-PBE-q16 SVP-MOLOPT-PBE-GTH-q16 -2522.6833 14.1666 359.4352 0.5194

TZVPP-MOLOPT-PBE-GTH-q16 -2523.9103 13.9140 324.7799 4.7195
QZVPP-MOLOPT-PBE-GTH-q16

PW GTH-PBE-q8 -445.2143 13.9285 300.8632 4.8022
GTH-PBE-q16 -2526.4513 14.2730 311.6089 4.7995

GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -2525.9617 14.3525 309.9522 4.8172
TZVP-MOLOPT-PBE-GTH-q16 -2526.0052 14.2894 310.5957 4.8525
TZV2P-MOLOPT-PBE-GTH-q16 -2526.0084 14.2923 310.0475 4.8508

Rh LAPW -130213.8263 14.0854 256.9706 4.0888
GAPW GTH-PBE-q17 SVP-MOLOPT-PBE-GTH-q17 -74797.4289 17.6190 287638.2153 6563.6319

TZVPP-MOLOPT-PBE-GTH-q17 -2931.5601 12.6873 387.9537 5.1031
QZVPP-MOLOPT-PBE-GTH-q17

PW GTH-PBE-q9 -593.4592 14.5411 246.1175 5.1288
GTH-PBE-q17 -2936.7442 14.5646 249.2615 5.1672

GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -2936.3840 14.6157 251.8141 5.1669
TZVP-MOLOPT-PBE-GTH-q17 -2936.4552 14.6040 248.4729 5.1745
TZV2P-MOLOPT-PBE-GTH-q17 -2936.4559 14.6044 248.2922 5.1727

Pd LAPW -137337.2312 15.3464 171.3886 3.4718
GAPW GTH-PBE-q18 SVP-MOLOPT-PBE-GTH-q18 -3400.2825 14.3175 265.3936 3.8631

TZVPP-MOLOPT-PBE-GTH-q18 -3401.2674 15.2154 210.2143 4.7731
QZVPP-MOLOPT-PBE-GTH-q18

PW GTH-PBE-q10 -780.6251 15.8988 162.1933 5.5851
GTH-PBE-q18 -3408.0960 15.7730 163.5727 5.5914

GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -3407.6971 16.1237 155.0134 5.4432
TZVP-MOLOPT-PBE-GTH-q18 -3407.7994 15.8102 163.9947 5.5818
TZV2P-MOLOPT-PBE-GTH-q18 -3407.8024 15.8217 163.3482 5.5629

Ag LAPW -144691.3061 17.9062 88.4021 3.5726
GAPW GTH-PBE-q19 SVP-MOLOPT-PBE-GTH-q19 -3897.2426 18.1021 81.8125 5.0988

TZVPP-MOLOPT-PBE-GTH-q19 -3910.0087 15.6485 200.5091 4.9903
QZVPP-MOLOPT-PBE-GTH-q19 682944.0327 18.4175 1333982.5517 131638.9363

PW GTH-PBE-q1
GTH-PBE-q11 -1010.3986 17.7619 93.1423 6.3227
GTH-PBE-q19 -3918.4894 18.4500 85.8810 5.7821

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1010.3439 17.7935 92.8240 5.9344
TZVP-MOLOPT-PBE-GTH-q11 -1010.3616 17.7903 92.2488 5.9170
TZV2P-MOLOPT-PBE-GTH-q11 -1010.3621 17.7916 92.2007 5.9189
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Cd LAPW -152275.5616 22.9753 42.2624 3.0000
GAPW GTH-PBE-q20 SVP-MOLOPT-PBE-GTH-q20 -4439.9972 10.6294 40.3857 -18.7317

TZVPP-MOLOPT-PBE-GTH-q20 -4434.7953 13.6216 45.2405 -4.4565
QZVPP-MOLOPT-PBE-GTH-q20

PW GTH-PBE-q2 -26.9872 18.6698 72.1597 5.7806
GTH-PBE-q12 -1253.6335 22.9437 44.0012 6.7954
GTH-PBE-q20 -4452.8249 23.2169 43.4445 8.1295

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1253.5483 22.9371 42.2800 7.0277
TZVP-MOLOPT-PBE-GTH-q12 -1253.6046 22.9383 45.1234 6.7340
TZV2P-MOLOPT-PBE-GTH-q12 -1253.6106 22.9657 44.4243 6.7494

In LAPW
GAPW GTH-PBE-q21 SVP-MOLOPT-PBE-GTH-q21 -4992.1593 27.4509 30.0089 5.2670

TZVPP-MOLOPT-PBE-GTH-q21
QZVPP-MOLOPT-PBE-GTH-q21

PW GTH-PBE-q3 -54.3153 27.8840 34.4413 4.6923
GTH-PBE-q13 -1532.6001 27.6694 35.7758 5.0385
GTH-PBE-q21 -5026.5513 28.2543 34.8599 4.9832

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1532.5661 27.7937 35.3973 5.0618
TZVP-MOLOPT-PBE-GTH-q13 -1532.5844 27.6867 35.5252 5.0506
TZV2P-MOLOPT-PBE-GTH-q13 -1532.5851 27.6957 35.4635 5.0530

Sn LAPW -168141.5470 37.0488 35.6577 3.3727
GAPW GTH-PBE-q22 SVP-MOLOPT-PBE-GTH-q22 -5604.0354 33.9814 40.1039 5.1818

TZVPP-MOLOPT-PBE-GTH-q22 -5606.9888 27.6418 79.4478 4.5367
QZVPP-MOLOPT-PBE-GTH-q22 -5641.3669 14.6281 48.7982 -26.1690

PW GTH-PBE-q4 -95.2024 37.1211 34.2577 4.6412
GTH-PBE-q14 -1838.5250 36.5339 35.4103 4.9393
GTH-PBE-q22 -5650.5889 37.5899 34.6881 4.6320

GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -95.0111 37.3317 34.2034 4.6988
TZVP-MOLOPT-PBE-GTH-q4 -95.0274 37.2004 34.2282 4.7028
TZV2P-MOLOPT-PBE-GTH-q4 -95.0340 37.2335 33.9569 4.6971

Sb LAPW
GAPW GTH-PBE-q23 SVP-MOLOPT-PBE-GTH-q23 -6281.7467 9.6020 46.9886 -17.5695

TZVPP-MOLOPT-PBE-GTH-q23
QZVPP-MOLOPT-PBE-GTH-q23 -6265.6061 15.6281 52.3215 -4.7131

PW GTH-PBE-q5 -150.7143 31.9805 50.1644 4.5045
GTH-PBE-q15 -2179.7602 31.1943 50.4064 4.6437
GTH-PBE-q23 -6316.8763 32.5797 49.7097 4.4594

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -150.4696 32.3834 49.0183 4.4650
TZVP-MOLOPT-PBE-GTH-q5 -150.5113 32.2241 49.4707 4.4656
TZV2P-MOLOPT-PBE-GTH-q5 -150.5259 32.1919 49.5701 4.4802

Te LAPW -184951.5381 35.1715 45.3929 0.2960
GAPW GTH-PBE-q24 SVP-MOLOPT-PBE-GTH-q24 -6996.5587 36.9860 41.6650 4.6448

TZVPP-MOLOPT-PBE-GTH-q24 -6961.7302 16.8011 31.4536 -20.8773
QZVPP-MOLOPT-PBE-GTH-q24

PW GTH-PBE-q6 -222.2432 35.1684 44.7100 4.6997
GTH-PBE-q16 -2560.8822 33.7584 43.5621 4.2202
GTH-PBE-q24 -7023.0537 35.8682 42.8242 5.0089

GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -221.8612 35.5427 44.8608 4.6523
TZVP-MOLOPT-PBE-GTH-q6 -222.1210 35.4889 43.8980 4.7214
TZV2P-MOLOPT-PBE-GTH-q6 -222.1344 35.4819 43.7561 4.7253

I LAPW
GAPW GTH-PBE-q25 SVP-MOLOPT-PBE-GTH-q25 -7709.0413 39.7665 32.8982 5.3693

TZVPP-MOLOPT-PBE-GTH-q25 -7705.5637 33.0413 137.3011 5.6245
QZVPP-MOLOPT-PBE-GTH-q25 -7701.6781 31.4296 147.0058 5.9464

PW GTH-PBE-q7 -312.2300 50.5566 18.5615 5.0544
GTH-PBE-q17 -2962.2854 48.2506 18.2687 5.9143
GTH-PBE-q25 -7788.2584 51.2825 17.5422 5.5375

GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -311.8713 52.8342 16.7653 5.0700
TZVP-MOLOPT-PBE-GTH-q7 -311.9248 51.8419 17.4081 5.0717
TZV2P-MOLOPT-PBE-GTH-q7 -311.9408 51.7026 17.4937 5.0677

Xe LAPW
GAPW GTH-PBE-q26 SVP-MOLOPT-PBE-GTH-q26 -8492.9824 54.7299 3.9148 6.9710

TZVPP-MOLOPT-PBE-GTH-q26 -8480.6895 41.0818 16.1830 6.5245
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QZVPP-MOLOPT-PBE-GTH-q26
PW GTH-PBE-q8 -423.3691 86.8302 0.5417 7.5104

GTH-PBE-q18 -3405.4621 78.1091 0.7716 10.3010
GTH-PBE-q26 -8595.2101 86.6970 0.6431 5.2668

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -423.1778 86.1253 0.6097 7.9132
TZVP-MOLOPT-PBE-GTH-q8 -423.1787 85.3436 0.6253 7.8187
TZV2P-MOLOPT-PBE-GTH-q8 -423.1796 84.4831 0.6352 7.6554

Cs LAPW -211979.2517 124.9737 0.2660 6.4129
GAPW GTH-PBE-q9 SVP-MOLOPT-PBE-GTH-q9 -546.6368 98.3904 3.6051 6.1249

TZVPP-MOLOPT-PBE-GTH-q9 -546.4776 95.6529 2.7856 4.3104
QZVPP-MOLOPT-PBE-GTH-q9 -546.9571 108.9744 2.4976 3.0382

PW GTH-PBE-q1 -4.3166 136.6352 1.4053 2.7757
GTH-PBE-q9 -547.5845 117.3563 1.9514 3.6406

GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -547.5302 122.9767 2.0686 3.2544
TZVP-MOLOPT-PBE-GTH-q9 -547.5552 117.4911 2.0343 3.2840
TZV2P-MOLOPT-PBE-GTH-q9 -547.5564 117.8092 1.9946 3.2983

Ba LAPW -221477.4001 66.6585 5.8304 2.7918
GAPW GTH-PBE-q10 SVP-MOLOPT-PBE-GTH-q10 -691.2548 65.0610 8.4637 2.6648

TZVPP-MOLOPT-PBE-GTH-q10 -691.4556 64.8577 9.0192 2.9426
QZVPP-MOLOPT-PBE-GTH-q10 -691.9766 64.1048 9.5054 2.8558

PW GTH-PBE-q2 -16.8503 57.1428 6.9943 1.5664
GTH-PBE-q10 -692.2466 63.3266 8.7291 3.0289

GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -691.5125 66.6178 8.6096 2.9763
TZVP-MOLOPT-PBE-GTH-q10 -691.5637 64.8182 8.8545 3.2565
TZV2P-MOLOPT-PBE-GTH-q10 -691.6413 64.2469 8.8632 3.0799

Hf LAPW -410832.4160 22.4965 16.0218 3.0000
GAPW GTH-PBE-q12 SVP-MOLOPT-PBE-GTH-q12 -1338.9596 22.9666 119.3659 4.3922

TZVPP-MOLOPT-PBE-GTH-q12 -1341.0620 22.4446 117.3297 -0.2591
QZVPP-MOLOPT-PBE-GTH-q12

PW GTH-PBE-q12 -1342.9753 22.5220 107.0614 3.2738
GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1341.1952 22.6148 107.2820 3.4417

TZVP-MOLOPT-PBE-GTH-q12 -1341.2693 22.5766 106.9953 3.3876
TZV2P-MOLOPT-PBE-GTH-q12 -1341.2819 22.5482 107.2377 3.3756

Ta LAPW -425207.6713 18.3251 16.0218 3.0000
GAPW GTH-PBE-q13 SVP-MOLOPT-PBE-GTH-q13 -1578.6407 18.4964 195.9132 3.6432

TZVPP-MOLOPT-PBE-GTH-q13 -1581.2241 18.2119 213.9765 -8.8466
QZVPP-MOLOPT-PBE-GTH-q13

PW GTH-PBE-q5 -134.1937 19.6380 179.1351 3.5234
GTH-PBE-q13 -1583.1241 18.1750 192.5867 3.4763

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1583.0439 18.1853 193.5176 3.7607
TZVP-MOLOPT-PBE-GTH-q13 -1583.0901 18.1935 195.0192 3.7607
TZV2P-MOLOPT-PBE-GTH-q13 -1583.0920 18.2000 194.6478 3.7555

W LAPW -439902.3659 16.2260 16.0218 3.0000
GAPW GTH-PBE-q14 SVP-MOLOPT-PBE-GTH-q14 -1850.6744 16.0180 315.5015 4.1259

TZVPP-MOLOPT-PBE-GTH-q14
QZVPP-MOLOPT-PBE-GTH-q14

PW GTH-PBE-q6 -208.2997 16.9495 283.0834 4.1167
GTH-PBE-q14 -1854.5729 16.0212 303.2627 4.2467

GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -1854.4879 16.0372 306.1920 4.1721
TZVP-MOLOPT-PBE-GTH-q14 -1854.5220 16.0180 305.0462 4.1874
TZV2P-MOLOPT-PBE-GTH-q14 -1854.5266 16.0232 304.7623 4.1716

Re LAPW -454919.9135 14.9325 16.0218 3.0000
GAPW GTH-PBE-q15 SVP-MOLOPT-PBE-GTH-q15 -2152.3892 14.7936 390.9635 4.3283

TZVPP-MOLOPT-PBE-GTH-q15 -2153.4731 14.1772 392.2084 5.2668
QZVPP-MOLOPT-PBE-GTH-q15

PW GTH-PBE-q7 -297.6067 15.7396 349.3212 4.3292
GTH-PBE-q15 -2157.6248 14.8398 366.5660 4.3848

GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2157.5128 14.8676 369.3230 4.4219
TZVP-MOLOPT-PBE-GTH-q15 -2157.5826 14.8750 368.5825 4.4421
TZV2P-MOLOPT-PBE-GTH-q15 -2157.5854 14.8764 367.9852 4.4419

Os LAPW -470266.5384 14.0733 16.0218 3.0000
GAPW GTH-PBE-q16 SVP-MOLOPT-PBE-GTH-q16 -2485.9498 14.0249 436.6202 4.9334

TZVPP-MOLOPT-PBE-GTH-q16 -2485.7841 13.6225 427.4195 4.1501
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

QZVPP-MOLOPT-PBE-GTH-q16
PW GTH-PBE-q8 -414.2363 14.6642 387.1398 4.7663

GTH-PBE-q16 -2492.4326 14.1797 402.1182 4.8265
GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -2492.3064 14.2159 408.0839 4.7452

TZVP-MOLOPT-PBE-GTH-q16 -2492.3516 14.2093 402.3626 4.8160
TZV2P-MOLOPT-PBE-GTH-q16 -2492.3561 14.2020 400.7729 4.8142

Ir LAPW -485944.8264 14.5661 16.0218 3.0000
GAPW GTH-PBE-q17 SVP-MOLOPT-PBE-GTH-q17 -2851.0859 14.1109 386.7454 4.7022

TZVPP-MOLOPT-PBE-GTH-q17 -2805.8626 15.0891 47793.1072 -15.8257
QZVPP-MOLOPT-PBE-GTH-q17

PW GTH-PBE-q9 -547.3022 15.2097 334.3132 5.0757
GTH-PBE-q17 -2861.9186 14.3719 354.6361 5.0398

GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -2861.2962 13.5010 540.8082 4.3130
TZVP-MOLOPT-PBE-GTH-q17 -2861.6280 13.9899 433.6238 4.5734
TZV2P-MOLOPT-PBE-GTH-q17 -2861.7318 14.1517 396.2893 4.7578

Pt LAPW
GAPW GTH-PBE-q18 SVP-MOLOPT-PBE-GTH-q18 -3268.9482 15.6568 258.2151 5.0652

TZVPP-MOLOPT-PBE-GTH-q18 -3269.8516 15.3489 1559.0464 27.3655
QZVPP-MOLOPT-PBE-GTH-q18

PW GTH-PBE-q10 -708.8052 16.1918 244.8685 5.4822
GTH-PBE-q18 -3271.1316 15.6211 252.1194 5.4815

GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -3271.0095 15.6710 253.2527 5.5397
TZVP-MOLOPT-PBE-GTH-q18 -3271.0310 15.6328 252.3665 5.4817
TZV2P-MOLOPT-PBE-GTH-q18 -3271.0327 15.6331 252.2180 5.4904

Au LAPW -518320.7632 18.1815 16.0218 3.0000
GAPW GTH-PBE-q19 SVP-MOLOPT-PBE-GTH-q19 -3710.8648 17.3758 213.4867 4.7881

TZVPP-MOLOPT-PBE-GTH-q19 -3704.7803 17.7289 449990.8956 43.1289
QZVPP-MOLOPT-PBE-GTH-q19 -3714.4455 16.7995 206.3357 5.8839

PW GTH-PBE-q1 -19.5702 4.5026 50.1001 -20.1968
GTH-PBE-q11 -901.8543 18.4337 136.4954 5.8700
GTH-PBE-q19 -3715.5238 17.8331 146.1890 6.0326

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -901.7443 18.5287 132.7443 6.0189
TZVP-MOLOPT-PBE-GTH-q11 -901.7653 18.5387 132.1700 6.0176
TZV2P-MOLOPT-PBE-GTH-q11 -901.7689 18.5300 132.6993 6.0048

GTH-PBE-q19 DZVP-MOLOPT-PBE-GTH-q19 -3715.4937 17.8730 146.7658 6.0269
TZVP-MOLOPT-PBE-GTH-q19 -3715.5146 17.8628 145.8506 5.9381
TZV2P-MOLOPT-PBE-GTH-q19 -3715.5178 17.8569 146.1006 5.9971

Hg LAPW -535026.2793 30.6494 11.1558 3.0000
GAPW GTH-PBE-q20 SVP-MOLOPT-PBE-GTH-q20 -4141.5733 24.0271 58.5666 6.7631

TZVPP-MOLOPT-PBE-GTH-q20 -4142.4781 23.7489 18.7192 6.0556
QZVPP-MOLOPT-PBE-GTH-q20 -4142.0620 19.6661 46.5061 2.6268

PW GTH-PBE-q2
GTH-PBE-q12 -1118.6168 29.5226 7.2612 2.1989
GTH-PBE-q20 -4144.2943 27.4405 15.9500 10.7037

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1118.5914 29.9501 7.3837 10.4255
TZVP-MOLOPT-PBE-GTH-q12 -1118.6017 29.7172 7.7093 10.3409
TZV2P-MOLOPT-PBE-GTH-q12 -1118.6023 29.7055 7.7415 10.1985

Tl LAPW
GAPW GTH-PBE-q21 SVP-MOLOPT-PBE-GTH-q21

TZVPP-MOLOPT-PBE-GTH-q21 -4654.3469 29.7321 33.5858 5.1884
QZVPP-MOLOPT-PBE-GTH-q21

PW GTH-PBE-q3 -56.9485 29.8759 30.6071 5.1739
GTH-PBE-q13 -1358.2761 31.4428 27.0857 5.5155
GTH-PBE-q21 -4659.1376 31.7566 27.7756 3.5168

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1358.2302 31.5606 26.9708 5.4451
TZVP-MOLOPT-PBE-GTH-q13 -1358.2431 31.4856 27.0847 5.4184
TZV2P-MOLOPT-PBE-GTH-q13 -1358.2441 31.5021 27.0181 5.4152

Pb LAPW -569488.1221 35.7633 6.8160 0.0998
GAPW GTH-PBE-q22 SVP-MOLOPT-PBE-GTH-q22 -5195.0681 31.6539 43.1942 5.3418

TZVPP-MOLOPT-PBE-GTH-q22 -5199.1969 27.9115 47.2267 0.0657
QZVPP-MOLOPT-PBE-GTH-q22 -5197.5825 25.5870 190.6506 8.2109

PW GTH-PBE-q4 -96.2967 32.1911 40.4900 5.4012
GTH-PBE-q14 -1627.6914 32.0706 39.5705 4.2420
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GTH-PBE-q22 -5202.3770 32.2811 39.6458 4.1789
GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -96.2003 32.8723 39.9307 4.8842

TZVP-MOLOPT-PBE-GTH-q4 -96.2508 32.4604 41.4390 5.0003
TZV2P-MOLOPT-PBE-GTH-q4 -96.2528 32.4203 41.4017 4.9883

Bi LAPW -587253.2612 36.7274 16.0218 3.0000
GAPW GTH-PBE-q23 SVP-MOLOPT-PBE-GTH-q23 -5780.7539 36.6911 44.0538 4.7980

TZVPP-MOLOPT-PBE-GTH-q23 -5783.6829 0.0115 42.8991 7.2225
QZVPP-MOLOPT-PBE-GTH-q23 -5782.6815 29.7441 84.4283 4.3809

PW GTH-PBE-q5 -149.3625 37.0574 43.2011 4.5897
GTH-PBE-q15 -1920.6651 36.9289 42.7744 4.6820
GTH-PBE-q23 -5790.5350 36.7780 42.5205 4.6857

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -149.2726 37.4683 42.1366 4.5977
TZVP-MOLOPT-PBE-GTH-q5 -149.2973 37.2946 42.4017 4.6188
TZV2P-MOLOPT-PBE-GTH-q5 -149.3068 37.2634 42.4404 4.6372

Po LAPW
GAPW GTH-PBE-q24 SVP-MOLOPT-PBE-GTH-q24 -6448.9450 37.2959 44.0253 4.9844

TZVPP-MOLOPT-PBE-GTH-q24 -6455.3571 34.2403 57.4580 4.7942
QZVPP-MOLOPT-PBE-GTH-q24 -6455.7853 30.5736 103.2762 3.4301

PW GTH-PBE-q6 -219.2938 37.5453 45.8776 4.9142
GTH-PBE-q16 -2248.5516 37.3075 45.2492 4.9807
GTH-PBE-q24 -6460.9174 36.9941 45.3715 4.2765

GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -219.1878 37.9580 44.4075 5.0600
TZVP-MOLOPT-PBE-GTH-q6 -219.2102 37.8878 44.3168 5.0018
TZV2P-MOLOPT-PBE-GTH-q6 -219.2145 37.8955 44.2307 4.9417

Rn LAPW
GAPW GTH-PBE-q26 SVP-MOLOPT-PBE-GTH-q26 -11681.7605 54.3012 502.0782 -992.0318

TZVPP-MOLOPT-PBE-GTH-q26 -7977.6944 62.7742 2.3488 7.2259
QZVPP-MOLOPT-PBE-GTH-q26

PW GTH-PBE-q8 -407.1189 93.2580 0.5387 7.2186
GTH-PBE-q18 -2975.9580 90.2585 0.2744 -18.1617
GTH-PBE-q26 -7996.3985 95.1867 3.0496 -32.4445

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -407.0654 95.5170 0.3983 6.1548
TZVP-MOLOPT-PBE-GTH-q8 -407.0758 88.9960 0.6043 6.3695
TZV2P-MOLOPT-PBE-GTH-q8 -407.0788 88.8468 0.5827 6.4658

Table B.2.: Fitted Birch-Murnaghan coefficients for all PBE calculations.

E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

H LAPW -15.6175 17.9351 9.7015 2.7374
PW GTH-PBE-q1 -15.5965 18.0790 9.5865 2.7121
GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -15.5932 17.8161 9.9201 2.6930

TZVP-MOLOPT-PBE-GTH-q1 -15.5949 17.9048 9.8088 2.6808
TZV2P-MOLOPT-PBE-GTH-q1 -15.6069 17.8253 10.0549 2.6873

He LAPW -77.7728 21.0995 0.1208 20.2427
PW GTH-PBE-q2 -77.6020 19.8611 0.6708 1.5808
GPW GTH-PBE-q2 DZVP-MOLOPT-PBE-GTH-q2 -77.7294 19.9286 0.4849 5.9682

TZVP-MOLOPT-PBE-GTH-q2 -77.7298 19.9464 0.4839 5.9702
TZV2P-MOLOPT-PBE-GTH-q2 -77.7298 19.9122 0.4846 5.9453

Li LAPW -202.9954 20.2418 13.6170 3.2875
PW GTH-PBE-q1 -7.1200 19.0675 13.6417 3.1462

GTH-PBE-q3 -200.9590 20.2482 13.8208 1.7343
GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -7.0503 20.3347 13.4267 2.9375

TZVP-MOLOPT-PBE-GTH-q1 -7.0508 20.2822 13.3653 3.0201
TZV2P-MOLOPT-PBE-GTH-q1 -7.0722 19.5381 12.9309 2.9016

GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -201.7400 20.7896 13.5594 3.4331
TZVP-MOLOPT-PBE-GTH-q3 -201.7607 20.2511 13.7021 3.3640
TZV2P-MOLOPT-PBE-GTH-q3 -201.7745 20.1708 13.7055 3.3566

Be LAPW -399.4924 7.8404 123.8039 3.2539
PW GTH-PBE-q2 -30.8790 7.7331 117.1984 3.1140

GTH-PBE-q4 -394.1024 7.8651 126.3576 5.1439
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element method pseudo basisset [eV] [Å3/atom] [GPa]

GPW GTH-PBE-q2 DZVP-MOLOPT-PBE-GTH-q2 -30.7010 7.6567 127.5143 3.1437
TZVP-MOLOPT-PBE-GTH-q2 -30.7488 7.7630 121.2539 3.1036
TZV2P-MOLOPT-PBE-GTH-q2 -30.8690 7.7223 118.1314 3.1498

GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -396.7452 7.8694 130.4650 3.2672
TZVP-MOLOPT-PBE-GTH-q4 -396.7628 7.8600 126.1365 3.2568
TZV2P-MOLOPT-PBE-GTH-q4 -396.8834 7.8307 121.5060 3.1801

B LAPW -672.9501 7.1560 242.7251 3.5049
PW GTH-PBE-q3 -77.0245 7.1852 238.2562 3.4450
GPW GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -76.9809 7.1870 238.8967 3.4178

TZVP-MOLOPT-PBE-GTH-q3 -76.9917 7.1805 238.8944 3.3839
TZV2P-MOLOPT-PBE-GTH-q3

C LAPW -1032.6189 11.5227 213.6417 3.5584
PW GTH-PBE-q4 -154.6064 11.6086 210.8686 3.6371
GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -154.5262 11.6344 210.5249 3.5495

TZVP-MOLOPT-PBE-GTH-q4 -154.5343 11.6464 209.7561 3.5349
TZV2P-MOLOPT-PBE-GTH-q4 -154.5715 11.6217 209.1216 3.5357

N LAPW -1484.6057 28.6688 54.3998 3.5423
PW GTH-PBE-q5 -269.8368 28.9594 53.5525 3.4962
GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -269.7178 30.1529 52.9613 3.6863

TZVP-MOLOPT-PBE-GTH-q5 -269.8010 29.3106 52.3461 3.6316
TZV2P-MOLOPT-PBE-GTH-q5 -269.8282 29.1882 52.4314 3.6411

O LAPW -2039.2165 17.9909 52.4608 3.4924
PW GTH-PBE-q6
GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -432.9234 19.0629 52.2028 3.8466

TZVP-MOLOPT-PBE-GTH-q6 -432.9395 18.9150 50.3823 3.7796
TZV2P-MOLOPT-PBE-GTH-q6 -432.9857 18.7784 50.5589 3.7576

F LAPW -2708.0879 18.4738 36.6774 3.8632
PW GTH-PBE-q7 -647.4913 18.3317 41.4198 5.4898
GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -655.3982 18.9854 37.0424 4.1070

TZVP-MOLOPT-PBE-GTH-q7 -655.4002 18.9928 36.8143 4.0992
TZV2P-MOLOPT-PBE-GTH-q7 -655.4322 18.9149 36.4846 4.0223

Ne LAPW -3501.3537 24.4018 3.1154 41.0698
PW GTH-PBE-q8 -942.1426 23.9522 4.0881 24.9124
GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -947.3654 24.5037 0.8311 8.4246

TZVP-MOLOPT-PBE-GTH-q8 -947.3692 24.0489 0.9035 8.0568
TZV2P-MOLOPT-PBE-GTH-q8 -947.3693 23.9730 0.9266 8.2408

Na LAPW -4409.5381 36.6559 8.0266 -7.5984
PW GTH-PBE-q1 -6.1841 38.2590 7.1647 3.6378

GTH-PBE-q9 -1251.4325 36.5159 9.6095 13.9927
GPW GTH-PBE-q1 DZVP-MOLOPT-PBE-GTH-q1 -6.1637 38.8908 6.9908 3.6272

TZVP-MOLOPT-PBE-GTH-q1 -6.1701 39.0175 7.1693 3.4953
TZV2P-MOLOPT-PBE-GTH-q1 -6.1815 38.2764 7.1584 3.6362

GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -1300.6153 37.9545 6.8924 3.4801
TZVP-MOLOPT-PBE-GTH-q9 -1300.6203 37.5664 6.9084 3.5294
TZV2P-MOLOPT-PBE-GTH-q9 -1300.6268 37.3703 6.8567 3.5051

Mg LAPW -5439.6553 22.5329 37.4777 4.1302
PW GTH-PBE-q2 -23.9696 23.3094 34.6972 3.9354

GTH-PBE-q10 -1633.8860 24.0304 44.0289 -5.7322
GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -1719.0342 23.1223 35.2117 4.0319

TZVP-MOLOPT-PBE-GTH-q10 -1719.0504 23.1577 34.6195 3.9649
TZV2P-MOLOPT-PBE-GTH-q10 -1719.1821 22.6237 36.3589 4.1597

Al LAPW
PW GTH-PBE-q3 -56.3944 16.4914 77.9540 4.4989
GPW GTH-PBE-q3 DZVP-MOLOPT-PBE-GTH-q3 -56.3197 16.4147 80.6000 4.5236

TZVP-MOLOPT-PBE-GTH-q3 -56.3521 16.4416 80.2061 4.5778
TZV2P-MOLOPT-PBE-GTH-q3 -56.3723 16.4533 79.7548 4.5872

Si LAPW -7877.9823 20.1109 92.7024 4.2244
PW GTH-PBE-q4 -106.9456 20.2276 90.8298 4.2316
GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -106.8487 20.2592 90.6634 4.2288

TZVP-MOLOPT-PBE-GTH-q4 -106.8634 20.2844 89.7687 4.2422
TZV2P-MOLOPT-PBE-GTH-q4 -106.8992 20.2029 90.8387 4.2643

P LAPW
PW GTH-PBE-q5 -179.0315 20.7907 74.2039 4.3545
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GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -178.8067 21.1444 69.5697 4.3526
TZVP-MOLOPT-PBE-GTH-q5 -178.8419 21.0912 70.4101 4.3201
TZV2P-MOLOPT-PBE-GTH-q5 -178.9557 20.8559 72.9439 4.3294

S LAPW -10845.2256 16.4581 97.0646 4.6022
PW GTH-PBE-q6 -276.8883 16.3473 96.1688 4.2100
GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -276.7497 16.5665 96.0646 4.1256

TZVP-MOLOPT-PBE-GTH-q6 -276.7591 16.5043 95.3515 4.1302
TZV2P-MOLOPT-PBE-GTH-q6 -276.8200 16.3806 96.8222 4.0594

Cl LAPW
PW GTH-PBE-q7 -406.2473 37.1298 20.4757 4.3820
GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -406.0244 38.1667 20.6890 4.4608

TZVP-MOLOPT-PBE-GTH-q7 -406.0302 38.0997 20.6758 4.4922
TZV2P-MOLOPT-PBE-GTH-q7 -406.1159 37.4099 20.9964 4.4162

Ar LAPW -14381.0982 52.6788 0.3308 3.2626
PW GTH-PBE-q8 -571.7792 49.9793 0.3872 0.4509
GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -571.7649 46.9049 0.8058 8.0586

TZVP-MOLOPT-PBE-GTH-q8 -571.7697 45.4875 0.8458 7.7770
TZV2P-MOLOPT-PBE-GTH-q8 -571.7698 45.4690 0.8460 7.7965

K LAPW -16362.9769 71.0903 3.7856 3.3906
PW GTH-PBE-q1 -5.0756 76.0087 3.2522 3.6329

GTH-PBE-q9 -767.3459 70.7169 3.6685 3.4128
GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -767.2825 72.9339 3.6660 3.3952

TZVP-MOLOPT-PBE-GTH-q9 -767.3002 70.5635 3.7131 3.4259
TZV2P-MOLOPT-PBE-GTH-q9 -767.3009 70.5768 3.7733 3.9003

Ca LAPW -18491.4956 40.6359 17.9798 3.1964
PW GTH-PBE-q2 -19.6947 37.9025 16.4181 2.9555

GTH-PBE-q10 -997.0935 41.4349 18.1975 3.3767
GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -997.0170 42.6066 17.8436 3.3615

TZVP-MOLOPT-PBE-GTH-q10 -997.0771 41.8017 18.3571 3.3848
TZV2P-MOLOPT-PBE-GTH-q10 -997.0930 41.6686 18.1139 3.3995

Sc LAPW
PW GTH-PBE-q3 -46.6933 25.8351 50.7226 3.2223

GTH-PBE-q11 -1264.6834 23.5645 54.3509 5.0900
GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1266.6951 23.7657 58.6067 3.3051

TZVP-MOLOPT-PBE-GTH-q11 -1266.7444 23.6227 57.6284 3.3749
TZV2P-MOLOPT-PBE-GTH-q11 -1266.7491 23.6200 57.7566 3.3747

Ti LAPW
PW GTH-PBE-q4 -93.4455 18.0504 109.6496 3.4541

GTH-PBE-q12 -1574.1227 16.6575 139.9758 8.3389
GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1577.3485 16.7942 121.6664 3.4811

TZVP-MOLOPT-PBE-GTH-q12 -1577.3764 16.7650 119.8649 3.5968
TZV2P-MOLOPT-PBE-GTH-q12 -1577.3804 16.7750 119.6347 3.5871

V LAPW -25805.3026 12.9481 172.6385 0.1113
PW GTH-PBE-q5 -164.5336 13.7699 179.5786 3.7780

GTH-PBE-q13 -1932.4766 12.7939 254.6950 11.4765
GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1937.2884 13.0575 197.9054 3.6741

TZVP-MOLOPT-PBE-GTH-q13 -1937.3231 13.0287 197.2329 3.8610
TZV2P-MOLOPT-PBE-GTH-q13 -1937.3255 13.0319 196.8748 3.8579

Cr LAPW
PW GTH-PBE-q6

GTH-PBE-q14
GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -2318.3581 11.8299 466.3770 -30.3701

TZVP-MOLOPT-PBE-GTH-q14 -2318.3898 11.8655 519.2989 -28.1484
TZV2P-MOLOPT-PBE-GTH-q14 -2318.3919 11.8665 521.6223 -28.0775

Mn LAPW
PW GTH-PBE-q7

GTH-PBE-q15
GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2812.6811 11.3465 140.6143 3.2451

TZVP-MOLOPT-PBE-GTH-q15 -2812.7332 11.3200 141.4244 4.0526
TZV2P-MOLOPT-PBE-GTH-q15 -2812.7338 11.3215 141.7251 4.0899

Fe LAPW
PW GTH-PBE-q8

GTH-PBE-q16
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GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -3357.9116 10.9544 225.4500 5.7058
TZVP-MOLOPT-PBE-GTH-q16 -3357.9835 10.9401 221.0841 5.5855
TZV2P-MOLOPT-PBE-GTH-q16 -3357.9969 10.9412 232.3906 7.9224

Co LAPW
PW GTH-PBE-q9

GTH-PBE-q17
GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -3950.7802 10.3918 281.0843 6.3721

TZVP-MOLOPT-PBE-GTH-q17 -3950.8330 10.4416 251.4248 5.3776
TZV2P-MOLOPT-PBE-GTH-q17 -3950.8343 10.4436 252.8794 5.6283

Ni LAPW
PW GTH-PBE-q10

GTH-PBE-q18
GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -4614.6753 10.3396 233.3278 4.8767

TZVP-MOLOPT-PBE-GTH-q18 -4614.7177 10.3516 230.0563 4.9095
TZV2P-MOLOPT-PBE-GTH-q18 -4614.7191 10.3507 230.2043 4.9117

Cu LAPW
PW GTH-PBE-q1

GTH-PBE-q11 -1280.2576 11.3673 22.8738 -165.8010
GTH-PBE-q19 -5240.1493 10.5634 36.6440 -75.2832

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1297.3689 11.4569 171.0017 5.0251
TZVP-MOLOPT-PBE-GTH-q11 -1297.3962 11.4647 173.8712 5.3640
TZV2P-MOLOPT-PBE-GTH-q11 -1297.3975 11.4621 171.5465 5.0430

Zn LAPW
PW GTH-PBE-q2 -29.0189 13.4850 83.3286 4.8929

GTH-PBE-q12 -1607.4709 14.7094 161.0557 4.7928
GTH-PBE-q20 -6001.5303 13.5664 50.1301 -38.8229

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1644.2525 14.3341 93.9999 5.3185
TZVP-MOLOPT-PBE-GTH-q12 -1644.2804 14.3455 94.0666 5.3012
TZV2P-MOLOPT-PBE-GTH-q12 -1644.2817 14.3464 93.9863 5.2978

Ga LAPW -52862.2938 19.1169 45.4918 -0.0029
PW GTH-PBE-q3 -59.7595 20.2426 50.0762 4.9269

GTH-PBE-q13 -2022.7314 19.2521 59.6231 4.6890
GTH-PBE-q21 -6878.4052 18.9490 43.3463 -2.0715

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -2025.4606 19.2735 59.9724 5.3336
TZVP-MOLOPT-PBE-GTH-q13 -2025.4769 19.2172 59.9644 5.3762
TZV2P-MOLOPT-PBE-GTH-q13 -2025.4783 19.2132 60.0368 5.3882

Ge LAPW
PW GTH-PBE-q4 -106.7798 23.8259 60.5061 4.6645

GTH-PBE-q14 -2403.1292 22.9225 93.7680 13.0816
GTH-PBE-q22 -7741.9624 22.7565 157.5015 18.2639

GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -106.6692 23.8141 62.4032 4.6983
TZVP-MOLOPT-PBE-GTH-q4 -106.7106 23.7546 63.0277 4.6664
TZV2P-MOLOPT-PBE-GTH-q4 -106.7144 23.7579 62.7561 4.6793

As LAPW
PW GTH-PBE-q5 -171.4792 22.0478 74.7424 4.2257

GTH-PBE-q15 -2495.9540 20.4965 341.8909 13.3175
GTH-PBE-q23 -8250.2224 17.4025 52.4271 -5.5508

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -171.3765 22.2733 73.9281 4.1828
TZVP-MOLOPT-PBE-GTH-q5 -171.3844 22.2388 74.0743 4.1925
TZV2P-MOLOPT-PBE-GTH-q5 -171.3899 22.2243 74.0426 4.1886

Se LAPW -66084.9035 28.4390 40.1278 -2.3959
PW GTH-PBE-q6 -256.0970 28.8477 51.9211 4.4596

GTH-PBE-q16 -3270.1771 23.5581 22.5093 0.5703
GTH-PBE-q24 -9521.7618 24.0679 29.8087 2.3439

GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -255.8821 29.3119 51.5117 4.4156
TZVP-MOLOPT-PBE-GTH-q6 -255.8910 29.2946 51.2162 4.4206
TZV2P-MOLOPT-PBE-GTH-q6 -255.8993 29.2683 51.1665 4.4270

Br LAPW
PW GTH-PBE-q7 -364.2143 37.6754 25.5437 4.8774

GTH-PBE-q17 -3848.4697 54.5234 -16.1783 -0.1202
GTH-PBE-q25 -10644.9084 36.5154 64.2625 11.9812

GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -363.9828 38.2935 24.9086 4.9758
TZVP-MOLOPT-PBE-GTH-q7 -363.9917 38.2817 24.7928 4.9579
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TZV2P-MOLOPT-PBE-GTH-q7 -364.0090 38.2104 24.8487 4.9577
Kr LAPW

PW GTH-PBE-q8 -499.2261 57.3510 0.5109 6.8811
GTH-PBE-q18 -4450.1050 65.3846 8.8028 9.6459
GTH-PBE-q26 -11691.0266 65.0551 16.7059 15.4033

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -499.0835 40.7535 1.2061 6.7366
TZVP-MOLOPT-PBE-GTH-q8 -499.0894 42.3238 1.4494 6.8879
TZV2P-MOLOPT-PBE-GTH-q8 -499.0909 42.0858 1.4985 6.8545

Rb LAPW -81079.4764 87.2984 2.7782 3.4483
PW GTH-PBE-q1 -4.8014 93.8370 2.5345 3.6011

GTH-PBE-q9 -653.2606 86.6607 3.1129 4.7088
GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -653.2324 90.0065 3.0333 3.8434

TZVP-MOLOPT-PBE-GTH-q9 -653.2537 87.2269 3.0252 3.8037
TZV2P-MOLOPT-PBE-GTH-q9 -653.2540 87.2196 2.9928 3.7347

Sr LAPW -86475.6853 52.0744 11.9494 3.0847
PW GTH-PBE-q2 -17.8745 53.6098 10.6095 2.8032

GTH-PBE-q10 -832.3426 51.7589 12.4320 3.5327
GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -832.1160 53.9982 11.1843 3.0002

TZVP-MOLOPT-PBE-GTH-q10 -832.1801 52.2069 12.0680 3.2952
TZV2P-MOLOPT-PBE-GTH-q10 -832.2230 51.9061 12.6600 3.9489

Y LAPW -92076.8136 31.5801 38.7281 -0.3092
PW GTH-PBE-q3 -42.3405 32.7850 38.7665 2.5970

GTH-PBE-q11 -1037.1273 31.3668 42.4836 2.7939
GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1037.1754 31.7876 43.4170 3.0491

TZVP-MOLOPT-PBE-GTH-q11 -1037.2386 31.4510 43.0021 2.9122
TZV2P-MOLOPT-PBE-GTH-q11 -1037.2446 31.4140 38.1368 -0.0251

Zr LAPW -97884.9628 22.5778 92.8066 1.6627
PW GTH-PBE-q4 -82.0506 23.2480 93.3018 3.2091

GTH-PBE-q12 -1267.3340 22.6564 95.0606 2.2216
GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1267.4105 22.8879 100.4964 3.4086

TZVP-MOLOPT-PBE-GTH-q12 -1267.4679 22.6855 98.7341 3.2871
TZV2P-MOLOPT-PBE-GTH-q12 -1267.4736 22.6895 98.5560 3.2853

Nb LAPW -103904.1870 17.5997 187.8443 4.7249
PW GTH-PBE-q5 -137.8071 19.3618 152.6901 3.4428

GTH-PBE-q13 -1539.0512 17.6635 179.8685 3.7323
GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1538.8687 17.7445 182.3243 3.7003

TZVP-MOLOPT-PBE-GTH-q13 -1538.9045 17.6600 181.8824 3.7184
TZV2P-MOLOPT-PBE-GTH-q13 -1538.9154 17.6776 181.0125 3.7203

Mo LAPW -110137.1497 15.4184 270.2258 3.3334
PW GTH-PBE-q6 -212.1923 17.3178 240.9368 3.9104

GTH-PBE-q14 -1843.6086 15.4914 278.6786 4.1391
GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -1843.2781 15.5114 280.1252 4.2749

TZVP-MOLOPT-PBE-GTH-q14 -1843.3716 15.4877 279.2913 4.2131
TZV2P-MOLOPT-PBE-GTH-q14 -1843.3752 15.4899 279.1844 4.2061

Tc LAPW -116586.7748 14.0856 285.7584 0.3745
PW GTH-PBE-q7 -314.7914 15.2337 304.3792 4.4865

GTH-PBE-q15 -2173.4664 14.2529 324.0990 4.4690
GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2173.1740 14.2270 331.3396 4.5264

TZVP-MOLOPT-PBE-GTH-q15 -2173.2072 14.2717 323.6137 4.5309
TZV2P-MOLOPT-PBE-GTH-q15 -2173.2103 14.2725 323.6970 4.5262

Ru LAPW -123255.9906 13.3392 355.4945 5.4654
PW GTH-PBE-q8 -444.4679 13.6780 326.2908 4.7612

GTH-PBE-q16 -2523.7902 13.8417 346.5866 4.7916
GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -2523.2969 13.9361 344.1972 4.8014

TZVP-MOLOPT-PBE-GTH-q16 -2523.3613 13.8622 346.5705 4.8394
TZV2P-MOLOPT-PBE-GTH-q16 -2523.3644 13.8642 346.1155 4.8369

Rh LAPW -130149.6632 13.5328 287.9859 4.4707
PW GTH-PBE-q9 -592.3543 14.1529 276.9023 5.0709

GTH-PBE-q17 -2933.6317 14.0172 284.5624 3.8745
GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -2933.2799 14.0705 291.3060 5.1458

TZVP-MOLOPT-PBE-GTH-q17 -2933.3492 14.0428 287.4739 5.1602
TZV2P-MOLOPT-PBE-GTH-q17 -2933.3497 14.0425 287.2747 5.1597

Pd LAPW -137271.0081 14.2561 85.0743 -13.0124
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PW GTH-PBE-q10 -779.2603 15.2670 194.1354 5.5288
GTH-PBE-q18 -3404.4345 14.9781 201.3270 5.5761

GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -3404.0124 15.2895 189.6958 5.4059
TZVP-MOLOPT-PBE-GTH-q18 -3404.1374 15.0063 201.6153 5.5289
TZV2P-MOLOPT-PBE-GTH-q18 -3404.1400 15.0158 200.6888 5.5108

Ag LAPW -144622.9715 16.6059 102.1208 3.7098
PW GTH-PBE-q1

GTH-PBE-q11 -1008.5747 16.6953 118.3687 5.6623
GTH-PBE-q19 -3914.2429 17.1866 113.3724 5.7569

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -1008.5087 16.7656 119.8415 5.7801
TZVP-MOLOPT-PBE-GTH-q11 -1008.5299 16.7468 119.8868 5.7905
TZV2P-MOLOPT-PBE-GTH-q11 -1008.5305 16.7479 119.8436 5.7933

Cd LAPW -152205.1358 20.9190 51.2402 3.9962
PW GTH-PBE-q2 -26.9504 18.7169 70.1170 5.6191

GTH-PBE-q12 -1251.3979 21.2508 64.1596 6.5342
GTH-PBE-q20 -4448.1779 21.4432 67.5182 7.0484

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1251.3127 21.1842 63.4157 6.6632
TZVP-MOLOPT-PBE-GTH-q12 -1251.3669 21.2756 64.8268 6.4416
TZV2P-MOLOPT-PBE-GTH-q12 -1251.3724 21.2820 64.1235 6.4507

In LAPW
PW GTH-PBE-q3 -54.2434 27.5535 37.1747 4.5934

GTH-PBE-q13 -1530.0407 25.8287 44.8185 5.0805
GTH-PBE-q21 -5021.5032 26.2536 43.7301 5.0254

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1530.0042 25.9200 44.4394 5.0617
TZVP-MOLOPT-PBE-GTH-q13 -1530.0228 25.8212 44.5937 5.0545
TZV2P-MOLOPT-PBE-GTH-q13 -1530.0236 25.8284 44.5376 5.0573

Sn LAPW
PW GTH-PBE-q4 -94.9637 36.7148 36.1822 4.6394

GTH-PBE-q14 -1835.6999 34.7032 41.7265 5.1229
GTH-PBE-q22 -5645.2239 35.5901 40.2311 4.8382

GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -94.7742 36.9422 36.1127 4.6485
TZVP-MOLOPT-PBE-GTH-q4 -94.7932 36.8039 36.1735 4.6514
TZV2P-MOLOPT-PBE-GTH-q4 -94.8009 36.8280 35.9099 4.6463

Sb LAPW
PW GTH-PBE-q5 -150.4313 31.3495 54.5435 4.4682

GTH-PBE-q15 -2176.7607 29.7455 57.5408 4.6438
GTH-PBE-q23 -6311.3136 31.0445 56.3745 4.4872

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -150.1820 31.7360 53.2781 4.4294
TZVP-MOLOPT-PBE-GTH-q5 -150.2310 31.5770 53.7973 4.4322
TZV2P-MOLOPT-PBE-GTH-q5 -150.2481 31.5441 53.9455 4.4473

Te LAPW -184873.0274 34.9826 16.0218 3.0000
PW GTH-PBE-q6 -221.7866 34.1284 50.1873 4.6780

GTH-PBE-q16 -2557.6254 32.1137 51.5097 4.8549
GTH-PBE-q24 -7017.2301 34.0991 50.5274 5.1612

GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -221.3316 34.3778 50.6854 4.6567
TZVP-MOLOPT-PBE-GTH-q6 -221.6616 34.4161 49.3824 4.7018
TZV2P-MOLOPT-PBE-GTH-q6 -221.6775 34.4123 49.1878 4.7025

I LAPW
PW GTH-PBE-q7 -311.4269 48.2516 21.4603 5.0521

GTH-PBE-q17 -2958.7020 45.3853 21.3345 5.3243
GTH-PBE-q25 -7782.0489 48.2053 21.1116 5.2427

GPW GTH-PBE-q7 DZVP-MOLOPT-PBE-GTH-q7 -311.0450 50.5531 19.2914 5.1246
TZVP-MOLOPT-PBE-GTH-q7 -311.1165 49.5022 20.1457 5.1271
TZV2P-MOLOPT-PBE-GTH-q7 -311.1372 49.3280 20.3075 5.1218

Xe LAPW
PW GTH-PBE-q8 -422.1718 66.1123 0.7325 7.2037

GTH-PBE-q18 -3401.5247 62.0912 0.6773 7.1358
GTH-PBE-q26 -8588.6626 76.8252 0.8333 8.9859

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -421.9898 70.4662 0.8131 7.4066
TZVP-MOLOPT-PBE-GTH-q8 -421.9922 68.9838 0.8611 7.3206
TZV2P-MOLOPT-PBE-GTH-q8 -421.9943 67.2379 0.8763 7.1178

Cs LAPW -211894.2497 116.2106 0.6688 4.9213
PW GTH-PBE-q1 -4.3095 137.2055 1.3737 2.7735

Continued on next page
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

GTH-PBE-q9 -546.2145 109.0544 2.1394 4.0286
GPW GTH-PBE-q9 DZVP-MOLOPT-PBE-GTH-q9 -546.1550 115.4996 2.1214 3.1024

TZVP-MOLOPT-PBE-GTH-q9 -546.1852 109.3304 2.0956 3.1057
TZV2P-MOLOPT-PBE-GTH-q9 -546.1864 109.4804 2.0620 3.1332

Ba LAPW
PW GTH-PBE-q2 -16.8327 57.7823 7.1793 1.8076

GTH-PBE-q10 -690.8517 58.2038 9.3978 3.0282
GPW GTH-PBE-q10 DZVP-MOLOPT-PBE-GTH-q10 -690.1286 61.8686 9.1308 3.0466

TZVP-MOLOPT-PBE-GTH-q10 -690.1876 60.0507 9.6114 3.2527
TZV2P-MOLOPT-PBE-GTH-q10 -690.2723 59.2595 9.5660 3.0405

Hf LAPW
PW GTH-PBE-q12 -1340.9196 21.7613 111.2478 3.0889
GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1339.1732 21.8742 113.0428 3.4288

TZVP-MOLOPT-PBE-GTH-q12 -1339.2399 21.8203 112.6487 3.3678
TZV2P-MOLOPT-PBE-GTH-q12 -1339.2526 21.7986 112.7763 3.3482

Ta LAPW
PW GTH-PBE-q5 -134.1168 19.6094 181.7542 3.4651

GTH-PBE-q13 -1581.1582 17.6611 203.8139 3.6137
GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1581.0808 17.6987 204.6722 3.7898

TZVP-MOLOPT-PBE-GTH-q13 -1581.1220 17.6986 206.5886 3.7854
TZV2P-MOLOPT-PBE-GTH-q13 -1581.1237 17.7042 206.1931 3.7810

W LAPW
PW GTH-PBE-q6 -208.1176 16.8683 290.6481 4.0327

GTH-PBE-q14 -1852.5367 15.6548 320.9545 4.2325
GPW GTH-PBE-q14 DZVP-MOLOPT-PBE-GTH-q14 -1852.4604 15.6947 324.2381 4.1605

TZVP-MOLOPT-PBE-GTH-q14 -1852.4962 15.6664 323.7040 4.1713
TZV2P-MOLOPT-PBE-GTH-q14 -1852.5004 15.6706 323.2913 4.1592

Re LAPW
PW GTH-PBE-q7 -297.3751 15.6420 361.3514 4.2858

GTH-PBE-q15 -2155.4814 14.5076 392.7143 4.3863
GPW GTH-PBE-q15 DZVP-MOLOPT-PBE-GTH-q15 -2155.3762 14.5526 394.5936 4.4165

TZVP-MOLOPT-PBE-GTH-q15 -2155.4367 14.5491 394.5329 4.4396
TZV2P-MOLOPT-PBE-GTH-q15 -2155.4394 14.5498 393.9183 4.4387

Os LAPW
PW GTH-PBE-q8 -413.8500 14.5129 407.5752 4.7301

GTH-PBE-q16 -2490.1047 13.8443 436.9916 4.7947
GPW GTH-PBE-q16 DZVP-MOLOPT-PBE-GTH-q16 -2489.9813 13.8982 441.9386 4.7257

TZVP-MOLOPT-PBE-GTH-q16 -2490.0237 13.8785 437.4388 4.8068
TZV2P-MOLOPT-PBE-GTH-q16 -2490.0297 13.8685 435.7268 4.8003

Ir LAPW -485807.8114 14.5661 16.0218 3.0000
PW GTH-PBE-q9 -546.6821 14.9576 362.6250 4.9087

GTH-PBE-q17 -2859.3054 13.9634 396.8035 5.1958
GPW GTH-PBE-q17 DZVP-MOLOPT-PBE-GTH-q17 -2858.7421 13.2139 581.0155 4.2754

TZVP-MOLOPT-PBE-GTH-q17 -2859.0330 13.6367 472.9057 4.5365
TZV2P-MOLOPT-PBE-GTH-q17 -2859.1317 13.7768 434.7931 4.7368

Pt LAPW
PW GTH-PBE-q10 -707.8578 15.7577 278.4174 5.3845

GTH-PBE-q18 -3267.9797 15.0483 293.5382 5.4551
GPW GTH-PBE-q18 DZVP-MOLOPT-PBE-GTH-q18 -3267.8435 15.1238 294.7404 5.4791

TZVP-MOLOPT-PBE-GTH-q18 -3267.8764 15.0640 293.6531 5.4295
TZV2P-MOLOPT-PBE-GTH-q18 -3267.8787 15.0648 293.5250 5.4351

Au LAPW
PW GTH-PBE-q1 -19.5271 4.5021 50.1124 -20.0740

GTH-PBE-q11 -900.4920 17.6093 169.5067 5.8955
GTH-PBE-q19 -3711.9232 16.8809 173.4895 5.1775

GPW GTH-PBE-q11 DZVP-MOLOPT-PBE-GTH-q11 -900.3741 17.6765 166.5365 5.9156
TZVP-MOLOPT-PBE-GTH-q11 -900.3979 17.6788 165.9129 5.9262
TZV2P-MOLOPT-PBE-GTH-q11 -900.4020 17.6740 166.3646 5.9115

GTH-PBE-q19 DZVP-MOLOPT-PBE-GTH-q19 -3711.8849 16.9678 184.7695 5.9137
TZVP-MOLOPT-PBE-GTH-q19 -3711.9103 16.9446 183.5796 5.8273
TZV2P-MOLOPT-PBE-GTH-q19 -3711.9135 16.9423 184.3101 5.8857

Hg LAPW
PW GTH-PBE-q2

Continued on next page
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E0 V0 B0 B1
element method pseudo basisset [eV] [Å3/atom] [GPa]

GTH-PBE-q12 -1116.7468 22.9887 31.8898 6.7789
GTH-PBE-q20 -4140.2559 23.7562 47.9253 7.9086

GPW GTH-PBE-q12 DZVP-MOLOPT-PBE-GTH-q12 -1116.6910 24.0524 33.7443 7.3404
TZVP-MOLOPT-PBE-GTH-q12 -1116.7103 23.9250 34.7527 7.3427
TZV2P-MOLOPT-PBE-GTH-q12 -1116.7116 23.8932 34.5859 7.3087

Tl LAPW
PW GTH-PBE-q3 -56.8631 29.3186 34.1118 5.0553

GTH-PBE-q13 -1356.1317 28.7664 37.3614 5.5066
GTH-PBE-q21 -4654.7803 28.8471 34.9340 4.8170

GPW GTH-PBE-q13 DZVP-MOLOPT-PBE-GTH-q13 -1356.0784 28.8904 36.8363 5.4402
TZVP-MOLOPT-PBE-GTH-q13 -1356.0944 28.8016 36.9992 5.4167
TZV2P-MOLOPT-PBE-GTH-q13 -1356.0977 28.2705 24.0547 0.0001

Pb LAPW
PW GTH-PBE-q4 -96.1621 31.6233 44.9474 5.4314

GTH-PBE-q14 -1625.4417 30.1397 45.8825 4.2995
GTH-PBE-q22 -5197.8551 30.2384 46.0360 4.2201

GPW GTH-PBE-q4 DZVP-MOLOPT-PBE-GTH-q4 -96.0540 32.3166 43.4638 4.7693
TZVP-MOLOPT-PBE-GTH-q4 -96.1148 31.9029 45.3118 4.9262
TZV2P-MOLOPT-PBE-GTH-q4 -96.1176 31.8559 45.2732 4.9143

Bi LAPW
PW GTH-PBE-q5 -149.0892 36.3388 46.8175 4.5666

GTH-PBE-q15 -1918.2364 35.1900 49.1309 4.6638
GTH-PBE-q23 -5785.8813 34.7090 39.2480 0.4069

GPW GTH-PBE-q5 DZVP-MOLOPT-PBE-GTH-q5 -148.9932 36.7425 45.6916 4.5726
TZVP-MOLOPT-PBE-GTH-q5 -149.0207 36.5659 46.0046 4.5929
TZV2P-MOLOPT-PBE-GTH-q5 -149.0316 36.5368 46.0508 4.6092

Po LAPW
PW GTH-PBE-q6 -218.9042 36.5769 51.3353 4.9146

GTH-PBE-q16 -2245.9611 35.6352 52.5273 4.9445
GTH-PBE-q24 -6456.1115 35.1901 52.0565 4.6517

GPW GTH-PBE-q6 DZVP-MOLOPT-PBE-GTH-q6 -218.7945 36.9430 50.0362 5.0178
TZVP-MOLOPT-PBE-GTH-q6 -218.8170 36.8732 49.8237 4.9597
TZV2P-MOLOPT-PBE-GTH-q6 -218.8216 36.8823 49.6270 4.8960

Rn LAPW
PW GTH-PBE-q8 -406.0117 61.5426 1.2324 6.7696

GTH-PBE-q18 -2972.6854 74.2981 0.4654 0.5669
GTH-PBE-q26 -7991.1482 100.7179 -2.1669 -7.5358

GPW GTH-PBE-q8 DZVP-MOLOPT-PBE-GTH-q8 -405.9687 55.0298 1.7489 6.8275
TZVP-MOLOPT-PBE-GTH-q8 -405.9845 57.1931 2.0766 6.7812
TZV2P-MOLOPT-PBE-GTH-q8 -405.9893 56.8314 2.1544 6.7971
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1 &GLOBAL
2 PROJECT aiida
3 RUN_TYPE ENERGY
4 &END GLOBAL
5 &FORCE_EVAL
6 &DFT
7 BASIS_SET_FILE_NAME BASIS_SETS
8 &KPOINTS
9 FULL_GRID .FALSE.

10 PARALLEL_GROUP_SIZE -1
11 SCHEME MONKHORST-PACK 24 24 24
12 SYMMETRY .FALSE.
13 &END KPOINTS
14 &MGRID
15 CUTOFF 1000.0
16 REL_CUTOFF 100.0
17 &END MGRID
18 POTENTIAL_FILE_NAME POTENTIAL
19 &PRINT
20 &OVERLAP_CONDITION ON
21 1-NORM .TRUE.
22 DIAGONALIZATION .TRUE.
23 &END OVERLAP_CONDITION
24 &END PRINT
25 &QS
26 EXTRAPOLATION USE_GUESS
27 METHOD GPW
28 &END QS
29 &SCF
30 ADDED_MOS 30
31 EPS_SCF 1e-08
32 MAX_SCF 200
33 &MIXING
34 ALPHA 0.4
35 METHOD BROYDEN_MIXING
36 &END MIXING
37 &SMEAR
38 ELECTRONIC_TEMPERATURE 300.0
39 METHOD FERMI_DIRAC
40 &END SMEAR
41 &END SCF
42 &XC
43 &XC_FUNCTIONAL PBE
44 &END XC_FUNCTIONAL
45 &END XC
46 &END DFT
47 METHOD Quickstep
48 &SUBSYS
49 &CELL
50 A 4.16424 0.0 0.0
51 B 2.54986159e-16 4.16424 0.0
52 C 2.54986159e-16 2.54986159e-16 4.16424
53 &CELL_REF
54 A 4.425165320132997 0.0 0.0
55 B 2.7096322688430977e-16 4.425165320132997 0.0
56 C 2.7096322688430977e-16 2.7096322688430977e-16 4.425165320132997
57 PERIODIC XYZ
58 &END CELL_REF
59 PERIODIC XYZ
60 &END CELL
61 &KIND Ag
62 BASIS_SET ORB DZVP-MOLOPT-PBE-GTH-q11
63 ELEMENT Ag
64 POTENTIAL GTH GTH-PBE-q11
65 &END KIND
66 &TOPOLOGY
67 COORD_FILE_FORMAT XYZ
68 COORD_FILE_NAME aiida.coords.xyz
69 &END TOPOLOGY
70 &END SUBSYS
71 &END FORCE_EVAL

Listing 4: CP2K input for the deltatest
calculation of Agwith PBE for the DZVP
MOLOPT basis set and GTH PP for the
1.00 scaling.





HFXk implementation details C.
In the development of the k point enabled Hartree-Fock Exchange refer-
ence implementation, scaling with regard to threads quickly became a
challenge. The existing Γ-point code relied on a complex cost-model
calculation together with a load-balancing algorithm to distribute tasks
across both MPI and OpenMP parallelisation with both levels essentially
being treated on an equal footing. For k-point support a different loop
structure had to be employed in which the summation over the indices
𝑄 and 𝑇 had to be pulled out of the primitive integrals calculation and
only the summation over 𝑆 remained:

𝐾T
x = −1

2 ∑
Q

∑
𝜈𝜆

𝑃Q𝜈𝜆 ∑
S
(𝜇0𝜈S | 𝜆T𝜎S+Q). (C.1)

It is this change which makes caching an unresolved challenge with cur-
rently available single-node memory as a cache would now have to scale
with 𝑁 2

img ⋅ 𝑁 2
sgf, e.g. requiring 𝑁 2

img more memory than the periodic Γ-
point implementation. This is equates to ∼14TB of memory at double
precision for a two-atomic hBN system with ∼1100 neighbour cells con-
sidered and a MOLOPT-TZVP basis.

Using an adequate (possibly lossy) compression scheme could help here,
but care must be taken with regard to error propagation since this trun-
cation would now be applied to individual values rather than a sum as
before. From the infrastructure point of view, Fabric-attached memory
together with a framework like OpenFAM[156] could be a solution as it
would allow for memory pooling across nodes.

For the current implementation we therefore recalculate all primitive in-
tegrals on each iteration. Since we nowadays can assume that OpenMP
runtimes, compilers togetherwithmodern computer architectures are ca-
pable of caching read-only data and that OpenMP threads are lightweight,
wewentwith a simpler parallelisation schemewithout active load-balacing
but with much smaller tasks. Parallelising over the 10 loops (2 neighbour
image, 4 atom, 4 basis set indices) with the DO PARALLEL COLLAPSE con-
struct is not possible since it requires iteration boundaries to be known
at the entry of the parallel section and no branching between the loops.
This constraint is not straightforward satisfiable since the number of
sets depends on the atom kind and we maintain several earlier screen-
ing checks on the individual iteration levels. Collapsing over only 𝑇 , 𝑖
and 𝑘 to avoid locking to serialise access to the Exchange matrix has lead
to limited core utilisation since some tasks take can take much longer
than others.

Figure C.1.: Timing behaviour of a
model example using repeated squares
with small tasks, intentionally underem-
ploying cores to explore tasking and
scheduling overhead.
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(a) The GNU OpenMP implementation
shows a larger overhead for a single-
value atomic scheme for small number
of threads, and a large linear scaling cost
associated with threading.
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(b) The Cray/LLVM OpenMP implemen-
tation shows the same overhead for the
atomic scheme and the desired sublinear
scaling.

Instead we are using task-based OpenMP parallelisation at the level of
the contraction of the primitive integrals with the Fock matrix which
leads to excellent core utilisation and associated speedup up to 384 threads
(verified on AMD Genoa). To prevent corruption of the Fock matrix
we employ a locking scheme. While benchmarking different locking
schemes (omp critical, omp_set_lock(), omp atomic) we discov-
ered that some OpenMP implementations do not scale well with larger
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number of threads as shown in Figure C.1 and for smaller systems this
can become an issue.
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