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Introduction

The use of machine learning (ML) to support decision-making 

and to automate routine tasks in the medical domain causes an 

increase in efficiency and more robust decision-making in the 

health care system (Shehab et al. 2022). Biologically inspired, 

deep multilayered neural networks (DNNs) have been intro-

duced for various classification, regression, and segmentation 

tasks, including the analysis of medical images (Litjens et al. 

2017; Shen et al. 2017). Particularly, the analysis of these med-

ical images has benefited greatly from the introduction of con-

volutional and transformer neural networks, with the residual 

neural network (ResNet) (He et al. 2016) and the vision trans-

former (ViT) (Vaswani et al. 2017) being the most widely used 

model architectures. In dentistry, methodological research in 

this area has proved fruitful, with several variations of these models 

proposed for tooth structure segmentation, the classification of 

dental plaque, and the detection of caries (Schwendicke et al. 

2020; Shan et al. 2021; Wang et al. 2021; Kuhnisch et al. 2022).

The removal of mandibular third molars (M3Ms) is the 

most common surgical procedure in oral surgery and can cause 

multiple complications, including damage to the inferior 

alveolar nerve (IAN) (Leung and Cheung 2011; Sigron et al. 

2014). It is known from the literature that direct contact of the 

M3M root with the IAN significantly increases the risk of an 

IAN damage occurring. In a study by Eyrich et al. (2011), it 

was documented that a narrowing of the IAN canal and the 

direct contact between M3M root and the IAN were the most 

prominent factors influencing the risk of IAN impairment. 

Furthermore, these authors demonstrated that in 95.7% of the 

cases, postsurgical IAN impairment occurred in M3Ms with 

fully developed roots. To minimize the operative risks, local-

ization of the listed structures based on radiographs has to be 
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Abstract

Machine learning (ML) models, especially deep neural networks, are increasingly being used for the analysis of medical images and as a 

supporting tool for clinical decision-making. In this study, we propose an artificial intelligence system to facilitate dental decision-making 

for the removal of mandibular third molars (M3M) based on 2-dimensional orthopantograms and the risk assessment of such a procedure. 

A total of 4,516 panoramic radiographic images collected at the Center of Dental Medicine at the University of Zurich, Switzerland, 

were used for training the ML model. After image preparation and preprocessing, a spatially dependent U-Net was employed to detect 

and retrieve the region of the M3M and inferior alveolar nerve (IAN). Image patches identified to contain a M3M were automatically 

processed by a deep neural network for the classification of M3M superimposition over the IAN (task 1) and M3M root development 

(task 2). A control evaluation set of 120 images, collected from a different data source than the training data and labeled by 5 dental 

practitioners, was leveraged to reliably evaluate model performance. By 10-fold cross-validation, we achieved accuracy values of 0.94 

and 0.93 for the M3M–IAN superimposition task and the M3M root development task, respectively, and accuracies of 0.9 and 0.87 

when evaluated on the control data set, using a ResNet-101 trained in a semisupervised fashion. Matthew’s correlation coefficient 

values of 0.82 and 0.75 for task 1 and task 2, evaluated on the control data set, indicate robust generalization of our model. Depending 

on the different label combinations of task 1 and task 2, we propose a diagnostic table that suggests whether additional imaging via 

3-dimensional cone beam tomography is advisable. Ultimately, computer-aided decision-making tools benefit clinical practice by enabling 

efficient and risk-reduced decision-making and by supporting less experienced practitioners before the surgical removal of the M3M.

Keywords: deep learning, algorithms, radiography, panoramic, mandible / diagnostic imaging, humans
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preoperatively assessed as a mandatory surgery step. In critical 

cases, 3-dimensional imagery is required to evaluate the ana-

tomical location of the IAN and M3M root superimposition 

and the root development as observed in the orthopantogram 

(OPG). To automate the task of identifying critical cases, pre-

vious studies made steps toward automatically evaluating the 

risk of extraction difficulties and IAN damage after M3M sur-

gery by using deep learning on radiographic or computed 

tomography (CT) images. The most popular approaches 

employ ResNet models to classify the positional relationship 

between the M3M and the IAN (Fukuda et al. 2020; Choi et al. 

2022; Sukegawa et al. 2022).

In this study, we built an end-to-end pipeline to detect and 

to classify M3M and IAN in panoramic radiography (OPG 

images) by evaluating multiple recent methods from the 

machine learning field (Fig. 1). The OPG is a commonly 

applied screening image. In clinical practice, it is not appropri-

ate to routinely perform a cone beam CT (CBCT) due to radia-

tion exposure. The OPG needs to fulfill various criteria in 

order to indicate a CBCT. Semisupervised methods allow 

building artificial intelligence (AI) systems for less demanding 

tasks of clinical practitioners, making diagnostic procedures 

more scalable. In particular, even a nonchallenging labeling 

task can be highly time-consuming and costly. In our pipeline, 

a spatially dependent U-Net (SDU-Net) was used to detect and 

segment the region of the M3M and IAN, and a ResNet-101 

architecture, trained through contrastive-based semisupervised 

learning, then classified M3M and IAN superimposition and 

M3M root development on the identified patches. The final 

output classification results were used to decide if an additional 

diagnostic method is required for therapy planning (Fig. 2A).

Materials and Methods

As all data are completely anonymized, no ethics approval was 

required for this study. Nevertheless, an ethics waiver was 

obtained from the cantonal ethics committee Zurich (BASEC-Nr.: 

2021-00057). For additional details concerning the description 

of materials and methods, refer to the Appendix.

Training and Validation Data Set

A total of 4,516 panoramic radiographic images were collected 

from patients at the Center of Dental Medicine of the University 

of Zurich, Switzerland, acquired between 2017 and 2021. 

Patients had a mean age of 37.3 ± 22.2 y with a sex distribution 

of 2,479/2,034 men/women. For 3 patients, no record of the 

sex could be found. In total, 2,940 images were acquired using 

Sirona Orthophos SL (Dentsply-Sirona) and 1,576 using 

Figure 1. Summary of the end-to-end pipeline. Clinical pipeline: depiction of the 3 main stages that include detection of the mandibular third molar 
(M3M), its characterization with respect to superimposition with inferior alveolar nerve (IAN) and root development, and the final clinical outcome to 
require or not require an additional diagnostic method. Machine learning pipeline: depiction of the available annotated and nonannotated data and its 
usage to train the machine learning models that will provide the necessary outcomes for the clinical pipeline. More precisely, the spatially dependent 
U-Net (SDU-Net) relies on orthopantogram (OPG) images and masks data (red connecting line) and outputs the location of the M3M; the ResNet-101 
is first pretrained with nonannotated images (dark blue line) and then fine-tuned with OPG images and the class labels (light blue line).
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Soredex Cranex-D (Dexis) with pixel numbers of 1,404 to 

1,536 vertically and 2,612 to 3,296 horizontally. Pixel sizes 

were 0.096 mm and 0.1 mm for Cranex and Sirona, 

respectively.

In total, 1,228 of the Sirona data were labeled by a last-year 

dental student who was trained on the task according to the 

annotation scheme illustrated in Figure 2B. Both halves of 

every image were annotated with a polygon, circumscribing 

the region of interest (ROI) of the M3M and the IAN, and each 

identified M3M was classified according to its spatial relation 

to the IAN (no superimposition, superimposition <50%, and 

superimposition >50%) and its root development (undevel-

oped, fully developed, and uncertain development). The distri-

bution of label frequency within the data set of 1,228 labeled 

images is depicted in Figure 2C. The remaining 3,288 images 

(1,712 Sirona and 1,576 Cranex) had annotations provided.

Control Evaluation Data Set

A total of 120 panoramic radiographic images were collected 

from a new cohort of patients at the Center of Dental Medicine 

of the University of Zurich, Switzerland, acquired in 2022 with 

a panoramic x-ray (Axeos; Dentsply-Sirona). 

Patients had a mean age of 31 ± 21.6 y with a sex 

distribution of 56/64 men/women. All images were 

acquired using Sirona Axeos with 1,404 vertical and 

2,612 to 2,988 horizontal pixels. The data set was 

labeled following the same guidelines described for 

the training and validation data sets and as illustrated 

in Figure 2B. From the 120 OPGs, there were 144 

identified M3Ms, which will be used in evaluating 

the classification tasks. No ROI segmentation masks 

were provided for the external evaluation data set. A 

total of 5 dental practitioners annotated each image 

independently. Inconsistent annotations were 

resolved by committee consensus. The overall 

agreement between the 5 annotators for the 3 anno-

tation tasks before discussion can be seen in the 

Table, as calculated using Fleiss’s κ for the assess-

ment of reliability of agreement between several 

annotators classifying items, with 1 meaning perfect 

agreement and 0 meaning no agreement. We used 

the interannotator agreement to identify and judge 

border cases preemptively.

Image Preprocessing

All OPGs were split into 2 halves across the vertical 

axis, and each half was cropped such that the region 

from the mandibular jaw angle to the second incisive 

was preserved. The left half was horizontally flipped 

to match the positioning of the right half of the jaw. 

Final OPG patches were normalized to the pixel 

range of [0,1] and downsampled to 224 × 224 

pixels.

Mandibular Third Molar Detection

To detect the ROI around the M3M and IAN, 3 different DNNs 

were evaluated: the YOLOv5 (Jocher 2020), which is a regression-

based architecture developed specifically for object detection 

in images, and 2 different architectures developed for medical 

image segmentation, the U-Net and the SDU-Net (Ronneberger 

et al. 2015; Carvalho et al. 2022). Models with segmentation-

based architectures were trained through supervised learning 

with the polygonal mask as a target and the YOLOv5 through 

the centroid of the mask.

Mandibular Third Molar and Alveolar  

Nerve Classification

For the classification task, 2 widely used and high-performing 

DNNs were extensively evaluated: the ResNet-101 and the 

ViT-B. Both networks share a 2-stage construction principle: 

they can be separated into 1) a feature extractor, which learns 

how to extract features through a series of complex transfor-

mations of the original input image, and 2) a compact classifier 

Figure 2. Therapy planning characterization and additional details on labelling 
procedure. (A) Matrix depicting the need for additional diagnostic intervention  
based on the combination of the potential outcomes from the 2 classification tasks. 
(B) Depiction of the class labels used in the annotation process of the mandibular third 
molar (M3M): the alveolar nerve superimposition task considers “no superimposition,” 
“superimposition <50%,” and “superimposition >50%,” whereas the root development 
task considers “complete root development,” “no root development,” and “uncertain 
root development.” (C) Distribution across label assignment for all tasks.
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component, which predicts the labels of the classification task 

from extracted features.

In this work, we explored a novel approach in which the 

feature extractor was pretrained through contrastive-based 

self-supervised learning. For this method, both models were 

pretrained using large amounts of nonannotated OPG data, 

relying only on properties from the image itself for learning, 

and ultimately leading to models that were more robust to the 

inherent biases of the labeling process.

For the pretraining of the feature extractors, all images, both 

labeled and unlabeled, were used for self-supervised training 

through SimCLR (Chen et al. 2020). After selecting the ROI, 

each image patch was augmented by composing a series of 

transformations: rotations, translations, additive gaussian 

noise, and gaussian smoothing. Maximizing the agreement 

between features from augmented versions of the same image, 

while minimizing the agreement between features from aug-

mented versions from different images, empowered the model 

to learn highly descriptive features for each image.

Final classification models. After the self-supervised pretrain-

ing, the models were trained by supervised learning for both 

subtasks using the corresponding annotations. The models 

were fine-tuned by temporarily fixing the weights of the feature 

extractor and by adjusting the learning rate. To compare our 

semisupervised approach to a baseline model, we additionally 

trained each model by purely supervised learning (see Fig. 4).

Model Performance Evaluation

For the evaluation of model performance, accuracy, precision, 

recall, Matthew’s correlation coefficient (MCC) (Chicco and 

Jurman 2020), and the F1-score were used, with the last 2 met-

rics being known to robustly mitigate imbalances in the label 

distribution (Boughorbel et al. 2017). The in-distribution eval-

uation was performed through 10-fold cross-validation, where 

the models were trained in 8 of the subsets, validated on 1, and 

evaluated on the last subset. All data splits were performed in a 

patient-wise way. The main goal of the cross-validation was to 

disperse the inherent intraclass variation of the images. To sta-

tistically and scientifically validate the performance of our 

models, we used the external evaluation data set described ear-

lier. A control evaluation set with a different cohort of patients 

and a different panoramic x-ray machine is considered an out-

of-distribution data set.

To visualize model performance, we used the receiver oper-

ator characteristics (ROC) curve to depict the performance of 

the model prior to fixing its threshold and the confusion matrix 

to show all truly and falsely predicted classes of the models.

Results

Third Molar Detection

Figure 3 shows a direct comparison of the performances of the 

3 detection models used, evaluated in both the training data set 

(in-distribution evaluation; see “Training and Validation Data 

Set”) and the external evaluation data set (out-of-distribution 

evaluation; see “Control Evaluation Data Set”).

In the in-distribution evaluation, as depicted in Figure 3A, 

YOLOv5 has both an overall lower performance, as well as a 

higher standard deviation across cross-validation folds when 

compared to segmentation-based methods, with the U-Net being 

slightly outperformed by the SDU-Net. The accuracies for the 

YOLOv5, the U-Net, and the SDU-Net were 0.934 ± 0.019, 

0.967 ± 0.013, and 0.977 ± 0.013, respectively. The accuracy, 

F1-score, precision, recall, and MCC values evaluated on the 

out-of-distribution data can be seen in Figure 3C. The values 

inside the brackets represent results including 4 samples that had 

shifted M3Ms and were therefore wrongly classified. An exam-

ple of a shifted M3M can be seen in Figure 3D. Excluding these 

cases, all 3 architectures were able to correctly identify all M3M, 

achieving a recall of 1.00. In all settings, the segmentation-based 

architectures, U-Net and SDU-Net, showed a better performance 

than the regression-based method, YOLOv5, with the SDU-Net 

being the best-performing model across all metrics tested. This 

model achieved accuracy values and an F1-score above 0.99, 

having misidentified only 2 images. Figure 3E shows 4 exam-

ples of correctly identified M3Ms.

Classification

For both the IAN superimposition and the root development 

prediction tasks, the performances of the cross-validations are 

depicted in the violin plots in Figure 4A and F, respectively. 

Note that in these 2 tasks, from the total of 240 image-halves, 

only the 144 labeled as having a M3M were used to evaluate 

the models. The supervised ResNet-101, which was the best-

performing model in the in-distribution setting, achieved an 

accuracy of 0.94 ± 0.01 and 0.93 ± 0.02; the supervised ViT-B 

achieved 0.92 ± 0.03 and 0.90 ± 0.02; the semisupervised 

ResNet-101 achieved 0.93 ± 0.01 and 0.90 ± 0.02; and the 

semisupervised ViT-B achieved 0.90 ± 0.02 and 0.87 ± 0.02, 

all respectively for the IAN superimposition and the root 

development prediction tasks.

Interestingly, the trend of supervised models overperforming 

semisupervised ones was inverted when evaluating these models 

on the external evaluation data set, as can be seen on the ROC 

curves in Figure 4B and G and on the accuracy in the tables in 

Figure 4D and I. Evaluated on the external evaluation set, the 

Table. Agreement between the Annotators for the External Evaluation Data Set.

Molar-L Molar-R Superimposition-L Superimposition-R Development-L Development-R

Fleiss’s κ agreement 0.91 0.93 0.83 0.78 0.86 0.87
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best model was the semisupervised ResNet-101. For the IAN 

and M3M superimposition, the semisupervised ResNet-101 and 

the semisupervised ViT-B yielded area under the receiver oper-

ating characteristic AUROC scores equal to or greater than 0.90 

(Fig. 4B). For the root development task, these models achieved 

AUROC scores of 0.90 and 0.87, respectively (Fig. 4G).

Figure 4C and H show the confusion matrices of the semis-

upervised ResNet-101, which was the best-performing model, 

making it easier to visualize single failure points. For the IAN 

superimposition task, 10 images out of 83 were misclassified 

for 0% superimposition, 3 images out of 40 for <50% superim-

position, and 2 images out of 21 for >50% superimposition, 

giving a total failure rate of 10%. For the root development, the 

total failure rate was 13% with 12 out of 91, 5 out of 45, and 2 

out of 8 misclassifications for incomplete, complete, and 

uncertain root development, respectively.

Discussion

Following the recent trend to develop DNN-based models for 

the detection and diagnosis of the M3M, this work bridges sev-

eral gaps in previous research. First, it demonstrates the poten-

tial of semisupervised learning (Shehab et al. 2022), being, to 

the best of our knowledge, the first of its kind in the field of 

dental imaging to use large quantities of original data without 

expert annotations as a catalyst for highly robust ML models. 

Second, it also demonstrates the full potential of an integrated 

end-to-end pipeline that, starting from an original OPG image, 

detects and classifies the M3M into the relevant categories for 

further clinical diagnostic. With the final classification of both 

the M3M root development and its superimposition with the 

IAN, the clinical practitioner effectively receives the most rel-

evant diagnostic information to further decide on the best next 

Figure 3. Overall results of model performance for the mandibular third molar (M3M) detection task. (A) Violin plot of the 10-fold cross-validation 
results for all architectures on the training data set. Each point represents 1 iteration of the cross-validation for each model. (B) Confusion matrix of 
the best-performing model, the spatially dependent U-Net (SDU-Net) architecture evaluated on the external evaluation data set (out-of-distribution 
evaluation). (C) Table of all performance metrics (accuracy, F1-score, precision, recall, and Matthew’s correlation coefficient [MCC]) for all models 
evaluated on the out-of-distribution data. *Performances computed taking into consideration the samples where the M3M is shifted to mesial. (D) 
Example of a shifted M3M where the model did not recognize the existence of a M3M. (E) Examples of 4 successfully detected M3Ms using the SDU-
Net.
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steps in the diagnostic radiological assessment pipeline for the 

patient.

Our proposed evaluation strategy was developed to identify 

and correct overly optimistic model performance both through 

robust evaluation metrics that are resilient to unbalanced label 

distribution and through an external validation data set that 

could potentially detect assimilated shortcut features. As high-

lighted in the medical imaging domain (Shehab et al. 2022), 

Figure 4. Overall results for the superimposition of the mandibular third molar (M3M) with the inferior alveolar nerve (IAN) and the M3M root 
development classification tasks. (A, F) Violin plots of the 10-fold cross-validation results for ResNet-101 and ViT-B, trained with supervised and 
semisupervised learning, and evaluated on the training and validation data sets. Each point represents 1 iteration of the cross-validation for the 
respective model. (B, G) Receiver operator characteristics (ROC) curves of the models evaluated on the external evaluation data set. (C, H) 
Confusion matrices for the ResNet-101 trained with semisupervision and evaluated on the external evaluation data set. (D, I) Table of all performance 
metrics (accuracy, F1-score, precision, recall, and Matthew’s correlation coefficient [MCC]) for all models evaluated in the external evaluation data set.
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and in particular in the field of dentistry (Schwendicke et al. 

2020; Ma et al. 2022), such benchmarking proved essential for 

trustworthy machine learning. As expected, we observed an 

overall drop in all model performances when models were 

evaluated by in-distribution cross-validation in comparison to 

the out-of-distribution control data set. However, these drops 

in performance were relatively minor in all models trained 

through semisupervised learning, indicating strong robustness 

of our models to distribution shifts. Such a robustness to distri-

bution shifts was also confirmed recently by Navarro et al. 

(2021) in a work tackling pneumonia detection in x-rays. As 

Hendrycks et al. (2019) advanced, one explanation to the 

inherent robustness of semisupervised learning is its nonreli-

ance on labels for training and thus effectively being able to 

avoid any nonrelevant potential correlation between the label-

ing process and image features.

There have been several studies trying to evaluate the risk 

of extraction complications during M3M. Although some stud-

ies have reported good prediction accuracy, none of the studies 

challenged their performance results by external validation, 

rendering it difficult to reliably assess the robustness of their 

models. First, in the M3M detection, our work compares favor-

ably to Lee et al. (2022) and Zhu et al. (2021), which report a 

recall of 0.83 and 0.85, respectively. In screening pipelines, 

high precision should be prioritized to avoid excessive manual 

labor. However, as Hicks et al. (2022) point out, optimal recall 

may be necessary in settings where identifying all positive 

samples is crucial. In fact, in this clinical pipeline, any missed 

M3M leads to a complete break in the system, and to this 

extent, we see our detection model effectively fulfilling its 

goal. It is still important to highlight that all detection models 

have failed to detect the shifted M3M, and this may point out a 

systematic annotation error in the original training data. In the 

classification task, Choi et al. (2022) showed an accuracy of 

0.63, Sukegawa et al. (2022) reached an accuracy of 0.86, and 

Zhu et al. (2021) reported an average precision of 0.85 when 

evaluating the spatial relation of the M3M and the IAN on 

OPGs. Liu et al. (2022) have used the more advanced visual-

izing technique of CBCTs to evaluate the M3M–IAN relation, 

achieving the highest accuracy of 0.93. These results demon-

strate that we could outperform recent studies on the spatial 

relation of M3M and IAN using OPG images, reaching an 

accuracy of 0.9. We could not find any other studies mastering 

the task of automated root development prediction, making our 

study the first to address this question. Finally, MCC values of 

0.82 for the M3M–IAN relation task and 0.75 for the M3M 

root development task, performed on the control evaluation 

test, suggest that our models were able to strongly generalize.

From a clinical point of view, a limitation of OPTs is that 

IAN branches may be undetected, indicating a CBCT. The 

indication of CBCTs, however, has to be weighted against the 

radiation exposure. For this reason, the Swiss guidelines sug-

gest that the indication of a CBCT prior to third molar removal 

is based on defined 2-dimensional characteristics in OPTs 

(Dula et al. 2015). A ML-based system supports dentists in 

radiological diagnosis possibly avoiding misdiagnosis. An 

advantage is the opportunity to integrate, for example, a 

guideline into a decision support system that would equally be 

available for more or less radiologically experienced practitio-

ners. A further aspect is that incidental findings could be auto-

matically detected, avoiding a time-consuming consultation of 

radiological experts.

Therefore, we see future efforts advancing beyond the 

methodological limitations of this work by establishing consis-

tent benchmarks and widely accepted systematic annotation 

schemes, as already suggested in Ma et al. (2022). In addition, 

with the recent development of generative modeling in com-

puter vision (Pang et al. 2021), we like to highlight the poten-

tial of infusing OPG images with 3-dimensional information, 

enabling a highly robust and fine-grained estimation of the 

relationship between the M3M and the IAN. In a consecutive 

project, it would be of interest to develop an algorithm that 

automatically detects the relation between the tooth roots and 

the mandibular canal for CBCTs.

Conclusion

Even though AI is in the center of many research projects and 

will most likely play a major role in aided medical and dental 

decision-making, its application has hardly found its way into 

dental routine. In this study, we have developed a robust end-

to-end ML pipeline that enables preoperative M3M assessment 

from OPGs to support the practitioner in everyday clinical 

practice as a decision-making aid and potentially supports the 

time management of clinical staff with significantly increased 

efficiency. Our pipeline helps to classify the risk of nerve 

injury during the removal of the M3M by preemptively evalu-

ating M3M root growth and the positional relationship of the 

M3M root and the IAN. Based on the classification outcome, the 

practitioner can decide whether further radiological examination 

is required or not and thus considerably improve patient care.
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