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Abstract 32 

Prosocial behavior is crucial for the smooth functioning of society. Yet, individuals differ vastly in 33 

the propensity to behave prosocially. Here we try to explain these individual differences under 34 

normal sleep conditions without any experimental modulation of sleep. Using a portable high-35 

density EEG we measured sleep data in 54 healthy adults (28 females) during a normal night’s sleep 36 

at participants’ homes. To capture prosocial preferences, participants played an incentivised public 37 

goods game in which they faced real monetary consequences. Whole-brain analyses showed that 38 

higher relative slow-wave activity (SWA, an indicator of sleep depth) in a cluster of electrodes over 39 

the right temporo-parietal junction (TPJ) was associated with increased prosocial preferences. 40 

Source localization and CSD analyses further support these findings. Recent sleep deprivation studies 41 

imply that sleeping enough makes us more prosocial; the present findings suggest that it is not only 42 

sleep duration, but particularly sufficient sleep depth in the TPJ that is positively related to 43 

prosociality. Because the TPJ plays a central role in social cognitive functions, we speculate that 44 

sleep depth in the TPJ, as reflected by relative SWA, might serve as a dispositional indicator of social 45 

cognition ability, which is reflected in prosocial preferences. These findings contribute to the 46 

emerging framework explaining the link between sleep and prosocial behavior by shedding light on 47 

the underlying mechanisms. 48 

 49 

 50 
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Significance Statement 53 

Sleep deprivation reportedly hampers prosocial behavior. Yet, sleep loss is not a regular 54 

occurrence. We studied participants without experimentally manipulating their sleep and conducted 55 

polysomnography along with a prosocial economic task. We found that higher relative slow-wave 56 

activity (an indicator of sleep depth) in the right TPJ – a brain region involved in social cognition – is 57 

associated with increased prosociality. This demonstrates a novel link between deep sleep neural 58 

markers and prosocial preferences. Furthermore, our study provides evidence about a possible 59 

neural mechanism that underlies the behavioral findings of previous studies on sleep deprivation 60 

and prosocial behavior. Our findings highlight the significance of sleep quality in shaping prosociality 61 

and the potential benefits of interventions targeting sleep quality to promote social capital. 62 
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Introduction 64 

Prosocial behavior is of vital importance for holding our society together. Yet, the propensity to 65 

exhibit prosocial behavior is characterized by vast individual differences (e.g., Declerck & Boone, 66 

2018; Fischbacher et al., 2001; Thielmann et al., 2020). However, within a person, prosocial behavior 67 

has been shown to be stable over time and across different situations (Carlsson et al., 2014; 68 

Peysakhovich et al., 2014). Here, we aim at explaining individual differences in prosocial preferences 69 

using a stable neural trait, namely the topographic distribution of slow-wave activity (SWA) during 70 

sleep.  71 

Recent evidence shows a striking relationship between the amount of sleep we get and social 72 

functioning (e.g., Ben Simon et al., 2020, 2022; Clark & Dickinson, 2020; Holbein et al., 2019). 73 

Specifically, sleep deprivation has been associated with reduced altruism, trustworthiness, trust and 74 

helping behavior (e.g., Anderson & Dickinson, 2010; Ben Simon et al., 2022; Dickinson & McElroy, 75 

2017). 76 

There have been two prevailing attempts to explain why prosocial behavior is negatively 77 

impacted by sleep deprivation (for a review, see Dorrian et al., 2019). One possible reason may be 78 

that sleep deprivation hampers social cognition abilities (Ben Simon et al., 2020, 2022; Ben Simon & 79 

Walker, 2018; Guadagni et al., 2014, 2017). Support for this explanation is provided by Ben Simon et 80 

al. (2022) who reduced activity in key nodes of the social cognition network (TPJ, mPFC, precuneus) 81 

and a decrease in the desire to help others under conditions of sleep loss. 82 

A second attempt to explain reduced prosocial behavior after sleep deprivation stems from the 83 

idea that sleep deprivation interferes with self-control abilities, deliberative thinking and executive 84 

functioning (e.g., Anderson & Dickinson, 2010; Dickinson & McElroy, 2017; Holbein et al., 2019). 85 

These functions are crucial for forming prosocial behavior (e.g., Wyss & Knoch, 2022 and are 86 
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associated with prefrontal brain regions (Hare et al., 2009; Knoch & Fehr, 2007) which are 87 

particularly affected by sleep deprivation (Groeger et al., 2014; Harrison et al., 2000; Killgore et al., 88 

2008; Thomas et al., 2003).  89 

The studies reported above nicely demonstrate that artificially limiting sleep affects prosocial 90 

behavior. However, no study has yet examined how electrophysiological measures of sleep under 91 

normal conditions (i.e., without experimental manipulation) are linked to prosocial behavior. In the 92 

present study we hence examine how processes happening in the sleeping brain relate to the vast 93 

individual differences in prosocial preferences. To do so, we look at trait-like characteristics of the 94 

sleeping brain in individuals that habitually sleep between 7 and 8 hours every night. Specifically, we 95 

measured SWA during sleep. SWA is a major EEG hallmark of deep sleep and an objective measure 96 

of sleep depth. We then correlated the topographic distribution of SWA with individual prosocial 97 

preferences.  98 

The topographic distribution of SWA shows local differences which are highly stable within but 99 

vary between individuals (Finelli et al., 2001; Lustenberger et al., 2017) and is therefore unique to 100 

each person (Markovic et al., 2018; Rusterholz & Achermann, 2011). Here, we investigated the 101 

association of the relative SWA topography with individual differences in prosocial preferences. 102 

The present study is designed to scrutinize whether the topographical distribution of relative 103 

SWA under normal sleep conditions explains individual differences in prosocial preferences. To 104 

capture individual differences in prosocial preferences, we employed a Public Goods Game (PGG). To 105 

comprehensively measure prosocial preferences, it is necessary to also measure what people believe 106 

others would contribute (see methods for a detailed explanation). As this is the first study of its kind, 107 

we do not have any a-priory hypotheses. However, based on the sleep-deprivation studies 108 

mentioned above, we may tentatively expect SWA differences in areas involved in impulse control 109 
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and deliberate thinking, such as the PFC (Dickinson & McElroy, 2017; Holbein et al., 2019) and/or the 110 

social cognition network including the TPJ, mPFC, and precuneus (Ben Simon et al., 2022).  111 

 112 

Material and Methods 113 

Participants 114 

We calculated the sample size required to achieve 80% power to detect significant correlations (α 115 

= 0.005) using G*Power 3.1.9.7 (F tests, Linear multiple regression; Faul et al., 2007). Based on our 116 

previous sleep study on neural traits and risk preferences (Studler et al., 2022) and based on 117 

previous studies on neural traits and economic preferences during wakefulness (Baumgartner et al., 118 

2013; Gianotti et al., 2009; Knoch et al., 2010) we assumed a medium effect size f2 = 0.25. The power 119 

analysis yielded a recommended sample size of 58 participants. Since we performed sleep EEG 120 

recordings at participants’ homes without the constant supervision of an experimenter, we expected 121 

dropouts because of technical issues. We therefore recruited a total of 62 healthy right-handed 122 

participants.  123 

Eight participants were excluded due to non-compliance to the study protocol (n = 2), or missing 124 

EEG data (n = 6), leaving 54 participants (mean age = 21.5 years old; SD age = 2.0 years; females = 125 

28) for analyses. All participants were informed of their right to discontinue participation at any time 126 

and gave written informed consent. Participants received 155 Swiss francs (CHF 155; CHF 1 ≈ $ 1 127 

U.S.) compensation for participating in the morning after the night of sleep, in addition to money 128 

earned in the behavioral task, which depended on their own and others’ behavior (see measurement 129 

of prosocial preferences). The earnings from the behavioral assessment were paid immediately after 130 

completing the PGG. Ethical approval for this experiment was provided by the local ethics committee 131 

and adheres to the principles of the Helsinki Declaration. 132 
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 133 

Procedure 134 

All recruited participants were screened before the experiment to meet the following inclusion 135 

criteria: right-handedness (Chapman & Chapman, 1987), self-reported good sleepers with a habitual 136 

sleep duration of 7-8 hours per night (Pittsburgh Sleep Quality Index < 5; Buysse et al., 1989), normal 137 

sleepiness index (Epworth Sleepiness Scale < 10; Johns, 1991), no extreme chronotype (Munich 138 

Chronotype Questionnaire > 2 & < 7; Roenneberg et al., 2003), no current or past history of 139 

neurological, psychiatric, or sleep disorders, no drug nor alcohol abuse, no regular medication 140 

intake, normal weight, and no traveling across more than two time-zones within the last 30 days 141 

before the experiment. Additionally, participants were asked about their regular caffeine, alcohol, 142 

and nicotine consumption. Because women’s sleep quality can be influenced by their menstrual 143 

cycle phase (e.g., Baker & Driver, 2004), we controlled for cycle phase using the forward counting 144 

method. Naturally cycling women were not invited during their estimated fertile days or during the 145 

first 2 days of their menstrual cycle. Women using hormonal contraception were not invited during 146 

pill-free intervals. 147 

One week before the experiment, participants were invited to the laboratory where they 148 

received detailed instructions. We asked participants to keep a regular sleep-wake rhythm adjusted 149 

to their habitual bedtimes (sleep duration of 7-8 hours) and to refrain from daytime napping 150 

throughout the week before the experiment (Figure 1). Participants were also asked to limit their 151 

caffeine consumption to two units/day (1 unit = caffeine content of one cup of coffee) and their 152 

alcohol consumption to one standard drink/day (1 standard drink = 1 beer (350ml) = 10g ethanol). 153 

Smokers were told to adhere to their habitual nicotine consumption. Each participant received a tri-154 

axial accelerometer (GENEActiv, activinsights Ltd., Kimbolton, Huntingdon, UK) to wear on their non-155 

dominant hand. Actigraphy is a validated objective measure of sleep behavior (e.g., de Souza et al., 156 
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2003; Marino et al., 2013), discerning sleep from being awake based on motion. Single-use straps 157 

ensured that participants did not remove the actigraph during the week of actigraphy measurement. 158 

Additionally, we also used sleep diary and consumption diary entries to confirm adherence to the 159 

study protocol. Finally, participants were given a chest harness with a sham amplifier to simulate the 160 

wearing of the portable high-density EEG system. We asked participants to sleep with the chest 161 

harness and the sham amplifier to find the optimal amplifier position for the recording night.  162 

On the day of the experiment, participants were asked to refrain from extensive exercise or 163 

visiting the sauna to avoid post sweating. Participants came to the laboratory in groups of three to 164 

play the PGG (Figure 1). To ensure anonymity, participants were invited to three different floors of 165 

the building and were accompanied one after the other to the cubicles they were randomly assigned 166 

to. After this, participants were fitted with the portable high-density EEG system and were sent 167 

home, where they continued with their habitual routine. Shortly before bedtime, experimenters 168 

visited participants at home to check and, if needed, correct the impedances of the electrodes, and 169 

start the recording (Figure 1). Participants also underwent an implicit association task (IAT), but this 170 

task was irrelevant for the present study.  171 

 172 

----------------- Figure 1 ----------------- 173 

 174 

Measurement of prosocial preferences  175 

In each experimental session, the three participants sat in their cubicles with interconnected 176 

computer terminals where they could make their decision in complete anonymity from the other 177 

two participants. For the measurement of prosocial preferences, we used the PGG. Each participant 178 

was endowed with 20 points (1 point = CHF 0.5) and faced the decision (one-shot) to either keep 179 
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their endowment or contribute all or part of it to a public good (0–20 points). Each point contributed 180 

was doubled by the experimenter and the resulting sum was divided equally among the three 181 

participants. Hence, each point contributed increased the aggregate group payoff while diminishing 182 

the contributing individual's payoff. Immediately after the contribution decision, participants 183 

reported their belief about the average contribution of the other two participants (0–20 points). This 184 

was done because several studies have shown that the amount people contribute to the public good 185 

is influenced by what they believe the other participants will contribute (Fischbacher & Gächter, 186 

2010; Neugebauer et al., 2009). For example, one participant might contribute half of their 187 

endowment because they assume that the other participants would contribute a comparable 188 

amount. In contrast, a different participant might also contribute half of the endowment because 189 

they simply find this the fairest decision. In the latter case, the participant contributes according to 190 

their prosocial inclination without strategically considering the decisions of the other players while in 191 

the first case the contribution is conditional on what other players are expected to contribute. So, 192 

even though in both cases the two exemplified participants contributed the same amount, this does 193 

not reflect the same level of prosocial preferences. To accommodate differences in prosocial 194 

preferences, we hence asked our participants after their contribution decisions what they believed 195 

the other players had contributed. To get a measure that comprehensively measures prosocial 196 

preferences, we generated a difference score by subtracting the value of participants' beliefs from 197 

their own contributions (contribution-minus-belief score).  198 

The participants' final payoff in the PGG consisted of the earnings they gained from the public 199 

good and the points they had kept for themselves. Participants received detailed written instructions 200 

before the task, including information about the calculation of the final payoff. Comprehension trials 201 

ensured their understanding by asking participants to calculate payoff distributions in different 202 

scenarios. 203 
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 204 

Sleep EEG recording  205 

High-density portable EEG (LiveAmp64, Brain Products) with 64 electrodes (actiCAP, EASYCAP), 206 

including three electrooculogram, and two submental electromyogram were continuously recorded 207 

during the nighttime sleep episode. Two additional electrodes weres used as recording reference (Cz) 208 

and as ground (AFz) The electrical signals were recorded with a sampling rate of 500Hz (third order 209 

low pass filter at 131Hz). Impedances were kept below 25k. For each participant, lights-off and 210 

wake-up times were determined according to his or her habitual sleep time. 211 

 212 

Sleep EEG pre-processing  213 

Data were offline bandpass filtered between 0.5-40 Hz. Sleep was visually scored according to 214 

standard criteria (Berry et al., 2018). Data from seven channels required for sleep scoring only (two 215 

electromyogram, three electrooculogram, and two mastoids) were then excluded, leaving a total of 216 

59 electrodes for further analyses. The following sleep parameters were extracted from sleep stage 217 

scoring: total sleep time (i.e., the objective sleep quantity), sleep efficiency (proportion of total time 218 

in bed spent asleep), wake after sleep onset (length of periods of wakefulness occurring after sleep 219 

onset), percentage of total sleep time spent in each sleep stage (N1, N2, N3 and REM).  220 

Bad channels were individually identified by visual inspection of time frequency plots and 221 

spectrograms of the whole night. On average, 5.75% of channels were deemed bad and were 222 

excluded, if problematic at any time of the night. The remaining signals were then re-referenced to 223 

the average of all good channels. Power density spectra were then calculated for 30-s epochs using 224 

Fast Fourier Transformation (5-s subepochs, Hanning window, no overlap). Artifacts were excluded 225 
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semi-automatically, whenever power exceeded a threshold based on a moving average over epochs 226 

for the frequency bands 0.8-4.6 and 20-40 Hz (Buckelmüller et al., 2006). 227 

 228 

SWA distribution maps and source localization  229 

SWA in the range between 0.8-4.6 Hz in sleep stages N2 and N3 was computed for further 230 

analyses. SWA values from excluded channels were interpolated using spherical linear interpolation 231 

(Delorme & Makeig, 2004). Individual SWA distribution maps were normalized to the mean values 232 

across all electrodes, yielding relative SWA distribution maps (e.g., Finelli et al., 2001). Relative SWA 233 

was log-transformed before statistical analyses in order to approach normal distribution. 234 

Source localization analysis was performed using the standardized low-resolution electromagnetic 235 

tomography method (sLORETA; Pascual-Marqui, 2002). The sLORETA algorithm has been used in 236 

many sleep EEG studies (e.g., Bersagliere et al., 2017; Castelnovo et al., 2022; Moffet et al., 2020) 237 

and has been applied to estimate the cortical localization of NREM sleep sources (e.g., Fernandez 238 

Guerrero & Achermann, 2019; Siclari et al., 2018; Stephan et al., 2021). Using the manual 239 

regularization method in the sLORETA software, we selected the transformation matrix with the 240 

signal-to-noise ratio set to 10. sLORETA images were then log-transformed before statistical 241 

analyses. Additionally, we calculated Current Source Density (CSD) maps. The CSD maps were 242 

computed from artifact-free EEG data using the Laplacian transformation. CSD maps are effectively 243 

reference-free (Kayser & Tenke, 2015). CSD power in the range between 0.8-4.6 Hz (CSD SWA) was 244 

then calculated in sleep stages N2 and N3 using Fast Fourier Transformation. Individual CSD SWA 245 

distribution maps were normalized to the mean values across all electrodes, yielding relative CSD 246 

SWA distribution maps. Relative CSD SWA was log-transformed before statistical analyses in order to 247 

approach normal distribution. An electrode-wise Pearson correlation approach was taken to identify 248 
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scalp regions whose relative CSD SWA during an entire night of sleep under normal condition 249 

correlate with the contribution-minus-belief score. 250 

 251 

Statistical analyses  252 

In the main analyses, as a first step, an electrode-wise Pearson correlation approach was taken to 253 

identify scalp regions whose relative SWA during an entire night of sleep under normal condition 254 

correlate with the contribution-minus-belief score. To correct for multiple comparisons, statistical 255 

non-parametric mapping (SnPM) using a suprathreshold cluster analysis was applied (Huber et al., 256 

2004; Nichols & Holmes, 2001). For each permutation, the maximal cluster size of neighboring 257 

electrodes reaching an r value above the critical value was counted and used to build a cluster size 258 

distribution. The 95th percentile was defined as the critical cluster size threshold. To better describe 259 

and visualize the result of this analysis, for each participant, relative SWA was then averaged in the 260 

significant cluster. As a second step, we estimated the intracerebral sources that gave rise to the 261 

significant cluster. For our voxel-by-voxel Pearson correlation analyses, we created a 15-mm sphere 262 

centered on MNI coordinates of the right temporoparietal junction (right TPJ: x = 54, y = -52, z = 32, 263 

Krall et al., 2015). We corrected for multiple testing in all of 59 voxels via a non-parametric 264 

randomization approach (Nichols & Holmes, 2001).  265 

As additional analyses, we repeated the electrode-wise Pearson correlation approach between 266 

SWA and the contribution-minus-belief score for individual sleep cycles. Sleep cycles were defined 267 

according to an adaptation of Feinberg and Floyd’s criteria (Feinberg & Floyd, 1979; Jenni & 268 

Carskadon, 2004; Kurth et al., 2010). For the calculation of relative SWA in individual sleep cycles, we 269 

normalized SWA values to the mean values across all electrodes within each cycle. 270 

 271 
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Results 272 

Behavioral results and sleep parameters 273 

As illustrated in Figure 2, we observed large inter-individual differences in prosocial preferences. 274 

The contribution-minus-belief score varied from -10 to 10 (M = 1.56, SD = 4.03). Sleep parameters 275 

were within the expected range for this age group (see Table 1).  276 

 277 

----------------- Figure 2 ----------------- 278 

  279 
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Table 1. Mean with 95% CIs for total sleep time, sleep efficiency, wake after sleep onset, and 280 

duration of sleep stages for total sample (N = 54).  281 

 282 

        
                

 

Total sleep time  

[min] 

Sleep efficiency  

[%] 

Wake after 

sleep onset 

[min] 

Duration of sleep stages  

(% of total sleep time) 

 

   
        

        

    
N1 N2 N3 REM 

                

        
Mean 431.6 93.1 21.5 7.7 46.3 24.7 21.3 

95% CIs 422.6-441.0 92.2-93.9 18.2-24.9 6.7-8.7 44.8-47.9 23.2-26.3 20.2-22.3 

                

        
 283 

Brain results 284 

In the main analysis, we checked whether individual differences in the topographical distribution 285 

of relative SWA in N2 and N3 (see Figure 3A) during an entire night of sleep explain individual 286 

differences in prosocial preferences. We found robust and significant positive associations in a 287 

cluster of six electrodes placed over the right TPJ (C6, CP4, CP6, FT8, P4, P6, p < 0.05, corrected for 288 

multiple testing, see Figure 3B). The correlation between mean relative SWA in the significant cluster 289 

and prosocial preferences resulted in a correlation coefficient of 0.49 (df = 52), p = 0.00019, R2 = 0.24 290 

(see Figure 3C). Crucially, partialling out participants’ total sleep time or time spent in deep sleep 291 

(i.e. sleep stages N2 and N3) did not affect the relation between relative SWA over the right TPJ and 292 

prosocial behavior (r(51) = 0.49, p = 0.00019, R2 = 0.24; r(51) = 0.50, p = 0.00016, R2 = 0.25). Thus, 293 

the positive correlation between relative SWA over the right TPJ and prosocial preferences was 294 

independent of the quantity of sleep. Moreover, partialling out participants’ age and gender also did 295 

not affect the relationship between relative SWA over the right TPJ and prosocial preferences (r(50) 296 

= 0.49, p < 0.00001, R2 = 0.24).  297 
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 298 

----------------- Figure 3 ----------------- 299 

 300 

Since scalp-based correlation maps provide only a rough estimate of regional characteristics, we 301 

used sLORETA to estimate the regional specificity of the previous findings. We found 3 voxels in the 302 

right TPJ showing significant positive correlations between SWA current density and prosocial 303 

preferences (p < 0.05, small volume corrected for multiple testing, MNI coordinates of peak voxel: x 304 

= 55, y = −55, z = 45, inferior parietal lobule, BA 40; see Figure 3D and for the CSD results, see Figure 305 

4).  306 

 307 

----------------- Figure 4 ----------------- 308 

 309 

SWA levels typically decline across a night of sleep (Achermann et al., 1993). As the rate of the 310 

decline varies at different cortical areas, averaging SWA over an entire night of sleep might lead to a 311 

loss of information. Therefore, we performed additional analyses where we correlated relative SWA 312 

over the right TPJ cluster with prosocial preferences separately for all sleep cycles. Not all 313 

participants had a fifth sleep cycle, hence we present analyses from four cycles. Results, presented in 314 

Figure 5 demonstrated a highly similar pattern for each of the four cycles compared to the whole 315 

night (see Figure 3B).  316 

 317 

----------------- Figure 5 ----------------- 318 

 319 
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To ensure that the main result was not driven by SWA in the first sleep cycle, when SWA levels 320 

are typically highest, we excluded this cycle in a further analysis and correlated relative SWA of the 321 

second, third and fourth sleep cycles pooled together with prosocial preferences. The result once 322 

again shows a significant positive correlation between relative SWA over the TPJ and prosocial 323 

preferences (r(52) = 0.48, p = 0.00021, R2 = 0.23). 324 

 325 

Additional Analysis  326 

Our study aimed to investigate how human prosocial preferences are related to slow-wave activity 327 

during sleep. As mentioned in the methods section, ample evidence demonstrates that individuals 328 

adjust their contributions based on their beliefs about other’s contributions (e.g., Fischbacher & 329 

Gächter, 2010; Neugebauer et al., 2009). Therefore, in the main analyses, we focused on the 330 

contribution-minus-belief score, because this measure more accurately reflects prosocial 331 

preferences rather than contribution or belief alone (see methods section for a detailed 332 

explanation). However, for the sake of completeness, we present additional results separately for 333 

the contribution and the belief scores (see Figure 6).  334 

 335 

----------------- Figure 6 ----------------- 336 

 337 

Discussion 338 

 339 

Recent research emphasizes the importance of sleep for prosocial behavior (e.g., Ben Simon et 340 

al., 2020, 2022; Clark & Dickinson, 2020; Holbein et al., 2019). While this research demonstrates that 341 

adverse sleep conditions have negative consequences on people’s social behaviors, these studies 342 
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offer no conclusions on the underlying mechanisms of how sleep impacts prosocial behavior and 343 

how individual differences in prosocial inclinations come about. We attempted to better understand 344 

the connection between sleep and prosociality by directly looking at the sleeping brain. Rather than 345 

experimentally preventing people from sleeping and then looking at their prosocial behavior, we 346 

used a portable high-density EEG system to record SWA in self-reported good sleepers during a 347 

normal night’s sleep. Our results demonstrate an intriguing association between a trait-like sleep 348 

characteristic, relative SWA, in the TPJ and prosocial preferences.  349 

Different attempts have been made to explain why prosocial behavior is negatively impacted by 350 

sleep deprivation. One suggested possibility for why sleep deprivation may lead to reduced prosocial 351 

behavior is that sleep deprivation hampers self-control, deliberative thinking and executive 352 

functioning (e.g., Anderson & Dickinson, 2010; Dickinson & McElroy, 2017; Holbein et al., 2019). A 353 

second explanation assumes the involvement of the social cognition network (Ben Simon et al., 354 

2020, 2022; Ben Simon & Walker, 2018). For example, it has been found that the desire to socially 355 

interact with others decreases upon sleep loss while the desire to be alone increases (Axelsson et al., 356 

2020; Ben Simon & Walker, 2018). Other studies have found that sleep loss negatively impacts 357 

empathy. For example, Guadagni et al. (2014) demonstrated that one night of total sleep deprivation 358 

leads to reduced emotional empathy. Of special interest in the context of the present study is the 359 

finding of Ben Simon et al. (2022), who used functional MRI analyses to examine the underlying 360 

neural changes in order to explain the association between inadequate sleep and reduced 361 

prosociality. They found that, relative to the rested condition, sleep loss was associated with a 362 

significant reduction in task-evoked activity within the social cognition network, namely in the TPJ, 363 

the mPFC, mid and superior temporal sulcus, and the precuneus. So, these authors could nicely 364 

demonstrate that the social cognition network functions differently after adverse sleep conditions. 365 

In the present study, we go a step further by looking at activity in the sleeping brain during habitual 366 
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sleep. We found that more relative SWA in the TPJ is associated with increased prosocial 367 

preferences. Our finding hence offers further support for the idea that sleep influences the social 368 

cognition network (cf., Ben Simon et al., 2020, 2022; Ben Simon & Walker, 2018). 369 

A large body of evidence looking at the waking brain has consistently linked task-dependent 370 

activation of the TPJ with aspects of social cognition such as mentalizing, perspective-taking or 371 

“theory-of-mind” (ToM), self-other distinction, and empathy (e.g., Decety & Lamm, 2007; Carter & 372 

Huettel, 2013; Saxe, 2006). These aspects of social cognition include understanding and monitoring 373 

the mental states of others such as their intentions, beliefs, desires, emotions and actions and are 374 

crucial for prosocial behavior (Frith & Frith, 2007). Various studies have linked activation in the TPJ 375 

with generous choices (Hutcherson et al., 2015; Park et al., 2017; Strombach et al., 2015) and 376 

donation behavior (e.g., Hare et al., 2010; Van Hoorn et al., 2016). Support for the causal 377 

involvement of the TPJ in prosocial behavior and perspective-taking stems from neuro-modulation 378 

studies (e.g., Hao et al., 2021; Langenbach et al., 2022; Li et al., 2020). Li et al. (2022) for example 379 

demonstrated that increasing the cortical excitability using anodal tDCS over the TPJ increased 380 

participants’ charitable giving.  381 

Previous research using a neural trait approach during wakefulness also report a link between 382 

individual differences in prosociality and the TPJ (Baumgartner et al., 2019; Gianotti et al., 2018, 383 

2019; Morishima et al., 2012). For example, a resting-state EEG study found that task-independent 384 

baseline activation in the TPJ is related to interindividual variation in prosocial behavior (Gianotti et 385 

al., 2019). Similarly, gray matter volume in the TPJ was positively associated with altruistic choices in 386 

a structural MRI study (Morishima et al., 2012). Interestingly, recent studies showed that increased 387 

SW density is linked to higher cortical thickness (e.g., Dubé et al., 2015).  388 

In the present study, we found a positive correlation between relative SWA in the TPJ and 389 

prosocial preferences. SWA is an ideal candidate for capturing individual differences in prosocial 390 
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preferences. We have several reasons to believe that the SWA measured in our study indeed reflects 391 

trait-like differences. During the seven days before the experiment, sleep and consumption diaries 392 

as well as actigraphy were used to confirm adherence to the study protocol (i.e., regular sleep-wake 393 

rhythm, sleep duration of 7-8 hours, no daytime napping). This procedure was introduced to 394 

minimize possible state effects. In addition, we divided SWA power at every single electrode by the 395 

average SWA over all electrodes, resulting in individual topographical distributions indicating relative 396 

SWA. Absolute SWA levels (i.e. without normalization) are subject to day-to-day variations and to a 397 

decline across the sleep period (state-dependent) and therefore reflect the prevailing sleep-wake 398 

history. On the contrary, topographical maps of relative SWA have been shown to be very stable and 399 

thus trait-like (Finelli et al., 2001; Rusterholz & Achermann, 2011). Consequently, the fingerprint-like 400 

SWA topography has been suggested to reflect neural differences across individuals (Finelli et al., 401 

2001). Also, we ran separate analyses for the individual sleep cycles and in every sleep cycle relative 402 

SWA over the right TPJ correlated significantly with prosocial preferences. So, the relationship 403 

between relative SWA and prosocial preferences was not only present in the first sleep cycle, when 404 

the need for sleep and absolute SWA levels are highest, but was similar in all sleep cycles. If the 405 

relationship was mainly driven by the sleep need of the brain region, we would have expected a 406 

critical role of SWA mainly during the first sleep cycle, which is influenced the most by sleep pressure 407 

that accumulated during previous wakefulness, and thus by state effects (Borbély 1982; Dijk et al., 408 

1987). Finally, prosocial preferences were measured on the day before the sleep EEG measurements 409 

took place. This ensured that - should the EEG recording lead to deteriorated sleep efficiency - this 410 

would not influence the behavior in the PGG. As it turned out, the objective sleep efficiency (as 411 

measured by actigraphy) in the nights before the EEG measurement was not significantly different 412 

from the sleep efficiency in the EEG night (92.1% vs 93.2%). While we have no absolute proof that 413 

relative SWA represents a trait-like characteristic, the above-mentioned efforts aimed at minimizing 414 
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state effects. Ultimately, further studies measuring prosociality and sleep physiology longitudinally 415 

will be necessary to support our conclusions. 416 

SWA is seen as a physiological marker of sleep depth. We found a correlation between relative 417 

SWA values in the TPJ and individual differences in prosocial preferences, suggesting that local sleep 418 

depth specifically in the TPJ may have a crucial impact on prosocial behavior, irrespective of the 419 

absolute level of sleep pressure. CSD maps and sLORETA images gave further support for the 420 

regional specificity of the association between relative SWA and prosocial preferences in the TPJ. 421 

Because SWA is believed to reflect a restorative function (Borbély et al., 2016; Tononi & Cirelli, 422 

2006), we speculate that higher SWA in the right TPJ is indicative of an individuals’s propensity for 423 

prosocial behavior because of local restorative processes. More SWA in the right TPJ might lead to a 424 

better restoration of TPJ functions, resulting in a higher capacity of mentalizing and/or perspective-425 

taking, which in turn might lead people to be more prosocially inclined.  426 

Social decision-making is known to be influenced by chronotype or by (sub)optimal time-of-day 427 

(e.g., Francis et al., 2021; Gunia et al., 2014). Evening chronotypes for example have been shown to 428 

be less likely to act prosocially, regardless of whether they have been tested during their matched 429 

time (in the evening) or in the morning (Francis et al., 2021). To avoid a confounding factor of 430 

chronotype and circadian (mis)timing of our decision-making task, we excluded extreme 431 

chronotypes from the present study.  432 

To conclude, we demonstrate that not only sleep duration (as shown by Ben Simon et al., 2020; 433 

Ben Simon et al., 2022; Clark & Dickinson, 2020; Holbein et al., 2019), but also sleep depth has an 434 

impact on prosocial decisions. Importantly, it depends on where in the brain this happens. Our study 435 

offers a first step towards a neural explanation for how sleep patterns explain prosociality by 436 

highlighting the crucial role of sleep depth in the right TPJ in prosocial decisions. Our approach 437 

therefore improves our understanding of neurobiological mechanisms underlying prosocial 438 
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preferences and may have implications for future approaches to improve poor perspective-taking 439 

and low prosociality. Recent evidence shows that brain stimulation techniques, such as transcranial 440 

magnetic stimulation, transcranial direct current stimulation, and auditory closed-loop stimulation 441 

enable the modulation of SWA (e.g., Bellesi et al., 2014; Lustenberger et al., 2022; Ngo et al., 2013; 442 

Sousouri et al., 2021). Thus, these techniques might be promising tools for boosting SWA in specific 443 

areas to potentially remedy dysfunctions and impairments of perspective-taking capacities and 444 

other-regarding behavior through targeted interventions.  445 
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Figure Legends 719 

 720 

Figure 1. Study design. One week before the experiment, participants were instructed to maintain a 721 

regular sleep-wake rhythm. They were given an actigraph to objectively monitor their sleep-wake 722 

rhythm. During this week, participants completed sleep and consumption diaries to ensure 723 

adherence to the study protocol. On the experiment day, participants came to the laboratory in 724 

groups of three to play the Public Goods Game (PGG). Afterward, they were fitted with a high-725 

density portable EEG system and sent home where the sleep EEG was recorded during the following 726 

night. 727 

 728 

Figure 2. Histogram depicting the distribution of the contribution-minus-belief score among all 729 

participants.  730 

 731 

Figure 3. Topographical distribution of relative SWA (0.8–4.6 Hz) and its correlation with prosocial 732 

preferences. (A) Topographical distribution of relative SWA (average over all participants). SWA 733 

values at every electrode were normalized in relation to average SWA over all electrodes of a 734 

participant. Dark blue to dark red colors indicate minimal (45%) to maximal (173%) SWA. (B) 735 

Statistical scalp distribution of r-coefficients between relative SWA and prosocial preferences. Blue 736 

areas indicate negative correlations, red areas indicate positive correlations. White dots indicate 737 

electrodes with significant correlations (p < 0.05, corrected for multiple testing with a 738 

suprathreshold cluster analysis). Black dots indicate the position of the 59 electrodes. (C) Scatterplot 739 

of the positive correlation between mean relative SWA in the significant cluster over the right TPJ 740 

and prosocial preferences (including regression line and confidence interval 95%). (D) Relationship 741 

between SWA current density in the right TPJ and prosocial preferences. Locations of the voxels that 742 
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showed significant correlations are indicated in red (p < 0.05, corrected) and yellow (p < 0.10, 743 

corrected).  744 

 745 

Figure 4. Topographical distribution of relative CSD SWA (0.8-4.6 Hz) and its correlation with 746 

prosocial preferences. (A) Topographical distribution of  relative CSD SWA (averaged over all 747 

participants). Dark blue to dark red colors indicate minimal (58%) to maximal (195%) CSD SWA. (B) 748 

Statistical scalp distribution of r-coefficients between log-transformed relative CSD SWA and 749 

prosocial preferences. Blue areas indicate negative correlations, red areas indicate positive 750 

correlations. White dots indicate electrodes with significant correlations (p < 0.05). Black dots 751 

indicate the position of the 59 electrodes. 752 

 753 

Figure 5. Relationship between relative SWA and prosocial preferences for sleep cycle 1 (A), sleep 754 

cycle 2 (B), sleep cycle 3 (C), and sleep cycle 4 (D). Left panels show statistical topographical 755 

distributions of correlation coefficients between relative SWA and prosocial preferences. Blue areas 756 

indicate negative correlations, red areas indicate positive correlations. White dots indicate 757 

electrodes with significant correlations (p < 0.05) in the cluster of six electrodes identified in the 758 

main analysis (see Figure 3B). Right panels show scatterplots of the positive correlations between 759 

mean relative SWA in the significant cluster over the right TPJ and prosocial preferences (including 760 

regression line and confidence intervals 95%). 761 

 762 

Figure 6. Contribution decisions, beliefs and correlations with relative SWA. (A) Contribution 763 

decisions and participants’ beliefs about the average contribution of the other participants. 764 

Contribution decision (left) and the belief about others contribution (right) are depicted for each 765 
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participant. Contribution decisions and corresponding beliefs per participants are joined by a line. (B) 766 

Topographical distribution of r-coefficients between relative SWA and contribution decisions and (C) 767 

participants’ beliefs. Blue areas indicate negative correlations, red areas indicate positive 768 

correlations. White dots indicate electrodes with uncorrected significant correlations (p < 0.05). 769 

Black dots indicate the position of the 59 electrodes.   770 
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