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ABSTRACT

Simulations of condensed matter systems at the hybrid density functional theory level pose significant computational challenges. The elevated
costs arise from the non-local nature of the Hartree–Fock exchange (HFX) in conjunction with the necessity to approach the thermodynamic
limit. In this work, we address these issues with the development of a new efficient method for the calculation of HFX in periodic systems,
employing k-point sampling. We rely on a local atom-specific resolution-of-the-identity scheme, the use of atom-centered Gaussian type
orbitals, and the truncation of the Coulomb interaction to limit computational complexity. Our real-space approach exhibits a scaling that
is, at worst, linear with the number of k-points. Issues related to basis set diffuseness are effectively addressed through the auxiliary den-
sity matrix method. We report the implementation in the CP2K software package, as well as accuracy and performance benchmarks. This
method demonstrates excellent agreement with equivalent Γ-point supercell calculations in terms of relative energies and nuclear gradients.
Good strong and weak scaling performances, as well as graphics processing unit (GPU) acceleration, make this implementation a promising
candidate for high-performance computing.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189659

I. INTRODUCTION

Finding their roots in the adiabatic connection theory,1–3

hybrid functionals have emerged as an accuracy standard for den-
sity functional theory (DFT) calculations of molecules.4–8 Beyond
the local descriptions provided by functionals in the local den-
sity approximation (LDA) and generalized gradient approxima-
tion (GGA), hybrid functionals incorporate a fraction of non-local
Hartree–Fock exchange (HFX). While such functionals are known
to be accurate for the simulation of solids in periodic boundary
conditions (PBCs),9–15 their computational cost increases dramati-
cally due to their non-local nature and their necessity to approach
the thermodynamic limit (TDL). This can be achieved by sampling
k-points over the Brillouin zone (BZ) or by considering large super-
cells at the Γ-point only. Although the former strategy scales better
toward the TDL, implementing Γ-point methods in molecular codes
is simpler, leading to the availability of both approaches in various

quantum chemistry codes.16–23 In addition to an improved descrip-
tion of the electronic structure, hybrid DFT calculations of solids
can serve as a foundation for higher level methods, such as GW24–26

or RPA.27–29 Periodic post-HF methods30–33 also benefit from such
implementations.

The development of HFX methods for PBC calculations has
a rich history and remains an active area of research. In the con-
text of quantum chemistry utilizing local atom-centered basis sets,
typically Gaussian type orbitals (GTOs), fundamental work was car-
ried out by Pisani and co-workers in the 1980s.34–38 Their approach
directly extended molecular HFX to PBCs, involving the calculation
of two-electron four-center electron repulsion integrals (ERIs) and
the truncation of resulting infinite sums. This latter point is highly
non-trivial as the exact exchange energy diverges for systems with
finite sampling of the BZ.39 To tackle this, novel approaches were
developed, relying on the minimum image convention40 (MIC) or
the truncated Coulomb (TC) interaction.41 While these new meth-
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ods effectively dealt with the divergence issue, they were initially
developed only for Γ-point supercell calculations. More recently,
Irmler and co-workers extended them to k-point sampling.42 Note
that both the MIC and TC approaches were adapted from equiv-
alent plane wave schemes.43–45 Over the years, various strategies
were devised for the efficient evaluation of molecular HFX energy,
with some adapted for PBCs. Variations of the resolution-of-the-
identity (RI) technique46,47 have been employed for calculations with
k-point sampling,48–53 while the auxiliary density matrix method
(ADMM) was specifically developed for Γ-point calculations.54 We
note that efficient algorithms have also been developed for plane
wave calculations.55–59

In this work, we present the development of a novel atom-
specific RI method tailored for the calculation of periodic HFX with
k-point sampling and GTOs. Particular emphasis is put on effi-
ciency, which is enhanced by the adaptation of the ADMM approx-
imation to k-point sampling, as well as the use of the truncated
Coulomb interaction with a fixed range. We discuss the implemen-
tation of the method in the open source CP2K software package23

and demonstrate its potential for high performance computing
applications.

II. THEORY

A. General

For simplicity, the following discussion covers the spin-
restricted HF theory. Spin-unrestricted and hybrid DFT equations
are readily recoverable. In periodic HF calculations employing k-
point sampling, a Hermitian generalized eigenvalue problem has to
be solved for each k-point,

F
k
C
k ≙ SkCk

ε
k, (1)

where Fk
μν denotes the Fock matrix and Skμν represents the overlap

matrix of Bloch atomic orbitals φk
μ(r). These orbitals are defined as

discrete Fourier transforms of translated real-space atomic orbitals
(AOs),

φ
k
μ(r) ≙ ∑

R

e
ik⋅R

φμ(r − R), (2)

withR being a unit cell translation vector. The solutions of the eigen-
value problem, Ck

μi and εki correspond to the HF crystalline orbitals
(COs) and band energies, respectively.

The exact exchange contribution to the Fock matrix can be
expressed as

K
k
μν ≙ ∑

k′
P
k′

σλ (μ
k
σ
k′ ∣νkλk

′

), (3)

where Pk′

σλ is the density matrix for a given k-point k′. We use the
Mulliken notation for two-electron four-center integrals and the
Einstein summation convention for AO indices. Alternatively, the
exact exchange matrix can be obtained by a Fourier transform of its
real-space counterpart

K
k
μν ≙ ∑

R

e
ik⋅R

K
R
μν, (4)

with

K
b
μν ≙ ∑

a,c
P
c
σ,λ (μ

0
σ
a∣νbλa+c). (5)

Note that the real-space notation Kb
μν corresponds to a matrix ele-

ment with AO φμ(r) in the reference cell and φν(r − b) in a periodic
image of the cell translated by b. For all Hermitian matrices in the
k-space, their real-space equivalents exhibit the Fb

μν ≙ F−bνμ symmetry.
Both approaches to building the exact exchange matrix are

found in the literature, each with its variations, advantages, and
drawbacks. The direct approach outlined in Eq. (3) confines the
Bloch AO indices to the unit cell, facilitating the efficient han-
dling of diffuse basis functions. This approach is favored in most
plane-wave codes as well as in the occ-RI-K method of Lee and co-
workers.52,53 Its primary limitation lies in the quadratic scaling cost
with respect to the number of k-points. On the other hand, the cost
of building the exact exchange matrix in real-space, as depicted in
Eq. (5), is, in principle, independent of the number of k-points. It
entirely depends on the extent of the cell translation vectors a, b,
and c, determined by the basis set diffuseness and the range of the
exchange potential. Variations of this latter approach are followed
by the pioneering work of Pisani and co-workers,34 as well as in
more recent publications.42,48,51 Hybrid methods combining aspects
of both techniques have also emerged.60

Considering that most periodic hybrid DFT calculations are
performed with small unit cells and dense k-point meshes, we
believe that the real-space approach is more suitable. Indeed, the
overall cost scales, at worst, linearly with the number of k-points,
provided that diagonalization dominates. In this work, we under-
take several measures to reduce the cost of building the real-space
exact exchange matrices and implement them in the CP2K soft-
ware package. To achieve this, we reduce the extent of a, b, and
c cell indices by using the truncated Coulomb operator. Concur-
rently, we improve the overall computational scaling and efficiency
with a novel atom-specific resolution-of-the-identity (RI) scheme.
Furthermore, we address the challenge of basis set diffuseness by
employing the auxiliary density matrix method (ADMM).54 Each of
these steps is detailed in the following sections: Sec. II B for the trun-
cated Coulomb operator, Sec. II C for the RI approximation, and
Sec. II D for ADMM.

Note that real-space approaches are also well suited for band
structure calculations. Given a converged SCF calculation with a
dense enough k-point mesh, the resulting collection of real-space
Fock matrices Fb can be back Fourier transformed to any k-
point path. After diagonalization, eigenvalues are used for the band
structure along the given path.

B. Truncated Coulomb operator

In periodic HF calculations, the exact exchange energy is
calculated from the trace of Eq. (3) with the density matrix

E
HF
x ≙ −

1
2
∑
k,k′

P
k
μνP

k′

σλ (μ
k
σ
k′ ∣νkλk

′

), (6)

which suffers from an integrable singularity at k ≙ k′ when the stan-
dard 1/r12 Coulomb potential is used. This singularity vanishes in
the limit of an infinite number of k-points. This issue also exists
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in periodic Γ-point only calculations and requires infinitely large
supercells. This is evidently impractical for any kind of realistic
calculations, and over the years, numerous schemes have been devel-
oped to tackle the problem. Of particular relevance to this work
are real-space approaches applicable to Eq. (5). These include the
minimal image convention (MIC) method by Tymczak and co-
workers,40 the truncated Coulomb (TC) interaction by Guidon and
co-workers,41 and the screened Coulomb interaction by Heyd and
co-workers.61

In this work, our emphasis lies on the truncated Coulomb
(TC) technique, which has served as the cornerstone of CP2K peri-
odic exact exchange calculations for over a decade. The machinery
for calculating electron repulsion integrals (ERIs) based on the TC
operator is readily available and the Γ-point TC implementation
is widely established.41,62–68 The truncated Coulomb potential is
defined as

gTC(r12) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
r12

if r12 ≤ RC

0 if r12 > RC,
(7)

where RC is the truncation radius. In the original TC paper by
Spencer and Alavi,44 the truncation radius increases with the num-
ber of k-points such that RC is the radius of the largest sphere
fitting in the corresponding Born–von Karman69 (BvK) supercell.
In CP2K, the cutoff radius is typically fixed to a value yielding con-
verged exact exchange contributions. The Γ-point approach allows
for HFX calculations that are linear-scaling with the system size.
When applied to a real-space k-point method, this approach leads
to constant costs for building exact exchange matrices as a function
of the number of k-points. The ideal fixed value for the trun-
cation radius comes from a trade-off between performance and
accuracy and is system dependent. It is discussed in Sec. III B
of this paper. The usual constraint that the truncation radius
is, at most, the radius of the largest sphere fitting in the BvK
supercell remains unchanged. While we focus on the TC operator
in this work, the short range screened Coulomb interaction was
also implemented. Extension to any other limited range potential
is straightforward.

C. Atom-specific resolution-of-the-identity scheme

From the real-space exact exchange matrix outlined in Eq. (5),
it becomes apparent that calculating two-electron four-center elec-
tron repulsion integrals (ERIs) comes with an unfavorable scaling
with respect to the system and basis set sizes. In Γ-point calculations,
ERIs stemming from different periodic images can be summed in
advance before being contracted with the density matrix. This typ-
ically allows for the computation and storage of all ERIs at the first
SCF step, while they can be efficiently retrieved from the memory
for all subsequent iterations. However, in four-center k-point HFX
calculations, the ERIs can only be partially pre-summed and storing
them in the memory would rapidly become intractable. This would
require a complete recalculation of the ERIs at each SCF step, leading
to substantial additional costs. On the other hand, RI schemes only
require two- and three-center ERIs, making integral storage more
manageable. Moreover, previous research70 has demonstrated that
RI-HFX is particularly efficient for small- to medium-sized dense

systems, which is the typical application case for k-point calcula-
tions. Finally, adopting an RI-basedmethod shifts the computational
bottleneck from four-center ERI evaluations to tensor contractions,
a task better suited for graphics processing unit (GPU) acceleration.
For all these reasons, we developed an RI-based method for HFX
periodic k-point calculations.

In a global resolution-of-the-identity scheme, RI based ele-
ments would need to span all possible image cells, leading to the
following formula:

K
b
μν ≙ ∑

a,c,d,e

P
c
σ,λ (μ

0
σ
a∣Pe) [(P∣Q)−1]

e,f
(Qf∣νbλa+c), (8)

where P and Q represent atom-centered GTOs. [(P∣Q)−1]
e,f

cor-
responds to the e and f blocks of an inverse matrix involving RI
based elements from all possible periodic images. Such an approach
introduces an additional double loop over periodic cell indices e
and f, which is detrimental for computational complexity. More-
over, storing three-center ERIs with two such periodic cell indices
would be challenging. Finally, inverting the two-center RI potential
matrix (P∣Q) could be prohibitively expensive due to the cubic scal-
ing of such operations. To address these issues, we introduce a local
atom-specific RI scheme, in which each atom has a different RI basis
defined in its vicinity. With the addition of an RI metric denoted
with operator ⌊, we get

K
b
μi,ν j ≙ ∑

a,c
P
c
σ,λ (μ

0
i σ

a⌊P0
i ) (P

0
i ⌊R

0
i )
−1 (R0

i ∣S
b
j)

× (Sbj⌊Q
b
j)
−1 (Qb

j⌊ν
b
jλ

a+c), (9)

where indices i and j refer to atoms. The RI metric operator ⌊ is typ-
ically chosen to have a smaller range than the HFX potential for
increased sparsity. The RI-SVS scheme47 corresponds to the most
extreme case, where the RI metric is taken to be the overlap. Note
that the choice of an atom-specific RI scheme is driven by the need
for translational invariance, which would not be enforced if the local
RI basis were defined in terms of the unit cell. We refer to this
method as RI-HFXk.

The atom-specific RI basis for atom i in the reference cell, P0
i ,

should span the same space as all possible μ0i σ
a products, where

φμi(r) is an AO centered on atom i and φσ(r − a) is a general AO
in cell a. For these products to be non-zero, the AOs have to overlap,
which only happens within a region around atom i, where φμi(r) > 0.
In practical terms, we define the range of a primitive Gaussian func-
tion as Rmax, such that φμi(Rmax) ≙ εPGF. Two functions overlap if

φμi(r)φσ(r − a) > ε2PGF. The extent of the atom-specific RI basis is
defined by a sphere centered on atom i, with a radius equal to the
range of the most diffuse AO in the system. All atoms within that
sphere contribute to their RI basis functions. To avoid a discon-
tinuous change of the basis upon atomic displacements, atoms on
the edge of the RI region have lesser weight, enforced with a bump
function, as introduced by Sodt and co-workers.71 Figure 1 illus-
trates how the atom-specific RI basis is constructed. This choice of a
local RI basis is based on the properties of the system and does not
require user input, beside the general εPGF accuracy parameter. Any
standard optimized or automatically generated RI basis can be used.
Note that the extent of the RI basis is independent of the system size.
Further details about the bump function used in this work can be
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FIG. 1. Illustration of the atom-specific RI basis extent for a fictional one-
dimensional two-atom system. Cell indices are on the x axis, and the atom of
interest is on the RHS of the reference cell. The Gaussian basis set represents
the extent of the most diffuse AO, within which range all atoms contribute to RI
basis functions. Atoms in the blue zone contribute fully, while atoms on the edges
(orange zone) have a decaying weight. Note that the RI region may extend beyond
the reference cell. In CP2K, the default value of εPGF is 10−5. In this implemen-
tation, the weight of a distant atom starts decaying at 85% of the RI range, by
default.

found in the supplementary material. Other local RI schemes, where
each μ0i σ

a
j product is projected on GTOs centered on atoms i in the

reference cell and j in cell a, can be found in the literature.48,51 The
RI method used in this work is not robust in the definition given by
Dunlap.72 A strictly robust density fitting51,73 scheme would, how-
ever, lead to a much greater number of tensor contractions and
steep computational costs. Furthermore, the accuracy of RI-HFXk
is not very sensitive to the value of εPGF (see the supplementary
material).

D. Auxiliary density matrix method

In the auxiliary density matrix method, the HFX energy is
approximated using an auxiliary basis set, typically chosen to be
smaller and/or less diffuse than the main orbital basis,

E
HF
x ≙ E

HF
x ∥P̂∥ + (E

HF
x ∥P∥ − E

HF
x ∥P̂∥)

≈ EHF
x ∥P̂∥ + (E

GGA
x ∥P∥ − EGGA

x ∥P̂∥), (10)

where P and P̂ are the electronic density in the primary and auxiliary
basis, respectively. The energy difference between both the basis sets
is approximated with a local GGA level functional, which is evalu-
ated much more efficiently than in HF. The ADMM approximation
is assumed to be accurate, provided that P ≈ P̂. In its simplest for-
mulation, ADMM2, the density in the auxiliary basis set is obtained
by basis projection,

P̂
k ≙ Ĉ k

Ĉ
kT ≙ Ŝ k−1

Q
k
P
k
Q

kT
Ŝ
k−1, (11)

where Ŝ k is the auxiliary–auxiliary basis overlapmatrix andQk is the
auxiliary–primary basis overlap matrix. Note that with k-point sam-
pling, this basis projection is only well defined in k-space. Since we
have chosen to work with real-space matrices, the ADMM method
involves a Fourier transform of the primary real-space densitymatri-
ces to k-space. Subsequently, a basis projection is performed at each
k-point, followed by back Fourier transforms of the auxiliary density
matrices from k-space to real space. Note that the alternative flavors
of the ADMM developed by Merlot and co-workers74 (ADMMP,

ADMMQ, and ADMMS) are also straightforwardly extended to k-
points. Purified wave function fitting, also referred to as ADMM1, is
much more cumbersome and was not implemented.

The use of the ADMM with the RI-HFXk method described
in this work offers several advantages. Calculations are accelerated
by selecting less diffuse auxiliary basis sets, thereby reducing the
extent of cell indices a, b, and c in Eq. (9). Additionally, the use of
smaller auxiliary basis sets contributes to faster matrix–matrix mul-
tiplications and tensor contractions. Finally, the approach enables
calculations withmore diffuse primary basis sets that would typically
be prohibitively expensive.

E. Implementation

Equation (9) for the exact exchange contribution to the Fock
matrix is straightforward, but its efficient implementation requires
effort. There are indeed numerous aspects that hinder performance.
The triple loop over periodic cells is problematic, given that the
number of images to consider typically reaches the hundreds. Cou-
pled with the additional double loop over atom indices, these result
in a very large number of small tensor contractions, not ideal for
distributed computing. Additionally, a trade-off has to be found
between what can be stored inmemory and what needs recomputing
at each SCF step. Themost important aspects of our implementation
are discussed below.

As previously discussed, the efficient storage of two- and three-
center ERI tensors is limited to cases where they depend on a single
periodic image index. Therefore, any tensor contractions resulting in
a two-index quantity cannot be pre-computed, even if the operation
needs to be repeated at each SCF step. Only the following two- and
three-center tensors can be pre-contracted and stored in memory
without extra cost,

Iμ0i σ
aR0

i
≙ (μ0i σ

a⌊P0
i ) (P

0
i ⌊R

0
i )
−1. (12)

The computational complexity associated with the triple loop
on periodic image indices can be significantly simplified by select-
ing a judicious order of operations. By initially looping over
images a and c and contracting the density matrix with the three-
center integrals, we build a single-index three-center tensor with
d ≙ a + c,

Tμ0i λ
dR0

i
≙ ∑

a,c
a+c=d

P
c
σ,λ Iμ0i σ

aR0
i
, (13)

where different a and c pairs can sum up to the same d. Finally, a
loop over cell vector b and atom pairs i, j is executed,

K
b
μi,ν j ≙ ∑

d

Tμ0i λ
dR0

i
(R0

i ∣S
b
j) IνbjλdSbj , (14)

where atomic blocks are computed one at a time. This leads to a
computational complexity of𝒪(N2

img) because of the two subsequent
double loops on periodic cells, where N img is the number of periodic
images b, for which (R0

i ∣S
b
j) is non-zero.With the loop on atom pairs

i and j and the fact that only σ increases with system size in tensor
(μ0i σ

a⌊P0
i ), the overall complexity is 𝒪(N3

atomN
2
img). Note that as the

simulation cell gets larger, the number of periodic images to con-
sider decreases, leading to a non-trivial scaling of the method with
the system size.
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Equation (13) can be efficiently handled by batched contrac-
tions. Large matrices/tensors can be built by stacking Pc

σ,λ and Iμ0i σaR0
i

in a proper order such that various a and c pairs sum up to the
same d. While stacking along d can also take place in Eq. (14), the
tensors remain much smaller, leading to a hard limit on strong scal-
ing. The triple loop over b, i, and j becomes, in most cases, the
bottleneck of the calculation. To efficiently deal with it, we dis-
tribute the b, i, and j triplets over multiple MPI subgroups working
independently. Because these subgroups each have fewer resources,
they perform small matrix/tensor contractions at higher a paral-
lel efficiency. This comes with some communication and memory
overhead, as the three-center tensors Iνbjλ

dSbj
and Tμ0i λ

dR0
i
must be

replicated on each subgroup. The former can be replicated once and
for all at the first SCF step, while the latter has to be broadcast at each
step. Note that i, j atomic pairs are calculated on different subgroups
according to index i such that the Tμ0i λ

dR0
i
tensor is only partially

copied.
Finally, we exploit the linearity of the exact exchange matrix

with respect to the density matrix. At the nth SCF step, we calcu-
late Kb

μi,ν j∥P
n∥ ≙ Kb

μi,ν j∥P
(n−1)∥ + Kb

μi,ν j∥ΔP∥. As the SCF converges,
ΔP becomes smaller, leading to sparser tensors contractions and
faster SCF iterations. To maintain a low overall number of SCF
steps, we implemented a k-point-specific DIIS solver.75 We also
leverage the Kb

μi,ν j ≙ K−bν j,μi symmetry to reduce the computational
effort.

Depending on the system and the method used to generate
k-point meshes, symmetries can be exploited to reduce the effec-
tive number of k-points. This can be useful to lower the time
spent in diagonalization [Eq. (1)]. Because these operations are usu-
ally not a bottleneck in the real-space approach developed in this
work, only the straightforward time-reversal symmetry (k ≙ −k) is
exploited.

In our implementation, we use the Libint library76 to evalu-
ate all two- and three-center ERIs. Matrix and tensor contractions

are efficiently managed by the GPU accelerated block-sparse DBM
and DBT libraries.70 The default filtering threshold for sparsity is set
to 10−9. By default, the RI basis is generated on the fly according
to the scheme of Stoychev and co-workers,77 but user provided RI
basis sets are also possible. Nuclear gradients and stress tensors were
also implemented, included within the ADMM approximation for
the ADMM2, ADMMP, ADMMQ, and ADMMS flavors.

III. RESULTS

Many calculations and benchmarks were performed with the
aim of showcasing the method’s accuracy and computational per-
formance. First, a discussion concerning the choice of the RI metric
is conducted. A study on the TC truncation radius to be used
in RI-HFXk calculations and on the application of the ADMM
approximation follows. Finally, various scaling tests are reported.
Unless specified otherwise, we systematically useMonkhorst–Pack78

k-point meshes in this work.
We measure accuracy in terms of relative energy errors, i.e.,

the error made on the energy difference between two systems of
the same composition, but with different atomic structures. For a
given accuracy test, we subtract the energy of the pristine crystal
structure from that of a system with a broken symmetry, which is
achieved by randomly displacing atoms by a maximum of ±0.1 Å.
The same structures are used for all data points of the test. While
absolute energies may vary, the focus on relative energies ensures
that consistent comparisons between different calculations at the
same level of theory can be done. We systematically report rela-
tive energy errors in terms of μHa/atom, referring to the number of
atoms in the calculation unit cell (independent of the k-point mesh).

A. Choice of the RI metric

The selection of the RI metric, denoted by the operator ⌊
in Eq. (9), is an input parameter to any RI-HFX and low-scaling

FIG. 2. Relative HF energy errors and SCF timings measured as a function of the RI metric, for 2D hBN and bulk silicon, with two atoms per unit cell each. Ovlp stands for the
overlap metric, while TC RC stands for the truncated Coulomb metric with a cutoff radius of RC Å. The HFX potential used for all calculations is the truncated Coulomb with a
cutoff radius of 5 Å. The reference relative energy is calculated at the Γ-point with a supercell of 7 × 7 × 1 and 5 × 5 × 5 for hBN and silicon, respectively. This corresponds
exactly to the sampling from the k-point meshes used for RI-HFXk. For each system and basis set combination, the reference timing of 1.0 was set for the calculation with
the overlap metric. Note that the errors for the overlap metric when using the pob-DZVP-rev2 basis set are off the charts at 1090 and 708 μHa/atom for hBN and silicon,
respectively.
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post-HF calculation within CP2K. We are interested in making the
optimal choice, with the assumption that a short range RI metric is
more efficient due to sparsity, while longer ranged metrics improve
accuracy. Figure 2 illustrates the relative errors and SCF timings
observed when running RI-HFXk calculations on two-dimensional
hBN and bulk silicon, with RI metrics of increasing range. Two basis
sets are used: the solid-state specific all-electron pob-DZVP-rev279

and the more diffuse and general purpose ccGRB-D,23 with GTH
pseudopotentials.80 The results reveal a general trend of error reduc-
tion with an increasing RI metric range, albeit with non-monotonic
convergence and occasional significant jumps, as exemplified by TC
3.0 for silicon. Additionally, the SCF timings vary little, with a max-
imum increase of 20%. This is due to the almost constant levels of
sparsity because of the local nature of the RI basis. This is in stark
contrast with global RI schemes, where such long range RI met-
ric choices lead to a significant increase in computational costs.70

In conclusion, for optimal accuracy with a maximum error of 21
μHa/atom (for the specified setup of bulk silicon with pob-DZVP-
rev2), we recommend employing an RI metric identical to the HFX
potential. Furthermore, we note that the ccGRB-D basis set con-
sistently outperforms pob-DZVP-rev2. A similar investigation on
nuclear gradients corroborates these findings, and additional details
can be found in the supplementary material. Unless explicitly stated,
all calculations in this work use the same operator for the RI metric
and the HFX potential.

B. Ideal TC truncation radius

All RI-HFXk calculations performed in this work use the
truncated Coulomb operator as the HFX potential. As discussed
in Sec. II B, this choice allows for a finite number of periodic
images to be considered, while ensuring convergence of the exact
exchange energy term. In CP2K, unlike the original work of Spencer
and Alavi44 and the GTO-based implementation of Irmler and co-
workers,42 we do not systematically increase the truncation radius of

TABLE I. Number of periodic images considered as a function of the HFX potential
TC cutoff radius (Å) for different systems, simulated with the pob-TZVP-rev2 basis
set.

RC hBN LiH Silicon Diamond

4.0 116 229 270 713
5.0 136 274 321 916
6.0 155 313 407 1117
7.0 165 413 530 1371
8.0 192 428 599 1650
9.0 213 540 703 2005
10.0 256 634 798 2352

the TC operator with the extent of the BvK supercell. Instead, a fixed
value is chosen as an input parameter, large enough such that relative
energies are converged. The general requirement that RC must be
smaller than the radius of the largest sphere fitting in the BvK super-
cell still holds. Figure 3 shows the relative energy errors and timings
measured on 2D hBN, bulk LiH, bulk silicon, and diamond, as a
function of the HFX potential truncation radius. The errors exhibit
a clear monotonic decrease, with RC ≙ 6 Å being converged enough
for all systems considered. The maximum relative error for this cut-
off is 43 μHa/atom for silicon using the pob-TZVP-rev2 basis set.
Note that increasing the truncation radius leads to significant addi-
tional costs for dense solids because of the larger number of periodic
images involved (Table I). In the case of diamond, switching from
6 to 10 Å induces a 2.5× increase in cost. Section III B summarizes
the number of periodic images considered as a function of the HFX
potential truncation radius for the considered systems. We stress
that RC is a parameter of the HFXk method, and its value should
be properly tested for convergence. In particular, small gaps and
metallic systems might require larger truncation radii.

FIG. 3. Relative HF energy errors and SCF timings measured as a function of the HFX potential TC truncation radius. The reference relative energy was taken to be that
calculated with a 12 Å cutoff radius. The reference timing was set to the RC = 6 Å calculation as it is considered converged. The basis set employed for these tests was
pob-TZVP-rev2. The number of atoms per unit cell is 2, 8, 2, and 2, and the k-point mesh is 15 × 15 × 1, 12 × 12 × 12, 12 × 12 × 12, and 12 × 12 × 12 for hBN, LiH, silicon,
and diamond, respectively. Note the different y-axis error limits for the upper and lower sub-figures. The shaded area corresponds to an error of ±25 μHa/atom.
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C. Auxiliary density matrix method

The results presented in this section demonstrate the per-
formance of the ADMM approximation in combination with the
RI-HFXkmethod. Table II outlines the relative errors and speedups
achieved with various combinations of basis sets for 2D hBN and
bulk silicon. A consistent trend is observed, in which the most sub-
stantial speedups, reaching up to 700×, are associated with larger
errors, typically an order of magnitude higher than the atom-specific
RI-induced errors. This observation aligns with the findings of
Rebolini and co-workers in molecular calculations.81 Note that the
cFIT354 auxiliary basis for bulk silicon leads to particularly high
errors. In the spirit of ADMM, high-quality triple-zeta valence basis
sets (ccGRB-T and TZVP-MOLOPT-HYB-GTH82) were chosen as
the primary basis for this test. Given the strong dependence of the
HFX cost on basis set size and diffuseness, significant benefits are
expected from ADMM in this context. Furthermore, ADMM facili-
tates k-point HFX calculations with diffuse basis sets, provided that
the selected auxiliary basis is less diffuse. The related accuracy and
speedup measurements are not reported here because the reference
RI-HFXk calculations become computationally intractable. Finally,
ADMM can also be used with all-electron basis sets, as illustrated
with 6-31G∗83–85 in the table. There are not many ADMMoptimized
all-electron basis sets available, except for the ones from Kumar and
co-workers,86 which are too diffuse for efficient solid-state calcula-
tions. Instead, we show that the CRYSTAL16 pob family of basis sets
can be efficiently used as auxiliary basis sets because of their lim-
ited diffuseness. Note that while 6-31G∗ is of double zeta quality,
speedups and low errors are still achieved with the pob-TZVP-rev2
basis for silicon. The pob family can only be used as auxiliary basis
sets for all-electron calculations. The results presented in Table II
provide insights into selected few basis sets and systems, but the gen-
eral trends are assumed to be universal. All calculations were done
in the ADMMS flavor.

Additional tests were conducted in order to confirm the accu-
racy of RI-HFXk nuclear gradients and stress tensors, with and

TABLE II. ADMM HF relative energy errors (μHa/atom) and speedups for 2D hBN and
bulk silicon. Both systems are simulated with a two atoms unit cell and a k-point mesh.
Note that TZVP-HYB is a short notation for the TZVP-MOLOPT-HYB-GTH valence
basis set.

Primary/aux basis

hBN (13 × 13 × 1) Silicon (8 × 8 × 8)

Error Speedup Error Speedup

ccGRB-T/admm-tzp −200.1 32 −24.4 62
ccGRB-T/admm-tz2p −128.1 8 7.9 12
ccGRB-T/cFTI3 −121.1 68 454.9 233
ccGRB-T/pFTI3 −81.8 16 −7.9 39

TZVP-HYB/admm-tzp −172.5 18 −16.9 182
TZVP-HYB/admm-tz2p −122.9 4 12.1 36
TZVP-HYB/cFIT3 −75.6 37 424.2 703
TZVP-HYB/pFIT3 −55.1 9 −49.2 115

6-31G∗/3-21G −68.1 3 484.7 9
6-31G∗/pob-DZVP-rev2 −33.6 4 −60.7 8
6-31G∗/pob-TZVP-rev2 −9.8 1 9.1 7

TABLE III. Comparison of cell parameters (in Å) obtained for various crystals as a
result of a cell optimization procedure. Γ-point and k-point calculations were con-
ducted with an exact supercell to k-point mesh equivalence. The pob-TZVP-rev2
basis set was used, with pob-DZVP-rev2 as an auxiliary basis for ADMM. All cal-
culations were done with the PBE087 hybrid functional. Note that LiH uses an eight
atoms unit cell but all others have two.

Graphene hBN Silicon LiH
11 × 11 × 1 11 × 11 × 1 5 × 5 × 5 5 × 5 × 5

Γ-4center 2.449 2.496 3.867 4.038
RI-HFXk 2.450 2.496 3.862 4.037
ADMM-Γ-4 center 2.450 2.497 3.868 4.037
ADMM-RI-HFXk 2.450 2.497 3.863 4.037

without ADMM. Cell optimization calculations were conducted for
multiple crystals, namely, graphene, hBN, silicon, and LiH, with
Γ-point supercells and equivalent k-point meshes. Results are pre-
sented in Table III. The maximum difference in the converged
cell parameter is 0.005 Å (0.1%) between the four-center Γ-point
supercell approach and RI-HFXk, while it is only 0.001 Å between
ADMM and non-ADMM runs. Two important lessons can be taken
from this experiment: The new RI-HFXk method is consistent with
the well-established Γ-point implementation of CP2K and ADMM
nuclear gradients and stress tensors are accurate.

D. Performance

1. RI-HFXk vs Γ 4-center

Themain interest of k-point approaches is to reach the thermo-
dynamic limit more efficiently than with Γ-point supercell methods.
It is shown in Figs. 4 and 5, where the cost of equivalent super-
cells and k-point meshes calculations are reported for 2D hBN
and bulk silicon. Regardless of the system and the basis set used,
RI-HFXk calculations are much more efficient. Moreover, their
cost remains constant with respect to the k-point mesh, whereas
Γ-point computation scales linearly with a supercell size at best.
For both methods, this behavior is only possible because the cut-
off radius of the TC HFX potential is kept constant. The cost of
Γ-point ccGRB-D calculations with silicon increases rapidly, illus-
trating the difficulty in running hybrid DFT simulations of solids
with diffuse basis sets. In contrast, the RI-HFXk calculations with
the same setting are very well behaved, notably because of the local
nature of our atom-specific RI scheme. We point to the fact that
the y axis of both figures have very different bounds, demonstrat-
ing how much more costly the simulations of dense bulk systems
are. These results show the Γ-point four-center method in its most
favorable light, where enough resources are always allocated to pre-
compute and store all ERIs at the first SCF step. Note that a series
of Γ-point calculations were conducted with different amounts of
resources, leading to slight variations in parallel efficiency, which
are clearly visible in the ccGRB-D curve of Fig. 4. For both figures
discussed here, the cost of RI-HFXk is constant with respect to the
k-point mesh. This happens because the cost of building the real-
space exact exchange matrices dominates in this regime. However,
eventually performing a diagonalization at each k-point becomes
the bottleneck of the calculation, leading to linear scaling with the
number of k-points. For bulk silicon, this regime transition starts
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FIG. 4. Cost comparison of the Γ four-center and RI-HFXk methods for increasing
supercell size and k-point density, respectively. The system is 2D hBN with two
atoms per unit cell, simulated with the truncated Coulomb operator (RC = 6 Å) as
the HFX potential. Calculations were run on Cray XC50 GPU nodes on the Piz
Daint supercomputer.

at around 800–1000 k-points, as illustrated in the supplementary
material. Additional tests showcasing the convergence of the total
energies as a function of the number of k-points, as well as acceler-
ation of individual SCF steps due to increasing ΔP sparsity, are also
available.

2. Strong scaling

As discussed in Sec. II E, the most expensive step of the algo-
rithm is the triple loop over cell vector b and i, j atom pairs. Because
this represents a large amount of small matrix/tensor contractions,
we took the decision to split the work among independent work-
ers, each calculating a fraction of the b and i, j atomic blocks. This
comes at the cost of some data replication and communication over-
head. There are two ways that this bottleneck can be accelerated: by
increasing the number of workers (MPI subgroups) and by increas-
ing the resources allocated to each worker. Figure 6 shows the strong

FIG. 5. Cost comparison of the Γ four-center and RI-HFXk methods for increasing
supercell size and k-point density, respectively. The system is bulk silicon with two
atoms per unit cell, simulated with the truncated Coulomb operator (RC = 5 Å) as
the HFX potential. Calculations were run on Cray XC50 GPU nodes on the Piz
Daint supercomputer.

scaling performance of the RI-HFXk method for both approaches
independently. The measured speedups and parallel efficiencies for
the pob-TZVP-rev2 basis are reported in Table IV. The strong scal-
ing performance is high across the board, especially when increasing
the number of independent MPI subgroups. We expect better effi-
ciencies with respect to the worker size with larger simulation cells
and/or larger basis sets because the size of individual tensors would
increase. Note that calculations using the ccGRB-D basis set are sig-
nificantly more expensive than those using pob-TZVP-rev2 because
of diffuseness rather than basis size. In both the subfigures, the first
data point of the ccGRB-D series is missing. This is due to mem-
ory limitations on a single node as the ccGRB-D basis requires more
than twice the number of periodic cells to be considered (697 vs 321).
While running with a single MPI subgroup on one node is not pos-
sible, two workers on two nodes is possible. This happens because
not all data are copied to each subgroup. Note that while the b, i,

FIG. 6. Strong scaling performance for five SCF steps of a bulk silicon two-atom cell (8 × 8 × 8 k-point mesh). In subfigure (a), the number of independent MPI subgroups
is increased, while their size (1 Cray XC50 GPU node) is kept constant. In subfigure (b), calculations are run with a single MPI subgroup, which gradually increases in size.
The HFX potential is the truncated Coulomb operator with a cutoff radius of RC = 5 Å. Note that the first ccGRB-D point is missing on both plots due to memory limitations on
a single node.
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TABLE IV. Strong scaling speedups and parallel efficiencies corresponding to the
pob-TZVP-rev2 curves shown in Fig. 6, for the two atoms primitive cell of bulk silicon.

Number of workers Size of workers

Speedup Efficiency Speedup Efficiency

1 1.00 1.00 1 1.00 1.00
2 1.93 0.97 2 1.79 0.90
4 3.65 0.91 4 2.88 0.72
8 6.73 0.84 8 4.28 0.53
16 11.05 0.69 16 6.69 0.42
32 14.43 0.45 32 8.32 0.26

and j triple loop is considerably accelerated with additionalMPI sub-
groups, the overall increase in resources also speeds up the rest of the
calculation, notably the evaluation of the ERIs and the contraction
with the density matrices in Eq. (13). Additional tests covering vari-
ous systems and basis sets, as well as measures of GPU acceleration,
are available in the supplementary material. GPU runs were mea-
sured to be 1.3–2.4 times faster than the CPU only calculations on
the same computer. The GPUs used in this work date back to 2016,
and greater acceleration is expected on more modern hardware. A
previous study using the state-of-the-art LUMI-G supercomputer70

suggests that GPU acceleration could double.

3. Weak scaling

A given calculation can be accelerated by allocating more
resources to it, both by increasing the number and the size of the
MPI subgroups working on the b, i, and j loop of Eq. (14). On
the other hand, the computational effort grows together with the
simulation unit cell size, according to the 𝒪(N3

atomN
2
img) analysis

performed in Sec. II E. In Fig. 7, we demonstrate a good weak
scaling performance by keeping constant time to solution for 2D
hBN, bulk silicon, and diamond systems of increasing sizes. The
CPU time necessary to complete these calculations grows signif-
icantly following a linear trend on the log–log plot. Polynomial
fitting yields the effective scaling of the method with the system

size, measured at 𝒪(N1.5), 𝒪(N1.7), and 𝒪(N1.6) for hBN, silicon,
and diamond, respectively. While these tests were conducted with
the overlap RI metric to keep the resource consumption low, the
observed trends are not expected to be affected by that choice. As
the cell size of the test systems increased, so did both the number
of MPI subgroups and their sizes. The largest calculation—the 32
atoms diamond cell—was run on 192 nodes with 16MPI subgroups.
Note the significant augmentation of required resources when going
from 2D hBN to bulk silicon and, finally, to diamond. This again
highlights the difficulty of running HFX calculation of dense solids.
Additional analysis, available in the supplementary material, shows
that the method scales slightly more favorably than the predicted
𝒪(N3

atomN
2
img). We attribute this to sparsity in the tensor/matrix

contractions.

IV. CONCLUSION

In this work, we have reported the development of the RI-
HFXk method and its implementation into the CP2K software
package. This novel approach enables accurate and efficient periodic
Hartree–Fock exchange calculations with k-point sampling. Our
results are in excellent agreement with equivalent Γ-point super-
cell calculations based on a well-established implementation, for
relative energies and nuclear gradients. To enhance the efficiency,
both methods leverage the truncated Coulomb operator with a fixed,
converged value.

We adopt a real-space approach that ensures a computational
cost scaling, at worst, linearly with the number of k-points when
diagonalization dominates. The primary computational bottleneck
occurs during the construction of real-space exact exchange matri-
ces. In this context, our local atom-specific RI scheme demonstrates
a notable advantage over more conventional two-electron four-
center approaches. Indeed, its modest memory requirements allow
for the storage and replication of pre-calculated quantities, leading
to a very efficient parallel implementation.

Due to the employment of RI, the computational effort is
largely dominated by linear algebra. This is efficiently handled by
the use of the DBM and DBT libraries,70 designed around block
sparsity. Besides the inherent sparsity coming from atom-centered

FIG. 7. Weak scaling performance of the RI-HFXk method with unit cells of increasing sizes, for various crystalline systems. The blue bars correspond to the wall time in
seconds necessary for five SCF steps, while the orange bars correspond to the CPU time in node seconds (Cray XC50 GPU nodes on the Piz Daint supercomputer). The
HFX potential is the truncated Coulomb operator with cutoff radii of 6.0, 5.0, and 5.0 Å for hBN, silicon, and diamond, respectively. Calculations were performed with the
overlap RI metric and the pob-DZVP-rev2 basis set.
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Gaussian basis functions, we leverage the linearity of the exact
exchange with respect to the density matrix, leading to decreasing
costs as the SCF converges. Overall, our implementation exhibits
a good strong and weak scaling performance, as well as some level
of GPU acceleration. This makes the method highly suitable for
high-performance computing, offering rapid time to solution. The
effective scaling of the method with system size was measured
at 𝒪(N1.5−1.7).

The auxiliary density matrix method can be seamlessly com-
bined with RI-HFXk. Significant speedups are achieved in calcu-
lations using large basis sets, with reasonable accuracy for relative
energies. Assessments of cell optimization runs also demonstrate the
high quality of ADMM-derived forces and stress tensors. Addition-
ally, the use of ADMM makes calculations with highly diffuse basis
sets possible, provided the suitable selection of a less diffuse auxil-
iary basis. This is of significant importance as real-space approaches
to HFX encounter substantial computational challenges with basis
set diffuseness.

This fully open-source implementation opens the door to a new
range of calculations with the CP2K software package. High qual-
ity hybrid DFT calculations of solids near the thermodynamic limit
are now possible at a limited computational cost. Furthermore, the
RI-HFXk method can be used as a starting point for higher level
methods, such as periodic GW with k-point sampling,88 and holds
potential for future periodic post-HF developments.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the RI bump
function used in this work. Additional figures covering nuclear
gradient accuracy, εPGF convergence tests, scaling with respect to
k-point number, total energy convergence as a function of k-point
number, an illustrative band structure calculation, and strong scal-
ing/GPU acceleration are also available. An illustrative CP2K input
file is included as well.
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