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The importance of microvascular inflammation in
ageing and age-related diseases: a position paper
from the ESH working group on small arteries,
section of microvascular inflammation

Alessandro Mengozzia,b,c, Carolina de Ciuceisd, Raffaella Dell’oroe, Georgios Georgiopoulosf,
Antonios Lazaridisg, Ryszard Nosalskih,i,j, George Pavlidisk,l, Simon Tual-Chalotm,
Claudia Agabiti-Roseid, Panagiota Anyfantin, Livia L. Camargoo,p, Edyta Dabrowskaq,r,
Fosca Quarti-Trevanoe, Marcin Hellmanns, Stefano Masia,t, Georgios Mavraganisf,
Augusto C. Montezanoo,p, Francesco J. Rioso,p, Pawel J. Winklewskiu, Jacek Wolfq,
Sarah Costantinob,v, Eugenia Gkaliagkousig, Guido Grassie, Tomasz J. Guzikh,i,j,
Ignatios Ikonomidisk,l, Krzysztof Narkiewiczq, Francesco Panenib,v,w, Damiano Rizzonid,x,
Kimon Stamatelopoulosf, Konstantinos Stellosm,y,z,aa, Stefano Taddeia, Rhian M. Touyzo,p,
Areti Triantafylloug, and Agostino Virdisa

Microcirculation is pervasive and orchestrates a profound
regulatory cross-talk with the surrounding tissue and
organs. Similarly, it is one of the earliest biological systems

targeted by environmental stressors and consequently
involved in the development and progression of ageing
and age-related disease. Microvascular dysfunction, if not
targeted, leads to a steady derangement of the phenotype,

which cumulates comorbidities and eventually results in a
nonrescuable, very high-cardiovascular risk. Along the
broad spectrum of pathologies, both shared and distinct

molecular pathways and pathophysiological alteration are
involved in the disruption of microvascular homeostasis, all
pointing to microvascular inflammation as the putative

primary culprit. This position paper explores the presence
and the detrimental contribution of microvascular
inflammation across the whole spectrum of chronic age-

related diseases, which characterise the 21st-century
healthcare landscape. The manuscript aims to strongly
affirm the centrality of microvascular inflammation by
recapitulating the current evidence and providing a clear

synoptic view of the whole cardiometabolic derangement.
Indeed, there is an urgent need for further mechanistic
exploration to identify clear, very early or disease-specific

molecular targets to provide an effective therapeutic
strategy against the otherwise unstoppable rising
prevalence of age-related diseases.

Keywords: ageing, age-related disease, cardiometabolism,

inflammation, microcirculation
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STING, DNA-sensing enzyme cyclic GMP-AMP synthase
stimulator of interferon genes; CV, cardiovascular; DM,
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ECs, endothelial cells; EF, endothelial function; Endo-PAT,
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phosphate; NF-kB, nuclear factor kappa-B; NK, natural
killer cell; NLRP3, NOD-like receptor family pyrin domain
containing 3; NO, nitric oxide; Nrf2, nuclear factor
erythroid 2-related factor 2; O2Hb, oxygenated

haemoglobin; PA, psoriatic arthritis; PAT, pulse amplitude
tonometry; PCs, pericytes; PI3K, phosphatidylinositol 3-
kinase; PKC, protein kinase C; PVAT, perivascular adipose

tissue; RA, rheumatoid arthritis; RAGE, receptors for
advanced glycation end products; RONS, reactive oxygen
and nitrogen species; ROS, reactive oxygen species; SASP,

senescent-associated secretory phenotype; SGLT-2i,
sodium-glucose cotransporter-2 inhibitors; Sirt1,
mammalian silent information regulator 1; SLE, systemic

lupus erythematosus; SPECT, single-photon emission
tomography; Th, T helper lymphocytes; tHb, total
haemoglobin; TLRs, toll-like receptors; TNF-a, tumour
necrosis factor-a; Treg , T regulatory cells; VCAM-1,

vascular cell adhesion molecule-1; VEGF, vascular epithelial
growth factor; VSMCs, vascular smooth muscle cells;
WCH, white coat hypertension; WMH, white matter

hyperintensities

INTRODUCTION: MICROCIRCULATION

IN CARDIOVASCULAR DISEASE

M
icrocirculation is the network of terminal vessels
of the systemic circulation comprising arterioles,
capillaries and venules less than 100mm in diam-

eter [1–3]. This network delivers oxygen and other nutrients
to tissues while removing carbon dioxide, cellular waste
products and toxins [1]. Importantly, microcirculation also
regulates fluid homeostasis, temperature control and in-
flammatory response [1].

Contemporary evidence suggests that microcirculatory
impairment may occur in adulthood and further deteriorate
across the lifespan. Ageing progressively decreases blood
flow and vessel density, ultimately reducing arterial com-
pliance [1]. Beyond ageing, microcirculatory dysfunction

(MD) characterises a multitude of conditions, including
diabetes mellitus (DM), hypercholesterolemia, hyperten-
sion, peripheral arterial disease, chronic renal failure, men-
opause, obesity and chronic inflammatory autoimmune
disorders [4–8]. Multiple mechanisms may contribute to
microcirculatory impairment, including oxidative stress,
enhanced leukocyte adhesion, activation of immune cells
(both innate and adaptive [9]), endothelial dysfunction,
vasoconstriction, attenuated angiogenesis, increased
endothelial permeability, microcirculatory plugging and
remodelling, lymphatic dysfunction as well as impaired
autoregulation [5,10–16].

MDmay develop in multiple tissue beds as an underlying
systemic process preceding clinical symptoms long before
their onset [17,18]. In this context, MD may reflect an early
marker of vascular disease and predispose to the develop-
ment of atherosclerosis [5]. Accordingly, several minimally or
noninvasive techniques have been developed to provide
useful MD biomarkers in different vascular beds (summa-
rized in Table 1) [19]. However, although circulating
biomarkers, including increased triglycerides, C-reactivepro-
tein (CRP), cystatin C, homocysteine, nitric oxide (NO), uric
acid, interleukin (IL)-6, N-terminal pro-b-type natriuretic
peptide, cardiac troponin, thrombomodulin, renalase, neu-
regulin-1, von Willebrand factor, serotonin and asymmetric
dimethylarginine, are increased in patients with MD, their
clinical use for this purpose is not yet validated [18,20–22].

MD is causally associated with the entire spectrum
of ageing and age-related diseases, mainly through pro-
inflammatory mechanisms (Fig. 1) [23] and may be the
substrate for the further development of numerous cardio-
vascular (CV) diseases, such as coronary artery disease and
heart failure with preserved ejection fraction (HFpEF). MD
is also found in extra-cardiac tissues (i.e., brain, retina, and
lungs) and clinically manifests as dementia, depression,
anxiety, vision loss or pulmonary hypertension [14]. In
the same context, MD has been implicated in rheumatic
(e.g., skin MD) and oncologic diseases [24–32]. With re-
spect to its prognostic value, MD is associated with an
increased risk of short- and long-term adverse CV outcomes
[33,34]. Both peripheral and coronary MD has been associ-
ated with adverse CV events and mortality [35–44]. Further-
more, MD has been linked with progression to kidney
failure [18]. Notably, cerebral small vessel disease features
are strongly associated with stroke, dementia- especially
Alzheimer’s disease (AD) and vascular dementias, depres-
sion and all-cause mortality [45]. Uterine and placental MD
predispose to the onset of preeclampsia [46,47] and to early
postnatal microvascular rarefaction and development of
MD in offspring [48,49]. Finally, testicular MD and penile
skin MD are linked to endocrine disturbances and the future
development of hypertension and CV diseases [50,51].
Collectively, an integrative approach to understanding
MD is needed to implement effective early diagnosis and
treatment strategies.

THE LINK BETWEEN INFLAMMATION

AND EARLY MICROVASCULAR AGEING

The microvasculature is pervasive, and its impairment influ-
ences every tissue in the human body [52]. Consequently,
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vascular age is a reliable marker of biological age [53].
Microvascular ageing reflects a point at which MD becomes
persistent and further deteriorates over time. The onset of
MD marks a crucial point in the natural history of ageing.

We need to address lifestyle and environmental stressors
to look at the earliest perpetrators of microvascular damage.
In addition to the genetic predisposition, each individual is
constantly exposed to various noxious stimuli that can
induce MD. A sedentary lifestyle can increase vascular
nicotinamide adenine dinucleotide phosphate (NADPH)-
derived reactive oxygen species (ROS) production that
affect the endothelial function [54]; similarly, exaggerated
exercise training induces mitochondrial dysfunction lead-
ing to MD [55]. Unhealthy dietary and eating patterns [56], as
well as nutrient overload [57], cause an imbalance in the
oxygen supply/demand ratio, activating hypoxia-inducible
factor 1a (HIF-1a) and promoting impaired angiogenesis
[58]. Additional environment determinants, including envi-
ronment pollutants, temperature, seasonal changes, circa-
dian rhythm and infections have demonstrated significant
role in regulating microvascular inflammation and cardio-
vascular (CV) diseases [59–68]

The final effector through which all these stressors
promote microvascular ageing [69–71] is the immune-in-
flammatory response [60]. Ultimately, they create a low-
grade pro-oxidant pro-inflammatory environment [72] that
leads to MD [73,74]. Inflammation disrupts microvascular
function by increasing ROS generation, reducing NO bio-
availability, and leading to vascular wall hyperpermeability
and glycocalyx remodelling [75]. In the long term, this
promotes the hyperactivation of compensatory pathways
such as endothelial and vascular smooth muscle cells

(VSMCs) proliferation, pathological angiogenesis [76–78]
and, ultimately, permanent vessel wall remodelling. The
lymphatic vasculature also plays a role in this detrimental
interplay. While it generally regulates dietary lipid absorp-
tion and cholesterol efflux [79], it becomes dysfunctional
when exposed to stressors, further compromising local
homeostasis. Lymphatic dysfunction results in reduced
immune cell clearance, increased insulin resistance [80]
and reduced lymphangiogenic potential [79]. These mal-
adaptive changes, which are common in ageing and age-
related diseases, ultimately prolong the inflammatory re-
sponse and microvascular remodelling [81]. The conse-
quence of all these processes is that if the MD is not
rapidly targeted and reversed, its alterations become per-
manent, characterised by epigenetic cues that are not easily
targeted by current therapies [82] and predispose to more
significant harm when a subsequent exposition to risk
factors [83] occurs, even several years ahead. This marks
the point when vascular age diverges from chronological
age, and ageing diverges from his physiological trajectory.

An aged vasculature is characterised by a low-grade
inflammatory state which originates directly from the vessel
and the surrounding environment (i.e., perivascular adi-
pose tissue (PVAT) [84], neural terminations [85], abnormal
shear stress [86]), even after the removal of the stimuli. In
this condition, the vessel is not only the target of the
damage exerted by the CV risk factors [87] but also becomes
the perpetrator by first-hand promoting the low-grade
inflammatory response which characterizes chronic time-
dependent disease [72]. This, in turn, further dampens
microvascular homeostatic control mechanisms and aggra-
vate MD [71]. This vicious cycle is characterised by a

FIGURE 1 Mechanisms linking microcirculatory dysfunction with multiple manifestations of cardiovascular disease. CAD, coronary artery disease; HFpEF, heart failure with
preserved ejection fraction; INOCA, ischemia with nonobstructive coronary arteries; MINOCA, myocardial infarction with nonobstructive coronary arteries.
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profound cross-talk between nonimmune and immune
cells, which is often present in the context of CV disease,
for instance, in macrovascular atherosclerotic remodelling
[88] and cardiac fibrosis [89]. However, a clear understand-
ing of this dialogue between distinct cell types is still an
unmet need, especially in MD setting.

This model accurately reflects cardiometabolic disease.
First, environmental stressors significantly influence the
natural history of obesity, type 2 diabetes, arterial hyper-
tension, and HFpEF [60]. Second, they all present an early
MD [38,90–92] and are characterised by accelerated micro-
vascular ageing [58]. Third, these conditions are tightly
connected [52]. Fourth, all of them are characterised by a
persistent systemic low-grade inflammation which further
deteriorates the cardiometabolic homeostasis and that it has
in the microvascular bed one of its primary perpetrators
[72,84,93].

Inflammageing [72,94] and immunometabolism [95] are
thus fundamental integrated approaches to explore the
connections and the cross-talks between environment,
metabolic disease, vascular health, and CV risk. Although

this conceptual framework is generally related to cardio-
metabolic disease, it might be easily translated to other
chronic and time-dependent conditions such as neurode-
generative pathologies, autoimmune diseases, and cancer.
As indirect evidence, epigenetic pan-deactivators of vascu-
lar inflammation as the inhibitors of bromodomain and
extraterminal domain (BET) proteins [96] have recently
been proposed for all these disease settings [97–103].
Similarly, anti-inflammatory drugs are attracting substantial
attention in the context of CV diseases [104]. But the link
between inflammation and microvascular ageing is multi-
directional. As environmental stressors link inflammation
with microvascular ageing, inflammation also becomes the
link between aged vasculature and systemic metabolic
diseases, which further promotes microvascular inflamma-
tion. The onset of this vicious cycle is at the base of age-
related diseases. It is clear that only by an accurate under-
standingof thepathophysiologic andmolecularmechanisms
underpinning this connection we will be able to develop
therapeutic strategies to challenge the steadily increasing
prevalence of chronic diseases [105,106] (Fig. 2).
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FIGURE 2 Graphical abstract. Microvascular inflammation links environmental stressors to microvascular ageing. Environmental stressors induce microvascular dysfunction,
which in turn promotes microvascular inflammation. When microvascular inflammation causes permanent changes in vascular structure and function, microvascular age and
biological age diverge. The vessel becomes the architect of microvascular inflammation, exposing the microcirculation to further damage from environmental stressors and thus
promoting the onset of cardiometabolic disease, exponentially increasing the degree of microvascular inflammation and the individual cardiovascular risk. The major common
and distinct molecular-, cell- and tissue-level mechanisms involved in microvascular inflammation are summarized. AGE, advanced glycation end products; AGO1, argonaute 1;
BBB, blood–brain barrier; eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; ETA, endothelin-1 receptor A; FFA, free fatty acids; ICAM, intercellular adhesion molecule-
1; IFN, interferon-g; IL, interleukin; MTHFR, methylene-tetrahydrofolate reductase; NADPH, nicotinamide adenine dinucleotide phosphate; NF-kB, nuclear factor kappa-B; NLRP3,
NOD-like receptor family pyrin domain containing 3; NO, nitric oxide; PVAT, perivascular adipose tissue; ROS, reactive oxygen species; SASP, senescent-associated secretory
phenotype; TLR, toll-like receptors; TNF-a, tumor necrosis factor; VCAM-1, vascular cell adhesion molecule-1; VEGF, vascular epithelial growth factor.
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Statement: Environmental stressors predispose to un-
healthy ageing and age-related disease by promoting
MD. If MD is not prevented or rapidly treated, the
microvascular environment in turn becomes the perpe-
trator of microvascular inflammation through detri-
mental cross-talk between nonimmune and immune
elements, leading to the low-grade inflammatory re-
sponse that characterises unhealthy ageing and age-
related disease.

MICROVASCULAR INFLAMMATION

ACROSS THE AGE-RELATED DISEASES

CONTINUUM

Physiological ageing
Physiological ageing is a natural phenomenon driven by a
variety of complex, and yet loosely understood mechanisms
that strongly interact with each other. In addition to these,
initial emergence of genomic instability, which includes
dysregulated DNA damage repair pathways and telomere
shortening, other key mechanisms are involved. These in-
clude the stimulation of senescence and impairment of
autophagy at a cellular level and the consequential develop-
ment of oxidative stress and microvascular inflammation at
the tissue level. Ultimately, these mechanisms contribute to
the ageing-related phenotype characterized by endothelial,
vascular and consecutively tissue dysfunction (Fig. 3a)
[107,108]. Notably, thesemechanisms are often bidirectional,
ultimately establishing a vicious cycle.

Senescence
Cellular senescence is a stress-induced, durable, cell cycle
arrest of previously replication-competent cells and is con-
sidered a central hallmark of ageing [109]. Senescence con-
tributes to ageing process through multiple mechanisms,
among which the propagation of inflammation prevails.
Pertinent to this, it has been shown that senescent cells
secrete a plethora of potent pro-inflammatory factors termed
the senescent-associated secretoryphenotype (SASP),which
drive an intense inflammatory response [110,111]. SASP also
contributes to the spread of inflammation and oxidative
stress from senescent to healthy nonsenescent cells via
paracrine fashion, which leads to a pro-inflammatory and
pro-oxidant phenotype at a microvascular level [107]. Con-
sistent with its inflammatory potential, several in vitro and
preclinical data have documented the role of senescence in
promoting oxidative stress and endothelial dysfunction
[112,113]. In healthy ageing humans, markers of endothelial
senescence have been correlated with significantly impaired
endothelial function [114].

Autophagy
Autophagy is a highly selective clearance pathway that
degrades several defective cellular components through
lysosomal activation. Therefore it is tightly associated with
the maintenance of cellular and tissue homeostasis and,
in the long term, longevity [115]. Altered autophagy has
been proposed as a prominent feature of physiological
ageing, with increasing evidence suggesting an impaired

autophagic activity across ageing in different organisms
[116]. In humans, it has been demonstrated that the expres-
sion of autophagy-related genes (i.e., ATG5, BECN1) and
the proteolytic function of lysosomes decline with age [117].
Consequently, compromised autophagy leads to cellular
and vascular dysfunction and enhanced inflammation, as
evidenced by the promotion of oxidative-induced senes-
cence, the production of endothelial reactive oxygen spe-
cies (ROS) and the development of endothelial dysfunction
in both aged mice and human subjects [117–119]. In addi-
tion, autophagy has been recognized as a significant inhib-
itor of inflammasome which is a potent mediator of
microvascular inflammation [120].

Oxidative stress
Oxidative stress is a consequence of the imbalance between
the production and detoxification of reactive oxygen and
nitrogen species (RONS) [121]. Ageing process is associated
with reduced activity of the antioxidant transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2) [122].
Hence, accumulation of oxidative damage by RONS pro-
duced by NADPH oxidases and mitochondria is considered
one of the core pathophysiologic pathways driving physi-
ological ageing and age-associated diseases [123]. Particu-
larly in the context of ageing and age-related diseases,
mitochondrial dysfunction and mitochondria-derived
ROS are key drivers of the inflammatory response leading
to pathogenetic processes [124,125]. The oxidative environ-
ment further stresses mitochondrial pathways, leading to
the detrimental escape of mitochondrial DNA from organ-
elles and cells [126,127]. Mitochondrial-free mitochondrial
DNA and the pro-oxidant environment, in turn, transduce a
pro-inflammatory signal within and between cells, leading
to the activation of multiple signalling pathways: nucleo-
tide-binding oligomerization domain (NOD)-like receptor
family pyrin domain containing 3 (NLRP3) inflammasome
activation, DNA-sensing enzyme cyclic GMP-AMP synthase
stimulator of interferon genes (cGAS-STING) and toll-like
receptor (TLR). It also leads to induction of senescence and
SASP production with consequent nuclear factor kappa-B
(NF-kB) activation, as well as hyperactivation of the pro-
oxidant mediator p66Shc [82,125], consumption of NADþ
and consequent mammalian silent information regulator 1
(Sirt1) dysregulation [52,128]. Furthermore, oxidative stress
exerts a detrimental effect on endothelial function by
quenching the bioavailable, endothelium-derived NO
and reducing both NO availability and endothelial NO
synthase (eNOS) expression. Therefore, oxidative stress
is strongly linked to the development of endothelial and
microvascular dysfunctionwith ageing in humans [129,130].

Inflammation
The inflammageing state, a sterile, subclinical, low-grade
inflammation increasing with age and promoting the
development of age-associated diseases, has been well
recognized in the elderly [72]. Indeed, in older adults are
frequently reported persistently elevated circulating levels
of SASP factors, including IL-1b, IL-6 and tumour necrosis
factor (TNF)-a [131–133]. In elderly, inflammageing
is largely considered an aftermath of immunosenescence,
a significant immune system dysregulation observed with
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FIGURE 3 Microvascular inflammation and its impact on microvascular dysfunction across ageing and age-related disease. (a) Relationship between age (x-axis) and the
inhibition by N-nitro-l-arginine methylester (L-NAME) on maximal response to acetylcholine (y-axis) in normotensive subjects (n¼41). Adapted from [108]. (b) Increased
media-to-lumen (M/L) ratio per year of age in healthy nonobese (white circle; n¼42) and obese with no other comorbidities (black triangle; n¼47) subjects. Regression
lines for each group are shown. The M/L ratio is expressed as a percentage (%). Age and M/L are tightly related in both groups (obese: r¼0.487, P<0.01; nonobese:
r¼0.555, P¼0.001). The slope is five-fold steeper in the obese group. Figure and captions adapted from [125]. (c) Association of tertiles (T1–T2–T3) of Matsuda index
with perfused boundary region (PBR) measured in the microvessels ranged from 20 to 25mm indicating an association between insulin resistance and damaged glycocalyx
(F¼4.8, P¼0.03) in n¼100 subjects with different degrees of insulin resistance (n¼40 first-degree relatives of type-2 diabetes patients, n¼40 subjects with abnormal
oral glucose tolerance test and 20 subjects with normal oral glucose tolerance test without parental history of diabetes). Adapted from [182]. (d) Comparison of the retinal
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ageing, which substantially propagates the inflammatory
milieu and consists in overall aberrant activation of innate
and adaptive immune response [134]. In this context, micro-
vascular inflammation can be exacerbated by an age-associ-
ated inappropriate activation of TLRs and the NLRP3
inflammasome complex, both representing crucial activators
of the innate immune inflammatory response which leads to
increased expression of NF-kB and the production of several
proinflammatory mediators [135–137]. Activation of the
ROS-sensitive, proinflammatory effector NF-kB holds a cen-
tral role in the ageing-associated inflammatory response.
Endothelial cells (ECs) from older humans actively express
NF-kB, which is directly implicated in endothelial dysfunc-
tion [132,138] as well as in exacerbating inflammageing and
oxidative stress, thus corroborating an intricate relationship
between senescence, oxidative stress and inflammation
across ageing and extending the vicious cycle [139–141].
Finally, mammalian sirtuins represent another significant
ageing-associated mechanism implicated in microvascular
inflammation. They are a family of nicotinamide adenine
dinucleotide-dependent deacetylases involved in several
processes that regulatemetabolic homeostasis andmodulate
the benefits of calorie restriction and exercise. They control
mitochondrial function, cell survival, attenuation of inflam-
matory responses and circadian rhythm. Because of their
contribution to many protective pathways and their central
involvement in longevity mechanisms, they have attracted
increasing attention as potential therapeutic targets [142]. In
particular, Sirt1, a deacetylase implicated in many critical
physiological responses to altered energy metabolism and
stress, has multiple anti-inflammatory, antioxidant and anti-
ageing properties [143–145]. Reduced expression of Sirt1 has
beenobserved inECs andVSMCsobtained fromolder adults,
associatedwith a senescent phenotype and the development
of endothelial dysfunction [125,146,147]. Furthermore, data
has shown that persistently reduced levels of Sirt1 lead to
upregulation of NF-kB and NLRP3 inflammasome, hence
significantly amplifying the inflammatory response [145,148].

Statement: In physiological ageing, stimulation of senes-
cence, impairment of autophagy, and increased oxida-
tive stress lead to microvascular inflammation at the
tissue level. This culminates in the ageing-related phe-
notype characterized by MD and increased susceptibility
to the onset of age-related diseases.

Obesity
Obesity, given its high and steadily increasing prevalence
[105], probably represents the closest human model to

exploring the contribution of environmental stressors to
microvascular inflammation and accelerated ageing. Its
relevance in the global landscape is sadly acknowledged:
obesity ranks first in terms of mortality related to metabolic
diseases, with no trend towards reduction [149]. The impact
of obesity on MD starts very early: in patients with obesity,
the slope of the media-to-lumen (M/L) ratio plotted against
age diverges from the healthy controls before the age of 20,
being five times steeper (Fig. 3b) [125,150]. The increased
nutrient supply ultimately overburdens the metabolic path-
ways, promoting hypoxia with consequent HIF-1a activa-
tion [151]. The resultant pro-oxidant and pro-inflammatory
environment promotes the local low-grade inflammatory
response, which eventually turns systemic and character-
ises the generalized MD observed in obesity [91].

Although multiple pathways contribute to its clinical
phenotype, obesity is characterised by a prominent role
of the PVAT. PVAT is a key member of the microvascular
unit [91], with a brown-like and anticontractile phenotype
in the healthy [152], which loses its thermogenic capacity
and turns pro-contractile in the condition of diseases such
as obesity [153]. The deep cross-talk between PVAT and the
small vessels is directly responsible for both the inflamma-
tory damage and response characterising obesity [154].
PVAT phenotype shift leads to increased secretion of sev-
eral adipokines and cytokines, including chemerin, leptin,
IL-6 and TNF-a [155]. While experimental studies in mice
have reported how leptin leads to MD by first targeting the
hypothalamic microvasculature [156], ex-vivo observations
in humans have demonstrated how PVAT dysfunction,
promoted by macrophage activation [157], results in an
increase in PVAT-derived cytokines secretion [84,93]. This
fuels the vessel-specific inflammatory response [93], indu-
ces endothelial dysfunction and further imbalance the
homeostatic response from the vasculature by increasing
the expression of endothelin-1 (ET-1) and its receptor A
(ETA). The altered ETA/NO ratio upregulates c-Jun N-termi-
nal kinase (JNK) signalling, increasing NAPDH-derived and
mitochondria-derived ROS [84]. The bidirectional cross-talk
further aggravates PVAT dysfunction, as the endothelium
also secretes inflammatory cytokines and angiogenetic
factors. Indeed, to match the increased nutrient flow, PVAT
develops a pro-angiogenetic phenotype trying to compen-
sate with an adequate oxygen supply. However, this neo-
angiogenetic process [76] ultimately proves detrimental and
further promotes an overt dysfunctional phenotype for
both the PVAT and the ECs. Recently, an elegant explora-
tion in vivo has shown that, in high-fat diet mice, the ECs-
specific deletion of argonaute 1 (AGO1), a pivotal

arteriovenous ratio (AVR) in n¼201 newly diagnosed individuals with hypertension of different phenotypes and normotension. Intergroup comparisons were made with
analysis of variance ANOVA with Bonferroni correction after adjustment for age, sex, body mass index (BMI). Individuals with sustained hypertension (n¼103), masked
hypertension (MHT; n¼28) and white coat hypertension (WCH; n¼20) had significantly lower AVR than normotensive subjects (n¼50; P<0.05). Adapted from [206].
(e) Observational, standardised coefficients concerning 242 brain imaging-derived phenotypes genetically affected by SBP corresponding to their association with cognitive
function or SBP at the imaging visit. Hypertension was used as a model associated with microvascular inflammation. Figure and caption adapted form [257]. (f) Altered
capillaroscopy in oncologic disease. Basal capillary density in the dorsum of the fourth finger (Dpre_basal) in patients (n¼20) with cancer and treated with either a tyrosine
kinase inhibitor or a vascular epithelial growth factor inhibitor at the different time points (T0, T3, T6). � T3 vs. T0 P¼0.03; # T6 vs. T0 P¼0.02. Data are expressed as
meanþstandard deviation. Adapted from [338]. (g) Accumulative data of near-infrared-spectroscopy cerebral responses during exercise in systemic lupus erythematosus
(SLE; n¼26) vs. control (n¼27) group. Oxygenated haemoglobin (O2Hb), deoxygenated haemoglobin (HHb) and total haemoglobin (tHb) levels were measured. Cerebral
O2Hb continuously increased during exercise in the control group, whereas the SLE group exhibited a plateau in O2Hb after the first minute of exercise (P<0.01). During
exercise, the SLE group exhibited significantly lower average-O2Hb (1.20�0.89 vs. 2.69�2.46, P¼0.001), and a lower peak-O2Hb) response (2.89�1.56 vs. 5.83�4.59,
P¼0.004) compared with the control group. No differences were detected in the average HHb responses between groups. Adapted from [299].

Figure 3 (Continued).
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contributor to the ECs response to hypoxia, arrests impaired
angiogenesis and reverts the PVAT to a browning pheno-
type, rescuing the MD and the whole-body metabolic
homeostasis [158].

Finally, the overload of the metabolic processes leads to
mitochondrial dysfunction in obesity, which in turn pro-
motes microvascular inflammatory response by increasing
mitochondria-derived ROS levels [125] and activating
NLRP3 [159] and cGAS-STING pathways [160]. Evidence
supports sirtuins [125] (main elements in nutrient bal-
ance/imbalance signalling [161]) as crucial regulators of
this process. In ECs, lower levels of Sirt1 induce MD and
are associated with an increase of pro-inflammatory and
pro-ageing factors p66shc [82] and Arginase II [150], an
increase in mitochondria-derived ROS, and a downregula-
tion of several genes involved in the mitochondria electron
transport chain.

The documented MD confirms this experimental evi-
dence in patients with obesity. An increased vascular
remodelling in visceral fat arteries [125], an impairment
in finger microcirculation detected by dynamic nailfold
microcapillaroscopy [162], a thin sublingual microvascula-
ture glycocalyx assessed by sidestream darkfield imaging
[163], an increased retinal arteriolar narrowing [164] and a
decreased retinal microvasculature response to flicker light
[165] all characterise the microvascular damage found in
patients with obesity. Remarkably, bariatric surgery, the
gold standard treatment for treating severe obesity, showed
a remarkable effect in terms of MD rescuing in patients with
severe obesity, as shown by an improvement in skin micro-
circulation [166] and in subcutaneous arteries reactivity,
whichappears evenmore robustwhen includingPVAT [167].

Statement: Obesity-related microvascular inflammation
is characterised by accelerated ageing starting from
adolescence/early adulthood, defined by a derangement
in the PVAT phenotype, a hyperactivation of inflamma-
tory pathways (mainly TNF-a and IL-6), an impaired
angiogenesis and an early mitochondrial dysfunction.

Diabetes
It is well recognized that low-grade inflammation plays an
essential role in the pathogenesis of DM, as well as in the
development of diabetic microvascular complications.
Studies have demonstrated that inflammatory mediators,
such as CRP, TNF-a, IL-6 and IL-18, have elevated expres-
sion in DM [168,169]. Hyperglycaemia acutely increases
circulating cytokine levels through an oxidative mechanism
among subjects both with features of insulin resistance and
with clinically overt DM [170,171]. In subjects with type 2
DM, a correlation was observed between high-sensitive
CRP and IL-6 with HbA1c independent of the presence
of coronary heart disease [172,173]. Furthermore, serum
levels of TNF-a were associated with the level of insulin
resistance and with HbA1c in diabetic subjects [174].

Diabetic hyperglycaemia increases oxidative stress by
excessive intracellular ROS generation, which in turn leads
to activation of the NF-kB pathway resulting in the produc-
tion of major pro-inflammatory cytokines. Hyperglycaemia-
induced oxidative stress increases the formation of advanced

glycation end products (AGEs), which results in increased
insulin resistance. Moreover, receptors for advanced glyca-
tion end products (RAGE) are involved directly in inflamma-
tory cell recruitment [175,176]. Insulin resistance is associated
with endothelial dysfunction. In particular, the endothelial
balancebetweenNO-mediated vasodilator actions andET-1-
mediated vasoconstrictor effects of insulin are regulated via
phosphatidylinositol 3-kinase (PI3K) and mitogen-activated
protein kinase (MAPK) pathways, respectively. In states of
insulin resistance, dysregulation of PI3K-dependent signal-
ling may cause an imbalance between the NO production
and secretion of ET-1 [177]. Thus, insulin resistance induces
vasoconstriction and VSMCs proliferation and plays a signifi-
cant role in the occurrence of endothelial dysfunction [178].
Indeed, markers of insulin resistance are associated with
abnormal arterial elastic properties and impaired coronary
microvascular function not only in dysglycaemic subjects but
also in first-degree relatives of diabetic subjects before the
development of impaired glucose tolerance or DM [179].

Furthermore, oxidative stress is characterized by the
production of peroxynitrite that down-regulates NO bio-
availability and leads to vasoconstriction. Also, the accu-
mulation of ROS promotes the apoptosis of ECs and
augment the expression of intercellular adhesion mole-
cule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), and E-selectin resulting in microvascular inflam-
mation and hypercoagulability [180]. Chronic inflammation
inhibits the production of endothelial eNOS and promotes
the expression of ICAM-1, VCAM-1 and ET-1, further dam-
aging endothelial integrity [181].

Acute and long-term hyperglycaemia have a detrimental
effect on endothelial glycocalyx integrity [182–184]. The
glycocalyx is a gel-like layer composed of sulphated pro-
teoglycans and glycoproteins that prevents the direct con-
tact of circulating inflammatory cells to the luminal surface
of the endothelium [185]. Intriguingly, HbA1c is associated
with the impaired perfused boundary region, a marker of
the microvascular glycocalyx thickness, while intensified
glycaemic control ameliorates glycocalyx integrity in dia-
betic subjects at the 1-year follow-up [186]. The impaired
glycocalyx is an independent predictor of adverse out-
comes in subjects without established CV disease [43].

Besides hyperglycaemia, high free fatty acid levels (FFA)
may stimulate ROS production via protein kinase C (PKC)-
dependent activation of NADPH oxidase in both VSMCs
and ECs. This finding may explain the excessive accelera-
tion of atherosclerosis and microcirculation damage in
diabetic subjects [187]. In addition, hyperglycaemia and
lipotoxicity lead to hyperactivation of NLRP3 inflamma-
some, which mediates caspase-1 activation and the secre-
tion of pro-inflammatory cytokines IL-1b and IL-18. Thus,
NLRP3 inflammasome activation in DM leads to chronic
inflammation and increased vascular permeability [188].

The most common microvascular complication of DM is
diabetic retinopathy. Ocular microcirculatory damage on
the grounds of hyperglycaemia causes capillary occlusion
leading to retinal ischemia and neovascularization [189].
Interestingly, experimental data show that microcirculatory
changes, including adherence of neutrophils and leuko-
stasis, in nonocular tissues of diabetic mice appear to be
related and reflect retinal microvascular lesions in the
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context of diabetic retinopathy [190]. Underlying retinal
microvascular dysfunction seems to precede the clinical
manifestation of DM-associated CV disease [191]. New
advances in retinal vessel analysis provide useful diagnostic
tools to improve the prediction and risk stratification of CV
disease [192]. However, there is also evidence of nonretinal
MD in diabetes: diabetic subjects have impaired dermal
microvascular hyperaemia response to local skin heating
[193], reduced glycocalyx thickness (Fig. 3C) [194]. Similar-
ly, digital pulse amplitude tonometry (PAT) is impaired in
type 2 diabetes and influenced by glucose level fluctuations
[195].

Finally, it should be mentioned that several of the novel
antidiabetic agents, namely dipeptidyl peptidase-4 inhib-
itors (DPP-4i), glucagon-like peptide-1 receptor agonists
(GLP-1RA) and sodium-glucose cotransporter-2 inhibitors
(SGLT-2i), have potential anti-inflammatory properties and
improve endothelial function and presumably microcircu-
lation [194,196–200], and this might be – at least partially -
responsible of the significant benefit observed in terms of
reduction of CV risk [201].

Statement: Hyperglycaemia and FFA-derived ROS pro-
duce a substantial increase in oxidative stress, directly
affecting microvascular inflammation and promoting
an AGE/RAGE and lipotoxic environment, which deter-
mines peripheral insulin resistance, further worsening
the low-grade inflammatory response.

Arterial hypertension
Arterial hypertension is characterised by diffuse microvas-
cular damage (Fig. 3d, Figure 1, Supplemental Digital
Content, http://links.lww.com/HJH/C223) [202–206]. Hy-
pertension and inflammation have a bidirectional physio-
logical and pathophysiological background [207,208].
Several human studies have evaluated the relationship
between inflammation and essential hypertension. In a
meta-analysis (n ¼ 21 458 patients), higher levels of circu-
lating CRP, high-sensitivity CRP (hs-CRP), and IL-6, but not
IL-1b, were associated with the risk of developing hyper-
tension [209]. Studies have also reported correlative links
between arterial stiffness and inflammatory markers in
essential hypertension [210].

A hallmark of inflammation is the release of inflamma-
tory cytokines such as IL-6, IL-17A, interferon-g (IFN-g),
and TNF-a by T CD4þ cells, and more specifically by
subsets of T helper (Th) cells, Th1 and Th17 [9,207,208].
Involvement of IL-6 has been shown in mice, where Il6
knock-out mice showed reduced hypertension severity in
response to angiotensin II (AngII) infusion [211]. Further, in
human renal proximal tubular cells, IL-6 increased angio-
tensinogen expression [212]. IL-17A affects renal sodium
handling [213] and inhibits eNOS, causing impaired vaso-
dilatation and increased peripheral vascular resistance
[214]. Long-term effects of IL-17A include the promotion
of vascular fibrosis, leading to arterial stiffening [214]. In
addition, in mice lacking IL-17A, the number of T cells and
macrophages in blood vessels was reduced, illustrating the
effect many of these cytokines have in attracting more
immune cells, further amplifying the immune response

[207]. They induce oxidative stress [215] through enhanced
NADPH oxidase subunit expression. Increased oxidative
stress affects sodium retention by decreasing the glomerular
filtration rate [216]. This, as many of the classical patho-
physiological factors in hypertension (ET-1, aldosterone,
and AngII), activates the NLRP3 inflammasome through NF-
kB. NLPR3 activation leads to increased levels of proin-
flammatory cytokines IL-1b and IL-18, activating immune
and vascular cells as T cells (mainly CD4þ), monocytes, ECs
and VSMCs [217].

The contribution of innate and adaptive immune cells to
the development of MD leading to hypertension is substan-
tial [218]. Regarding immune cells, in animal models of
genetic hypertension, vascular ageing is associated with
increased PVAT infiltration of macrophages, neutrophils
and natural killer cells (NKs), which promote NADPH
oxidase 4-driven microvascular remodelling [9,219,220].
Macrophages, as a major source of ROS, are considered
important in this process, although the precise mechanisms
by which they are involved remain unclear [9]. Similarly,
NKs are found to increase before the development of
hypertension in spontaneously hypertensive rats [219].
Neutrophils from the plasma of untreated patients with
essential hypertension generate neutrophil extracellular
traps that lead to collagen production and consequent
microvascular remodelling [221]. In adaptive immunity, T
cells are considered to play a predominant role. Following
antigen recognition, CD4þ T cells are activated and differ-
entiate into T effectors (Th1, Th2 and Th17) or T regulatory
cells (Treg), the balance of which influences the inflamma-
tory response [9]. In experimental models of hypertension,
as well as in hypertensive patients, the inflammatory re-
sponse generated by the ratio of T helper lymphocytes (Th)
1/17 (Th1/Th17) is not adequately balanced by the pool of
regulatory T lymphocytes (Treg), thus contributing to struc-
tural damage of the microcirculation [9]. Recently, it was
discovered that the T cell mir214 partially recapitulates and
transduces the fibrotic effects of the immune system to the
microvasculature, leading to vascular fibrosis, vascular stiff-
ening and remodelling. In particular, cytokines released
from PVAT mediate these effects [220]. It is thus clear that
the immune system is one of the leading mechanisms
supporting the cross-talk between vascular inflammation
and hypertension. However, it should be noted that most of
the evidence comes from in vivo studies, as further inves-
tigations in patients are needed [9].

However, over the last years, evidence has been accumu-
lated showing that this dialogue also involves the sympa-
thetic nervous system [222,223]: an increase in sympathetic
activity elicits T-lymphocytes activation and vascular inflam-
mation [224]; significant correlations have been found be-
tweencirculatingplasmanorepinephrine, and IL-6produced
by T-lymphocytes as well as TNF-a produced by macro-
phages and monocytes [225]; chronic sympathetic activation
in patients with a peculiar form of high blood pressure
desensitizes lymphocyte b2-adrenoceptors and thereby
alters immune function [225]. On the other hand, inflamma-
tion and T-lymphocytes activation, which are both triggered
by oxidative stress [226], may favour sympathetic activation,
as already shown in other diseases characterized by an
adrenergic overdrive, including essential hypertension
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[222]. In any case, pro-inflammatory substances and medi-
ators may trigger signals to the central nervous system
activating the sympathetic neural component [222].

Statement: arterial hypertension is characterised by in-
creased sodium retention and higher levels of ET-1,
aldosterone and AngII, which disrupt the microvascular
environment by promoting NAPDH-derived endothelial
dysfunction and IL-6, IL-17 and TNF-a-driven inflam-
matory responses. The innate and adaptive immune
systems play a central role. In particular, a balance
between effectors (Th1, Th17) and regulators (Treg)
T cells orchestrates microvascular inflammation and
consequent microvascular remodelling.

Neurodegenerative diseases
The cerebral vasculature is unique in its anatomy and
physiology. It constructs a highly specialized blood–brain
barrier (BBB) that controls the admission of solvents and
ions into the brain and clearance into the blood metabolic
end products or endogenous neurotoxin produced by the
brain [227,228]. The BBB, therefore, play a critical role in
maintaining brain homeostasis. It comprises endothelial
cells, basement membrane, pericytes and VSMCs, astro-
cytes, microglia and neurons [229,230]. Vascular ECs are
known to secrete vasoactive substances implicated in reg-
ulating cerebral flow, intravascular blood coagulation, and
preserving the integrity of the BBB. Their atheroprotective
role and homeostasis are controlled by releasing vasoactive
factors, especially NO. This leads to cGMP-mediated cere-
bral vessel relaxation and proper blood supply to the brain
tissue and autophagy [231]. Pericytes (PCs) directly encircle
endothelial cells and VSMCs and are considered vascular
mural cells. ECs and PCs have direct contact through gap
junctions and contribute to blood vessel formation and BBB
function maintenance by regulating immune cells’ entry
(CD4þ and CD8þ T cells, peripheral macrophages and
neutrophils) to the central nervous system [232–234].

Similar to the peripheral circulation, impairment in NO
production, inflammation and enhanced ROS production
[235,236] are vital in promoting ECs dysfunction manifested
by increased expression of leukocyte adhesion molecules
such as ICAM-1, VCAM-1 and E-selectin. These molecules
promote higher immune-endothelial cell interaction and
accumulation of inflammatory cells in the vascular and
perivascular niches. The higher expression of ICAM-1
and VCAM-1 is observed in cerebral endothelial cells in
animal models of cerebral hypoperfusion, while their inhi-
bition protects against cognitive impairment [237,238]. Fur-
thermore, soluble adhesion molecules like sE-selectin, sP-
selectin, sICAM-1 and sVCAM-1, considered endothelial
dysfunction markers, are elevated in patients with small
vessel brain diseases [239].

The chemotactic process is strictly controlled by numer-
ous chemokines secreted by the vascular cells [240], peri-
cytes [233], microglia [241], and astrocytes [242] in a
concentration-directed gradient. Recent studies have impli-
cated the importance of CCL2, CCL3, CCL5 and CXCL8 in
many vascular and neurogenerative diseases, including
cognitive impairment, stroke and neuroinflammation [243].

Microcerebrovascular endothelial cell activation and BBB
leakage promote the migration and accumulation of proin-
flammatory macrophages [244] and T cells [245,246] in peri-
vascular space (Figure 2, Supplemental Digital Content,
http://links.lww.com/HJH/C223). The role of various im-
mune cells in the pathogenesis of endothelial dysfunction
and vascular inflammation in CV diseases has been well
established [220,247]. Activated immune cells release diverse
pro-inflammatory mediators, which propagate microvascu-
lar inflammation and may provoke microhemorrhages, fur-
ther escalating the inflammatory process. Co-involvement of
IL-1b, IL-6 and TNF-a, in microvascular brain injury and
inflammation has been widely reported [248,249]. IL-1b is
considered the main proinflammatory cytokine that
increases the astrocytic production of CCL2, CCL20 and
CXCl2 [250]. In addition, IL-1b impairs microvascular ECs
by disturbing tight and adherent junctional proteins and
increasing adhesion molecules expression, prompting vas-
cular leakage and the parenchymal infiltration of leukocytes.
In contrast, anti-IL-1b treatment blunts cerebrovascular in-
flammation and improveoutcome in amousemodel of acute
ischaemic stroke [251]. IL-6 is a pleiotropic inflammatory
cytokine produced by infliltrating leukocytes, ECs, activated
microglia and astrocytes. Its expression affects many neuro-
inflammatory and neurodegenerative conditions [252–254].
IL-6 mediates the elevation of superoxide production and
endothelial impairment by affecting NO–cGMP signalling
pathway [255]. In addition, it may enhance CRP released by
brain cells [256]. Similarly to IL-6, TNF-a affects proper
endothelial function by decreasing eNOS levels by destabil-
ising itsmRNAexpression. Furthermore, TNF-a activatesNF-
kB, a major regulatory transcription factor, playing a pivotal
role in regulating various inflammation-related genes, in-
cludingkey inflammatory cytokines (alongwith IL-1b and IL-
6), chemokines and adhesion molecules.

Cognitive impairment is a hallmark of numerous CV
diseases [257]. In hypertension, white matter hyperinten-
sities (WMH) are a critical imaging biomarker linked to this
process (Fig. 3E). Indeed, neurovascular inflammation is
involved in the aetiology of WMH [258]. Similarly, cerebral
small vessel disease has been identified as a key hallmark of
a broad range of neurodegenerative conditions. Human
neuroimaging and genetic studies show that it is charac-
terised by microvascular endothelial dysfunction impacting
cell-cell interactions and leading to brain damage [259]. One
broadly studied model of cerebral small vessel disease
caused by NOTCH3 mutations, CADASIL (cerebral autoso-
mal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy) [260], is characterised by accelerated
cognitive decline and dementia, recurrent stroke without
vascular risk factors, and mood disturbances. This heredi-
tary disorder provides a unique opportunity to understand
some of the molecular mechanisms of small vessel disease
[261].

Elevation of proinflammatory mediators such as IL-1b, IL-
6, TNFa and CRP has been linkedwith cognitive impairment
in humans [262,263]. Furthermore, proinflammatory cyto-
kines secreted by immune and vascular cells have direct
neurotoxic and apoptotic properties [264], which could
perpetuate local neuroinflammation and neurodegradation.
Interestingly, neuroinflammatory changes found in the
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brains of coronavirusdisease 2019 (COVID-19)patientswere
accompanied by the presence of macrophages and T cells in
theperivascular space [265], suggestinghighermicrovascular
inflammation caused by a cytokine stormwhichmight affect
the proper BBB function [266]. Furthermore, cerebral micro-
vascular inflammation enhances the prevalence of cognitive
impairment even in mild symptomatic COVID-19 subjects
[267]. Similarly, experimental and epidemiological studies
indicate a relationship between cognitive decline and CV
diseases [228,268–270], associated with chronic low-grade
inflammation and dysregulation of the immune system
[271,272]. In particular AngII is at the crossroad, acting as
cardiovascular and immune systems modulator, initiating
inflammation by indirect promotion of vascular permeability
and the recruitment of peripheral macrophages and CD4þ

and CD8þ T cells [273,274]. In turn, augmented permeability
leads to further inflammation and secondary damage to the
BBB, with the entry of plasma proteins and neurotoxic
substances [275].

Themost prevalent form of dementia, AD, is marked by a
steady decline in cognitive function and neurodegenera-
tion. The vascular hypothesis suggests that cerebral micro-
vascular alterations are central to the pathogenesis of AD,
providing a link with CV disease [276]. Possible mechanisms
include neurovascular coupling imbalances and BBB dis-
ruption [276]. Impaired removal of beta-amyloid may be a
consequence of these neurovascular changes: vascular
changes may precede the development of tau pathology
[277]. A two-hit hypothesis has been developed in which
classical risk factors leading to the development of micro-
vascular dysfunction facilitate AD-specific pathology. This
is linked with the development of a vicious cycle between
microvascular damage and beta-amyloid aggregates that
contribute to AD development. Brain imaging supports
these observations, as well as chronic cerebral hypoperfu-
sion, microvascular dysfunction, and perivascular space
enlargement – hallmarks of small vessel disease – precede
cognitive decline and changes in conventional biomarkers
[276]. These mechanisms of small vessel disease are shared
between vascular dementia and AD: assessment of retinal
microvasculature has shown apparent microvascular dys-
function and remodelling in neurodegenerative diseases
[278,279].

Statement: In neurodegenerative disease, MD favours the
increased BBB dysfunction and leakage paired with
higher NF-kB activation and consequent microvascular
levels of IL-1b, IL-6, TNF-a, which promotes the onset of a
vicious cycle leading to progressive cognitive impairment
and increased predisposition to tau pathology.

Autoimmune rheumatic diseases
Autoimmune rheumatic diseases (ARD) are distinct hetero-
geneous disorders with common immune responses
against self-antigens arising from genetic predisposition,
dysregulation of the immune system and environmental
factors. Among them, chronic inflammatory rheumatic con-
ditions, mainly represented by rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE) and spondyloarthritis
(ankylosing spondylitis (AS) and psoriatic arthritis (PA)) are

those further characterized by increased and premature CV
morbidity and mortality [280]. Atheromatosis is a chronic
inflammatory process in which the immune system, blood
and vascular cells, and several hormonal systems are pri-
marily involved in the structural and functional damage of
the small vessels [281]. Microangiopathy has been used as
an important subclinical CV risk indicator, and ARD patients
[282,283] have an increased prevalence of CV diseases
which cannot be fully explained by the classical CV risk
factors [284].

In ARD, a combination of elements is able to contribute
specifically to MD and microvascular inflammation: genetic
predisposition due to the polymorphism inMTHFR, TNF, IL6
loci and the HLA-DRB1 status [285]; activation of IL-1b, IL-6,
IL-17 and TNF-a pathways [285]; enhanced ECs activation
with the expression of ICAM-1, VCAM-1, E-selectin [286]; the
increase in NAPDH-derived ROS production, leading to
eNOS uncoupling and formation of 3-nitrotyrosine.

RA is the most prevalent autoimmune inflammatory
rheumatic disease [287], characterized by a 50% excess in
CV mortality compared to the general population [288]. RA
has been associated with diffuse microvascular injury
(Fig. 3g) [24] documented by decreased myocardial perfu-
sion (Figure 3, Supplemental Digital Content, http://links.
lww.com/HJH/C223) [289], altered retinal arteriolar diam-
eters [290,291], and dermal capillary density assessed with
nailfold capillaroscopy [292], as well as impaired coronary
microcirculation evaluated by coronary flow reserve (CFR)
[293] and impaired endothelial glycocalyx integrity [294]
even in the absence of overt CV disease. This is paired with
an attenuated microvascular response to different stimuli,
assessed with venous occlusion plethysmography
[295,296], and an increased hyperaemic vasodilatory re-
sponse [297] in RA patients compared to healthy controls.
Pronounced impairment of microcirculatory blood flow
responses assessed by laser speckle contrast imaging (LSCI)
and decreased coronary microvascular perfusion has also
been found in RA individuals free from CV disease [298]
(Figure 4, Supplemental Digital Content, http://links.lww.
com/HJH/C223).

In SLE, prevalent in about 0.1% of the general popula-
tion, apart from the widespread inflammation and tissue
damage in the affected organs, the blood vessels, especially
the brain and kidneys, could also be severely impaired.
Since vascular involvement, presenting as noninflammatory
necrotic vasculopathy, thrombotic microangiopathy, and
lupus vasculitis, is considered the leading cause of death in
patients with SLE, interest has been focused on identifying
the presence and role of early, subclinical microcirculation
alterations, potentially anticipated before the establishment
of CV events [25]. In addition to the classical subclinical
structural changes (cortical atrophy and white matter
hyperintensities), identified mostly by conventional MRI
in patients with SLE regardless of the presence of neuro-
psychiatric manifestations, functional changes such as a
blunted increase in cerebral oxygenation during exercise
assessed with near infra-red spectroscopy [299] and hypo-
perfusion lesions with single-photon emission tomography
(SPECT) in comparison to controls [300] are present.
They often precede the permanent changes identified by
conventional imaging [301] and are also found in sites
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different from the classical one targeted by lupus vascul-
opathy (e.g., SLE nephritis): the fundus [26,302,303], the
skin, with capillaroscopic alterations concerning density,
dimensions, morphology and haemorrhages, and the myo-
cardium, presenting coronary microvascular dysfunction
[304–306]. Functional microcirculation studies with digital
PAT [307,308], Portable Oxygen Transmitter [309] and LSCI
[310,311] document reduced peripheral perfusion and im-
paired microvascular reactivity in SLE patients (Figure 4,
Supplemental Digital Content, http://links.lww.com/HJH/
C223).

Subclinical microvascular alterations in psoriatic disease,
inflammatory bowel disease, vasculitis and AS have also
been studied [312–314]. Psoriatic patients and patients with
inflammatory bowel disease present coronary microcircu-
latory dysfunction, as assessed by CFR, reduced endothelial
glycocalyx thickness and microvascular perfusion im-
pairment leading to impaired cardiac function (Figure 4,
Supplemental Digital Content, http://links.lww.com/HJH/
C223) [27,28,315–318].

Remarkably, biological anti-inflammatory therapies and
statins in autoimmune diseases improve endothelial glyco-
calyx and function, as well as coronary and peripheral
microcirculation and thus, have beneficial effects on CV
function [28,317,319,320], providing indirect evidence of
the beneficial impact of targeting microvascular inflamma-
tion. Nonetheless, the precise role of MD andmicrovascular
inflammation, in terms of risk prediction and therapeutic
target, needs to be addressed appropriately by rigorous
prospective studies.

Statement: ARD are a heterogeneous group of diseases
characterised by MD and microvascular inflammation,
driven by the combination of genetic predisposition and
innate immunity hyperactivation via IL-1b, IL-6, IL-17
and TNF-a pathways. The beneficial effects of anti-in-
flammatory drugs in terms of CV risk reduction provide
indirect evidence of the centrality of microvascular in-
flammation in ARD.

Oncologic disease
As previously mentioned, systemic and local inflammation
have a major role in the development and maintenance of
microvascular structural alterations [9]. Oncologic diseases
may cause or be associated with systemic inflammation,
possibly contributing to the development of hypertension
and CV diseases, thus reducing overall survival in these
patients [321]. However, due to many clinical reasons,
including relatively short follow-up periods, few data are
available about microvascular alterations in cancer patients
per se.

Cancer primarily shares with CV disease several patho-
physiological mechanisms and similar risk factors. In this
respect, chronic inflammation is a crucial feature in the
pathogenesis and progression of both CV disease and
cancer. It may be directly involved in the induction of some
cancer types (e.g. H-pylori and stomach cancer) or indi-
rectly promote local carcinogenesis and its progression by
releasing inflammatory mediators and recruiting immune
cells within the tumour microenvironment [29]. Other

mechanisms such as oxidative stress, cytokines, hormones
(e.g. leptin), growth and metabolic factors have also been
proposed to connect both diseases. However, a clear path-
ogenetic understanding is still lacking: although T cells
appear to be involved, which specific subtype and by
which mechanism they induce MD requires further investi-
gation. [29]. The concomitant presence of CV risk factors or
conditions such as physical inactivity, smoking, obesity,
and diabetes may further induce inflammation worsening
the prognosis of cancer and cancer survivor patients [30].
Cancer cells secrete VEGF to stimulate tumour vasculariza-
tion, which increases vascular permeability and may con-
tribute to microcirculation structural remodelling and
perivascular fibrosis [31,32].

Particularly relevant is that several cancer treatments
present CV toxicity and may cause MD, microvascular
inflammation, hypertension and thus, an increase in CV
events [321,322]. While anthracyclines have been mostly
related to specific cardiotoxicity [323], VEGF and other
tyrosine kinase inhibitors are themost frequently associated
anticancer drugs with a dose-dependent increase in blood
pressure both in hypertensive patients and in normotensive
subjects [322,324,325]. These drugs enormously improve
the prognosis for several solid tumours [326], targeting
specific pro-angiogenic VEGF signalling involved in the
neovascularization of tumours in vivo [327]. A consequent
increase in blood pressure has been suggested as a
pharmacodynamic biomarker and predictor of therapeutic
efficacy [328,329]. However, this was not confirmed by
other studies [330], and, what is more, poorly controlled
hypertension leads to an increase in CV events, causing the
discontinuation of anticancer therapy and thus hindering its
clinical benefit.

The mechanism underlying vascular toxicity and hyper-
tension induced by VEGF inhibitors is still debated. VEGF-
A, the most important isoform of VEGF, may promote the
proliferation, differentiation, and migration of endothelial
cells by interacting with the VEGF-A receptor, as well as NO
production [331]. Accordingly, VEGF inhibition is associat-
ed with reduced NO bioavailability because of the inhibi-
tion of eNOS and concomitant increase in vascular ROS
[324,332], resulting in MD [31]. Activation of the ET-1 system
with increased concentrations of ET-1, nephrotoxicity and
impaired natriuresis induces hypertension along with the
inhibition of other growth factors, including platelet-
derived or fibroblast growth factor, c-Kit and FMS-like
tyrosine kinase 3 [333]. Recently, a novel molecular mecha-
nism involving the interplay between endothelial micro-
particles, the endothelin system and endothelial cell pro-
inflammatory and redox signalling have been described;
such interactions could be important in CV toxicity and
hypertension associated with VEGF inhibitors [334]. All
these events would favour an increase in peripheral resis-
tance, further increasing MD.

Another consequence of antiangiogenic drugs leading to
vascular resistance increase and elevated blood pressure is
microvascular rarefaction. A reduction of capillary density
during antiangiogenic treatment, reversible with cancer
drug discontinuation [335], was observed in some [336–
339] but not in other studies [340]. In one of these studies
[338], the effect of antiangiogenic drugs on the structure of
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retinal arterioles and capillary density was investigated in
20 patients with cancer. No change in systolic or diastolic
blood pressure values during treatment was observed
[338]; however, during the study, antihypertensive treat-
ment was optimized in most patients. Although no differ-
ence was observed in the retinal arteriole wall-to-lumen
ratio [19], capillary density was reduced by antiangiogenic
drugs after three or six months (Fig. 3f) [338]. These
findings might imply that an up-titration antihypertensive
treatment is necessary for patients treated with tyrosine
kinase inhibitors or a VEGF inhibitor. Indeed, under ade-
quate blood pressure control, microvasculature seems
preserved [338]. Since the efficacy of these drugs could
be related to the extent of the antiangiogenic effect, the
noninvasive evaluation of capillary density should be
evaluated by further studies as a predictive parameter of
drug efficacy. The better identification of the mechanisms
underlying adverse cardiac and vascular effects of antican-
cer therapies may allow to develop novel vasculoprotec-
tive strategies. Only by doing so will patients achieve
optimal cancer treatment at the minimum cost to cardiac
and vascular health [323].

Statement: In oncological disease, the pan-activation of
inflammatory response concurs to induce MD and micro-
vascular inflammation. Even more relevant is that antican-
cer drugs, particularly anti-VEGF, might cause detrimental
derangement in microvascular function and inflammation,
thus attenuating their medium/long-term beneficial effects
in terms of survival. An adequate increase in treatment to
achieve a stronger control of age-related disease (in partic-
ular, hypertension) is thus required.

CONCLUSIONS

Ageing and age-related diseases are all characterised by
different degrees of MD, leading to high-CV morbidity and
mortality. As microvascular inflammation is both the con-
sequence of environmental stressors and the perpetrator of
age-related damage, its centrality in CV risk is apparent.
However, though damage pathways have been extensively
studied over the last decades, a clear understanding of their
involvement’s temporal and spatial sequence across the
age-related disease spectrum is missing. In particular, al-
though the interaction between immune and nonimmune
cells is receiving increasing attention, a precise definition of
their cross-talk in the context of MD is lacking. Preventing
their detrimental dialogue may be crucial to stopping the
disease at a very early stage. This gap of knowledge
substantially limits the translation in terms of clinical strate-
gies. Targeting microvascular inflammation is still a difficult
road to travel: as the microvascular damage leverage epi-
genetic remodelling [52], early or intensive treatment is
required to revert it. However, even as some interventions
have demonstrated a potential benefit in terms of rescuing
MD (e.g., physical activity, weight loss [166,167], SGLT-2i
[200]) and inflammation [104], translational studies address-
ing microvascular inflammation to identify either early
common or disease-specific targets are required. At the
same time, we need to clearly understand the strengths
and limitations of each technique used to assess MD, as well
as the ability to distinguish between microvascular and

macrovascular. Efforts towards standardisation are needed
to obtain interpretable results from studies.
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