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Aims The heart rejuvenating effects of circulating growth differentiation factor 11 (GDF11), a transforming growth factor-β superfamily 
member that shares 90% homology with myostatin (MSTN), remains controversial. Here, we aimed to probe the role of GDF11 in 
acute myocardial infarction (MI), a frequent cause of heart failure and premature death during ageing.

Methods 
and results

In contrast to endogenous Mstn, myocardial Gdf11 declined during the course of ageing and was particularly reduced following 
ischaemia/reperfusion (I/R) injury, suggesting a therapeutic potential of GDF11 signalling in MI. Unexpectedly, boosting systemic 
Gdf11 by recombinant GDF11 delivery (0.1 mg/kg body weight over 30 days) prior to myocardial I/R augmented myocardial infarct 
size in C57BL/6 mice irrespective of their age, predominantly by accelerating pro-apoptotic signalling. While intrinsic cardiopro-
tective signalling pathways remained unaffected by high circulating GDF11, targeted transcriptomics and immunomapping studies 
focusing on GDF11-associated downstream targets revealed attenuated Nkx2-5 expression confined to CD105-expressing cells, 
with pro-apoptotic activity, as assessed by caspase-3 levels, being particularly pronounced in adjacent cells, suggesting an indirect 
effect. By harnessing a highly specific and validated liquid chromatography-tandem mass spectrometry–based assay, we show that in 
prospectively recruited patients with MI circulating GDF11 but not MSTN levels incline with age. Moreover, GDF11 levels were 
particularly elevated in those at high risk for adverse outcomes following the acute event, with circulating GDF11 emerging as an 
independent predictor of myocardial infarct size, as estimated by standardized peak creatine kinase-MB levels.

Conclusion Our data challenge the initially reported heart rejuvenating effects of circulating GDF11 and suggest that high levels of systemic 
GDF11 exacerbate myocardial injury in mice and humans alike. Persistently high GDF11 levels during ageing may contribute to 
the age-dependent loss of cardioprotective mechanisms and thus poor outcomes of elderly patients following acute MI.
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Graphical Abstract
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1. Introduction
Acute myocardial infarction (MI) spearheads mortality statistics around the 
globe. Despite the unprecedented gains over the past six decades,1 thera-
peutic progress has stalled more recently,2,3 specifically among the growing 
population of elderly and frail,4,5 a patient population at pronounced risk of 
extensive myocardial injury, fulminant heart failure, and premature 
death.6,7

Tissue damage due to MI is caused by both the ischaemic insult and sub-
sequent reperfusion, a phenomenon referred to as ischaemia/reperfusion 
(I/R) injury. Endogenous cardioprotective mechanisms wane during cardiac 
ageing,8 rendering cardiomyocytes less tolerant to stress and increasingly 
susceptible for accelerated cell death upon I/R.9 The extent of myocardial 
tissue damage accrues from unregulated (necrosis) and regulated (apop-
tosis, necroptosis, and pyroptosis) modes of cell death, the latter being 
controlled by a variety of intra- and extracellular factors.10,11 In its early 
phase, apoptotic cell death is hallmarked by the maintenance of sarcolem-
mal integrity, does not elicit a pro-inflammatory response, and can be 
regulated by extracellular factors released by non-myocyte cells.12–19

The concept that the multilineage differentiation potential underpins the 
cardioprotective effects of CD105+ cells has long prevailed,20,21 but data 
of more recent studies by us12,13 and independent laboratories14,16–19 fa-
vour the involvement of paracrine factors released by CD105+ 

non-myocyte cells, including extracellular vesicles enriched in non-coding 

RNAs,12 therethrough contributing to cardiomyocytes’ resilience to is-
chaemic stress. The expression of genes responsive to transforming 
growth factor (TGF)-β signalling is confined to non-myocyte cells,22 with 
cardiac mesenchymal cells abundantly expressing CD105, a 180 kDa trans-
membrane glycoprotein that interacts with TGF-β signalling.23–25

Systemic levels of growth differentiation factor 11 (GDF11), a member 
of the TGF-β superfamily that shares 90% homology with myostatin 
(MSTN),26 were initially reported to decline with age,27 and systemic 
GDF11 replenishment by heterochronic parabiosis or recombinant 
GDF11 (rGDF11) delivery was postulated to have rejuvenating effects 
by reinstating regenerative capacity of aged muscle stem cells and hyper-
trophic cardiomyocytes.27,28 Yet, in light of insufficient target specificity, 
more recent studies challenged the initial paradigm, arguing that systemic 
levels of GDF11 do not decrease as a function of age,29–33 but may even 
incline during ageing,29,32 the latter being associated with frailty and adverse 
outcomes in elderly patients undergoing valve replacement therapy.30

The spatial expression patterns of GDF11 and MSTN differ marked-
ly,26,34 notwithstanding MSTN and GDF11 governing similar signalling cas-
cades, both acting on the SMAD2/3 pathway via binding to activin type II 
receptors and in turn inducing SMAD2/3 phosphorylation to repress genes 
required for cell differentiation.35,36 In mice bearing a MstnGdf 11 knock-in 
allele, Gdf11 exhibits similar functional properties for the control of muscle 
mass; but the loss of murine Gdf11 or Mstn results in distinct cardiac phe-
notypes,36 with Mstn−/− animals showing eccentric hypertrophy and 
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enhanced β-adrenergic responsiveness.37 However, the role of Gdf11 in 
the heart is less explored, partly because of the high perinatal lethality of 
Gdf11−/− mice which typically exhibit homeotic skeletal transformations 
and renal agenesis.38,39

In line with the originally reported inhibitory effect of GDF11 on human 
skeletal muscle–derived cell differentiation, Egerman et al.29 provided com-
pelling evidence that the age-dependent increase in circulating GDF11 
leads to inhibited rather than improved muscle regeneration, a finding con-
firmed in independent studies published thereafter.40,41 At the myocardial 
level, mild to no anti-hypertrophic effects by GDF11 were reported in 
young mice subjected to pressure overload–induced cardiomyopathy,27,42

and boosting systemic GDF11 levels by 4-week rGDF11 delivery failed to 
reverse age-related cardiac remodelling or to improve left ventricular func-
tion in independent studies,43,44 collectively questioning the notion of 
GDF11 as a heart rejuvenating factor.

Given the controversy of the effects of high circulating GDF11 on car-
diac structure and function, we aimed to probe the effects of high systemic 
GDF11 on myocardial I/R injury by harnessing an array of methods, ranging 
from an established in vivo I/R model,45 omics-guided in vitro ap-
proaches12,46,47 to liquid chromatography-tandem mass spectrometry 
(LC-MS/MS)–based investigations of circulating GDF11 and MSTN levels in 
prospectively recruited patients with MI.31,48–50

2. Methods
Detailed methods descriptions are provided in the Supplementary material
online.

2.1 Mouse model of I/R injury
Male C57BL/6 mice were obtained from Janvier Labs (Le Genest-Saint-Isle, 
France) and fed a standard chow (Kliba Nafag, Kaiseraugst, Switzerland). 
Mice were housed at 24°C under specific pathogen-free conditions with a 
12 h light/dark cycle and ad libitum access to food and water. To determine 
the age dependency of myocardial Gdf11 and Mstn expression, whole heart 
tissues of young (3–4 months), middle-aged (12–14 months), and aged 
(22–24 months) mice were freshly dissected and further processed as out-
lined in the Supplementary material online. Upon reviewing of these results 
(n = 5 per group), both young (3–4 months) and aged (22–24 months) 
mice were assigned to receive daily i.p. injections of either human rGDF11 
[0.1 mg/kg body weight (BW); PeproTech, disulfide-linked homodimer com-
prising two 109 amino acid polypeptide chains; Supplementary material on-
line, Key resources table] or volume-adjusted vehicle [0.1% bovine serum 
albumin (BSA) containing phosphate buffered saline (PBS)] over 30 days, a 
duration necessary to achieve significant elevations in vivo.27 At the end of 
the 30-day study period, mice were subjected to 30 min of ischaemia (I) fol-
lowed by 15 min (protein isolation), 8 h (RNA isolation), or 24 h (morpho-
logical analyses, TUNEL assay) of reperfusion (R), before they were 
sacrificed, as reported previously.51 Briefly, following anaesthesia induction 
with 4% isoflurane, mice were intubated and mechanical ventilation with 
100% oxygen was initiated using a tidal volume of 150 μL (120 breaths/ 
min), during which anaesthesia was maintained by isoflurane inhalation. 
Depth of anaesthesia was continuously monitored, meanwhile a lateral blunt 
thoracotomy via the third intercostal space was performed to allow for the 
exposure of the pericardium. Following partial pericardiectomy, the left anter-
ior descending (LAD) coronary artery was ligated using an 8–0 Prolene suture 
at the lower edge of the left atrium. To avoid laceration of the artery, a poly-
ethylene tube was placed between the suture and the LAD. After a total of 
30 min of successful LAD occlusion, the LAD was reopened to allow for myo-
cardial reperfusion. Following full restoration of coronary blood flow, as con-
firmed by re-establishment of reddish-brown colour within the ischaemic 
area, the chest was closed, and anaesthesia was reduced to allow for spontan-
eous respiration. Analgesia was extended with subcutaneous injection of 
0.05 mg/kg buprenorphine HCl every 4–6 h until sacrifice. After the indicated 
reperfusion periods, animals were then sacrificed and blood/cardiac tissues 
were further processed depending on the downstream experiments planned, 
as outlined in the Supplementary material online. All animal-related 

procedures were approved by the Cantonal Veterinary Authority, 
Switzerland, and conformed to the Directive 2010/63/EU of the European 
Parliament and of the Council of 22 September 2010 on the protection of 
animals used for scientific purposes.

2.2 Western blotting
Proteins from cardiac tissues or CD105+ cells were extracted using a pro-
tease inhibitor containing lysis buffer [50 mM Tris, pH 7.5; 1 mM ethylene-
diaminetetraacetic acid (EDTA), pH 8.0; 150 mM NaCl; 1 mM 
phenylmethylsulfonyl fluoride (PMSF), and 1 mM dithiothreitol (DTT)]. 
Protein extracts were then cleared by centrifugation, and total protein 
concentration was determined by a calorimetric method.52 Next, proteins 
were separated by gel electrophoresis on 8 or 10% sodium dodecyl sul-
phate (SDS)–polyacrylamide gel before being transferred to a polyvinyli-
dene fluoride membrane (PVDF). After blocking with 5% skim milk or 
BSA, as appropriate, membranes were incubated with the indicated pri-
mary antibodies overnight at 4°C, followed by incubation with secondary 
horseradish peroxidase (HRP)–conjugated secondary antibodies 
(Birmingham, AL, USA) for 1 h at room temperature. Protein expression 
signals were detected using the Amersham Imager 600 (General Electric 
Healthcare Europe GmbH, Glattbrugg, Switzerland) and quantified by 
ImageJ 1.50 (National Institute of Health, Bethesda, MD, USA).

2.3 Real-time qPCR
Total RNA was isolated from whole tissues or cells with TRIzol (Invitrogen, 
Life Technologies Corporation, Zug, Switzerland) and reverse-transcribed 
into cDNA by using RT2 First Strand kit (QIAGEN, Hilden, Germany) ac-
cording to the manufacturer’s instructions. Predesigned TaqMan Gene 
Expression Assays specific for Mstn, Gdf11, Gata4, and Nkx2-5 were 
used throughout, with Gapdh serving as the reference gene. Respective 
controls (i.e. reverse transcription and genomic DNA contamination) 
were included in each run. Real-time qPCR run was performed on a 
Quant Studio 5 cycler (Thermo Fischer Scientific, Zug, Switzerland) using 
a standard amplification protocol. Target gene mRNA expression levels 
were normalized to Gadph using the comparative CT method.53

2.4 Serum assays
Frozen murine serum samples obtained 24 h after I/R were thawed on ice 
and immediately processed thereafter. Cardiac troponin I (cTnI) levels 
were measured by a high-sensitive enzyme-linked immunosorbent assay 
(ELISA; Life Diagnostics Inc.), with a lower limit of detection of 0.156 ng/ 
mL. Serum levels of CXCL1 and CCL2 were measured by ELISA (R&D 
Systems, Minneapolis, MN, USA), following the manufacturer’s instructions, 
with the lower limit of detection being 15.6 and 7.8 pg/mL for CXCL1 and 
CCL2, respectively. Absorbance was measured on a plate reader (Infinite® 
200 PRO, TECAN, Männedorf, ZH, Switzerland) set at 450 and 550 nm, re-
spectively. Mean intra- and interassay coefficients of variation (CV) were be-
low 6.0% for cTnI, CXCL1, and CCL2. Individual serum concentrations were 
calculated using a four-parameter logistic (4PL) curve fit.

2.5 Semi-quantitative 
immunohistochemistry
Freshly dissected hearts were fixed with 10% formaldehyde overnight at 
4°C and embedded in paraffin blocks, after which tissues were sectioned at 
3 μm intervals, immersed in BOND Epitope Retrieval Solution 2 at pH 9.0 
and heat retrieved for up to 30 min at 100°C. To reduce background signals 
owing to hydrophobic and ionic interactions, tissue sections were blocked 
using a 0.4% casein-containing PBS solution. For the quantification of cell- 
specific Nkx2-5 protein expression, double-antibody immunohistochemistry 
(IHC) against CD105 and Nkx2-5 was performed using the Leica Bond-III 
Processing Module. In a separate batch of cardiac tissues, double-antibody 
IHC against CD105 and caspase-3 was performed. Tissue slides were incu-
bated with primary antibodies for 60 min at room temperature, followed 
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by incubation with alkaline phosphatase (AP)- and HRP-conjugated secondary 
antibodies, respectively. Tissue sections were developed using biotin-free 
BOND Polymer Refine Detection kits (see Supplementary material online, 
Key resources table). Semi-quantitative determination of protein expression 
was done using ImageJ Fiji (v.2.9.0), as previously described.54–56 In brief, 
each red–green–blue (RGB)-based double-antibody IHC image was split 
into three single-coloured images allowing for the separate quantification 
of Fast Red and 3,3’-diaminobenzidine (DAB) signals. Quantification of pro-
tein expression was done separately in CD105+ and CD105− areas after ad-
justing the maximum threshold for each signal, the latter being constantly 
held at the same value for each marker across all images. To quantify the 
pro-apoptotic activity of cells adjacent to CD105+ cells, caspase-3 expres-
sion was determined in the pericellular region, defined as an area extending 
9 × 9 pixels from CD105+ positively stained areas, with 1 pixel equalling 
roughly 1 µm. Results are presented as normalized values (calculated as 
mean intensity of the positively stained area divided by total image area) 
of heart tissues of rGDF11-treated mice relative to controls.

2.6 Clinical study
The SPUM-ACS study (ClinicalTrials.gov Identifier: NCT01000701) is an 
investigator-driven, multicentre prospective cohort study in Switzerland 
in which patients with suspected acute MI were recruited between 
December 2009 and 2017. Its study design and detailed inclusion and ex-
clusion criteria have been reported previously.48–50 In all patients, blood 
sampling was done prior to coronary angiography. More details are pro-
vided in the Supplementary material online.

2.7 Proteomics for the detection of 
circulating GDF11 and MSTN
Circulating levels of GDF11 and MSTN in human or murine samples were 
measured by using a previously reported and externally validated LC-MS/ 
MS method that employs sample denaturation (to ensure dissociation of 
MSTN and GDF-11 from their cognate binding proteins), reduction, alkyl-
ation, solid-phase extraction, and tryptic digestion, followed by separation 
and quantification using signature peptide-based multiple reaction moni-
toring and C-terminal [13C6 

15N4]-Arg peptides as internal standards.31

The intra- and interassay CV were 8.01–13.0% and 8.71–17.1% for 
GDF11, respectively, and 7.43–15.1% and 11.5–16.4% for MSTN, respect-
ively. The lower limit of detection for each protein was 0.5 ng/mL. LC-MS/ 
MS was done by fully blinded study personnel.

2.8 Statistical analysis
Data are presented as bar graphs with error bars [mean and standard error of 
the mean (SEM)] or as violin plots [median and interquartile range (IQR)], if 
skewed, with single data points superimposed. Between-group comparisons 
were performed by Student’s t-test, Mann–Whitney U test, one-way 
ANOVA, two-way ANOVA, Kruskal–Wallis H test, χ2 test, or Fisher’s exact 
test, as appropriate. If not stated otherwise, multiplicity-adjusted (Bonferroni) 
P values are reported throughout, with the threshold of α set at 0.05 (two- 
tailed). Data violating core assumptions of each test were either transformed 
or alternative (non-parametric) tests were used, as indicated in detail in the 
respective figure legends. More details on the hierarchical regression models 
are provided in the Supplementary material online. All analyses were per-
formed using R version 4.2.1 (R Foundation for Statistical Computing, 
Vienna, Austria), SPSS version 28.0 (IBM, Armonk, NY, USA), or GraphPad 
Prism 8 (GraphPad Software, LLC, Massachusetts, USA).

3. Results
3.1 Myocardial Gdf11 but not Mstn 
expression levels decrease with age and are 
blunted upon I/R injury in mice
We assessed myocardial Gdf11 and Mstn expression in young (3–4 
months), middle-aged (12–14 months), and aged (22–24 months) 

C57BL/6 mice. Notably, Gdf11 expression declined as a function of age, 
whereas a linear trend towards increased Mstn expression levels was ob-
served across age groups (Figure 1A). Although previous studies in fish and 
mice provided hints that Gdf11 declines as the heart ages,27,57,58 the age 
dependency of myocardial Gdf11 and Mstn expression has not been inves-
tigated systematically thus far.

Next, we sought to study myocardial expression levels of both Gdf11 
and Mstn in mice undergoing myocardial I/R injury and their respective con-
trols. In line with previous reports in 8–10-week-old mice,59,60 a marked 
decline in Gdf11 but an increase in Mstn expression was observed upon 
I/R (Figure 1B). Of note, Magga et al.59 have shown that these changes 
are accentuated early after I/R and are more prominent in the infarcted ra-
ther than the peri-infarcted area, suggesting that changes in endogenous 
Gdf11 expression levels are predominantly induced by the ischaemic insult, 
and as such interfering with Gdf11 signalling may have therapeutic effects.

Based on the previously postulated rejuvenation effect of high system-
ic GDF11 on cardiac structure intertwined with the consistently ob-
served I/R- and age-dependent decline in myocardial Gdf11 across 
independent studies,27,57–60 we next sought to study the cardiac effects 
of boosting endogenous GDF11 by rGDF11 delivery prior to I/R injury 
in both young (3–4 months) and aged (22–24 months) animals. To that 
end, we performed a randomized, vehicle-controlled study in which 
C57BL/6 mice of both age groups were randomly assigned to receiving 
0.1 mg/kg BW rGDF11 or vehicle daily over 30 days intraperitoneally 
(Figure 1C), a duration necessary to achieve significant elevations of circu-
lating GDF11 in vivo, as confirmed by LC/LC-MS (Figure 2A and B).

3.2 Systemic GDF11 replenishment by 
rGDF11 increases experimental myocardial 
infarct size
Unexpectedly, young (3–4 months) mice receiving 30-day rGDF11 supple-
mentation showed larger infarcts and higher cTnI levels following myocar-
dial I/R as compared to vehicle-treated controls (CTRL), despite similar 
areas at risk (AAR; Figure 3A). Immunostaining pinpointed similar numbers 
of Ly-6G- and CD68-positive cells (i.e. neutrophils and macrophages, re-
spectively) in cardiac tissues of both rGDF11 and CTRL mice, with no dif-
ference in blood-borne chemokine C-X-C motif ligand 1 (CXCL1) or 
monocyte chemoattractant protein 1 (CCL2) levels, key players of the 
acute inflammatory response evoked by I/R (Figure 3B).10,61 Similarly, sur-
rogates of oxidative stress such as 4-hydroxy-2-nonenal (4-HNE) and 
3,5-dibromotyrosine (DiBrY)-positive areas remained unchanged between 
rGDF11 and CTRL animals (Figure 3C).

In line with the results obtained in 3–4-month-old animals, aged (22–24 
months) mice subjected to systemic GDF11 replenishment showed a similar 
increase in infarct size, as confirmed by histology and biochemical analyses 
(Figure 3D). Accordingly, the abundancy of neutrophils and macrophages 
did not differ between rGDF11 and CTRL animals, underscored by un-
changed serum levels of both CXCL1 and CCL2 (Figure 3E). Moreover, the 
extent of DiBrY- and 4-HNE-positive areas remained unaltered between 
rGDF11- and vehicle-treated animals (Figure 3F), implying that the mechan-
isms involved act independently of acute inflammation and oxidative stress. 
This is of particular relevance, as enhanced reactive oxygen species (ROS) for-
mation, as it occurs with I/R,62,63 represents a key feature of unregulated cell 
death.10 In contrast, both necroptosis and pyroptosis are characterized by ne-
crosome and inflammasome activation, thus hallmarked by the activation of 
pro-inflammatory pathways via the release of inflammatory mediators, includ-
ing immune cell–derived chemokines.64,65

3.3 High extracellular GDF11 triggers 
myocardial injury through accelerated 
cardiomyocyte apoptosis
High circulating GDF11 increased myocardial infarct size by 77 and 64% in 
young [24.45 vs. 13.81 I/V (infarct area/ventricle surface); P = 0.0020] and 
aged mice (31.36 vs. 19.11 I/V; P = 0.013), respectively; meanwhile, systemic 
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Figure 1 Age-mediated and myocardial I/R injury–mediated changes in Gdf11 and Mstn expression (top) and experimental study design (bottom). (A) 
Age-dependent changes in myocardial Gdf11 and Mstn mRNA expression levels (n = 5/group). (B) Myocardial mRNA expression of Gdf11 and Mstn of 
aged mice subjected to I/R injury or respective controls (n = 5/group). (C ) Experimental scheme. Young (3–4 months) and aged (22–24 months) C57BL/6 
mice were randomized to receiving rGDF11 (0.1 mg/kg BW daily i.p.) or vehicle (CTRL) over 30 days, as reported previously.27 Following I/R injury, morpho-
logical analyses and targeted transcriptomics were performed. P values were calculated by one-way ANOVA (A) or unpaired Student’s t-test (B). Data in A and 
B are presented as violin plots (median and IQR) with single data points superimposed.
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GDF11 replenishment increased the abundancy of TUNEL-positive 
cardiomyocytes by 134% (34.94 vs. 14.94 TUNEL-positive myocytes/mm2; 
P = 0.0076; Figure 4A) and 133% (37.93 vs. 16.28 TUNEL-positive myo-
cytes/mm2; P = 0.0094; Figure 4B), respectively, cumulatively pointing towards 
enhanced pro-apoptotic signalling as the main determinant of accelerated cell 
death in rGDF11-treated mice. Of note, a previous study found that exoge-
neous GDF11 upregulates the pro-apoptotic and mitophagy-associated gene 
Bnip3, coinciding with a pronounced loss of cardiac function over a 14-day 
period.66 Albeit duration and type of GDF11 supplementation are difficult 
to compare, these data suggest that exogeneous GDF11 delivery may prime 
cardiomyocytes to be more subject to apoptosis at basal states, which be-
comes morphologically evident if acute myocardial stress is induced by I/R 
injury.

The reperfusion injury salvage kinase (RISK) and the survival activating 
factor enhancement (SAFE) pathways are complex signalling cascades 
regulating cardiomyocyte survival in the setting of I/R involving cytosolic 
mediators.10 Notably, protein expression and/or phosphorylation status 
of important hub molecules,10 including Akt, p44/p42-MAPK, and Stat1, re-
mained unchanged between groups (see Supplementary material online, 
Figure S1), implying distinct causative mechanisms. Given the variety of 
intra- and extracellular effectors potentially triggering accelerated 
pro-apoptotic signalling in the presence of high GDF11, ingenuity pathway 
analysis (IPA)-guided transcriptomics using total RNA extracts of hearts 
dissected from animals undergoing I/R were performed. Of all candidate 
genes tested, only the expression of the homeobox-containing transcrip-
tion factor Nkx2-5 differed significantly between groups (Figure 4C; see 
Supplementary material online, Table S1), which we confirmed quantita-
tively by both qPCR and Western blotting in an independent cohort of 
mice (see Supplementary material online, Figure S2). Nkx2-5 is essential 
for looping morphogenesis of the heart tube and cardiac growth during 
embryogenesis,67,68 though myocardial Nkx2-5 remains ubiquitously ex-
pressed during the postnatal stage. CD105+ cells were reported to show 
high Nkx2-5 mRNA expression relative to cardiac fibroblasts,69 but total 
Nkx2-5 protein expression was interestingly not limited to one particular 
cell type homing the adult heart (Figure 4D).

Importantly, however, differential Nkx2-5 protein expression was only 
present in CD105+ but not in CD105− heart regions, collectively suggesting 
that GDF11-mediated transcriptional changes predominantly occur in 
CD105+ cells (see Supplementary material online, Figure S3). Meanwhile, 

systemic GDF11 replenishment induced accentuated caspase-3 expression 
in cell regions adjacent to CD105+ cells, while this effect was not observed 
in pericellular regions of CD105− cells (see Supplementary material online, 
Figure S4). With intrinsic cardioprotective signalling cascades remaining un-
affected and pro-apoptotic pathways being selectively activated in cardiac cells 
adjacent to resident CD105+ cells, these hypothesis-generating data suggest 
that accelerated cell death by high circulating GDF11 may involve indirect 
(e.g. paracrine-mediated) mechanisms.12–14,16–19 Given the unavailability of 
suitable mouse models to provide direct experimental evidence on the role 
of resident CD105+ cells in GDF11-mediated I/R injury, an ex vivo pilot study 
(involving cardiac-specific CD105+ cells and HL-1 cardiomyocytes) was con-
ducted whose results are provided in the Supplementary Material (see 
Supplementary material online, Figures S5 and S6).

3.4 Circulating GDF11 but not MSTN inclines 
with age and associates with increased 
infarct size in patients with acute MI
To assess the translational potential of our experimental findings, we next de-
termined circulating GDF11 and MSTN protein levels in prospectively re-
cruited patients with acute MI (n = 100; SPUM-ACS; ClinicalTrials.gov 
Identifier: NCT01000701) (Table 1; see Supplementary material online, 
Figure S7 and Table S2). To accurately distinguish GDF11 from its close homo-
log MSTN, a highly specific and externally validated LC-MS/MS assay was 
used.31 Blood sampling was done prior to coronary intervention, after a me-
dian of 291 min following pain onset (Table 2). Of note, patients in the upper 
GDF11 tertile were older (P = 0.011), at higher risk of death at 6 months, as 
assessed by GRACE 2.0 (P = 0.036), and were hospitalized for longer (P =  

0.011), implying that high circulating GDF11 levels associate with worse out-
comes and high susceptibility for adverse events post-MI. Nonetheless, coron-
ary lesion characteristics, major determinants of infarct size,70,71 were not 
different across GDF11 tertiles (Tables 1 and 2). Importantly, the associations 
noted above were absent if patients were stratified according to MSTN ter-
tiles (see Supplementary material online, Tables S3 and S4).

When we stratified all patients according to age quintiles, a linear increase 
in circulating GDF11 was identified, with a positive monotonic relationship 
between age and continously coded circulating GDF11 protein levels 
(Figure 5A; Spearman’s ρ = 0.21, P = 0.038). In contrast, this association 
was abolished when MSTN was introduced as the independent variable 
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Figure 2 LC/LC-MS-based determination of circulating Gdf11 (left) and Mstn (right) upon rGDF11 delivery. (A) Daily injections of rGDF11 (0.1 mg/kg BW 
i.p./day; n = 11–16 mice/group) lead to a consistent increase in circulating Gdf11 after 7 days, as suggested by a previous report,27 and now, for the first time, 
confirmed by LC/LC-MS. (B) Importantly, circulating Mstn levels remain unaffected by rGDF11 supplementation. P values were calculated by two-way 
ANOVA. Data are shown as mean and SEM for each timepoint.
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Figure 3 Histological and biochemical abnormalities of mice treated with rGDF11 or vehicle and subjected to myocardial I/R injury stratified by age. (A, D) 
Infarct size (I) and area at risk (AAR) relative to ventricle surface (calculated as I/V and AAR/V, respectively). cTnI denotes cardiac troponin I. Representative 
images of triphenyltetrazolium chloride-stained middle heart sections of vehicle- vs. rGDF11-treated mice are shown. (B, E) Quantification of neutrophil and 
macrophage infiltration together with representative histology (top) and CXCL1 and CCL2 serum levels (bottom) following acute myocardial I/R injury. (C, F ) 
DiBrY- and 4-HNE-positive areas in tissue sections of infarcted hearts of both groups. P values were calculated by unpaired Student’s t-test (A–F). Data are 
presented as bar graphs and error bars (mean and SEM) with single data points superimposed.
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Figure 4 Systemic GDF11 restoration accelerates cardiomyocyte apoptosis with IPA-guided transcriptomics and immunostaining pointing towards a pos-
sible indirect effect mediated by non-myocyte cells. (A, B) Number of TUNEL-positive cardiomyocytes in young (3–4 months) and aged (22–24 months) mice. 
Representative images (×20) are shown on the right of each panel. (C ) Left: heatmap represents Z-scored cardiac expression of IPA-identified genes in mice 
subjected to I/R injury and pre-treated with vehicle (CTRL) or rGDF11 (0.1 mg/kg BW i.p./day) over 30 days; right: volcano plot showing gene expression of 
IPA-identified candidates between both groups. (D) Semi-quantitative IHC shows attenuated Nkx2-5 protein expression in rGDF11 pre-treated mice. Scale 
bars: 2 mm (left panel), 100 μm (right panel). P values were calculated by (A, B) unpaired Student’s t-test or (C ) multiple unpaired two-sample t-tests with 
Welch’s correction. Data (A, B, D) are presented as bar graphs and error bars (mean and SEM) with single data points superimposed.
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(Figure 5B; Spearman’s ρ = 0.013, P = 0.90). Next, hierarchical regression 
models were built to test whether circulating GDF11 improves the predic-
tion of infarct size over and beyond established risk factors, including sex, 
age, and LAD occlusion, as determined during initial coronary angiography, 
onset-to-PCI time, and high-sensitivity cardiac troponin (hs-cTnT), assessed 
at the time of the acute presentation. The model consisting of age, sex, LAD 
occlusion, onset-to-PCI time, and hs-cTnT to predict final infarct size, as es-
timated by standardized peak CK-MB levels,72,73 performed considerably 
well (R2 

= 0.29, P < 0.001). Adding GDF11 to the model markedly improved 
the prediction of final infarct size (R2 

= 0.42, ΔR2
= 0.13, P < 0.001) 

(see Supplementary material online, Table S5), whereas MSTN did not 

(R2 
= 0.30, ΔR2

= 0.008, P = 0.42) (see Supplementary material online, 
Table S6). Indeed, with increasing GDF11 tertiles, an increase in standar-
dized CK-MB levels of 17.55 [95% confidence interval (CI), 8.00–27.09 
xURL, P < 0.001] was observed, whereas MSTN did not add to the predic-
tion (4.36, 95% CI −6.36 to 15.09 xURL, P = 0.42) (Figure 5C).

4. Discussion
Formerly described as a promising heart and muscle rejuvenating factor,27,28

high systemic GDF11 failed to show beneficial effects on cardiac structure 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of SPUM-ACS study participants with acute myocardial infarction stratified by GDF11 tertiles

All patients GDF11 tertile 1 GDF11 tertile 2 GDF11 tertile 3 P value
n = 100 <2.79 ng/mL (n = 33) 2.79–3.33 ng/mL (n = 34) >3.33 ng/mL (n = 33)

Clinical features at presentation

Age (years) 66.4 (56.2–77.2) 64.7 (52.5–76.9) 61.9 (51.2–69.6) 69.9 (64.0–79.9) 0.011a

Female 23/100 (23.0) 9/33 (27.3) 5/34 (14.7) 9/33 (27.3) 0.368c

Heart rate (b.p.m.) 78 (70–91) 78 (70–91) 79 (69–94) 78 (70–91) 0.679b

Systolic blood pressure (mmHg) 122 (106–140) 120 (114–137) 118 (101–139) 129 (104–150) 0.438b

eGFR (mL/min/1.73 m2) 79.3 (64.4–94.2) 82.1 (64.3–93.9) 79.4 (70.9–99.0) 77.0 (47.8–90.6) 0.384b

Hs-cTnT >99th percentile 95/100 (95.0) 32/33 (97.0) 32/34 (94.1) 31/33 (93.9) 0.803c

LVEF (%) 48.0 (40.0–60.0) 50.0 (35.0–65.0) 50 (45.0–60.0) 45.0 (40.0–50.0) 0.107b

Killip class
I 81/98 (82.7) 27/33 (81.8) 27/34 (79.4) 27/31 (87.1) 0.905b

II 10/98 (10.2) 4/33 (12.1) 4/34 (11.8) 2/31 (6.5)

III 7/98 (7.1) 2/33 (6.1) 3/34 (8.8) 2/31 (6.5)
IV 1/98 (1.0) 0/33 (0.0) 0/34 (0.0) 1/31 (3.2)

Cardiometabolic risk factors

BMI (kg/m2) 26.7 (24.2–29.1) 25.5 (22.8–27.7) 26.5 (24.2–28.7) 27.2 (25.2–30.7) 0.271a

BSAc (m
2) 1.9 (1.8–2.0) 1.8 (1.7–2.0) 1.9 (1.8–2.0) 1.9 (1.8–2.0) 0.230a

Current smoker 35/100 (35.0) 13/33 (39.4) 13/34 (38.2) 9/33 (27.3) 0.814c

Total cholesterol (mmol/L) 4.6 (3.9–5.4) 4.5 (3.9–5.5) 4.7 (4.4–5.2) 4.5 (3.7–5.6) 0.900b

LDL-C (mmol/L) 2.9 (2.3–3.5) 3.0 (2.1–3.9) 3.0 (2.7–3.3) 2.8 (2.4–3.4) 0.701a

HDL-C (mmol/L) 1.1 (1.0–1.4) 1.2 (1.0–1.4) 1.1 (0.9–1.3) 1.2 (1.0–1.4) 0.320b

Triglycerides (mmol/L) 1.0 (0.7–1.4) 0.9 (0.7–1.4) 1.0 (0.8–1.5) 1.0 (0.7–1.3) 0.843b

Past medical history

Hx of dyslipidaemia 57/100 (57.0) 22/33 (66.7) 17/34 (50.0) 18/33 (54.5) 0.364c

Hx of hypertension 53/100 (53.0) 16/33 (48.5) 18/34 (52.9) 19/33 (57.6) 0.688c

Previous PCI 12/100 (12.0) 2/33 (6.1) 4/34 (11.8) 6/33 (18.2) 0.324c

Clinical chemistry and haematology

hs-CRP (mg/L) 2.5 (1.2–9.4) 1.9 (0.8–6.3) 2.9 (1.1–10.0) 2.7 (1.7–9.3) 0.440b

NT-proBNP (ng/L) 331.0 (115.8–1349.5) 237.0 (126.0–1500.0) 444.0 (113.3–1147.5) 339.0 (123.0–1387.0) 0.880b

hs-cTnT (ng/L) 246.0 (71.0–705.0) 340.0 (65.0–622.0) 323.0 (113.5–886.5) 203.0 (55.0–587.0) 0.533b

Hb (g/dL) 13.5 (12.8–14.3) 13.7 (12.8–14.3) 13.5 (12.8–14.3) 13.4 (12.6–14.2) 0.300b

Medication at presentation

Aspirin 23/52 (44.2) 5/17 (29.4) 11/19 (57.9) 7/16 (43.8) 0.228c

ACEI/ARB 27/52 (51.9) 12/17 (70.6) 10/19 (52.6) 5/16 (31.3) 0.077c

Beta-blocker 26/52 (50.0) 10/17 (58.8) 11/19 (57.9) 5/16 (31.3) 0.197c

P2Y12 receptor inhibitor 5/52 (9.6) 2/17 (11.8) 2/19 (10.5) 1/16 (6.3) 0.853c

Statin 19/52 (36.5) 3/17 (17.6) 11/19 (57.9) 5/16 (31.3) 0.038c

Data are n/N (%) or median (IQR). 
ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers; BMI, body mass index; BSA, estimated (by Dubois and Dubois) body surface area; CAD, coronary artery 
disease; CABG, coronary artery bypass grafting; CRP, C-reactive protein; eGFR, estimated [by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)] glomerular filtration rate; 
GDF11, growth differentiation factor 11; GRACE, Global Registry of Acute Coronary Events; Hb, haemoglobin; LVEF, left ventricular ejection fraction; MSTN, myostatin; NT-proBNP, 
N-terminal-pro hormone BNP; PCI, percutaneous coronary intervention; URL, upper reference limit. 
aOne-way ANOVA. 
bKruskal–Wallis H test. 
cχ2 test or Fisher’s exact test.

GDF11 and acute myocardial infarction                                                                                                                                                                  2737
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
a
rd

io
v
a
s
c
re

s
/a

rtic
le

/1
1
9
/1

7
/2

7
2
9
/7

2
8
1
6
4
5
 b

y
 V

e
ro

n
ik

a
 R

a
ll u

s
e
r o

n
 2

3
 F

e
b
ru

a
ry

 2
0
2
4

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad153#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad153#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad153#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad153#supplementary-data


and function in more recent studies.43,44 In line with its originally reported cap-
acity to repress cellular regeneration,35 our data support the notion that high 
levels of circulating GDF11 exert detrimental effects on the adult heart 
subjected to I/R. In fact, high levels of circulating GDF11 augmented apoptosis- 
mediated myocardial injury in mice irrespective of their age and were 
independently associated with increased infarct size in prospectively recruited 
patients with MI.

Albeit other forms of cell death determine myocardial infarct size,10 it is 
interesting to note that surrogates of inflammation and oxidative stress re-
mained unaffected by rGDF11 supplementation in both young (Figure 3B 
and C) and aged (Figure 3E and F) mice subjected to I/R. Indeed, necroptosis 
and pyroptosis are featured by the loss of plasma membrane integrity and as 
such represent powerful triggers of inflammation. In contrast, cardiomyocyte 
apoptosis, an energy-consuming process regulated via intrinsic and extrinsic 
pathways,11 typically does not elicit an inflammatory reaction.10 With 
TUNEL staining of injured hearts pointing towards similar directions 
(Figure 4A and B), accelerated cardiomyocyte apoptosis appears to represent 
the main culprit of increased infarct size in rGDF11-supplemented ani-
mals.10,74 Interestingly, cytosolic mediators regulating cardiomyocyte survival 

pathways in the setting of I/R injury, such as Akt, Erk1/2, and Stat1,10 remained 
unaltered upon rGDF11 delivery (see Supplementary material online, 
Figure S1), implying distinct causative mechanisms: indeed, targeted transcrip-
tomics together with immunomapping studies favour the involvement of 
non-myocyte CD105+ cell populations, with our ex vivo study’s hypothesis- 
generating results suggesting a possible indirect (paracrine-mediated) effect.12

However, current knowledge on the cardioprotective function of this type of 
cells relies predominantly on experimental work involving isolated/trans-
planted CD105+ cells (or cell products derived therefrom); thus, whether 
this concept is also applicable to endogenous (resident) CD105+ cells remains 
to be addressed by future experimental work using suitable in vivo models.

Mstn and Gdf11 share many functional properties for muscle mass con-
trol in mice,75 but the contrasting myocardial expression pattern during 
ageing and upon I/R injury (Figure 1B)59,60 coupled with marked differences 
in their predictive utility for final infarct size in human patients (Figure 5C) 
strongly suggests that GDF11 and MSTN play distinct roles during I/R 
injury. In fact, both aptamer- and antibody-based detection methods 
commonly employed in the past were found to be non-specific for 
GDF11 (and thus to cross-react with MSTN): indeed, in contrast to the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Risk of adverse events, lesion characteristics, discharge medications, and MACE rates of all patients with MI according to GDF11 tertiles

All patients GDF11 tertile 1 GDF11 tertile 2 GDF11 tertile 3 P value
n = 100 <2.79 ng/mL (n = 33) 2.79–3.33 ng/mL (n = 34) >3.33 ng/mL (n = 33)

GRACE 2.0 score (%)

Death in hospital 3.2 (1.5–5.1) 2.6 (1.3–5.0) 3.1 (1.3–4.6) 3.8 (2.3–7.7) 0.128a

Death at 6 months 9.0 (4.0–15.0) 8.0 (4.0–15.0) 7.0 (4.0–12.8) 11.0 (6.0–20.0) 0.036a

Death at 1 year 6.3 (3.7–12.7) 5.7 (2.8–11.7) 6.0 (3.7–8.6) 8.1 (4.8–16.0) 0.061a

Management delay

Onset-to-PCI (min) 291.0 (177.0–517.3) 201.0 (145.5–664.0) 305.0 (224.5–460.5) 275.0 (191.3–490.3) 0.805a

Lesion characteristics

No of lesionsd 1.0 (1.0–2.0) 1.0 (1.0–2.0) 1.0 (1.0–2.0) 1.0 (1.0–2.0) 0.814a

No of lesions stentedd 1.0 (1.0–2.0) 1.0 (1.0–1.0) 1.0 (1.0–2.0) 1.0 (1.0–1.3) 0.806a

LAD occlusion 25/100 (25.0) 11/33 (33.3) 6/34 (17.6) 8/33 (24.2) 0.331b

Proximal lesion 9/100 (9.0) 5/33 (15.2) 1/34 (2.9) 3/33 (9.1) 0.186b

Total occlusion by main lesione 51/90 (56.7) 15/30 (50.0) 17/32 (53.1) 19/28 (67.9) 0.206b

Main lesion morphology

AHA/ACC type A 8/90 (8.9) 3/30 (10.0) 2/32 (6.3) 3/28 (10.7) 0.928a

AHA/ACC type B 63/90 (70.0) 19/30 (63.3) 24/32 (75.0) 20/28 (71.4)
AHA/ACC type C 19/90 (21.1) 8/30 (26.7) 6/32 (18.8) 5/28 (17.9)

Duration of hospital stay (days) 2.0 (1.0–2.25) 1.0 (1.0–2.0) 2.0 (1.0–3.0) 2.0 (1.0–2.0) 0.011a

Discharge destination
Rehabilitation/other hospital 72/99 (72.7) 26/33 (78.8) 19/33 (57.6) 27/33 (81.8) 0.089b

Home 27/99 (27.3) 7/33 (21.2) 14/33 (42.4) 6/33 (18.2)

Discharge medication
Aspirin 99/99 (100.0) 33/33 (100.0) 33/33 (100.0) 33/33 (100.0) ..

ACEI/ARB 92/99 (92.9) 30/33 (90.9) 30/33 (90.9) 32/33 (97.0) 0.693b

Beta-blocker 91/99 (91.9) 31/33 (93.9) 30/33 (90.9) 30/33 (90.9) 0.999b

P2Y12 receptor inhibitor 96/99 (97.0) 31/33 (93.9) 32/33 (97.0) 33/33 (100.0) 0.771b

Statin 97/99 (98.0) 32/33 (97.0) 32/33 (97.0) 33/33 (100.0) 0.999b

Outcomes
MACE at 1 yearf 22/100 (22.0) 6/33 (18.2) 6/34 (17.6) 10/33 (30.3) 0.237c

Data are n/N (%) or median (IQR). 
ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers; CABG, coronary artery bypass grafting; GRACE, global registry of acute coronary events; LAD, left anterior 
descending coronary artery; LMWH, low-molecular-weight heparin; PCI, percutaneous coronary intervention. 
aKruskal–Wallis H test. 
bχ2 test or Fisher’s exact test. 
cTest for trend. 
dDefined as lesions with ≥75% luminal stenosis. 
eDefined as first stented coronary lesion. 
fDefined as a composite measure of cardiac death, non-fatal myocardial infarction, or ischaemia-driven revascularization.
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Figure 5 Age dependency of circulating GDF11/MSTN and their predictive value for the estimation of final infarct size in patients with acute myocardial 
infarction. (A, B) LC/LC-MS-based quantification of plasma GDF11 and MSTN per age quintile (n = 20/quintile; left) and Spearman rank correlation between 
continuous GDF11 and MSTN, respectively, with age (right). Simple linear regression and 95% confidence bands of the best fit line is plotted. 
(C ) Unstandardized coefficients (B) of each independent variable included in the final regression model (model 3) ranked by their importance for the prediction 
of standardized peak CK-MB levels, a surrogate of final infarct size. Line length corresponds with the 95% CI. P values were calculated by one-way ANOVA 
[A (left), B (left), C ] or Spearman rank correlation [A (right), B (right)], with Spearman’s ρ along with its 95% CI noted in the respective panel of A and B, 
respectively. Data in A and B (left panels) are presented as bar graphs with error bars (mean and SEM) with single data points superimposed.
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initial paradigm,27,28 various studies have reported variable or no significant 
age-related change in GDF11 protein levels in humans.29–31 Importantly, 
circulating MSTN protein levels were reported to exceed those of 
GDF11 in mice29,33 and humans30,31 as they did in the current study.

Hence, initially reported associations might have been driven, at least in 
part, by MSTN cross-reactivity. In this regard, it is noteworthy that ele-
vated GDF11 + MSTN levels, as assessed by the above-noted assays, 
were linked to improved cardiovascular outcomes in patients with ischae-
mic heart disease76 and were recently shown to inversely associate with 
the composite outcome comprising non-fatal MI, non-fatal stroke, heart 
failure, and all-cause death in patients recruited across nine different stud-
ies and at high risk for adverse events using machine learning–based ap-
proaches.77 Although our study in human MI patients was not designed 
to gauge the association of high GDF11 or MSTN with major adverse 
cardiovascular events, it is interesting to note that the composite measure 
of cardiac death, non-fatal MI, or ischaemia-driven revascularization within 
1 year tended to occur less likely with increasing MSTN levels (ptrend = 0.076) 
(see Supplementary material online, Table S4), whereas no such association 
was observed with GDF11 (Table 2).

Collectively, our study’s results challenge the initially reported heart re-
juvenating effects of GDF11 and suggest that high levels of circulating 
GDF11 exacerbate myocardial injury irrespective of age, with similar re-
sults obtained in prospectively recruited patients with MI. Hence, persist-
ently high levels of circulating GDF11 during ageing may contribute to the 
age-dependent loss of endogenous cardioprotective mechanisms and thus 
poor outcomes of elderly patients post-MI.

4.1 Limitations
Considering the lack of significant effects of sex on circulating GDF11,30

only male C57BL/6 mice have been used in the current study. As sex- 
specific differences in the regulation of its closely related homolog 
MSTN exist,78 further studies may be warranted to test whether systemic 
GDF11 replenishment exerts similar effects on female hearts upon I/R in-
jury. Second, although the abundancy of cardiomyocytes as the major cell 
type populating the adult heart22 and the unchanged inflammatory profiles 
favour increased apoptosis of cardiomyocytes as the main mechanism trig-
gering differences in infarct size, accelerated cell death of non-myocyte cells 
may contribute as well. Third, although CD105 expression is mainly con-
fined to mesenchymal/stromal cells with high myogenic differentiation po-
tential such as cardiac-specific mesenchymal stromal cells,13 as confirmed 
by single-cell RNA-sequencing,79 we cannot exclude that other cell types, 
including fibroblasts, endothelial cells, or immune cells, also contribute to 
observed effects. In fact, while the precise cellular origin of CD105+ (and 
CD45−) cells remains elusive, their intrinsic cardiac origin is out of ques-
tion80 most likely representing a heterogeneous, non-myocyte cell popula-
tion,81 prompting us to gauge the effects of GDF11 using isolated CD105+ 

cells. Although targeted transcriptomics and immunomapping studies fa-
vour an indirect effect, our ex vivo study does not provide any direct experi-
mental evidence, highlighting the need for further innovative studies to 
disentangle the mechanistic basis of resident CD105+ cells’ function during 
myocardial 
I/R injury. Finally, given the unavailability of cardiac magnetic resonance or 
single-photon emission computed tomography–derived measures of final 
infarct size in SPUM-ACS (ClinicalTrials.gov Identifier: NCT01000701), 
standardized peak CK-MB values were used as a surrogate thereof.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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Translational perspective
Acute myocardial infarction (MI) is a frequent cause of heart failure and premature death in the elderly. Recent studies challenge the initial paradigm 
attributing growth differentiation factor 11 (GDF11) a heart rejuvenating function. Here, we show that, in stark contrast to the initial paradigm, sys-
temic GDF11 replenishment exacerbates myocardial injury in a translational mouse model of MI. In line, circulating GDF11 increased as a function of 
age in patients with MI, with GDF11 emerging as an independent predictor of myocardial infarct size. Hence, high levels of GDF11 may contribute to 
the age-dependent loss of endogenous cardioprotective mechanisms, rendering elderly patients particularly susceptible for adverse outcomes follow-
ing acute MI.
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