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How well can people observe the
flow state of temporary streams?

Mirjam Scheller*, Ilja van Meerveld and Jan Seibert

Department of Geography, University of Zurich, Zurich, Switzerland

Even thoughmore than half of the global river network does not have continuous

flow, temporary (i.e., non-perennial) streams are poorly represented in traditional

monitoring networks. Therefore, new approaches are needed to monitor these

streams. Citizen science provides an interesting opportunity as people, equipped

with smartphones, can observe the flow state of temporary streams. Such

observations can go beyond a simple classification of flow vs. no flow and

include ecologically important states, such as standing water, isolated pools,

or wet streambeds. However, the quality of citizen science data for temporary

streams has so far not been thoroughly assessed. Therefore, we asked more than

1,200 people during 23 field days to visually determine the flow state of eight

temporary streams based on six classes ranging from a dry streambed to flowing

water. Participants could most clearly distinguish a flowing stream from a non-

flowing stream. The overall agreement between participants was 66%; 83% of the

selected flow states were within one class of the most frequently selected flow

state. The agreement with the expert was lower (56% chose the same class, and

79% chose a state within one class). Inconsistencies between the selected flow

state and answers to specific yes-no statements about the temporary stream

were largest for the dry streambed and damp/wet streambed states. These

discrepancies were partly caused by participants looking at different parts of

the stream (i.e., participants considered the flow state for a location further

upstreamor downstream). To ensure that all participants determine the flow state

comparably, we recommend clear definitions of the flow state classes, detailed

information on the exact location for which the flow state needs to be

determined, as well as more training.

KEYWORDS

intermittent streams, citizen science, participatory science, crowdsourcing, non-
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1 Introduction

Temporary streams (i.e., non-perennial streams) are highly dynamic systems (Wohl,

2017) that do not always contain flowing water. The different flow states of temporary

streams provide unique habitats for terrestrial and aquatic species (Boersma et al., 2014;

Bogan et al., 2015; Sánchez-Montoya et al., 2016). A dry streambed can, for example, serve

as a bank for eggs of aquatic invertebrates and seeds of aquatic plants, while isolated pools

are refugia for aquatic species (Brock et al., 2003; Steward et al., 2012). Thus, it is essential to

accurately monitor the different flow states of temporary streams for hydro-ecological

research and management (Skoulikidis et al., 2017; Kaletova et al., 2021). However,

temporary streams have mostly been neglected in hydrological studies and monitoring

networks (Benstead and Leigh, 2012; Snelder et al., 2013; Godsey and Kirchner, 2014; van

Meerveld et al., 2020), even though more than half of the global stream network is non-

perennial (Larned et al., 2010; Datry et al., 2014; Messager et al., 2021). The lack of
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hydrological data for temporary streams is, among others, related to

the difficulty in measuring zero or very low flows (Zimmer et al.,

2020) and the lack of appreciation of dry rivers (Armstrong et al.,

2012; Cottet et al., 2023).

Low-cost sensors have been developed to investigate the high

spatial variability in the flow states of temporary streams (Goulsbra

et al., 2009; Bhamjee and Lindsay, 2011; Jaeger and Olden, 2012;

Assendelft and vanMeerveld, 2019; Kaplan et al., 2019) but their use

is still restricted to experimental studies. The flow state of temporary

streams can also be determined from aerial photographs (Spence

and Mengistu, 2016; Borg Galea et al., 2019; Davidson et al., 2023).

However, this method cannot be applied in forested areas, and its

temporal resolution does not allow studying state changes during

storm events (Jensen et al., 2019; Kaplan et al., 2019). Other studies

have used visual approaches as they are relatively simple. Flow states

can be observed at specific stream locations (Beaufort et al., 2018;

Sefton et al., 2019) or along the entire stream network (Jaeger and

Olden, 2012; Godsey and Kirchner, 2014; Jensen et al., 2019).

However, the observer has to visit each location, which might

require significant travel times. Thus, obtaining high spatial and

temporal resolution data of temporary stream states is difficult.

Citizen science projects can obtain high spatial resolution data,

even in remote areas (Weeser et al., 2018), and thus provide an

excellent opportunity to collect hydrological data (Lowry and

Fienen, 2013; Njue et al., 2019). Citizen scientists have observed

water levels (Lowry and Fienen, 2013; Weeser et al., 2018), flood

heights and extents (See, 2019; Sekajugo et al., 2022), groundwater

levels (Little et al., 2016; Nath and Kirschke, 2023), water quality

(Capdevila et al., 2020; Blanco-Ramírez et al., 2023), plastic pollution

(Cook et al., 2021; Syberg et al., 2020), and also the state of

temporary streams (Turner and Richter, 2011; Kampf et al., 2018;

Allen et al., 2019; Truchy et al., 2023). Citizen science projects for

temporary streams record the flow state with a visual approach

(i.e., they do not use any measurement devices, except for a global

positioning system (GPS) or a smartphone). The number of flow

states varies from project to project but ranges between two (e.g.,

Turner and Richter, 2011; Allen et al., 2019) and six (CrowdWater;

www.CrowdWater.ch). While some projects focus on the presence

or absence of water (e.g., Turner and Richter, 2011; Jensen et al.,

2017; Allen et al., 2019), others focus on the presence or absence of

flow (e.g., Bhamjee and Lindsay, 2011; Jaeger and Olden, 2012;

Snelder et al., 2013; Williamson et al., 2015; Kaplan et al., 2019). In

one of the longest-running projects, citizen scientists have mapped

the flow state along the 279 km long San Pedro river in Arizona

(USA) annually since 1999 (Turner and Richter, 2011; Allen et al.,

2019). Other projects started more recently, e.g., Stream Tracker

(www.streamtracker.org) and CrowdWater, which have been active

since 2017, and DRYvER (www.dryver.eu) since 2020.

Fovet et al. (2021) included citizen science observations of

temporary streams into their network design and assumed that

these observations, in combination with others (e.g., gauging

stations and satellite imagery) improve the mapping of

temporary streams. However, there are often also concerns

regarding the accuracy and consistency of data collected by

citizen scientists (Haklay et al., 2010; Aceves-Bueno et al., 2017;

Mitchell et al., 2017). The determination of a flow state is subjective,

which could influence the data quality. However, in the study of

Seibert et al. (2019), where twelve students determined the flow state

of 30 sites along very small headwater streams (width <0.5 m) in the

Swiss pre-Alps, most students chose the same flow state (on average

72% chose the same flow state for a particular location, and 93%

chose a flow state within one class of the most frequently selected

flow state for that location). To obtain consistent observations, Datry

et al. (2016) assigned the same citizen scientists to the same stream

segments for their biweekly observations. In other studies, citizen

scientists received training at local events to increase the consistency

of the observations (Turner and Richter, 2011; Allen et al., 2019).

They also addressed the accuracy of the GPS, and, thus, the location

of the observations. The experiences gained during the Swiss field

study with students highlighted the need to provide clear guidance

on the stream length that needs to be considered as well (Seibert

et al., 2019). Although the quality of flow state observations by

citizen scientists can theoretically be determined by an expert when a

picture is uploaded together with the selected flow state (as it is, for

example, done in the Stream Tracker, RIU.NET (https://www.ub.

edu/fem/index.php/en/inici-riunet-en), DRYvER and CrowdWater

projects) (Wiggins et al., 2011), so far, there has not been a detailed

study to determine the quality of visual stream state observations for

a range of streams by a large group of different citizen scientists.

In this study, we asked 1,268 people at eight different temporary

streams in Switzerland and Southern Germany to visually assess the

flow state of a stream and to fill out a questionnaire. We used these

survey results to address the following research questions:

1. How well do flow state observations by different citizen

scientists agree?

2. For which flow states are the visual flow state observations

most reliable?

3. How well do the answers to different yes-no statements

regarding a stream by single citizen scientists agree with

their selected flow state?

4. What factors affect the accuracy and reliability of visual flow

state observations by citizen scientists?

2 Methods

2.1 Overall approach

Previous studies have shown that surveys are a suitable way to

determine the reliability of citizen science data (Rinderer et al., 2012;

Artell et al., 2013; Strobl et al., 2020). Therefore, in this study, we

used a structured pen-and-paper questionnaire (see section 2.3) and

asked 1,268 participants questions about the flow state of the stream

that they could see in front of them. Like Strobl et al. (2020), we

approached passers-by and asked them to participate in the 5-min

questionnaire, i.e., we used a convenience sampling approach. We

did this for eight temporary streams in Switzerland and southern

Germany on 23 days between April and September 2022.

2.2 Study sites and field days

We selected eight temporary streams for the surveys. The

streams were located along hiking paths or near attractions, so

that we could reach a sufficient number of participants. Five of the
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study sites were located in Switzerland (Pizol (P), Sihlwald (S),

Thurfälle (Th), Töss (T), Züriberg (Z)) and three in Germany

(Donauversickerung (D), Dreisam (Dr), Hinterzarten (H))

(Figure 1). The selected streams varied from small alpine streams

(P), to headwater streams (H, S, Z), to larger rivers (D, Dr, T, Th)

(Figure 1; Table 1). The stream width and visible stream length were

determined in the field and used to group the streams into three

classes (small, medium, large; Table 1). Some streams (Z, S, and H)

had vegetation in the stream or on the streambank, which made it

(more) difficult to see the streambed, while others were open. The

climate at the study sites varies from temperate, with no dry season

and a warm summer (Köppen-Geiger classification: Cfb (Kottek

et al., 2006)), to cold, with no dry season and a warm summer (DfB).

The field days were selected based on the expected flow state to

cover a variety of flow states. Not all flow states were observed for

each stream and not all flow states were surveyed a similar number

of times (Table 1). We did most of the surveys on weekends and

during pleasant weather conditions so that people would be more

willing to participate. We stayed for 2.5–5 h (average 3.6 h) at each

site and aimed to survey at least 40 people per day (cf. Field, 2015;

Strobl et al., 2020). The average number of participants was 55

(median: 56). However, on field day S2, only 30 people filled in the

questionnaire. We did not count the number of people we asked to

participate but estimated that about 80% of the people that we

approached were willing to join (excluding bikers).

2.3 Questionnaire

The questionnaire was developed iteratively over three test runs

before deciding on the final version. Between the test runs, we

changed the questions and structure of the questionnaire based on

participants’ feedback and discussions with colleagues. After these

initial tests, we finalized the questionnaire (Supplementary Material

S1). We used this final version for all surveys presented in this paper.

The pen and paper questionnaires were available in English and

German and contained four parts (see Supplementary Material S1).

In the first part, the participants were asked about their knowledge of

the survey location and whether they had previously heard of the

CrowdWater project. Then, they were asked to determine the flow

state of the stream in front of them based on six different icons with

either a one- or two-word description (Table 2). The six classes are

the same as those used in the CrowdWater app: dry streambed,

damp/wet streambed, isolated pools, standing water, trickling water,

and flowing (Table 2). These six flow state classes represent unique

habitats for aquatic and terrestrial species. At the end of this second

part, we asked the participants for an estimate of the length of the

stream reach that they considered when they determined the flow

state, whether they found it challenging to decide on one flow state,

and whether they considered other information than what they

could see in front of them.

In the third part of the questionnaire, the participants were given

14 statements that could be answered with either yes or no, such as

“There is water along the entire stream length.” and “The stream is

completely dry”. These yes-no statements were designed to assess if

the participants understood the icons and the one- or two-word

descriptions of the flow states, i.e., we used the answers to these

statements to determine the consistency with the flow state that they

had selected in part 2. In the final part, we asked some demographic

questions (see Supplementary Material S2 for results) and provided

space for comments. We did not give the participants additional

information or help while filling in the questionnaire because we

wanted to assess how people intuitively interpret the six flow state

classes. This was motivated by the general observation that people

rarely study manuals or explanation videos and rather start using an

app immediately. However, we were available for questions and

discussions afterwards.

2.4 Data analyses

2.4.1 Agreement among participants during a
field day

For each field day, we determined the percentage of participants

who selected a particular flow state and the flow state that was

selected by most of the participants (i.e., the mode). We considered

FIGURE 1

(A) Locations and (B) pictures of the eight study sites in Switzerland (CH) and Germany (DE). For the abbreviation of the field days (printed in the top

left corner of the pictures), see Table 1. Source for the DEM and river network in (A): https://www.eea.europa.eu/ (last accessed 07.04.2023).
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the most frequently selected flow state the truth (i.e., the correct flow

state). We then determined the percentage of participants who

selected the correct flow state for each field day (i.e., the

percentage of participants who selected the same flow state as the

mode) and refer to this as the agreement Amode. We, furthermore,

determined the percentage of participants who selected the same

flow state as the mode or one of the neighboring flow states

(Amode±1). Thus, if most participants selected the trickling flow

class, we determined the percentage of participants who selected

the standing water, trickling, or flowing flow state classes to calculate

Amode±1. However, for the wettest or driest flow states, we only

included one neighboring class. Thus, if most participants selected

the dry streambed, we counted only the percentage of participants

who selected the dry streambed or the damp/wet streambed class for

Amode±1. Similarly, if most participants said the stream was flowing,

we counted the percentage of participants who selected the trickling

or flowing classes.

To further quantify the variation in the choices of the participants,

we also determined for each participant howmany classes the selected

flow state was away from themode (δmode). Finally, we determined the

mean value of δmode for different groups of flow states, streams, and

groups of participants and refer to this mean value of δmode as the

Δmode. For comparison, we also calculated the mean value of the

absolute values of δmode (Δmode, abs). It is important to emphasize that

these calculations with ordinal data require careful interpretation.

We also used the expert’s opinion as the true flow state. The

expert’s opinion is the flow state class chosen by the first author,

who has considerable experience in temporary stream

observations (including discussions with other hydrologists at

different streams) and was present during all field days. Thus, we

also calculated for each field day the percentage of participants

who selected the same flow state class as the expert (Aexpert) and

the same class as the expert or one of the neighboring flow states

class (Aexpert±1). We also determined for each participant the

number of classes that the selected flow state was away from the

expert’s opinion (δexpert) and the mean value of δexpert for

different groups of flow states, streams, and groups of

participants (Δexpert and Δexpert, abs).

We used the Kruskal-Wallis test (Hollander et al. (2014); stats

package in R) with a Dunn-Bonferroni post hoc test (Dunn (1964);

TABLE 1 Overview of the study sites and the individual field survey days. The most frequently selected flow state by the participants (i.e., the mode) and
expert’s opinion of the flow state are given for each field day as well.

Stream
name/area

Stream bed
width

Visible stream
length

ID Date Number of
participants

Flow state:
Mode

Flow state:
Expert

Donauversickerung L (~10 m) L (~100 m) D1 10.07.23 56 Pools Pools

D2 06.08.23 60 Pools Pools

D3 13.08.23 65 Dry Dry

Dreisam L (~20 m) L (~1000 m) Dr1 11.08.23 50 Dry Dry

Dr2 24.08.23 55 Standing Trickling

Dr3 26.08.23 51 Pools Trickling

Hinterzarten S (~0.3 m) S (~10 m) H1 14.05.23 56 Standing Standing

H2 14.08.23 65 Wet Standing

H3 23.08.23 56 Standing Standing

Pizol S (~1 m) M (~30 m) P1 03.07.23 65 Dry Dry

P2 21.08.23 71 Dry Wet

Sihlwald M (~2 m) S (~10 m) S1 23.04.23 41 Trickling Flowing

S2 23.07.23 30 Tickling Flowing

Thurfälle M (~7 m) L (~50 m) Th1 04.06.23 62 Flowing Flowing

Th2 28.08.23 65 Pools Pools

Th3 04.09.23 63 Dry Wet

Töss L (~15 m) L (~100 m) T1 01.05.23 45 Flowing Flowing

T2 09.07.23 40 Dry Pools

T3 02.09.23 44 Dry Pools

Züriberg M (~2 m) M (~20 m) Z1 08.05.23 54 Flowing Flowing

Z2 11.06.23 65 Flowing Flowing

Z3 13.07.23 45 Wet Wet

Z4 16.08.23 64 Dry Dry
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FSA package in R) to determine if the values of δmode or δexpert were

significantly different for the different flow states, streams or groups of

participants (Table 3). We used the Mann-Whitney test (Hollander

et al. (2014); stats package in R) to determine the difference in δmode or

δexpert for participants who felt confident in their choice, and for those

who considered additional information or not.

2.4.2 Sensitivity and precision per flow state class,
and overall agreement

We created a confusion matrix for all the survey results and

determined the number of true positives (nTP), false positives (nFP),

and false negatives (nFN) based on the mode of participants’

opinions and again also on the expert’s opinion (Tharwat, 2021).

A positive condition indicates that the opinion of the participants

agrees with the majority of participants (i.e., the mode) (or the

expert). A negative condition describes a disagreement with the

majority of participants (or the expert). Thus, the total number of

true positives (nTP) for a particular flow state is the total number of

people who selected the same state as the mode (or expert). The

number of false positives (nFP) is the number of times that a

participant selected that particular flow state, but that flow state

was not selected by the mode (or the expert). The number of false

negatives (nFN) for a particular flow state is the number of times that

the participant did not select a flow state, but the mode (or expert)

did (i.e., the participants wrongly selected it to be absent). For

example, for the dry streambed class, nTP is the number of

participants who selected a dry streambed when the mode (or

expert) also selected the dry streambed class, the nFP is the

number of times that a participant selected the dry streambed

class, but the mode (or expert) selected a different class, and the

nFN is the number of times that the mode (or expert) selected the dry

streambed class, but the participant selected a different class.

Based on these counts, we determined for each flow state the

sensitivity (S) and the precision (P) (cf. Sekajugo et al., 2022):

Smode/expert �
nTP

nTP + nFN
(1)

Pmode/expert �
nTP

nTP + nFP
(2)

The sensitivity describes the proportion of time that given a

(true) flow state, a participant selects that state. In contrast, the

precision describes the proportion of time that if a participant

selected a state, it is also the true flow state (i.e., the state

selected by the mode or the expert).

The overall agreement (Aoverall) for all surveys is the percentage

of all correctly predicted flow states during all surveys. To account

for the different number of surveys for the different flow states, we

also calculated a weighted overall agreement (Aoverall, weighted), for

which we weighted the precision of the individual flow states by the

number of times they were observed (according to the mode

or expert).

2.4.3 Other flow state classes
In some projects on temporary streams, only two or three flow

state classes are used. To assess the quality of the data for these

types of classifications, we merged the six flow state classes in

three different ways: A, B, and C (see Table 2). For regrouping A

(three classes), the dry streambed and isolated pools classes were

merged into a dry streambed with or without isolated pools

class (dry - pools), the damp/wet streambed and standing

TABLE 2 Description of the six flow state classes, including the icons from the CrowdWater app and the corresponding flow states when fewer classes
would be used. The abbreviation of the nameof the flow state class is used throughout themanuscript for conciseness. Note that the description of the flow
state was obtained from the CrowdWater website (www.CrowdWater.ch) and is included here for clarification. The participants did not receive this
information (see Supplementary Material S1).

CrowdWater (CW) Regrouping

Icons Names
(abbreviation)

Description A
(3 groups)

B
(3 groups)

C
(2 groups)

Dry streambed (dry) No visible water and the streambed is dry Dry–pools No water No flow

Damp/wet streambed (wet) No visible water, but the streambed is wet (for at least 2 cm depth below

the surface)

Wet–standing

Isolated pools (pools) Separated pools of water that are not visibly flowing are present on the

streambed

Dry–pools No flow

Standing water (standing) Water but no visible flow Wet - standing

Trickling water (trickling) Very small flow, but clearly visible flowing water Flow Flow Flow

Flowing A continuous pathway of water that is flowing
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TABLE 3 Results for theMann-Whitney and Kruskal-Wallis tests of the deviation between theflow state selected by a participant and themode (δmode) or the
expert’s opinion (δexpert), as well as themean deviation (Δmode andΔexpert) andmean absolute deviation (Δmode, abs and Δexpert, abs) for the different flow states
classes, streams, and participant groups. Negative values of Δmode (Δexpert) indicate that the mean flow state was drier than the state selected by the mode
(expert), while positive values indicate a wetter state. Groups that do not share a similar letter below the p-values of the Mann-Whitney or Kruskal-Wallis
test are significantly different.

Characteristic Classes Number in class
mode/expert

p-value p-value Δmode Δexpert Δmode, abs Δexpert, abs

δmode δexpert

Flow state <<0.001 <<0.001

Dry 462/244 a a 0.335 0.169 0.335 0.169

Wet 110/179 a b 0.419 −0.592 0.819 0.672

Pools 232/265 b b −0.261 −0.651 0.847 1.004

Standing 167/177 c b −0.571 −0.713 0.981 1.029

Trickling 71/106 a c 0.072 −1.69 0.652 1.750

Flowing 226/297 b, c d −0.363 −0.497 0.363 0.497

Stream <<0.001 <<0.001

D 181 a a −0.379 −0.379 0.514 0.514

Dr 156 b b −0.093 −1.080 0.813 1.213

H 177 b c 0.012 −0.713 0.959 1.029

P 136 c a 0.328 −0.187 0.328 0.545

S 71 c, d b 0.072 −0.928 0.652 0.928

T 129 c b, c 0.437 −0.849 0.706 1.087

Th 190 b, d a 0.075 −0.258 0.387 0.559

Z 288 a a −0.312 −0.312 0.376 0.376

Width 0.001 1.1 10−4

Small 313 a a −0.057 −0.057 0.682 0.816

Medium 428 b a 0.151 0.151 0.420 0.527

Large 527 b b −0.105 −0.105 0.667 0.905

Visible stream length 0.114 1.5 10−7

Small 248 a −0.019 −0.019 0.871 1.000

Medium 364 b 0.029 0.029 0.358 0.439

Large 656 c −0.07 −0.07 0.585 0.804

Stream length considered by

participants

0.312 0.016

<5 m 353 a −0.029 −0.385 0.58 0.598

5–10 m 166 a, b 0.043 −0.411 0.485 0.632

10–25 m 156 a, b, c 0.151 −0.520 0.467 0.664

25–50 m 174 a, b, c −0.029 −0.567 0.509 0.696

50–100 m 104 b, c −0.146 −0.65 0.650 0.883

100–500 m 150 c −0.014 −0.705 0.589 0.897

>500 m 108 b, c −0.103 −0.738 0.776 0.981

(Continued on following page)
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water classes were combined into a wet streambed with possibly

standing water class (wet - standing), and the trickling water and

flowing classes were merged into a flowing water class (flow). For

regrouping B (three classes), the dry streambed and damp/wet

streambed classes were combined into a no water class (no water),

the isolated pools and standing water classes were merged into a water,

but no flow class (no flow), and the trickling water and flowing classes

were again combined into the flowing water class (flow). For regrouping

C (two classes), we combined the dry streambed, damp/wet streambed,

isolated pools, and standing water classes into a no flow class (no flow)

and the trickling water and flowing classes into a flowing water class

(flow). We calculated the Aoverall for these different groupings and the

sensitivity (S) and precision (P) for each new class.

3 Results

3.1 Agreement of the flow state observations

Combining all surveys, two-thirds of the participants selected the

same class as the mode (Aoverall). The Aoverall, weighted was 0.67, and thus

almost identical to Aoverall. Only 17% and 4% of all participants selected

a flow state that was more than one or two classes away from the mode,

respectively (Figure 2). For field days for which most participants

selected either the dry streambed class or flowing class, the

agreement was highest (Amode±1: >89%; Figure 3). Thus, for these

“extreme” classes, most participants selected the same flow state as the

majority of other participants (Amode) or were just one class off

(Amode±1). When the mode was not the dry streambed or flowing

water class, 28% of participants selected a flow state that was more than

one class off from the mode. The agreement was lowest when most

participants selected the isolated pools or standing water classes

(median Amode±1: 67% and 62%, respectively; Figure 3). Amode±1 was

particularly low (<57%) for surveys H3 and T3 for which the flow state

selected by most participants was standing water and dry streambed,

respectively (Supplementary Figure S1). Δmode was also furthest from

zero for the standing water class (Table 3).

The mode and expert opinion agreed for 14 of the 23 field days.

For five field days, the opinions differed by one class, and for four

field days, they differed by two classes. Participants tended to select

a drier flow state than the expert. The one class too dry mainly

occurred when the expert’s opinion was damp/wet streambed and

most participants selected the dry streambed (P2, Th3), or when the

expert selected the flowing class and the participants selected the

trickling water class (S1, S2) (Figures 2, 3). The difference of two flow

state classes mainly occurred when the expert had selected the

isolated pools or standing water class and the participants

(mode) selected the dry or wet/damp streambed class (e.g., H2,

T2). As a result, the overall agreement between the participants and

the expert was lower than for the mode (Aoverall: 56% for the expert

vs. 66% for the mode).

3.2 Sensitivity and precision for the six
flow states

When assessed by the mode, the sensitivity and precision were

highest for the dry streambed and flowing classes (>80%, Figure 4, top

row). The sensitivity wasmuch lower for the other classes (Smode: ~50%),

and lowest for the standing water class (Smode: 40%). The precision was

intermediate for the standing water and isolated pools classes, and lowest

for the damp/wet streambed and trickling water classes.

The most striking point of the confusion matrix for the expert’s

opinion, is the high number of false negatives for the dry streambed

class (nFN: 230; Supplementary Figure S2). Many participants selected

the dry streambed class when the expert chose the wet/damp streambed

or isolated pools class (Figure 3). This resulted in a low precision (Pexpert:

59%) for the dry streambed class, even though the sensitivity

TABLE 3 (Continued) Results for theMann-Whitney and Kruskal-Wallis tests of the deviation between the flow state selected by a participant and themode
(δmode) or the expert’s opinion (δexpert), as well as the mean deviation (Δmode and Δexpert) and mean absolute deviation (Δmode, abs and Δexpert, abs) for the
different flow states classes, streams, and participant groups. Negative values of Δmode (Δexpert) indicate that the mean flow state was drier than the state
selected by the mode (expert), while positive values indicate a wetter state. Groups that do not share a similar letter below the p-values of the Mann-
Whitney or Kruskal-Wallis test are significantly different.

Characteristic Classes Number in class
mode/expert

p-value p-value Δmode Δexpert Δmode, abs Δexpert, abs

δmode δexpert

Knowledge of the area 0.014 0.005

First time 515 a a 0.030 −0.409 0.496 0.611

1–5 times 240 a, b a, b −0.039 −0.515 0.597 0.755

>5 times 506 b b −0.084 −0.698 0.639 0.853

Consideration of additional

information

0.077 0.871

Yes 951 −0.041 −0.591 0.904 1.064

No 97 0.245 −0.574 0.575 0.768

Confidence in determining the

flow state class

0.006 0.044

Yes 945 a a −0.065 −0.518 0.531 0.691

No 301 b b 0.113 −0.603 0.729 0.890
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was high (Sexpert: 92%) (Figure 4, top row). The precision and sensitivity

were lowest for the trickling water class, but this flow state was selected

by the expert on only two field days.

3.3 Consistency of the questionnaire
responses for individual participants

The answers to the different yes-no statements of the

questionnaire were consistent with the (previously) selected flow

state class for 78%–98% of the participants, depending on the

statement (Figure 5). Theoretically, participants who selected the

dry or damp/wet streambed flow state should not have seen any

water in the stream. However, 27% of the participants who selected

the dry streambed class answered yes when asked if they could see

disconnected pools of water. Similarly, 16% said that they could see

water in the stream, 7% could see water along the entire visible stream

length, and 49% answered yes when asked if the stream was

completely damp/wet (Figure 5). A large proportion of the

participants who selected the damp/wet streambed class also said

that they could see disconnected pools of water (46%), water in the

stream (57%), or water along the entire stream (25%). For the other

four flow states, the percentage of inconsistent answers was small

(1%–6%).

FIGURE 2

Stacked bar plots showing the frequency of the deviations between the flow state class selected by a participant and the flow state class selected by

most participants (δmode; (A)) or the expert (δexpert; (B)) for that day. The stacked bar plots show the results for all surveys combined but are color coded by

the flow state chosen by themode or the expert. Negative values of δmode and δexpert indicate that the selected flow state was drier than the state selected

by the mode or expert, while positive values indicate a wetter flow state.

FIGURE 3

Heatmap showing the percentage of participants who selected a certain flow state class for each field day. The O represents the mode (i.e., the flow

state class selected bymost participants), and the X represents the expert opinion for that day. The number of participants per field day (# Participants), the

percentage of participants who selected the same flow state as the mode (Amode) or one of the neighboring classes (Amode±1) are given above the

heatmap. The field days are sorted by the flow state according to the mode and mean flow state.
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3.4 Factors affecting the deviation from the
mode or expert opinion

The deviation of the selected flow state class from the expert was

related to the visible stream length and the considered stream length.

Δexpertwas closer to zero andΔexpert, abswas smaller when the considered

stream length was shorter than 5 m than when it was longer than 50 m

(Table 3; Supplementary Figure S3); 28%of the participants considered a

distance shorter than 5 m and 61% shorter than 50 m. The participants

at the Dreisam (Dr) considered by far the longest stream length when

determining the flow state class (median: 500 m). It wasmore than twice

the visible length for 14% of all the responses.
Participants who did not use any additional information tended to

select a wetter stream state than the mode (Δmode = 0.25), though the

difference was not statistically significant (Table 3). Themost frequently

used additional information by the participants were the flow state on

the previous days or familiarity with the stream for several years, the

weather in the last days/weeks, newspaper articles about the stream, or

information on water management actions (e.g., abstraction, re-

naturalization programs). For those who used additional knowledge,

Δmode was close to zero (−0.04) but the deviation from the mode was

bigger than if no additional information was used (Δmode, abs of 0.90 vs.

0.58) (Table 3). Only 4% of the participants who were at a site for the

first time used additional knowledge to decide on the flow state vs.

12% of those who had been there more than five times. The

deviation from the mode or expert’s opinion was significantly

smaller for participants who visited the site for the first time than

those who had been there more than five times. The deviation was

also smaller for the 75% of participants who felt confident in their

selection of the flow state class than for those who were insecure

about their decision (Δmode of −0.07 vs. 0.11 and Δmode, abs of

0.53 vs. 0.73; Table 3).

3.5 Alternative flow state classes

3.5.1 Merged flow state observations
Merging the six different flow state classes into two classes

improved the overall agreement (Figure 6, regrouping C). Aoverall

changed from 66% to 92% for themode and from 56% to 88% for the

expert’s opinion. Note that by having fewer classes the overall

agreement automatically increases because the probability of a

class being correct becomes higher when there are fewer classes.

The overall agreement for the two regroupings with three classes

(regrouping A and B) did not differ (Figure 6). The sensitivities and

precision of the merged flow state classes were higher than for the

original six flow state classes (Figure 4). For regrouping A and B, the

sensitivity and precision were lowest for the wet-standing and no-

flow class, respectively. For regrouping C, the sensitivity was lower

for the flow class than the no-flow class (Figure 4).

3.5.2 Flow state observations from yes-no
statements

Although the yes-no statements were not formulated so that a

flow state class could be derived from them directly, such

statements could be used to derive a flow state or to create a

flow chart to determine the flow state. In general, the consistency

between the chosen flow state and the answers to a single yes-no

statement or two yes-no statements was high (Table 4).

For example, if the stream was dry, we expected the

participants to say yes to the statement “The stream is

completely dry.” and no to the statements “The streambed is

completely damp/wet.“, “There are disconnected pools of

water.“, “There is water along the entire stream length.“, and

“There is water visible in the stream.“. Only 38% of the

participants answered all five statements as expected when

the stream was dry (based on the mode) vs. 64% for only the

statement on the streambed being completely dry (Table 4).

Similarly, for standing water, we would expect the participants

to not only answer yes to the statement “There is water along the

entire stream length.” and no to the statement “The water in the

stream is flowing.” but to also say yes to the statements “The

streambed is completely damp/wet.” and “Water is visible in the

FIGURE 4

Sensitivity and precision of the flow state classes for the original

data and when the data were regrouped into three or two different

classes with the mode (circle) or expert’s opinion (triangle) used as the

truth. See Table 2 for information on how the six classes

were regrouped.
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stream.” and no to the statements “The stream is completely

dry.” and “There are disconnected pools of water.”. Only 7% of

the participants answered all six of these yes-no statements

according to our expectation when there was standing water

(mode) (vs. 47% for only the first two statements (Table 4)).

4 Discussion

4.1 How well can citizen scientists observe
the flow state?

The level of agreement among the participants (Amode: 66%)

compares well to the agreement reported in other studies that used

surveys to determine the quality of citizen science data. These

previous studies based on visual assessments (e.g., water level

classes (Strobl et al., 2020), soil moisture (Rinderer et al., 2012;

Rinderer et al., 2015), and water quality (Artell et al., 2013)) reported

overall agreements of 46%–70%. In these studies, the classes selected

by the participants were either compared to the experts’ opinions

(Strobl et al., 2020), the opinion of the majority of the participants

(Rinderer et al., 2012; Rinderer et al., 2015), or measured values

(Artell et al., 2013). The number of classes ranged from five (Artell

et al., 2013), to seven (Rinderer et al., 2012; Rinderer et al., 2015), to

ten (Strobl et al., 2020). Thus, the overall agreement values obtained

FIGURE 5

Bar plots showing the answers of participants to seven of the yes-no statements after they had selected the flow state for the stream that they could

see in front of them. The answers that are inconsistent with the previously selected flow state class are marked with a hashed pattern; the overall

percentage of “inconsistent” answers per statement is given in the top right corner of each plot. The participants were asked not to answer certain

statements if they said that no water was visible in the stream, but some still did.

FIGURE 6

Overall agreement (Aoverall; i.e., the percentage of all correctly

predicted flow states) for the original six flow state classes (CW), the

reclassification into three classes (A, B), and two classes (C) when the

mode (circle) or expert’s opinion (triangle) was used as the truth.

See Table 2 for information on how the six classes were regrouped.

Note that the y-axis starts at 50% to show the differences in Aoverall for

the different classifications better.
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in our study seem to be good and comparable to these studies.

Aceves-Bueno et al. (2017) report that for 80% of citizen science

studies in natural sciences, the agreement was higher than 55%; for

60% of the studies, it was higher than 81%.

Interestingly, the agreement among the participants was also on

par with studies that used sensors to detect the presence of water or

flow. For example, the mean agreement between data from four

different low-cost sensors and time-lapse camera images for several

streams in a small Swiss headwater catchment varied between 75%

and 99.9% (Assendelft and van Meerveld, 2019). Another study

suggested that temperature sensors always determined the dry and

not-dry flow state correctly (based on visual flow state observations)

(Constantz et al., 2001). Comparisons of dry and not-dry flow states

between water level logger data and pre-processed time-lapse

camera images led to concordant observations if the water

level logger indicated a dry stream (true positive rate: 100%), but

if the water level logger measurements indicated a not-dry

condition, observations diverged by 48%–85% (Herzog et al.,

2022). A national hydrography dataset of stream permanence

classifications disagreed one-quarter of the time with flow state

assessments from topographic maps or aerial imagery and

interviews with residents, with the disagreement being higher for

smaller streams (Hafen et al., 2020).

4.2 Why did participants’ opinions on the
flow state differ?

The flowing flow state class could be determined best. The

agreement and sensitivity were also high for the dry streambed

class, but participants tended to select the dry streambed class

even when they saw some water in the streambed (Figure 5). This

led to a low precision when assessed by the expert’s opinion and

caused the mode and the expert’s opinion to differ for half of the

field days for which the mode was a dry streambed. This result

also makes the observations regarding water and no water in the

streambed less reliable than for flow and no flow (Figure 4). The

spread in the chosen flow states and the inconsistency between

the answers to the different yes-no statements may suggest that

the participants did not understand the six flow state classes well

without any explanation. However, the differences are in part

also related to the variability in flow states along the stream, as

several flow state classes can be present along one stream

segment. The variation in the opinions (Table 3) and the

deviation from the expert’s opinion were smaller when the

considered stream lengths were smaller. Thus, the differences

between the opinions of the expert and the participants could be

caused by the fact that participants considered a different/longer

stream length than the expert. For example, on field days Dr2 and

Dr3, the stream flow state at the survey location was trickling

(according to the expert), but the stream was dry 2 km further

downstream. This may explain why 13% and 12% of the

respondents selected the dry state for Dr2 and Dr3,

respectively, even though the streambed was not dry at the

survey location. The selected flow state can also be affected by

the news, as several news outlets reported on the dry Dreisam

(Dr) earlier in the summer.

The size of the pools, in comparison to the stream width and

visibility of the pools, likely also influenced the choice of the flow

state. During field day D1, there were big pools (approximately

40 m long) and very few participants said that the streambed was

dry (Figure 3). During field days D2, T2, and T3, there were very

small pools (approximately 0.5–5 m), or the pools were slightly

hidden, and more participants selected the dry streambed class.

However, in the yes-no statements, most participants said that

they saw isolated pools of water. Thus, the participants selected

the dry streambed class despite acknowledging the presence of

pools. During field day T2, when small, isolated pools

(approximately 0.5 m long) were present, one participant wrote

that they could see isolated pools on the streambed but that they

knew that these would not be there on the next day and that they,

therefore, selected the dry streambed class. For some field days for

which it had rained the night before (D2, P2, Th3, D2), some

participants similarly questioned if they should consider the

water in the stream or the dampness of the streambed. They

argued that it was “just” rainwater, and the water was not from the

stream itself. Other participants questioned if the stream could be

considered to be dry or not flowing only because there was no

(flowing) water in the streambed. Based on comments like “The

stream is flowing below ground” at the Töss (T), it seems that

TABLE 4 Percentage of participantswho answered one or two yes-no statements related to a flow state correctly, when the true flow statewas based on the
mode or expert opinion.

Flow state Yes-no statement and required answer Correct answers [%]

Mode Expert

Dry The stream is completely dry. → Yes 64 80

Wet The streambed is completely damp/wet. → Yes 70 74

Pools There are disconnected pools of water. → Yes 77 82

Standing Water along the entire stream length. → Yes 47 49

The water in the stream is flowing. → No

Trickling Only very little amount of water in the stream. → Yes 77 37

The water in the stream is flowing → Yes

Flowing The water in the stream is flowing. → Yes 95 96
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some participants knew that water was still flowing below the

ground in the alluvial aquifer.

Participants also commented on the visibility of the stream,

especially when the stream was not well visible due to vegetation

(H1-3, Z2). The flow condition on field day Z2 was the same as on

Z1, but the survey was carried out further downstream, where lots of

vegetation covered the stream. This poor visibility may have resulted

in a larger spread in the selected flow state classes between

participants for Z2 (Amode: 49% vs. 96%; Figure 3).

4.3 How many flow state classes should
citizen science projects use?

In this study, we used six flow state classes because each class

has a unique hydro-ecological function. For the classes in the

middle of the dry to flowing spectrum the agreement, precision,

and sensitivity were low, which raises the question if it is better to

use fewer classes. Indeed, the agreement is higher when there are

fewer classes, but one advantage of having more classes is that the

effect of being a class off is smaller. Furthermore, only a few

participants selected a flow state that was more than one class away

from the mode (17% for all surveys, and 28% when the mode was

not the dry streambed or flowing water class). Therefore, we still

recommend using six classes and later regrouping the data into

three or two classes (if needed). However, one should first consider

what kind of data are needed for the project’s objectives.

4.4 Recommendations to increase the
agreement, sensitivity, and precision of flow
state observations

We did not give participants any guidance on how to choose the

flow state as we wanted to study how people intuitively interpret the

six flow state classes. The results show that the icons and one or two-

word descriptions are not immediately clear and/or that flow state

observations for temporary streams are not as simple or obvious as

onemight expect. Thus, additional descriptions and some guidance or

training would be useful, especially onwhich flow state class to select if

several flow states are visible. Jaeger et al. (2021) already highlighted

the importance of clear definitions and logical workflows for

temporary stream observations to be helpful for end users. The

effects of such training on data quality and participation, however,

remains to be explored.

Similarly, the fact that for some sites, participants considered a very

long stream length (longer than what was visible) suggests that clear

instructions to determine the flow state locally or, for instance, over

twice the river width would be useful. In the CrowdWater app, citizen

scientists are asked to take a picture of the stream and to indicate the

spot for which they determine the flow state by an arrow or circle. This

provides a spatial frame that should help focus citizen science

observations to one point in the stream. This spatial frame was not

used in the surveys. Thus, it remains to be explored whether it improves

the agreement, precision, and sensitivity of actual citizen science data.

The results of the surveys do not allow us to determine how well

an individual person is able to observe changes in flow states over

time and whether repeated observations of flow states are more

reliable if they are made by the same person. One could expect

observations from one person to be more reliable because that

person probably always looks at the same spot. The results of

Etter et al. (2020) for water level class observations also suggest

that observations by the same person better reflect actual changes in

the stream level than when observations are made by many different

people (which potentially each have a different bias).

5 Conclusion

The questionnaire results from more than 1,200 surveyed

participants suggest that citizen scientists can observe the flow

state of temporary streams reasonably well. The differentiation

between the six different flow states was good: only 17% of the

participants selected a class that was more than one class away

from the mode. However, the results also suggest that icons for

the six flow state classes with only a one or two-word description

are not completely intuitive and require additional explanations,

especially for the classes in the middle of the dry streambed to

flowing water spectrum. Participants tended to select the dry

streambed class more often than the expert, and when they chose

the dry streambed their answers to yes-no statements in the

questionnaire often did not agree with the selected flow state class.

To improve the comparability of the temporary stream observations

and the quality of the observations, it is useful to provide guidance on

how to determine the flow state class. In particular, additional

information should be given on the location and length of the

stream reach to be considered, and how the flow states are

defined. With the implementation of such small changes, citizen

scientists will be able to collect even more reliable observational

data on the state of temporary streams. The effects of such

changes, results for different types of temporary streams, and the

influence of social-cultural values and languages should be considered

in future studies.
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