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Abstract

Introduction

Heart Failure (HF) is a major health and economic issue worldwide. HF-related expenses

are largely driven by hospital admissions and re-admissions, many of which are potentially

preventable. Current self-management programs, however, have failed to reduce hospital

admissions. This may be explained by their low predictive power for decompensation and

high adherence requirements. Slight alterations in the voice profile may allow to detect

decompensation in HF patients at an earlier stage and reduce hospitalizations. This pilot

study investigates the potential of voice as a digital biomarker to predict health status deteri-

oration in HF patients.

Methods and analysis

In a two-month longitudinal observational study, we collect voice samples and HF-related

quality-of-life questionnaires from 35 stable HF patients. Patients use our developed study

application installed on a tablet at home during the study period. From the collected data, we

use signal processing to extract voice characteristics from the audio samples and associate

them with the answers to the questionnaire data. The primary outcome will be the correlation

between voice characteristics and HF-related quality-of-life health status.

Ethics and dissemination

The study was reviewed and approved by the Cantonal Ethics Committee Zurich (BASEC

ID:2022-00912). Results will be published in medical and technical peer-reviewed journals.
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1 Introduction

Heart Failure (HF) is characterized by the heart’s incapacity to pump sufficient blood to meet

the body’s metabolic needs [1]. It afflicts over 64.3 million people worldwide and is increasing

in prevalence [2]. According to data from 2015 to 2018, an estimated 6 million American

adults suffered from HF [3]. High hospital readmission rates not only pose a tremendous bur-

den on a patient’s health status, morbidity, and mortality but also significantly increase

national healthcare costs [4]. The average cost per patient per hospitalization in Europe is

approximately €10,000 [5]. The total cost of care for heart failure in 2020 is estimated at $43.6

billion in the US [6]. While HF hospitalizations constitute 60% of the total expenditures associ-

ated with HF [1], many hospital admissions are considered preventable [7]. It implies that

these costs, mainly caused by repeated and lengthy hospitalizations, can be significantly

reduced.

To handle this amount of patients and to reduce costs, self-management programs

empower patients as they can actively contribute to managing their disease and participate in

continuous education, self-care promotion, and therapy adherence [8]. Current self-manage-

ment programs advise patients to monitor their daily weight and call their physician if they

experience rapid weight gain or clinical signs of congestion such as peripheral edema [9]. Self-

management programs (e.g., weight, blood pressure), however, have limited predictive power

for decompensation and require high adherence and constant commitment [10, 11]. Not sur-

prisingly, clinical trials involving a broader population and using traditional self-management

programs have not yet reduced hospitalizations [12].

On this basis, we argue that passive, non-invasive, and user-friendly tools for HF patients

are required to facilitate self-management. Remarkably, the monitoring of voice has the poten-

tial to identify physiological changes and health conditions [13]. Speech sounds are created by

pressure in the lungs and then propagated through the vocal tract [14]. As decompensation

approaches, i.e., when the heart can no longer maintain efficient circulation, HF patients

develop fluid retention throughout the body, including the lungs. In particular, the vocal folds

consist of thin tissue layers that might be particularly sensitive to HF-related edema [15]. We

hypothesize that the vocal folds are more sensitive to fluid accumulation than weight changes.

Thus, voice monitoring may allow timely detection of fluid volume imbalance (e.g., volume

overload) and congestion and prevent acute decompensated heart failure events that require

hospitalization.

Mobile devices such as smartphones and tablet computers have become ubiquitous in our

lives, e.g., 85% of US adults owned a smartphone in 2021 [16]. Additionally, voice-based con-

versational agents (VCAs), such as Apple’s Siri, are now used on more than 2.5 billion smart-

phones, tablets, smart speakers, and wearable devices. To this end, voice samples of HF

patients can be easily collected at home from their voice commands to VCAs. Thanks to the

widespread use of information and communication technologies, voice analysis can be used as

a scalable, tailored, and cost-effective health monitoring system. Further, a voice monitoring

system may ease the interaction with technology for the elderly, as studies have shown the use

of voice interfaces appears to be easier and more acceptable for older and frail people [17–19].

Moreover, the voice monitoring system can especially support individuals with low literacy or

intellectual [20], and motor or cognitive disabilities [21].

This research aims to contribute to developing a digital vocal monitoring tool as a new bio-

marker for HF. We use voice features collected from mobile devices and integrate voice analy-

sis into patient self-care. Voice can be readily captured as a health parameter to identify the

likelihood of progression of HF. Collecting voice samples passively while being of clinically
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valuable quality can contribute to two major issues of remote care for HF patients: the lack of

adherence and the need for robust and clinically relevant measurements in patients’ homes.

1.1 Hypothesis and objectives

We hypothesize that fluctuations in voice features extracted from recorded voice samples from

HF patients using smart devices can discriminate HF-related health status changes. The pri-

mary objective is to investigate how the variations in the overall health status of HF patients

correlate with the fluctuations in voice characteristics.

The secondary objectives of this study are to:

• compare voice characteristics with the current standard of care (i.e., weight and blood

pressure).

• investigate how the health status correlates with the combination of nocturnal cough fre-

quencies and physiological data (e.g., steps).

• investigate how voice characteristics fluctuate with mental health conditions (e.g., depression

and anxiety).

• evaluate the technology acceptance of the developed application in HF patients.

2 Methods

2.1 Study design

In a 2-month prospective, longitudinal observational study, we collect voice samples daily and

calculate voice characteristics fluctuations from those. The primary endpoint is the potential

association between voice characteristics and health status variations. The variations in health

status are assessed using the 23-item Kansas City Cardiomyopathy Questionnaire (KCCQ)

[22]. The KCCQ quantifies physical limitations, symptoms, self-efficacy, social interference,

and quality of life of HF patients. While the KCCQ is valid for two weeks, this study includes

the HF Symptom Tracker (HFaST) questionnaire to assess daily symptoms in HF patients

[23]. The study duration per patient is 57 days, respectively 56 nights, which enables five

repeated measurements of the KCCQ score.

To compare the new vocal biomarker to current surrogate biomarkers (i.e., weight and

blood pressure), HF patients measure weight and blood pressure daily following Swiss Heart

Foundation self-management guidelines [24]. Besides, we collect nocturnal cough frequency,

physiological data, mental health, and technology acceptance as secondary research endpoints.

Nocturnal cough monitoring data are collected every night with an application developed in

our previous work [25–27]. The application has a cough detection model developed based on

26,166 cough samples from 94 adults with asthma. The model yielded an accuracy of 99.8%

under 15 new patients. Physiological data (e.g., heart rate, steps, stress) are measured daily

with a smartwatch, Garmin Vivoactive 4s. The mental health conditions (e.g., depression and

anxiety) are assessed biweekly with the 9-item Patient Health Questionnaire (PHQ) [28] and

the 7-item Generalized Anxiety Disorder (GAD) questionnaire [29]. Both questionnaires are

brief, well-validated measures for detecting and monitoring depression and anxiety [30]. All

the measurements are recorded using a Lenovo K10 tablet at home. At last, we apply the tech-

nology acceptance model [31] to examine whether our technology is acceptable and user-

friendly.
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2.2 Eligibility criteria

A selected group of HF patients will be studied to maximize the likelihood of health fluctua-

tions observed in the biweekly KCCQ. Table 1 demonstrates the applied inclusion and exclu-

sion criteria.

2.3 Sample size

The study is powered on the primary objective: the association between the patient’s health sta-

tus changes and daily collected voice feature fluctuations. We simulate the number of required

patients to reach power (1-β) of 95% with a two-tailed type 1-error probability (α) of 5%,

rejecting a zero bivariate correlation with a dropout rate of 15%. The R simulations (n = 1000)

relied on the MASS:mvrnorm function to generate two correlated random samples to fit a lin-

ear mixed-effects model using the lmerTest:lmer function [32, 33]. Based on previous studies

[15, 34, 35], it is reasonable to assume: (i) a correlation of 0.3 between the voice characteristics

and the KCCQ score, (ii) a mean KCCQ value in stable HF NYHA class II of 73±19, and (iii) a

mean voice biomarker value of 141 ± 16 with five repeated KCCQmeasures. The sample size

is calculated at 35 patients, which gives a power of 95%. Assuming a dropout rate of 15%, we

will recruit 41 patients.

2.4 Study setting & initial meeting

Patients are recruited at the University Hospital of Zurich (USZ) based on their clinical HF

diagnosis and are included in the study. Health professionals perform medical assessments

during baseline and follow-up visits. Table 2 shows the patient’s assessments and measure-

ments. During the baseline visit, the study team will recruit patients with high concentrations

of NT-proBNP. The study team will give informed consent to the eligible patients and ask for

their willingness to participate in the study.

The first participant was included in September 2022. At the time of manuscript submis-

sion, two participants have completed the study. Data collection is expected to conclude in the

third quarter of 2023. During the data collection phase, one patient is required to complete

measurements at least 80% of the time throughout the study period (i.e., more than 45 days in

Table 1. Inclusion and exclusion criteria.

Inclusion criteria

Clinically diagnosed HF

New York Heart Association (NYHA) class II or above

Age� 18 years

NT-proBNP concentration�900 pg/mL (in patients with atrial fibrillation) or�400 pg/mL (in patients without
atrial fibrillation, presenting in sinus rhythm)

Exclusion criteria

Clinically significant or unstable concurrent disease

Disabling mental diseases (e.g., Alzheimer’s disease)

Clinically diagnosed chronic obstructive pulmonary disease

Inability to use a smartphone or a tablet computer

Insufficient knowledge of German

Active during night hours

Previous operations on organs involved in the generation of voice (e.g., vocal tract, vocal folds, other tissues, and so
forth)

https://doi.org/10.1371/journal.pone.0283052.t001
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57 days). The KCCQ questionnaire should appear five times in one study phase, and the

patient needs to finish it at least four times.

3 Data collection andmanagement

3.1 Measures

During the study period, all measurements are taken using the tablet on which the study appli-

cations are installed. The study consists of active and passive measurements. The duration and

frequency of the different measurements are summarized in Table 3.

Active measurements. The patients are required to measure their weight, perform voice

exercises, fill out questionnaires, and measure their blood pressure in sequence. It takes around

10 minutes per day to perform all the measurements. Audios are recorded with a sampling

rate of 44.1kHZ, 16 bits per sample, and the pulse-code modulation codec. Besides the routine

Table 2. Assessments and measurements through the study period.

Phase Study date Key assessments / measurements

Baseline visit d0 Medical assessments
Participant informed consent

Technical visit d1 Technical introduction & training
First data collection

Data collection d2-d57 Voice, weight, blood pressure, questionnaire, nocturnal cough

Follow-up visit d58 Medical assessments
Blood draw
Technology acceptance questionnaire

Medical assessments during baseline and follow-up visits include patient history (e.g., concomitant diseases), clinical

examination (e.g., NYHA-class, NT-proBNP), and medical examination. The blood draw in the follow-up visit

consists of sodium, potassium, creatinine, NT-proBNP, and a hematogram. The technical visit is planned to occur

within 14 days after the baseline visit. The follow-up visit is planned within 14 days after the final data collection.

https://doi.org/10.1371/journal.pone.0283052.t002

Table 3. Duration of the daily and weekly, active and passive measurements.

Measurement Duration Type Frequency

Weight 1 minute active daily

Voice—Vowels (/a/, /i/, /o/) 1 minute active daily

Voice—5 voice commands 1 minute active daily

Voice—Nordwind passage 2 minute active daily

Voice—Running speech 20 seconds active daily

HFaST Questionnaire 1 minute active daily

Control questions 1 minute active daily

Blood Pressure 2 minutes active daily

KCCQ Questionnaire 3 minutes active biweekly

PHQ & GAD Questionnaire 3 minutes active biweekly

Cough detection the whole night passive daily

Physiological data (optional) the whole day passive daily

Each vowel is pronounced three times for five seconds. Voice commands are those used in the interaction with a VCA [36]. Control questions are designed to reduce the

impact of confounding variables, i.e., noise when performing voice exercises, the tablet’s position during the night, the presence of an upper respiratory infection, and so

forth. Physiological data is measured only when the participant agrees to wear the smartwatch.

https://doi.org/10.1371/journal.pone.0283052.t003
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daily measurements, the KCCQ, GAD, and PHQ questionnaires are alternately displayed in

the study app, depending on the week. The KCCQ questionnaire appears on the 1st, 15th,

29th, 43rd, and 57th day, representing the health status in the last two weeks, while the ques-

tionnaires about depression and anxiety, GAD and PHQ, appear on the 8th, 22nd, 36th, and

50th day. The answers to all the questionnaires are consistently and uniformly assessed.

Passive measurements. Nocturnal cough frequency is measured automatically at night

during patients’ sleeping time. Patients are instructed to place the tablet on the nightstand or

near their bed. Optionally, patients are equipped with a smartwatch that passively collects con-

tinuous physiological data. The data from the smartwatch is automatically synchronized when

the smartwatch is close enough to the study tablet.

3.2 Outcomes

The primary outcome is the association between voice characteristics and health status fluctu-

ations in HF patients. We hypothesize that the voice contains sufficient correlates of health-

related information and could serve as an effective monitoring biomarker. The secondary out-

comes are:

• comparison of health status prediction using voice characteristics and current standard of

care (i.e., weight and blood pressure).

• the correlation between health status fluctuations and the combination of nocturnal cough

frequencies and physiological data.

• the correlation between voice characteristics and mental health status.

• the technology acceptance of the voice capture application.

3.3 Data management

We have designed a study application to collect all active measurements (e.g., audio data,

blood pressure, weight, and questionnaire answers). Firstly, we store all measurements in a

local SQLite database on Android. Then we transmit the measurements with the tablet’s meta-

data over a secure protocol (i.e., HTTPS) and save them remotely on a password-protected

MySQL server hosted by ETH Zurich. Nocturnal cough audio data is saved on the tablet, and

only cough frequencies are uploaded to the server. The physiological data is measured with a

smartwatch and uploaded to Labfront, which were utilized in psychological studies and clinical

trials [37]. Participants’ smartwatches directly connect to the Labfront app via a Bluetooth con-

nection. The study team will manually transfer data from the Labfront cloud to the database.

Fig 1 demonstrates the data pipeline from the study app to the web server. Once a patient has

completed the study, data are temporally saved on an encrypted local hard drive and then

uploaded to ETH Zurich’s Leonhard Med Secure Scientific Platform [38] for data storage and

analysis.

We have developed a dashboard for monitoring data and the status of patients. Physicians

have access to the measured data of each patient (pseudonymized by a unique hash code)

through a website. Fig 2 depicts the dashboard that visualizes measurements, tablet’s metadata,

and study progress (e.g., 50% means the patient has conducted the study for one month).

All clinical data are taken from the electronic patient file and transferred to paper case

report forms. Paper case report forms are stored in a locked room in the University Heart Cen-

ter Zurich study center.
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3.4 Retention

We promote adherence to the data collection phase using several methods. First, participants

receive an artistic picture as a small reward after completing their daily measurements. The

app changes pictures daily and depicts one scenic location worldwide with a description. Fig 3

shows four screenshots of the study application.

Second, the study application involves a reminder system for measurement. If an unex-

pected issue happens, e.g., the participant fails to upload the data, the tablet has a low battery

Fig 1. Data pipeline. Patients collect data every morning using the developed application on the Lenovo K10 tablet.
All active measurements and nocturnal cough frequency are collected and transmitted to the ETH web server. The
server integrates new data into the cloud and schedules reminders. Based on the data on the server, the dashboard
visualizes and monitors measurements and metadata.

https://doi.org/10.1371/journal.pone.0283052.g001

Fig 2. Dashboard. (a) The “Measurement” dashboard depicts today’s measurements and audio, numerical measurement fluctuations during the study
period, and audio waveform visualization. (b) The “Status” dashboard shows the tablet’s metadata, e.g., storage, network connection, and the study
progress.

https://doi.org/10.1371/journal.pone.0283052.g002
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(�40%), or there is no network connection, the participant will receive an SMS notification on

their private phone or an email. In the event of non-adherence for two consecutive days, the

study team will call the participant. If the tablet encounters an issue (e.g., it is turned off unin-

tentionally by the patient), the study team will access the tablet with remote control and fix the

issue.

Third, if the patient does not complete the biweekly KCCQ questionnaire on the given day,

the app will display the questionnaire over the next three days until the patient finishes that. It

maximizes the chance that the patient will complete the KCCQ questionnaire. If the patient

has not completed the questionnaire after three days, it is considered a failed attempt, and the

patient will be excluded from the study.

4 Data analysis

4.1 Feature extraction

First, we use signal processing to calculate parameters that describe energy changes and ampli-

tude changes in time and frequency from collected audio samples. Based on previous studies

[39–41]) and pre-established libraries (i.e., Praat, librosa, and openSMILE), we will extract the

following voice features, e.g., fundamental frequency, formants, jitter, shimmer [42], creak,

and Mel-Frequency Cepstral Coefficients [43].

4.2 Correlation analysis

We will investigate the correlation between voice characteristics and health status, represented

by KCCQ scores, at between- and within-subject levels. We will perform the repeated mea-

sures correlation (rmcorr) method using a statistical programming package available in R

(rmcorr) or Python (pingouin.r_corr) [44].

4.3 Predictive modeling

KCCQ scores constitute the ground truth, and the selected voice features serve algorithm fea-

tures. We will predict the health status using typical classification methods, e.g., random

Fig 3. Four screenshots of the study application. (a) A screenshot of the voice recording procedure. (b) The participant obtains two pieces of
the image after finishing two measurement sections. (c) After completing the measurement, the participant obtains a new image and its
description as a reward. (d) The participant can view all collected images in the gallery.

https://doi.org/10.1371/journal.pone.0283052.g003
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forests, support vector machines, neural networks [45]. Afterwards, to further analyze and pre-

dict longitudinal time series data, we will explore recurrent neural networks and long short-

term memory [46, 47].

4.4 Missing data

Various techniques for imputing missing data points will be considered (e.g., imputing mean,

median, most frequent, or constant values) [48]. Depending on the type of variables, we will

consider more advanced techniques (e.g., regression, interpolation, extrapolation, k-NN, mul-

tivariate imputation, and datawig) [49, 50].

5 Ethics considerations

The study was approved by Swissethics (BASEC-ID: 2022-00912). This research project will be

conducted following the Declaration of Helsinki [51], the principles of Good Clinical Practice,

the Human Research Act (HRA), the Human Research Ordinance (HRO) [52] as well as other

locally relevant regulations.

6 Discussion

6.1 Novelty

Current studies have shown research potential for voice analysis in HF patients. Murton et al.

analyzed the voice of HF patients treated for decompensated HF and showed changes in

patient voice between baseline and study end measurements [15]. Sara et al. have shown that

in HF patients, there is an association between invasively measured indices of pulmonary

hypertension and a linear combination of the 223 acoustic features (e.g., Mel cepstrum repre-

sentation and formant measures) extracted with “Vocalis Health” application [53]. Using the

same application to extract voice features, Maor et al. have shown that vocal biomarkers calcu-

lated from patients’ recorded speech correlate with the likelihood of hospitalization and death

[54]. Amir et al. compared voice recordings of 40 patients with acute decompensated HF to

baseline recordings and successfully identified them as significantly different in 87.5% of cases

[55].

While preliminary evidence suggests an association between voice signals and adverse out-

comes in HF patients, previous studies have focused on the extreme states (i.e., decompensa-

tion and non-decompensation) but not on the continuous voice changes over time. Moreover,

there is no evidence that voice characteristics would add value to the standard of care. It is cru-

cial not only to assess whether the features of the voice are informative but also whether this

measurement is complementary to the established measures. Very few researchers focused on

the prediction power of voice, and there was no remote monitoring system based on a vocal

biomarker.

Our approach differs from previous research in the following aspects. First, we look into

how longitudinal changes in voice can be associated with changes in health status over time.

Second, we assess the added value of voice monitoring compared to the current standard of

care, weight, and blood pressure measurements. Third, we use advanced machine learning

methods on real-world audio data to predict health deterioration.

6.2 Limitations

The study has certain limitations. First of all, voice analysis can be subject to various biases.

Voice depends on different factors, among others, age, sex, and ethnicity. Since 70-80% of HF

patients are male, the gender ratio is not set at 1:1 for better recruitment. Selection bias due to
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the technology adoption rate among seniors and German-speaking ability might also under-

mine generalizability. Besides, voice differs when the patient has upper respiratory infection

symptoms in the study period. Thus, we propose the control question to control the confound-

ing effects that might affect the voice.

Secondly, scales and blood pressure monitors are not uniformly provided. Patients use their

own devices instead (unless they do not have them).

Thirdly, the applied cough detection model has yet to be developed based on data from HF

patients and has not been used on tablets. To guarantee the functionality of the cough detec-

tion model, the tablet also records sound during the night. In this way, we can correct for

wrongly counted coughs and post-hoc, acoustically verify the cough frequencies reported by

our models to evaluate the performance of our models.

7 Conclusion

The proposed longitudinal study focuses on the association between continuous voice fluctua-

tions and the health status of HF patients over time. We evaluate the potential of using voice

characteristics to predict health deterioration. Furthermore, the comparison of voice analysis

to the standard of care and patient feedback will reveal to what extent voice is accepted as a

new monitoring tool. The study aims to lay the groundwork for using the voice to recognize

clinical deterioration and initiate early intervention and management.
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