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Abstract: 22 

Predicting how climate change will affect disease risk is complicated by the fact that changing 23 

environmental conditions can affect disease through direct and indirect effects. Species with fast-24 

paced life-history strategies often amplify disease, and changing climate can modify life-history 25 

composition of communities thereby altering disease risk. However, individuals within a species 26 

can also respond to changing conditions with intraspecific trait variation. To test the effect of 27 

temperature, as well as inter- and intraspecifc trait variation on community disease risk, we 28 

measured foliar disease and specific leaf area (SLA; a proxy for life-history strategy) on >2500 29 

host (plant) individuals in 199 communities across a 1101-meter elevational gradient in 30 

southeastern Switzerland. There was no direct effect of increasing temperature on disease. 31 

Instead, increasing temperature favored species with higher SLA, fast-paced life-history 32 

strategies. This effect was balanced by intraspecific variation in SLA: on average, host 33 

individuals expressed lower SLA with increasing temperature, and this effect was stronger 34 

among species adapted to warmer temperatures and lower latitudes. These results demonstrate 35 

how impacts of changing temperature on disease may depend on how temperature combines and 36 

interacts with host community structure, while indicating that evolutionary constraints can 37 

determine how these effects are manifested under global change. 38 

 39 

  40 



Introduction 41 

Infectious disease is strongly influenced by host community structure and abiotic 42 

conditions [1,2], both of which are changing at an unprecedented rate due to human activities [3]. 43 

Yet, predicting how these biotic and abiotic conditions interact to drive the emergence and 44 

spread of infectious disease remains a major research challenge, in part because several 45 

mechanisms can operate simultaneously, making it difficult to tease apart their relative 46 

contributions to realized disease risk. Thus, in order to predict disease under climate change will 47 

require an understanding of interactions among hosts, parasites, and the environment [4–6]. 48 

Recently, ecologists have proposed that shifting distributions of host species will be a key 49 

driver of disease risk under global change (including climate change) [7–9]. This proposal 50 

largely stems from two observations: First, particular characteristics of species (i.e., functional 51 

traits) influence how much those species contribute to disease risk in communities that they 52 

occupy (i.e., “host quality”) [1,10–12].  Specifically, higher quality host species are often 53 

characterized by fast-growing, poorly defended tissues and short lifespans, [13–22]. Second, 54 

these functional trait values often underlie ecological and evolutionary tradeoffs related to host 55 

growth and defense, resource acquisition and allocation, and survival and reproduction (i.e., life 56 

history), resulting in higher levels of host competence (the contribution of a host species to 57 

disease transmission) [19,23–30]. The host species that stand to benefit the most from human 58 

disturbance (including climate change) often possess the same traits that make them more 59 

competent, high-quality hosts [11,31–33]. Although there has been some experimental evidence 60 

in support of these ideas [1,34,35], other empirical tests across environmental gradients have 61 

been inconclusive [2,36,37], suggesting that the traits of host species may be insufficient to 62 

predict how disease risk will shift under climate change.  63 

While there is compelling evidence that human disturbance can shift host communities 64 

toward fast-pace-of-life species, thereby changing disease risk [33,38–41], how within-species 65 

trait variation responds to changing climate and how these jointly affect disease risk remains 66 

largely unknown. Within a species, individuals can show remarkable variation in their 67 

contribution to disease risk (i.e., host quality) [42–46] and in the expression of functional traits, 68 

generating intraspecific trait variation (ITV) [47–50]. The consequences of this ITV may be 69 

substantial, especially along environmental gradients, where ITV can be greater than trait 70 

variation between species [51,52]. For example, warming environmental conditions might favor 71 



species characterized by a fast-paced life history strategy, increasing disease in warmer 72 

conditions, but this effect may be overwhelmed if ITV is greater than variation between species 73 

[2]. This suggests that incorporating ITV into trait-based models of disease might provide a 74 

useful framework for predicting disease in the face of climate change. 75 

How increasing temperature associated with climate change drives ITV may also depend 76 

on how particular host species are adapted to their current abiotic conditions, thereby defining 77 

which species will respond most strongly to a changing environment. There is some evidence 78 

that, within a species, higher-altitude populations may exhibit lower levels of phenotypic 79 

plasticity than populations from lower altitudes, suggesting that among temperate species, 80 

adaptation to warmer environmental conditions could be associated with greater levels of 81 

phenotypic plasticity [53] [but see 54]. This loss of phenotypic plasticity may be a consequence 82 

of a stress response syndrome, relationships among plasticity and growth rate, or due to costs 83 

associated with plasticity in extreme environments [53,55–57].  Scaling these observations up 84 

across host species suggests that species adapted to warm environmental conditions might 85 

exhibit higher levels of plasticity across environmental gradients than species adapted to cooler 86 

environmental conditions [58] with broad implications for high elevation species to cope with 87 

warming climate [59]. Yet, the implications of this variation in plasticity for ITV and disease are 88 

rarely considered [60]. If warm-adapted species also exhibit greater levels of ITV than cold-89 

adapted species, this could amplify or offset the effect of changing host species composition 90 

along environmental gradients (Fig 1). How ITV is expressed across species might therefore alter 91 

the role that individual host species play in driving disease risk under climate change. 92 

 This study explores how intraspecific variation in specific leaf area (SLA), a proxy for 93 

host pace-of-life, might combine with changes in the abundance and distribution of host species 94 

to determine the relationship between host traits and disease under changing environmental 95 

conditions. We explore this by measuring plant community trait variation and foliar fungal 96 

disease along a 1101-meter elevation gradient in Southeastern Switzerland. Our results show that 97 

increasing temperature favors species with high SLA and fast-paced life history strategies, 98 

increasing disease, but that this effect is balanced by intraspecific trait variation in SLA in warm-99 

adapted host species. These results therefore underscore the pressing need to consider both inter- 100 

and intraspecific variation in how host communities and their constituent members respond to 101 



changing temperature, in order to predict how temperature will drive disease risk in a changing 102 

world. 103 

 104 

Methods 105 

 106 

Study system 107 

To explore the relationship between host pace-of-life and disease in the context of 108 

changing temperature, we surveyed 199, 0.5 m-diameter vegetation communities, that were 109 

established as part of the Calanda Biodiversity Observatory [CBO; 2]. The CBO consists of five 110 

publicly owned meadows located along a 1101 m elevational gradient (648 m to 1749 m) below 111 

tree-line on the south-eastern slope of Mount Calanda (46°53′59.5″N 9°28′02.5″E) in the canton 112 

of Graubünden [2]. The soil in the area is calcareous with low water retention [61,62], and the 113 

five meadows are variable in size (roughly 8 to 40 Ha) and separated by forests. Meadows are 114 

maintained through grazing and mowing, a typical form of land use in the Swiss Alps [63]. 115 

The CBO consists of a nested set of observational units. Each meadow contains 2–7, .25 116 

ha sites (n = 22 sites), each of which contains a grid of nine evenly spaced, 4 m2 large-plots, with 117 

the exception of one site (I3), which is 100 m x 25 m and contains 10 large plots due to its shape 118 

(n = 199 large plots). In each site, large plots are arranged in a grid with the center of each plot 119 

separated by at least 20 m distance from its nearest neighbor. One 50 cm-diameter, round small 120 

plot was placed at random inside of each large plot to serve as the unit of observation used in this 121 

study.  122 

 123 

Quantification of plant species abundance 124 

In July 2020, we recorded the identity and visually quantified the percent cover of all 125 

plant taxa in each 50 cm-diameter small plot following a modified Daubenmire method (n = 199) 126 

[2], in which two researchers searched the entire plot for all rooted vascular plants present in the 127 

plot, before jointly estimating the total percent cover of each species. Plant individuals were only 128 

included in the survey if they were rooted in the small plot. The survey started at the lowest 129 

elevation and continued higher in order to survey the meadows approximately at the same phase 130 

of the growing season in relation to one another.  131 



 132 

Quantification of disease 133 

In August 2020, a survey of foliar disease severity was carried out by visually estimating 134 

the percent leaf area damaged on one mature non-senescing leaf of twenty randomly selected 135 

host individuals (n = 3980 host leaves across 199 small plots) following the plant pathogen and 136 

invertebrate herbivory protocol in the ClimEx Handbook [64]. Host individuals were selected by 137 

placing a grid of 20 equally spaced grill sticks into the ground, with every stick having a distance 138 

of 10 cm to its nearest neighbor and then sampling the 20 plant individuals that were most 139 

touching the sticks. The survey was carried out on leaves, because symptoms are highly visible 140 

and easily grouped into parasite types on leaves. On each leaf, we estimated the leaf area (%) 141 

that was covered by disease symptoms. Disease was then quantified for each small plot using the 142 

community weighted mean leaf area damaged by parasites (i.e., parasite community load) [2,65], 143 

calculated as the mean leaf area damaged by parasites on a plant species in a plot, multiplied by 144 

the relative abundance of that plant species from the vegetation survey, and then summed across 145 

all plant species in the plot. 146 

 147 

Quantification of community pace-of-life 148 

Community pace-of-life was calculated using a single trait – Specific Leaf Area (SLA) –149 

which is often highly correlated with other metrics of host life-history strategy along natural 150 

environmental gradients [14,30,35,36,66], including along the elevation gradient of the CBO [2]. 151 

We quantified SLA at two levels: at the host species level and using local measurements in each 152 

small plot.  153 

At the host species level, SLA was quantified using the TRY database [67]. Unknown 154 

taxa that could be identified to the genus level were assigned genus-level estimates for SLA, by 155 

taking the mean of the trait value for all members of that genus that had been observed on Mount 156 

Calanda during extensive vegetation surveys. Genus-level estimates were not substantially 157 

different, on average from species-level estimates with respect to locally measured values (Fig 158 

S1).  159 

To test the assumption that SLA is a good proxy for host species pace-of-life, we also 160 

constructed a single functional trait axis representing a hosts’ pace-of-life following Halliday et 161 



al [2]. Briefly, we constructed a single axis representing covariation in the functional traits 162 

associated with the worldwide leaf economics spectrum [30] by performing full-information 163 

maximum-likelihood factor analysis on five functional traits extracted from the TRY database 164 

(leaf chlorophyll content, leaf lifespan, leaf nitrogen content, leaf phosphorus content, and 165 

specific leaf area) using the umxEFA function in r-package umx [68]. To facilitate comparisons, 166 

we transformed the factor score into units of SLA by first multiplying each species’ factor score 167 

by the square-root sum of squares of the factor loadings and then multiplying this value by the 168 

standard deviation of SLA and adding the resulting value to the mean of SLA. Supporting the 169 

assumption that SLA is a good proxy for host species pace-of-life, this pace-of-life functional 170 

trait axis was highly correlated with host species SLA, and results using species-level trait 171 

estimates were qualitatively similar regardless of whether we used a species’ position along this 172 

trait axis or SLA as a predictor (Appendix A). 173 

Local SLA measurements were obtained on a subsample of plants that were surveyed 174 

during the disease survey. This included one individual for each unique species that was 175 

touching a grill stick, and no fewer than 10 individuals per small plot (n = 2537). SLA was then 176 

recorded on one mature, non-senescing leaf on each individual by photographing that leaf in the 177 

field using standard lighting, then immediately drying the leaf using silica gel. Silica gel was 178 

replaced regularly until the leaves reached a stable mass, at which point the leaf’s dry mass was 179 

measured using an analytical balance. Specific leaf area was computed as the ratio of leaf area to 180 

dry mass.  181 

We calculated a single value for each SLA measurement in a small plot (n = 199) using 182 

the community-weighted mean of SLA (hereafter community SLA). The community weighted 183 

mean (CWM) was calculated as: 184 𝐶𝑊𝑀 = ∑ 𝑝𝑖𝑁𝑠𝑝𝑖=1 𝑥𝑖   185 

where Nsp is the number of taxa within a plot with a SLA trait value in the dataset, pi is 186 

the relative abundance of taxon, i, in the plot, and xi is SLA value for taxon, i in that plot or at the 187 

species level.  188 

 189 

Quantification of temperature 190 



  As described in Halliday et al [2] soil temperature (6 cm below the soil surface), soil 191 

surface temperature, air temperature (12 cm above the soil surface), and soil volumetric moisture 192 

content were recorded at 15 minute intervals in the central large plot of each site during the time 193 

between grazing activities, (n = 22) using a TOMST-4 datalogger [69]. In the CBO, mean soil, 194 

soil surface, and air temperature all strongly and consistently decrease with increasing elevation 195 

[2]. Here, we report analyses using soil-surface temperature following Halliday et al [2]. 196 

 197 

Statistical analysis 198 

All statistical analyses were performed in R version 3.5.2 [70]. We tested how increasing 199 

temperature associated with lower elevations influenced community SLA by fitting two linear 200 

mixed models with an identity link and Gaussian likelihoods using the lme function in the nlme 201 

package [71]. CWM SLA (either using local measurements or species means) was included in 202 

each model as the response variable and mean soil surface temperature as the explanatory 203 

variable. In order to meet assumptions of normality and homoscedasticity, we added an identity 204 

variance structure (varIdent function) for each site, which based on visual inspection of residuals 205 

of each model, exhibited considerable heteroscedasticity [71,72]. Each model included sites and 206 

meadows as nested random intercepts to account for non-independence among observations due 207 

to the sampling design of the CBO.  208 

We tested how increasing temperature affects the expression of SLA within a species 209 

(i.e., ITV) using 93 species with at least five observations across the elevational gradient. To do 210 

this, we first estimated the Pearson correlation coefficient for each species SLA in response to 211 

temperature along the gradient. We converted the Pearson correlation coefficient into a 212 

standardized effect size by computing the Fisher’s z-transformed correlation coefficient using the 213 

escalc function in the metafor package [73], and then tested whether SLA commonly increased 214 

or decreased within a species with increasing temperature by fitting an intercept-only model 215 

using the rma.mv function in the metafor package. This approach is similar to performing a 216 

meta-analysis on our own field collected data, thereby allowing us to account for variation in 217 

sampling intensity, effect size, and variance across these 93 different host species in the CBO. To 218 

test whether characteristics of species related to their habitat distribution might influence the 219 

direction and magnitude of intraspecific variation in SLA, we fit two additional models with 220 

continuous predictors of the Fisher’s z-transformed correlation coefficient using the rma.mv 221 



function. These models are the equivalent of meta-regressions performed on our own field 222 

collected data. The first model included the northern and southern range limit of each species, 223 

which was available for 56 species in the ClimPlant database, a database of estimated realized 224 

climatic niches of vascular plants based on climatic tolerances of European plant species [74]. 225 

The second model included the minimum and maximum elevation limit of a species observed in 226 

the CBO (n = 93 species).  227 

We then tested how changing host community structure and shifting ITV among species 228 

that are adapted to particular environmental conditions could synergistically or antagonistically 229 

affect the distribution of life-history strategies in host communities. To test this, we first 230 

extracted the Ellenberg indicator values (i.e., indicator values for species’ ecological optima) 231 

[75] for temperature adaptation for each species in the CBO using the Flora Helvetica [76], and 232 

then fit two linear mixed-effects models with data from every individual that was surveyed along 233 

the gradient (n = 2333 after excluding 200 individuals that could not be assigned an Ellenberg 234 

indicator value for temperature), with an identity link and Gaussian likelihoods using the lme 235 

function. Each model included temperature and the Ellenberg indicator value for temperature-236 

adaptation of a species as interactive explanatory variables, and included species, plots, sites, and 237 

meadows as nested random intercepts to account for non-independence among observations due 238 

to the sampling design of the CBO. We used Ellenberg indicator values in this analysis because 239 

they were estimated independent of host distributions in the CBO and had greater species 240 

coverage than range-limits in the ClimPlant database, allowing us to include in this analysis 241 

nearly every measurement in the CBO. The first model included SLA as the response variable, 242 

and included random slopes for each species, because species exhibited different intraspecific 243 

responses to increasing temperature, while the second model included the relative abundance of 244 

each species as the response variable.  245 

Finally, we tested how temperature and host community SLA affected disease by fitting a 246 

mixed model with square-root transformed community parasite load as the response, and 247 

temperature, host CWM SLA using local measurements, and host CWM SLA using species-level 248 

estimates as explanatory variables. To estimate whether the effect of host community SLA 249 

depends on temperature, we also included in the model the pairwise interactions between each 250 

measure of host community SLA and temperature as additional explanatory variables. To aid the 251 

interpretation of temperature effects in the model, we mean-centered soil-surface temperature, so 252 



that mean temperature was used as the reference value for interpreting the other variables’ 253 

independent effects. Like models of SLA, we added an identity variance structure for each site, 254 

and included sites and meadows as nested random intercepts to account for non-independence 255 

among observations due to the sampling design of the CBO. To avoid problematic correlations 256 

among parameter estimates, non-significant interactions among fixed-effects were removed from 257 

models using likelihood ratio tests [following 72,77], and overall impacts of variables were 258 

determined by evaluating the parameter estimates from the reduced model. 259 

 260 

Results 261 

First, we tested the hypothesis that increasing temperature could alter the distribution of 262 

host species based on specific leaf area, using species-level trait data from the TRY database, 263 

leveraging the strong and consistent relationship between increasing elevation and temperature 264 

(Fig 2a). Overall, increasing temperature marginally changed the species composition of host 265 

communities, favoring species characterized by higher SLA (p = 0.045, R2 = 0.14, Fig 2b; Fig 266 

S2a), supporting the hypothesis that warming environmental temperatures might support higher 267 

quality host species. 268 

 We next tested the hypothesis that increasing temperature might also alter the expression 269 

of SLA within a species using 93 species with at least five observations across the elevation 270 

gradient. The model tested whether SLA commonly increased or decreased with increasing 271 

temperature within species, after accounting for differences in sampling intensity across host 272 

species within the study. In this model, individuals within a species generally exhibited lower 273 

SLA with increasing temperature (p < 0.0001; Fig 3a; Fig S3). Thus, even though increasing 274 

temperature favored species characterized by a faster pace-of-life, individuals within a species 275 

often exhibited lower overall levels of SLA.  276 

 Although increasing temperature commonly reduced SLA within a species, many species 277 

either did not respond to increasing temperature or responded in the opposite direction (Fig S2c; 278 

Fig S3). We therefore next tested whether characteristics of species related to their habitat 279 

distribution might influence the direction and magnitude of intraspecific variation in SLA, by 280 

assessing whether (a) the northern or southern range limit of a species and (b) the high or low-281 

elevation limit of a species affected SLA responses to increasing temperature. We hypothesized 282 

that species adapted to warmer climates might experience stronger intraspecific responses to 283 



increasing temperature. Consistent with this hypothesis, the strongest intraspecific responses of 284 

SLA to increasing temperature were observed among species that were able to colonize the 285 

lowest elevation meadows (p=0.013; Fig 3b), and species that were closest to their northern 286 

range limit (p = 0.015; Fig 3c).  287 

 We then tested whether the combination of changing host community structure and 288 

shifting ITV among species that are adapted to particular environmental conditions (using 289 

Ellenberg indicator values for temperature) could synergistically or antagonistically affect the 290 

distribution of life-history strategies in host communities (measured as CWM SLA). In this 291 

model, SLA declined with increasing temperature, but only among species adapted to warmer 292 

environmental conditions (i.e., with high Ellenberg indicator values; p < 0.0001; Fig 4a). In 293 

contrast, the relative abundance of species adapted to cold environmental conditions declined 294 

with increasing temperature (p = 0.003; Fig 4b). Consequently, changes in relative abundance 295 

and the expression of specific leaf area counterbalanced one another, resulting in no net change 296 

of community-weighted-mean SLA across the environmental gradient (p = 0.35; Fig 4c; Fig 297 

S2b). 298 

 Finally, we tested how temperature, host community-weighted-mean SLA (using both 299 

local measurements including ITV and species-level estimates excluding ITV), and their 300 

interaction affected disease. Consistent with past studies, there was some evidence that 301 

communities dominated by species characterized by high SLA (e.g., with fast-paced life history 302 

strategies), experienced more disease, but only at high temperature (full model: p = 0.058; 303 

reduced model: p = 0.035). In contrast, there was strong evidence for a consistent increase in 304 

disease in communities dominated by hosts expressing higher levels of SLA in their local 305 

environment (full model: p = 0.0002, reduced model: p = 0.0003), and this effect was 306 

independent of increasing temperature (full model: p = 0.60, marginal R2 = 0.14, conditional R2 307 

= 0.39; reduced model: p = 0.086, marginal R2 = 0.13, conditional R2 = 0.40; Table S1; Fig 5). 308 

All together, these results reveal a complex relationship between environmental temperature, 309 

community-level life history strategies, the expression of key functional traits, and disease risk. 310 

Increasing temperature favored host species with faster life history strategies, which increased 311 

disease risk, but only in warmer environments. However, this effect was balanced by 312 

intraspecific trait variation in warm-adapted species, resulting in no net effect of increasing 313 

temperature on local measurements of host community pace-of-life (Fig 4c) or disease (Fig S4), 314 



despite a strong positive relationship between host pace-of-life and disease (Fig 5). These results 315 

highlight the importance of both inter- and intraspecific variation in driving host community 316 

responses to changing temperature and their impacts on disease risk. 317 

 318 

Discussion 319 

Climate change is increasing disease risk, with that effect only expected to intensify over 320 

time [7]. Yet, predicting how climate change will affect disease risk in host communities is 321 

complicated by the fact that changing environmental conditions can affect disease through a 322 

wide variety of direct and indirect effects [1,2,37,78–80]. This phenomenon creates challenges 323 

for predicting the impacts of climate change on infectious disease: species distributions are 324 

changing in response to temperature, and the effect of individual species on disease is shifting, 325 

but we lack a framework for integrating these ideas. This study leverages a fundamental concept 326 

from disease ecology, within-species host heterogeneity [81], to address this challenge (Fig. 1). 327 

After incorporating heterogeneity among individuals within a species, we find strong evidence of 328 

a consistent relationship between host traits and disease across environmental conditions. 329 

However, the effect of temperature on the distributions of species and the traits that individuals 330 

express countered one another (e.g., Fig 1a), resulting in no net effect of increasing temperature 331 

on disease risk in host communities. Thus, only by integrating shifts in host community structure 332 

with intraspecific changes in the expression of functional traits, were we able to unravel the 333 

influence of changing climate on disease risk across the 1101-meter elevation gradient.  334 

In temperate climates, increasing temperature is often expected to increase the risk of 335 

infection by foliar parasites by increasing parasite growth and reproduction, [82–86], 336 

overwintering success [87,88], or by extending the duration of the growing season [89] and 337 

thereby allowing parasites to produce more generations during a single season [85]. However, in 338 

contrast with a past survey of disease along this environmental gradient [2], we did not detect a 339 

net effect of increasing temperature on disease in this survey. These results suggest that the effect 340 

of climate on disease might be sensitive to seasonal variation in biotic or abiotic environmental 341 

conditions, highlighting the need for long-term data on biotic and abiotic environmental 342 

conditions along climatic gradients [90]. 343 

Our results also highlight a pressing need to integrate information about the abiotic 344 

environment, species distributions, and phenotypic plasticity in order to predict disease risk 345 



under climate change. Although a warming climate can directly influence disease risk in host 346 

communities [91], a warming climate can also indirectly influence disease risk by altering the 347 

composition of host or vector communities required for sustained parasite transmission 348 

[79,91,92]. ITV can further exacerbate this problem, and it can be particularly pronounced under 349 

variable environmental conditions that alter trait covariation, and hence limit the ability of raw 350 

trait values to predict infection [36]. Thus, traits of host species that are associated with low host 351 

competence in one environment could increase host competence under environmental change, 352 

due to ITV. Our results suggest that how ITV translates into disease risk might further depend on 353 

host adaptation to environmental conditions, with warm-adapted species showing stronger 354 

patterns of ITV than cold-adapted species. 355 

In this study, we used SLA as a proxy for host pace-of-life and disease risk, but we did not 356 

measure covariance among SLA, other metrics of host-pace-of-life, and disease risk in the field. 357 

There is compelling evidence from the published literature that SLA is a useful proxy for host 358 

pace-of-life and disease risk at the host species level [14,15,34], but few studies have explored 359 

the link between SLA, pace-of-life, and disease within species. Studies of viral infection in 360 

California grasses suggest that SLA is a good predictor of host susceptibility across 361 

environmental conditions [15,22,36]. However, the relationship between SLA and host pace-of-362 

life is more complicated. In one study, SLA and other traits became uncoupled when plants were 363 

grown under novel resource conditions, suggesting a breakdown in the host pace-of-life 364 

syndrome [36], while two other studies in the very same system consistently observed covariance 365 

among traits across resource conditions [15,22]. These results suggest that SLA might be a good 366 

proxy for how hosts contribute to disease risk (i.e., host quality), but that the relationship 367 

between SLA and host pace-of-life can change, depending on environmental conditions. Across 368 

scales and study systems, the degree to which particular traits and host quality correlate with 369 

each other remains an active research question [21,93], as do questions related to the generality 370 

of the pace-of-life syndrome itself [94]. In plants, a few studies have explored patterns of 371 

covariance in the traits underlying host pace-of-life across environmental gradients, albeit 372 

without the link to infectious disease risk, often coming to contradictory conclusions about 373 

whether interspecific relationships among traits are consistent with intraspecific relationships 374 

[95–97]. Consequently, even though local measurements of SLA consistently predicted disease 375 

risk in host communities, we cannot rule out the possibility that intraspecific variation in SLA 376 



occurred independent of host pace-of-life in this study. Addressing this research gap will require 377 

future studies to link multiple traits associated with pace-of-life to disease across environmental 378 

gradients, both within and across species. 379 

Across the studied elevation gradient, warmer temperatures favored host species with higher 380 

SLA and faster life-history strategies, consistent with past studies [e.g., 98], and communities 381 

dominated by faster-paced host species experienced more disease, but only at high temperature. 382 

This result is consistent with a past survey that was conducted in a different year along this same 383 

elevational gradient [2], suggesting that the effect of host community pace-of-life on disease may 384 

depend on environmental context. We hypothesized that ITV might explain the statistical 385 

interaction between host community pace of life and disease observed in that study, and found 386 

evidence to support that hypothesis. Although warmer temperatures favored host species with 387 

higher SLA, intraspecific changes in SLA among warm-adapted host species balanced this effect 388 

(e.g., Fig 1a). Specifically, among warm-adapted species, SLA commonly declined with 389 

increasing temperature associated with lower elevations. This result is in contrast with a recent 390 

meta-analysis that found the opposite effect across a global species pool [99]. Instead, our results 391 

suggest that ITV responses to environmental gradients may depend on other characteristics of 392 

species or study systems [51,52]. In this system, patterns of ITV were linked to species range-393 

limits and adaptation to warm environmental temperatures, under the expectation that species 394 

adapted to warmer conditions and species closer to the margins of their range limits would show 395 

higher levels of phenotypic plasticity and consequently ITV [53,58,100]. These results therefore 396 

suggest that how species evolved in the face of past environmental constraints can influence how 397 

those species will contribute to disease in changing environments. Identifying mechanisms of 398 

these contrasting patterns of intra- and interspecific trait variation is an exciting avenue for future 399 

research. 400 

Our results suggest that patterns of disease can be strongly influenced by inter- and 401 

intraspecific variation in SLA, but relationships between SLA and biotic interactions are being 402 

increasingly recognized as multidirectional: not only can host pace-of-life influence biotic 403 

interactions, but biotic interactions can reciprocally influence intraspecific variation in host pace-404 

of-life. For example, across 101 species embedded in alpine communities, SLA decreased with 405 

increasing herbivory [101], within eight common tundra plant species, SLA increased when 406 

mammalian herbivory was excluded [102], and across twenty species in a biodiversity 407 



manipulation, fungicide application reduced SLA within species [103]. Together with the results 408 

of this study, these experimental results highlight the potential for important feedbacks between 409 

ITV and disease risk in host communities experiencing climate change. These feedbacks, in turn, 410 

could alter relationships between functional traits and host competence over evolutionary 411 

timescales. For example, a reduction in infection severity with cooling temperatures could 412 

weaken the importance of investment in disease resistance [104,105], so that host species could 413 

still form trade-offs in pace-of-life for growth and survival, but the link between pace-of-life and 414 

disease severity could weaken. Future studies could explore these complex feedbacks using 415 

manipulative experiments (like experimental fungicide applications) across environmental 416 

gradients. 417 

 Together, the results of this study highlight the value of integrating among- and within-418 

host differences in order to explain how environmental gradients shape disease risk [21,22,36]. 419 

Specifically, in this study, the strongest predictor of disease was host SLA, rather than the abiotic 420 

environment, and changes in temperature along the elevation gradient only influenced disease 421 

through its relationship with SLA. These results are consistent with a growing body of literature 422 

suggesting that the impacts of changing temperature on disease may depend on how temperature 423 

combines and interacts with the structure of host communities [2,78,79,91], while indicating that 424 

evolutionary constraints on individual host species can determine how these effects are 425 

manifested. These results therefore suggest that predicting how global change will influence 426 

disease may depend on complex relationships among global change drivers, the structure of host 427 

communities, and the evolutionary and ecological processes that affect individual hosts within 428 

those communities. 429 

 430 

  431 



Figure Legends: 432 

 433 

Figure 1. Hypothesized pathways through which changing host species composition and 434 

intraspecific trait variation can mediate changing disease risk across a temperature gradient. a) 435 

High levels of intraspecific trait variation (ITV) in warm-adapted species offset changes due to 436 

shifting species composition, resulting in similar levels of community functional traits and 437 

disease across the gradient. b) There is no ITV, so only changes in species composition alter 438 

disease. c) High levels of ITV in warm-adapted species amplify changes in community 439 

functional traits and disease due to shifting species composition. The colors represent an 440 

individual's placement along a functional trait axis from fast to slow. Beside the color bar, 441 

species are arranged according to their mean trait value and colored according to the range of 442 

traits that each species can express. Black points represent disease severity. 443 

 444 

Figure 2. Relationships between elevation, mean soil surface temperature, and community 445 

weighted mean (CWM) specific leaf area (SLA). a) Relationship between elevation and mean-446 

soil-surface temperature in the CBO. b) Results from a model testing how CWM SLA, calculated 447 

using species mean traits, is influenced by increasing mean soil surface temperature. Lines are 448 

model-estimated means and ribbons are model-estimated 95% confidence intervals. Open circles 449 

in (a) are the raw data for individual sites. Open circles in (b) are the raw data for individual host 450 

communities (i.e., small plots). Soil surface temperature and elevation are collinear (r = -0.95), 451 

and CWM SLA calculated using species means increases with increasing soil surface 452 

temperature. 453 

 454 

Figure 3. Results from the analysis testing whether increasing temperature consistently affects 455 

intraspecific changes in specific leaf area (SLA). The y-axis is a standardized effect size 456 

(Fisher’s Z), with values below zero corresponding to a negative effect of increasing temperature 457 

on SLA. Solid points and error bars (a) and solid lines and ribbons (b & c) represent model-458 

estimated means and 95% confidence intervals. Raw data are represented in Figure S3. a) Results 459 

from an intercept-only model. b) Results from a model exploring lower-elevation limits of a 460 

species within the CBO (omitting the non-significant effect of higher-elevation limits). c) Results 461 

from a model exploring northern range-limits of a species (omitting the non-significant effect of 462 



southern range-limits). On average, SLA becomes lower (i.e., leaves become thicker, more well 463 

defended) as temperature increases, with that effect being stronger for species able to colonize 464 

the lowest elevation meadows and for species with lower-latitude northern range limits.  465 

 466 

Figure 4. Results from models comparing how (a) changing values of specific leaf area (SLA), 467 

(b) changing relative abundances of species, and (c) community weighted mean (CWM) SLA 468 

calculated using local trait measurements are influenced by increasing temperature. Lines are 469 

model-estimated means and ribbons are model-estimated 95% confidence intervals, with colors 470 

representing an aggregate of Ellenberg indicator scores for species thermal preference from the 471 

Flora Helvetica (Alpine = 1, 2, and 2+; Subalpine = 3 and 3+; Montane = 4 and 4+). Open circles 472 

in (c) are the raw data for individual host communities (i.e., small plots). As temperature 473 

increases, the average SLA of montane species declines and the relative abundance of alpine 474 

species declines, resulting in no net change in CWM SLA across the gradient. 475 

 476 

Figure 5. Results from the models testing how community weighted mean (CWM) specific leaf 477 

area (SLA) and soil surface temperature jointly influence community-level disease. (a) Results 478 

from a model fit using species-level means to calculate CWM SLA. (b) Results from a model 479 

using local estimates to calculate CWM SLA. Lines represent the model-estimated effect of 480 

CWM SLA estimated at one standard deviation above the mean (orange), one standard deviation 481 

below the mean (purple), and at the mean temperature (fuchsia). Points represent the raw data 482 

colored by soil surface temperature of the site. Increasing CWM SLA increased disease, but only 483 

at high temperature when CWM SLA was calculated using species means (a). In contrast, 484 

increasing CWM SLA consistently increased disease when CWM SLA was calculated using 485 

local estimates (b).  486 

  487 
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