
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2024

Dense Continuous-Time Optical Flow from Event Cameras

Gehrig, Mathias ; Muglikar, Manasi ; Scaramuzza, Davide

DOI: https://doi.org/10.1109/TPAMI.2024.3361671

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-257404
Journal Article
Accepted Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 In-
ternational (CC BY-NC-ND 4.0) License.

Originally published at:
Gehrig, Mathias; Muglikar, Manasi; Scaramuzza, Davide (2024). Dense Continuous-Time Optical Flow from
Event Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence:1-12.
DOI: https://doi.org/10.1109/TPAMI.2024.3361671

This paper has been accepted for publication at

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024. ©IEEE

Dense Continuous-Time Optical Flow from Event Cameras

Mathias Gehrig, Manasi Muglikar, and Davide Scaramuzza

(a) First Frame (b) Second Frame (c) Events (d) Prediction (e) Frame-based baseline

Fig. 1. (d) Our method, trained only on simulated events, predicts dense pixel trajectories in continuous-time on real sequences. The frames in (a) and
(b) are shown only for illustrative purposes. In (c), we also visualize selected pixel trajectories in the space-time volume of events. (e) The frame-based
baseline [1] attempts to predict linear motion from the frames but falls short due to perceptual ambiguity and non-linear motion in pixel space.

Abstract— We present a method for estimating dense
continuous-time optical flow from event data. Traditional dense
optical flow methods compute the pixel displacement between
two images. Due to missing information, these approaches
cannot recover the pixel trajectories in the blind time between
two images. In this work, we show that it is possible to
compute per-pixel, continuous-time optical flow using events
from an event camera. Events provide temporally fine-grained
information about movement in pixel space due to their asyn-
chronous nature and microsecond response time. We leverage
these benefits to predict pixel trajectories densely in continuous
time via parameterized Bézier curves. To achieve this, we build
a neural network with strong inductive biases for this task:
First, we build multiple sequential correlation volumes in time
using event data. Second, we use Bézier curves to index these
correlation volumes at multiple timestamps along the trajectory.
Third, we use the retrieved correlation to update the Bézier
curve representations iteratively. Our method can optionally
include image pairs to boost performance further. To the best
of our knowledge, our model is the first method that can regress
dense pixel trajectories from event data. To train and evaluate
our model, we introduce a synthetic dataset (MultiFlow) that
features moving objects and ground truth trajectories for every
pixel. Our quantitative experiments not only suggest that our
method successfully predicts pixel trajectories in continuous
time but also that it is competitive in the traditional two-view
pixel displacement metric on MultiFlow and DSEC-Flow. Open
source code and datasets are released to the public.

MULTIMEDIA MATERIAL

Code and dataset available at:

https://github.com/uzh-rpg/bflow

I. INTRODUCTION

Optical flow estimation is a fundamental low-level vision

task that informs about motion in pixel space. It has nu-

merous practical applications in computational photography

and videography, video compression, inverse graphics, object

tracking, and robotics [2].

The authors are with the Robotics and Perception Group, affiliated with
both the Dept. of Informatics of the University of Zurich and the Dept. of
Neuroinformatics of the University of Zurich and ETH Zurich, Switzerland.

Traditionally, this problem has been addressed by finding

dense correspondences between two frames. Frame-based

sensors provide information at a fixed frequency, independent

of the dynamics in the scene, and must strike a trade-

off between bandwidth and latency: At high speeds, they

require a high frame-rate to reduce perceptual latency, but

this introduces a significant bandwidth-overhead for down-

stream systems. Instead, reducing the frame-rate reduces the

bandwidth requirements but at the cost of missing important

scene dynamics. These shortcomings have inspired recent

work to address optical flow estimation with event cameras

[3], [4]. In contrast to frame-based sensors, which capture

frames at regular intervals, event cameras register per-pixel

brightness changes asynchronously and at very high temporal

resolution (< 1 millisecond). Additionally, they are robust to

motion blur and have a very high dynamic range [5]. Due to

these properties, event cameras are ideally suited for optical

flow estimation. Nonetheless, these advantages are tied to

the fundamentally different data format resulting from event

cameras.

Effectively extracting motion information from event cam-

eras is a non-trivial task for which deep neural networks

have shown promising results. Until now, neural network

approaches regress optical flow at a specific timestamp [3],

[4]. Event cameras provide visual cues in continuous-time,

which means that predicting discrete pixel displacements

ignores much of the device’s potential [4].

In this work, instead, we go a step further and propose

a differentiable model that can can exploit the rich spatio-

temporal nature of event data by regressing continuous-time

trajectories for every pixel of the camera. Figure 1 illustrates

an example prediction of our method using only events in

a short time window. This approach not only enables new

applications that can make use of continuous-time pixel

trajectories [6], [7] but also generally improves the accuracy

of the model, as we will show in our experiments in Sec. V.

Extracting per-pixel continuous-time trajectories from

1

event data is a challenging problem that requires careful

modelling of the problem. To achieve this, we propose the

following methodological innovations:

• Instead of predicting pixel displacements, we generalize

this concept and estimate control points of Bézier curves

for each pixel. As a result, our method can regress the

trajectory of each pixel at arbitrary times. It also enables

the second innovation:

• We use multiple correlation volumes in time to search

for pixel correspondences. We then use the estimated

Bézier curves to retrieve correlation features of all

correlation volumes simultaneously. This enables the

incorporation of motion prior and facilitates the task

of finding accurate pixel trajectories.

• The use of image data is optional. We show that our

approach works well purely with event data and enable

dense, pixel-wise trajectories. Furthermore, we show

that a combination of image and event data outperforms

single-modality approaches on both real and synthetic

datasets.

To train and evaluate our model we also contribute a

new synthetic dataset MultiFlow which is inspired by the

FlyingChairs dataset [8]. Differently from the FlyingChairs

dataset, MultiFlow features event data from various moving

objects undergoing continuous similarity transformations as

well as dense pixel-trajectory ground truth.

The proposed approach generalizes both the RAFT [9]

and E-RAFT [4] architecture by not only giving the option

to compute multiple correlation volumes in time but also

to predict Bézier curves that include the linear motion

model as a special case. The introduction of Bézier curves

gives the model the capabilities to estimate non-linear pixel-

trajectories but also reduces the end-point-error that is used

to assess the accuracy of predicted pixel displacements.

Our experiments suggest that simply giving the model the

flexibility to predict Bézier curves reduces the end-point-

error on MultiFlow by approximately 67%. Additionally, the

introduction of multiple correlation lookups in time further

reduces the error metric computed on the whole trajectory

by approximately 40%. Finally, we provide quantitative

real-world experiments for the traditional optical flow task

on DSEC-Flow [4], reducing the end-point-error by 14.5%

compared to prior art.

II. RELATED WORK

A. Optical Flow

For conciseness, we focus mostly on neural-network-based

methods.

1) Image-based: The vast majority of neural network-

based optical flow method considers the task of estimating

dense pixel displacements from a pair of frames [9], [10],

[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

A common component of many highly successful methods

are explicit correlation volumes that guide the matching pro-

cess. This inductive bias enables high performance and data

efficiency [9] as well as strong cross-dataset generalization

[17].

Multi-Frame optical flow estimation has been mostly

explored in the self-supervised learning setting [22], [23],

[24] or optimization-based literature [25], [26], [27]. Some

neural-network-based approaches use an additional pair of

frames to initialize the optical flow prediction [9] or use

warped flow as input [28] to a second stage. Recent work

proposes to track single pixels from video [29]. By esti-

mating the trajectory only for a single pixel, this method

does not utilize spatial information but still achieves re-

markable performance. From these multi-frame approaches,

Slow Flow [25] is conceptually most related. Slow Flow

estimates optical flow F1→N given a sequence of N images

at high frame rate (1000 fps) with dense tracking using an

optimization-based approach. However, it requires a high-

speed camera and complex occlusion handling that incurs

a trade-off between drift and accurate prediction at motion

boundaries.

2) Event-based: Event-based optical flow algorithms can

be categorized into four categories: (i) Asynchronous meth-

ods [30], [31] using the Lucas-Kanade algorithm [32]. (ii)

Plane fitting-based methods that exploit the local plane-

like shape of spatio-temporal event streams [33], [34]. (iii)

Variational optimization-based approaches [35], [36] that

incorporate image data[36] or simultaneously estimate im-

age intensity [35]. (iv) Learning-based approaches, most of

which are trained via self-supervision [3], [37], [38], [39],

[40]. Supervision is provided either by images[3], [37], [38]

or events[39], [40]. Our approach is related to E-RAFT [4],

which adapts the RAFT [9] framework to event data to

leverage correlation features from cost volumes to estimate

dense pixel correspondences for large displacements. In

contrast to E-RAFT or RAFT, we predict pixel trajectories

using multiple correlation lookups in time while we also

show the advantages of combining events and frames.

B. Continuous Tracking

Continuous-time trajectory estimation of camera poses has

been proposed in the context of rolling shutter compen-

sation [41] as well as visual-intertial odometry for event

cameras [42]. Instead, we are interested in regressing pixel-

trajectories, which is more closely related to high-speed

feature tracking for event cameras [31], [43], [44], [45].

Our approach is related to the work of Seok et al. [43]

who use quadratic Bézier curves to sparsely track features

by maximizing the variance of the image of warped events

on local patches. In contrast to our work, this method can

only sparsely track features where events are present, cannot

incorporate learned priors from data, and does not offer the

possibility to include images.

C. Datasets for Optical Flow

Existing datasets can be categorized as image-based opti-

cal flow datasets and event-based optical flow datasets.

1) Image-based: The seminal work of FlowNet [21]

proposed a large synthetic dataset called ”FlyingChairs”

to train their CNN. FlyingThings3D[46] introduced a syn-

thetic stereo-video dataset with scene flow ground truth.

2

Fig. 2. Overview of the framework. For concise presentation, we illustrate the purely event-based approach. We create multiple correlation voxel grids in
a sequence to compute correlation volumes. Bézier curves B, parameterized by a set of control points P , represent the continuous-time pixel trajectories.
Along these trajectories, we index J correlation volumes at their associated timestamps τCR. An learned update operator uses the output of this lookup
operation to update the Bézier curves. Finally, this loop is repeated in an iterative fashion.

AutoFlow[47] proposes to render large-scale training data

with rich data augmentation in 2D for optical flow estimation.

These datasets, however, do not provide event data and

ground truth pixel trajectories beyond two views.

2) Event-based: MVSEC [3] contains 5 outdoor driving

sequences and 4 indoor sequences. However, optical flow

ground truth from MVSEC suffers from inaccuracies in

calibration [4] and only features very small displacements.

DSEC-Flow, a more recent dataset, addresses these short-

comings by providing accurate but sparse optical flow ground

truth. The main downside of MVSEC and DSEC-Flow is

that they both do not include optical flow ground truth for

dynamic objects.

In contrast to the aforementioned datasets, our synthetic

dataset MultiFlow features accurate and dense ground truth

for pixel trajectories as well as image and event data. The

concept of pixel trajectories is a generalization of pixel

displacement and can be used to supervise and evaluate pixel

tracking methods.

III. METHODOLOGY

This paragraph outlines our methodology, setting the stage

for the following detailed explanations. To assist in visu-

alizing the process, Figure 2 serves as a helpful guide.

Our approach begins by transforming events into a spatio-

temporal event representation, crucial for subsequent feature

extraction, as elaborated in Section III-B. Following this,

our model extracts two key types of features: context and

correlation features from the event representations. The in-

tricacies of this process are elaborated in Section III-C. At

the heart of our approach lies the computation of correlation

volumes. These volumes are critical in assessing the quality

of feature matches over time, thereby aiding in the tracking

of pixel movements. This aspect is thoroughly explained in

Section III-D. Further, we describe our iterative approach

to refine pixel motion, which is parameterized by Bézier

curves initialized as straight lines. These curves are crucial

for indexing the correlation volumes and thus, for guiding

the trajectory estimation process. The nuances of this step

are covered in Section III-E.

Our implementation reuses many components of the orig-

inal RAFT architecture [9]. While Figure 2 offers a concep-

tual summary of our approach, the specific neural network

architecture that integrates these elements is depicted in

Figure 2 of the supplementary material.

A. Problem Definition

Our method is tasked with estimating a function

B : T × N0 × N0 → R
2 (1)

(τ, x, y) 7→ B(τ, x, y) (2)

that describes the per-pixel trajectories in time on the image

plane. T = R∩ [0, 1] describes the domain of the normalized

time τ(t) = (t−tr)/(tt−tr) , where τ = 0 corresponds to the

reference time tr from which the pixel trajectory starts and

τ = 1 corresponds to the target time tt when the pixel

trajectory ends. This formulation can be used to find the

pixel displacement at any time between tr and tt.

As will be explained in more detail later, the proposed

approach also uses additional events from time t0 until

the reference time tr to extract feature maps at different

timestamps. However, the pixel trajectory is estimated only

from the reference time tr to the target time tt.

B. Input Data Preparation

The proposed approach uses features extracted from event

data and optionally a pair of images to further boost perfor-

mance.

1) Multi-View Event Representations: Event cameras have

a fundamentally different working principle than frame-based

cameras. Instead of acquiring frames, event cameras receive

asynchronous events with high temporal resolution. An event

ek(t) = (xk, yk, t, pk) is a tuple containing information

about a pixel (xk, yk) for which a positive or negative

brightness change pk was registered at time t. Note that the

time t typically has microsecond resolution, which provides

precise temporal information about motion in the scene.

The first step of the feature extraction pipeline is the con-

struction of a discrete spatio-temporal representation from a

sequence of events. For our experiments, we choose the voxel

grid representation by Zhu et al. [37] due to its simplicity

3

Voxelization Context Voxel Grid

Correlation Voxel Grids

Bézier Flow

Fig. 3. Voxel Grid Generation. Events are interpolated into a voxel grid
representation before being divided into sub-voxel grids that are either used
as input to the context encoder or the correlation encoder. The Bézier curves,
indicated in the figure, are estimated from the reference time tr to the target
time tt for each pixel. The initial voxel grid channels before the reference
time tr are used for extracting correlation voxel grids as visualized in the
lowest, green row of the figure.

and possibility to extract features in a sliding window. Figure

3 provides an overiew of this process.

Given the task of estimating continuous pixel trajectories

from tr, the reference time, to the target time tt, Our method

first computes a base voxel grid, visualized in red in Figure

3, consisting of M + N − 1 discrete bins along the time

dimension via interpolation of event data [37]. The first M
bins are computed from events between initial time t0 and

the reference time tr. These events are used to extract the

correlation features later in the pipeline. The last N bins are

computed from events during the time window [tt, tr] when

the pixel trajectories are estimated. These N bins are required

to extract the context features. The bin at the reference

timestamp tr will be reused by both correlation and context

features such that the base voxel grid consists of M +N −1
bins.

From this base voxel grid, we first extract the context voxel

grid V CT, visualized in yellow in Figure 3. The next step

is the extraction of J ≤ N correlation voxel grids V CR
j ,

visualized in green in Figure 3, in a sliding-window fashion

from the base voxel grid. While it is possible to extract up to

J = N correlation voxel grids, we find in our ablation study

in Section V-D.4 that the choice of J can be used to trade off

performance and compute. Each of these correlation voxel

grids contain information about the contrast differences in the

scene at slightly different times. They will later be used to

guide the search for pixel trajectories via lookup operations.

We refer to the correlation voxel grids also as views because

they each represent a distinct timestamp. If we choose to

extract at least two correlation voxel grids apart from the

reference timestamp tr (i.e. J ≥ 3), we categorize the method

as multi-view.

2) Optional Frame-based Input: As we show in the ex-

perimental results, the performance of the proposed method

improves if image data is used in addition to events only.

To do so, we acquire a reference frame Ir at tr and a target

frame It at tt. These frames contain richer information about

texture at the boundary timestamps of the regressed pixel

trajectories and thus simplify the correspondence search.

C. Feature Extraction

Features are extracted from input images and voxel grids

with a convolutional network. The basic architecture of the

encoders follows prior work [9], [4]. The encoders extract

D = 256 dimensional features from their input at 1/8th

of the original resolution using residual blocks with striding

for downsampling the feature maps. From now on, we use

H ′ = H/8 and W ′ = W/8 to refer to the downsampled

resolution.

The context feature encoder fCT : R
(N+3)×H×W 7→

R
D×H′

×W ′

concatenates the voxel grid V CT with the frame

Ir, if available, to extract combined features. The reference

frame Ir informs the network about the absolute intensity of

the reference pixels while the context voxel grid V CT pro-

vides rich information about motion during the time duration

of the pixel trajectories. Note that the context network only

extracts features from Ir and not It because we require the

context features to be aligned with the reference timestamp.

Finally, contrast information is not explicitly considered yet,

which will be provided by the correlation feature encoders.

The correlation feature encoder fV
CR : R

M×H×W 7→
R

D×H′
×W ′

for event representations computes features from

the N correlation voxel grids in parallel, by sharing the

weights. The result of this operation are N feature maps,

each assigned to the timestamp associated with the last bin

of each correlation voxel grid. If in addition, a pair of frames

is available, we extract image features with an additional

encoder f I
CR : R3×H×W 7→ R

D×H′
×W ′

.

D. Multi-View Correlation Volumes

We compute correlation volumes to guide correspondence

search in space and time by associating subsequent views

with the reference view. This association is visualized in

Figure 4 and 2. We use the features created from voxel grid

V CR
0 and optionally Ir to create the feature maps for the

reference view. For each subsequent view j, we compute

features from voxel grid V CR
j to compute the correlation

volume as in equations (5) and (3). For the final/target

view, we optionally compute a correlation volume from

the boundary image features as in equations (5) and (4).

We perform the computation of all correlation volumes in

parallel with batched matrix multiplication.

C
(

fV
CR(V

CR
0), fV

CR(V
CR
j)

)

∈ R
H′

×W ′
×H′

×W ′

, (3)

C
(

f I
CR(Ir), f

I
CR(It)

)

∈ R
H′

×W ′
×H′

×W ′

, (4)

where

Cijkl(a, b) =
1√
D

∑

d

adij · bdkl (5)

E. Iterative Multi-View Flow Updates

This section describes the update scheme that uses corre-

lation volumes introduced in the previous section III-D.

4

Fig. 4. Correlation-volume pairs with indicated lookup direction. The
upper row shows lookups from voxel grid features and the lower row shows
lookups from image features.

1) Continuous-Time Flow: We seek a representation of

the function B(τ, x, y), as introduced in equation (1), that

generalizes the conventional displacement prediction of two-

frame optical flow methods. To achieve this, we choose to

use Bézier curves defined as

B(τ, x, y) =

n
∑

i=0

(

n
i

)

(1− τ)n−iτ iPi(x, y). (6)

B(τ, x, y) describes the displacement of pixel (x, y) for the

normalized time τ ∈ [0, 1]. As an example, the Bézier curves

of degree n = 1 simply represent a linear trajectories in

space and time that is fully described by P1. The task of

our method, however, is to regress the parameter set

P = {P1, . . . ,Pn} (7)

P0 = 0 does not have to be estimated because it defines

the starting point of the trajectory that coincides with the

reference pixels. The advantages of working with Bézier

curves is that they are fast to evaluate and can be concisely

summarized by a set of parameters P .

The degree n of the Bézier curves is a fixed parameter.

Our ablation study in Section V-D.2 suggests to set n equal

to the number of supervision points along the trajectory for

an accurate trajectory prediction.

Iterative Bézier Updates: The Bézier curves are initial-

ized with P = {0, . . . ,0} such that B = 0. The update block

of the network estimates increments ∆P that are added to

the current estimate of the Bézier curve parameters. More

specifically, in each iteration from k to k + 1 the network

updates the parameter set P the following way:

P
k+1
i = P

k
i +∆P

k
i , ∀i ∈ {1, . . . , n}

2) Multi-View Correlation Lookup: Similar to the original

RAFT implementation, we use lookup operations to extract

features from the correlation volumes. In contrast, however,

we extract features from multiple correlation volumes, each

associated to a unique normalized timestamp. Given the

current estimate of the Bézier control points P , we map each

pixel x = (x, y) at time τ = 0 to the estimated corresponding

pixel location x
′(τ) = (x′(τ), y′(τ)) at time τ :

x
′(τ) = x+B(τ,x) (8)

Similar to RAFT, the lookup is performed in a local neigh-

borhood N around the corresponding pixel location x
′(τ):

N (x′(τ)) =
{

x
′(τ) + dx |dx ∈ Z

2, ||dx||∞ ≤ r
}

(9)

Fig. 5. Illustrative example of a Bézier prediction and Nk = 4 ground
truth flow maps from which the loss function (10) is computed.

Lookups are performed on all available correlation volumes

with bilinear sampling. We use a constant lookup radius of

r = 4, as in the original RAFT implementation, to increase

the effective lookup radius. Finally, the values from the union

of lookup operations are concatenated into a single feature

map.

3) Upsampling of Bézier Curves: The Bézier control

points are estimated at 1/8-th of the original resolution. Since

B(·) is linear in the control points P , we can upsample the

Bézier curves to the full resolution using convex upsampling

[9]. As a result, the Bézier curves at the full resolution will

be a learned convex combination of 3 × 3 grids of Bézier

curves at the lower resolution.

F. Supervision

We supervise the model with Nk ground truth flow maps

along the trajectory, visualized in Figure 5.

L =
1

Nk

Ni
∑

i=1

γNi−i

Nk
∑

k=1

||fgt(τk)−Bi(τk)||1 (10)

where Bi is the Bézier curve at iteration i, τk ∈ [0, 1] are

the evaluation timestamps of the Bézier curves, and γ = 0.8.

For a single displacement map, such as in two-frame optical

flow, the corresponding parameters are Nk = 1 and τ1 = 1.

IV. MULTIFLOW DATASET

To the best of our knowledge, there are no publicly

available datasets with dense ground truth for pixel trajec-

tories, which is more general than pixel displacements, in

combination with events and images. Therefore, we create a

new synthetic dataset to evaluate the proposed approach.

A. Data Generation Procedure

We generate 10100 training and 2000 test sequences

in simulation for MultiFlow. The background images are

sampled from the Flickr30K dataset [48]. The foreground

objects are extracted from randomly sampled PNG images,

by masking out transparent regions using their alpha chan-

nels.

The duration of each sequence is defined to be one

second. We randomly sample 3 or 4 control points over

similarity transformations in 2D for each foreground and

background object. Interpolation with piece-wise cubic spline

polynomials provide the continuous-time transformation of

all objects throughout the duration of each sequence. The

5

Input EPE AE 1PE 2PE 3PE

EV-FlowNet [3] E 2.32 - 55.4 29.8 18.6
E-RAFT [4] E 0.79 2.85 12.74 4.74 2.68
RAFT [9] I 0.78 2.44 12.40 4.60 2.61
RAFT + GMA [1] I 0.94 2.66 12.98 5.08 2.96
Ours E 0.75 2.68 11.90 4.41 2.44
Ours E+I 0.69 2.42 9.70 3.42 1.88

TABLE I

RESULTS ON DSEC-FLOW. OUR METHOD OUTPERFORMS PRIOR WORK

EVEN WHEN ONLY USING EVENTS. ADDING IMAGE DATA FURTHER

IMPROVES PERFORMANCE.

generated similarity transformation trajectories are used to

both render images and compute ground truth pixel trajecto-

ries. To generate events, we apply the generative model of

events [49] on frames rendered at 1000 frames per second

on the full sequence.

Pixel Trajectory Ground Truth: The ground truth for

the pixel trajectories is computed with respect to a reference

time at 0.4 seconds. The pixel trajectory is expressed as pixel

displacements at different target timestamps with respect to

the original pixel location at the reference time. Overall, the

dataset consists of pixel trajectory ground truth at intervals of

10 milliseconds from 0.4 seconds (tr) up to time 0.9 seconds

(tt). Events outside the time interval where ground truth is

available (0.4 ≤ t ≤ 0.9) can be used as additional context.

We refer to the supplementary material for dataset examples

and a more detailed description.

V. EXPERIMENTS

This section has four distinct purposes. First, to show

quantitative real-world performance on DSEC-Flow on tra-

ditional two-view metrics. Second, to show quantitative

performance on the main task on MultiFlow: predicting

continuous-time pixel trajectories. Third, to show qualitative

performance for sim2real transfer using models trained on

our MultiFlow dataset. Finally, an ablation study highlights

the importance of the proposed components.

Implementation Details: Our models are implemented

in Pytorch and trained from scratch with random weights on

each dataset. We use AdamW [50] with gradient clipping

in the range of [−1,1] and a OneCycle learning rate with

a batch size of 3. On both datasets, we perform random

horizontal and vertical flipping as well as random cropping

of the input data.

A. DSEC-Flow

DSEC-Flow [4], [51] is a driving dataset with stereo event

and global shutter cameras. The purpose of this experiment

is to show the quantitative performance of our approach on

real-world data. However, we can only test on traditional

two-view optical flow metrics because no pixel trajectory

ground truth is available on DSEC-Flow. In other words,

for displacement prediction, the quality of the intermediate

continuous trajectory is irrelevant. Instead, only the final

displacement prediction is evaluated using end-point-error

(EPE) and angular error (AE) metrics [52]. We also report

the X-point error, a metric that reports the percentage of

pixels with EPE higher than X pixels.

For our experiments that combine image and event data,

we warp images to the event camera. Due to the small

baseline between both cameras, we can warp the image to

a plane at an infinite depth and re-project it into the event

camera coordinate frame. The disparity is negligible.

The performance of EV-FlowNet [3] and E-RAFT is taken

from Gehrig et al. [4]. We additionally train the frame-based

RAFT model [9] and GMA [1], an addition over RAFT, to

also compare against purely frame-based approaches.

Implementation Details: Our model is supervised with

the 2-view version of our loss proposed in equation (10).

This loss function is used because DSEC-Flow only provides

ground truth for pixel displacements. We use M = N =
5 bins for both the context and correlation voxel grid (see

Section III-B.1) and J = 5 views to compute the correlation

volumes. We also experimented with a higher number of

bins but did not observe significant improvements. Finally,

we choose a degree of 2 for the Bézier curves mostly to

account for non-linear motion due to change in depth. We

train our models for 250k iterations on a single Titan RTX

which takes up to 40 hours.

1) Quantitative Evaluation: Table I summarizes our re-

sults on the DSEC-Flow test set. Our approach, using both

event data and frames, achieves 0.69 EPE which is 11.5%

lower than RAFT [9] and 8 % lower than our own method

using only event data. Furthermore, our purely event-based

approach achieves an EPE of 0.75 which is 5% lower than the

EPE of 0.79 that E-RAFT achieves. Overall the performance

of E-RAFT [4] is comparable to RAFT while EV-FlowNet

[3] is not competitive. In our experiments, the GMA version

of RAFT does not outperform the RAFT baseline on this

dataset.

These results indicate that the proposed method, even

though designed to work for regressing pixel trajectories,

is competitive with two-view approaches on the task of

pixel displacement prediction. Note that we have not used

any additional ground truth information compared to the

baselines.

B. MultiFlow

The experiments on MultiFlow assess the pixel trajectory

regression capabilities. To achieve this, we introduce an

extension of EPE and AE to trajectories.

TEPE =
1

Nk

Nk
∑

k

EPE(fpred(tk), fgt(tk)), (11)

where Nk ≥ 2. We analogously define TAE..

We train three previously published baselines for an ex-

tensive comparison. First, RAFT [9] and RAFT+GMA [1]

for a comparison against frame-based approaches. Second,

E-RAFT [4] for a comparison against a recent event-based

approach. We focus on these architectures because they are

related to our approach and achieve competitive performance

on public benchmarks [53], [51].

6

(a) First Frame (b) Second Frame (c) Ours (d) RAFT+GMA [1]

Fig. 6. Predictions of our method (c) and the strongest baseline, RAFT+GMA [1] (d), on the MultiFlow dataset. Predictions are shown in blue and the
ground truth trajectory is visualized in red. The background is a colorization of the ground truth flow to highlight moving objects. Events are not shown
for conciseness but are also used by our method. Best viewed in PDF form.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

RAFT [9] I (6.89) (19.31) 7.42 6.71
RAFT + GMA [1] I (5.14) (16.35) 1.47 1.56
E-RAFT [4] E (6.70) (18.44) 7.56 6.19
E-RAFT + Bézier E 2.62 5.92 4.54 6.06
Ours E 1.85 4.61 3.37 4.80
Ours E+I 1.29 3.35 2.27 3.19

TABLE II

RESULTS ON MULTIFLOW. TEPE AND TAE ARE THE TRAJECTORY

VERSIONS OF EPE AND AE. METRICS IN BRACKETS ARE COMPUTED

USING A LINEAR MOTION MODEL, HIGHLIGHTING THAT THESE

METHODS ARE NOT ORIGINALLY DESIGNED FOR ACCURATE

TRAJECTORY PREDICTION. E-RAFT + BÉZIER REPRESENTS OUR

BASELINE MODEL CONSISTING OF E-RAFT THAT ESTIMATES BÉZIER

CURVES INSTEAD OF PIXEL DISPLACEMENTS.

Implementation Details: We train our method on the loss

defined by equation (10) while the two-view approaches are

trained on the two-view version of the loss [9]1. We supervise

our methods with 10 flow maps along the trajectory using

loss (10) and set the Bézier curve degree to 10 according to

section III-E.1. The ablation study in Section V-D.2 clarifies

the relationship between the loss function (10) and the degree

of the Bézier curve.

1It is also possible to use equation (10) to supervise two-view methods,
but it results in an unfavorable trade-off between trajectory end-point-error
error (TEPE) and end-point-error (EPE).

For the following experiments, we build J = 6 correlation

voxel grids representing the views at regular time intervals

starting from 0.4 seconds up to 0.9 seconds (i.e. the duration

where we have to predict the pixel trajectories in the dataset).

We discretize the time into regular bins resulting in N = 41
bins for the context voxel grid and M = 25 bins for the

correlation voxel grids. Later in section V-D.5, we show that

a coarse discretization with fewer bins leads to suboptimal

performance. We observed that the reason for this is the

overwriting of polarities in the voxel grid which we prevent

by choosing a more fine-grained temporal discretization.

We train our models for 200k iterations on a single Titan

RTX which takes up to 80 hours.

1) Quantitative Evaluation: In addition to E-RAFT and

RAFT variants using frames, we also compare against a

baseline that consists of the E-RAFT approach that estimates

Bézier curves instead of pixel displacements, as in the origi-

nal work. This approach, named E-RAFT + Bézier, is better

suited for non-linear flow estimation than prior work. Table

II summarizes the quantitative results. Trajectory metrics in

brackets indicate approaches that predict pixel displacements

(RAFT, RAFT + GMA, and E-RAFT), for which we employ

linear interpolation to compute the trajectory metrics. As

expected, the results suggest that these approaches are un-

suitable for accurate pixel trajectory estimation. The E-RAFT

+ Bézier baseline clearly improves not only the trajectory

metrics but also the 2-view metrics compared to these base-

lines. Our proposed model substantially reduces the TEPE

further from 2.62 to 1.85 by using correlation features to

guide the trajectory estimation. Finally, our approach benefits

7

(a) First Frame (b) Second Frame (c) RAFT+GMA [1] (d) E-RAFT [4] (e) Ours

Fig. 7. Predictions of our method using only event data (e), E-RAFT [4] using events (d), and RAFT+GMA [1] using frames (c), on the HS-ERGB [6]
dataset. Predictions are shown in blue. The background is a colorization flow to highlight moving objects. Events are not shown for conciseness.

from combining events and frames: TEPE is reduced from

1.85 to 1.29 by 30% while the EPE also decreases by 32%.

When purely comparing 2-view metrics, RAFT + GMA

[1] achieves the lowest error by extending RAFT with a

self-attention mechanism on the context features to aggregate

motion features. However, RAFT+GMA is not designed for

trajectory prediction and, therefore, falls short in TEPE and

TAE compared to our approach.
2) Qualitative Analysis: Figure 6 illustrates the predic-

tions of our model, using events and frames, in comparison

to RAFT+GMA [1]. Our approaches successfully predict

the continuous trajectory, even if the objects leave the field

of view. This is not the case for the two-view method

RAFT+GMA, as seen in the first row of Figure 6. Evidently,

it fails at predicting the motion of objects that are missing in

the second view because it is impossible to establish a match.

The second row shows that our method can accurately predict

pixel trajectories while RAFT+GMA does well in predicting

the final pixel displacement.

C. Qualitative Sim2Real Results

To qualitatively assess the real-world capabilities of our

method, we use our purely event-based model, trained only

on the simulation dataset MultiFlow, and show predictions

on the HS-ERGB and BS-ERGB datasets [6], [7] in Figure

1 and 7. Although our method is only trained on MultiFlow,

it can correctly predict non-linear motion of moving objects

while the frame-based baseline [1] fails due to large motion

and ambiguities in the input frames.

D. Ablation Study

This section examines the influence of the main contribu-

tions of our model as well as additional design choices that

contribute to the performance of the method. We perform

the ablation studies on the MultiFlow because we require

accurate pixel trajectory ground truth that is not available on

DSEC or other event-based datasets.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

w/o Bézier E+I 6.36 18.37 6.66 5.18
w/o multi-view E+I 1.81 4.25 2.68 3.51
Reference E+I 1.29 3.35 2.27 3.19

w/o Bézier E 7.31 20.07 9.10 8.85
w/o multi-view E 2.62 5.92 4.54 6.06
Reference E 1.85 4.61 3.37 4.80

TABLE III

ABLATION EXPERIMENTS ON MULTIFLOW. FINAL MODEL SETTINGS

ARE UNDERLINED.

1) Main Components: One of the main contributions of

this paper are the iterative Bézier curve regression and the

correlation lookup applied at multiple timesteps/views along

the trajectories. We ablate both components using the full

model described in Section III as reference and summarize

the results in Table III.

First, we remove the Bézier curve regression and note a

drastic drop in performance on all metrics. Removing the

Bézier curves is equivalent to assuming linear motion. Linear

motion is not representative for this dataset and impairs the

utility of the correlation lookup. For example, if the model

is constrained to predict a linear trajectory during non-linear

motion, the correlation lookup will not be accurately placed

along the trajectory. This leads to correlation features that

are not informative.

Second, we remove the correlation lookups between the

reference view and intermediate views, denoted as the w/o

multi-view baseline in Table III, and note that both TEPE

and EPE increase between 18% and 42% with respect to the

event-based and hybrid reference model. We conclude that

both components are essential for achieving the best results.

8

1 5 10 15 20

Bézier Degree

1.2

1.3

1.4

1.5

1.6

T
E
P
E

> 6 20 Hz

100 Hz

1 5 10 15 20

Bézier Degree

3

4

5

6

7

T
A
E

> 18 20 Hz

100 Hz

(a) TEPE vs Bézier degree (b) TAE vs Bézier degree

Fig. 8. Trajectory metrics vs Bézier curve degree. (a) shows the trajectory
EPE and (b) the trajectory AE as a function of the Bézier degree. We
evaluate both at 20 Hz (every 50 milliseconds) and at 100 Hz (every 10
ms). In both cases we can observe overfitting of the predicted trajectories
when we evaluate at 100 Hz. This can be explained with the fact that the
loss function was only applied every 50 milliseconds during training.

2) Degree of the Bézier Curves: The goal of this experi-

ment is to answer the question: Which Bézier curve degree

is appropriate for our model?

To answer this question, we train 5 different models with

Bézier curve degrees 1, 5, 10, 15, and 20 using frames

and events as input to the model. The supervision on pixel

trajectories at training time is at 20 Hz, that we supervise

the model on the pixel trajectory every 50 milliseconds.

Intuitively, one could surmise that a higher Bézier degree

always improves the performance. Figure 8 indeed shows

that a higher Bézier degree improves performance, when the

models are evaluated at 20 Hz. The models were also trained

with a supervision signal at 20 Hz, that is with supervision

at regular time intervals of 50 milliseconds. Interestingly, an

evaluation of these models at a higher frequency of 100 Hz

reveals a decrease in performance for the model with a Bézier

degree higher than 10. The reason for that is that we observe

a test-time overfitting of the predicted trajectory to the

frequency with which the model was supervised. We do not

observe this overfitting issue at 20 Hz evaluation frequency

because the model is able to accurately predict the trajectory

at this frequency. This observation is reminiscent of the

overfitting phenomenon in the much simpler polynomial

regression problem in statistics.

The answer to the original question is: For accurate pixel

trajectory predictions, the Bézier degree should be chosen

equal to the number of regular supervision points along the

pixel trajectories. The degree can be set higher than the num-

ber of supervision points to potentially improve performance

on the timestamps of interest. However, the pixel trajectories

may not be as accurate anymore. An example for this is our

DSEC-Flow experiments where we have only 1 supervision

point (2-view) but found that a Bézier degree of 2 improves

the performance on the 2-view metric. This is a reasonable

approach as long as the downstream application does not

require accurate pixel trajectories.

3) Loss Function: This experiment examines the influence

of the trajectory loss on trajectory and 2-view metrics. We

train two additional models with the 2-view loss; one using

only events and a second one using both frames and events.

Table IV summarizes the results.

For both input variations, the error metrics substantially

decrease when the model is trained with the trajectory loss.

This reduction is evident for both the trajectory metrics and

also the 2-view metrics. This indicates, that the trajectory loss

function is a better choice for the proposed method than the

2-view loss. Finally, the results in Table IV indicate that we

could further reduce the errors of the DSEC-Flow experiment

with the appropriate ground truth.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

2-View Loss E+I 16.47 20.57 3.72 5.48
Trajectory Loss E+I 1.29 3.35 2.27 3.19

2-View Loss E 16.99 21.83 5.95 8.57
Trajectory Loss E 1.85 4.61 3.37 4.80

TABLE IV

THE TRAJECTORY LOSS REFERS TO THE LOSS FUNCTION OF EQUATION

(10) OF THE MAIN PAPER, WITH Nk > 1. THE 2-VIEW LOSS REFERS TO

THE SAME LOSS FUNCTION WITH Nk = 1. TRAINING OUR METHOD

WITH THE TRAJECTORY LOSS LEADS TO DRASTICALLY LOWER ERRORS

EVEN FOR THE 2-VIEW METRICS.

4) Number of Correlation Lookups: Table V shows that

increasing the number of correlation lookups improves per-

formance consistently on all metrics. However, substantially

increasing the number of correlation volumes incurs higher

memory consumption and increases computational demand.

This result suggests a trade-off between performance and

compute and memory requirements. Note that the number of

correlation volumes is the number of correlation lookups (in

time) + 1 because the correlation volume at the reference

time has to be taken into account as well.

Trajectory Metrics 2-View Metrics
Correlation Lookups TEPE TAE EPE AE

1 1.81 4.25 2.68 3.51
3 1.35 3.43 2.34 3.21
5 1.29 3.35 2.27 3.19

TABLE V

INCREASING THE NUMBER OF CORRELATION VOLUMES/LOOKUPS IN

TIME IMPROVES PERFORMANCE. THE UNDERLINED ROW REFERS TO THE

REFERENCE MODEL USED IN THE EXPERIMENTS.

5) Voxel Grid Temporal Resolution: The voxel grid serves

as a discrete representation of event data, inevitably leading

to some loss of information during its formation. In partic-

ular, a decrease in the number of temporal bins not only

reduces the number of input channels but also intensifies the

quantization of the signal. In our study, detailed in Table V-

D.4, we investigate how the temporal resolution of the voxel

grid affects performance on the MultiFlow dataset. The bin

size in this context refers to the temporal interval between

consecutive bins. Consistent with expectations, Table V-D.4

9

demonstrates that a finer bin size, corresponding to higher

temporal resolution, results in improved performance. Note

that a bin size of 0.0125 represents the voxel grid resolution,

as detailed in section V-B, which was used for the main

results on the MultiFlow dataset.

Trajectory Metrics 2-View Metrics
Bin Size TEPE TAE EPE AE

0.1 1.81 4.53 2.87 3.97
0.05 1.51 3.82 2.61 3.63
0.025 1.40 3.56 2.45 3.41

0.0125 1.29 3.35 2.27 3.19

TABLE VI

DECREASING THE BIN SIZE OF THE VOXEL GRID IMPROVES

PERFORMANCE. EACH BIN IS ASSIGNED A SPECIFIC TIMESTAMP AND

THE BIN SIZE REFERS TO THE ∆t BETWEEN THE BINS. THE UNDERLINED

ROW REFERS TO THE REFERENCE MODEL USED IN THE EXPERIMENTS.

E. Runtime Analysis

Table VII shows inference time in milliseconds, parameter

count in millions of parameters and memory consumption

at inference time on samples from the MultiFlow dataset.

Overall, our proposed method has higher demands on the

presented metrics compared to RAFT [9], which is expected

because it is a generalization of the RAFT architecture.

Input Inference time [ms] Params Memory [GB]

RAFT [9] I 52 5.3 M 1.20
E-RAFT [4] E 56 5.3 M 1.20
Ours E 77 5.6 M 1.65
Ours E+I 84 5.9 M 1.65

TABLE VII

COMPARISON OF INFERENCE TIME, PARAMETER COUNT AND MEMORY

CONSUMPTION ON MULTIFLOW. THESE NUMBERS HAVE BEEN

OBTAINED ON A TITAN RTX GPU WITH AN IMPLEMENTATION USING

PYTORCH VERSION 1.12.1

VI. LIMITATIONS

The current implementation computes the dot products

between all paired features at once, which incurs O(N2)
space complexity where N is the number of spatial features.

This limitation can be overcome by computing dot products

on-demand, as original proposed by Teed et al. [9]. Another

limitation of the proposed method is that we cannot compute

the pixel trajectories for a sequence longer than the current

input to the model. We can approximate longer trajectories

by concatenating multiple shorter sequences via interpolation

at the reference timestamps. A more elegant solution could

be achieved by designing a recurrent model that can track

pixels without assuming a fixed sequence length or duration.

Finally, the number of correlation lookups is a fixed parame-

ter that cannot be changed at inference time. As a result, we

must define at training time how many correlation lookups

can be afforded during inference time.

VII. CONCLUSION

We have introduced a method for estimating continuous-

time pixel trajectories from events and frames. The proposed

approach generalizes the frame-based [9] and event-based

[4] RAFT architecture by regressing Bézier curves and uses

the pixel trajectories to extract correlation features along the

temporal axis. Our experimental results demonstrate that the

proposed method can accurately predict continuous pixel

trajectories while at the same time outperforming strong

baselines not only in simulation but also on real data. Finally,

our sim2real results suggest that the new MultiFlow dataset

can also be used to pretrain pixel trajectory regression models

for downstream applications.

ACKNOWLEDGMENT

This work was supported by the National Centre of

Competence in Research (NCCR) Robotics (grant agreement

No. 51NF40-185543) through the Swiss National Science

Foundation (SNSF), and the European Research Council

(ERC) under grant agreement No. 864042 (AGILEFLIGHT).

REFERENCES

[1] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley, “Learning to
estimate hidden motions with global motion aggregation,” in Int. Conf.

Comput. Vis. (ICCV), 2021.

[2] F. Guney, L. Sevilla-Lara, D. Sun, and J. Wulff, “”what is optical
flow for?”: Workshop results and summary,” in Eur. Conf. Comput.

Vis. Workshops (ECCVW), 2018.

[3] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “EV-FlowNet:
Self-supervised optical flow estimation for event-based cameras,” in
Robotics: Science and Systems (RSS), 2018.

[4] M. Gehrig, M. Millhäusler, D. Gehrig, and D. Scaramuzza, “E-RAFT:
Dense optical flow from event cameras,” in 3D Vision (3DV), 2021.

[5] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D. Scara-
muzza, “Event-based vision: A survey,” IEEE Trans. Pattern Anal.

Mach. Intell., 2020.

[6] S. Tulyakov, D. Gehrig, S. Georgoulis, J. Erbach, M. Gehrig, Y. Li, and
D. Scaramuzza, “TimeLens: Event-based video frame interpolation,”
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2021.

[7] S. Tulyakov, A. Bochicchio, D. Gehrig, S. Georgoulis, Y. Li, and
D. Scaramuzza, “Time lens++: Event-based frame interpolation with
parametric non-linear flow and multi-scale fusion,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2022, pp. 17 755–17 764.

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in Int. Conf. Comput. Vis. (ICCV),
December 2015.

[9] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Eur. Conf. Comput. Vis. (ECCV), 2020.

[10] H. Xu, J. Yang, J. Cai, J. Zhang, and X. Tong, “High-resolution optical
flow from 1d attention and correlation,” in Int. Conf. Comput. Vis.

(ICCV), October 2021, pp. 10 498–10 507.

[11] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume,” in IEEE Conf.

Comput. Vis. Pattern Recog. (CVPR), 2018.

[12] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“FlowNet 2.0: Evolution of optical flow estimation with deep net-
works,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2017,
pp. 1647–1655.

[13] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige,
and A. Angelova, “What matters in unsupervised optical flow,” in Eur.

Conf. Comput. Vis. (ECCV), 2020.

[14] J. Wulff and M. J. Black, “Efficient sparse-to-dense optical flow
estimation using a learned basis and layers,” in IEEE Conf. Comput.

Vis. Pattern Recog. (CVPR), June 2015.

10

[15] D. Gadot and L. Wolf, “Patchbatch: A batch augmented loss for optical
flow,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), June 2016.

[16] C. Bailer, K. Varanasi, and D. Stricker, “Cnn-based patch matching for
optical flow with thresholded hinge embedding loss,” in IEEE Conf.

Comput. Vis. Pattern Recog. (CVPR), July 2017.

[17] F. Zhang, O. J. Woodford, V. A. Prisacariu, and P. H. Torr, “Separable
flow: Learning motion cost volumes for optical flow estimation,” in
Int. Conf. Comput. Vis. (ICCV), October 2021, pp. 10 807–10 817.

[18] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu,
D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer, O. Hénaff,
M. M. Botvinick, A. Zisserman, O. Vinyals, and J. Carreira, “Perceiver
io: A general architecture for structured inputs and outputs,” 2021.

[19] S. Zhao, Y. Sheng, Y. Dong, E. I. Chang, Y. Xu et al., “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,” in IEEE

Conf. Comput. Vis. Pattern Recog. (CVPR), 2020.

[20] Y. Zheng, M. Zhang, and F. Lu, “Optical flow in the dark,” in IEEE

Conf. Comput. Vis. Pattern Recog. (CVPR), June 2020.

[21] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Int. Conf. Comput. Vis. (ICCV),
2015, pp. 2758–2766.

[22] P. Godet, A. Boulch, A. Plyer, and G. L. Besnerais, “Starflow: A
spatiotemporal recurrent cell for lightweight multi-frame optical flow
estimation,” in IEEE Int. Conf. Pattern Recog. (ICPR), 2021, pp. 2462–
2469.

[23] J. Janai, F. Guney, A. Ranjan, M. Black, and A. Geiger, “Unsupervised
learning of multi-frame optical flow with occlusions,” in Eur. Conf.

Comput. Vis. (ECCV), September 2018.

[24] D. Maurer and A. Bruhn, “Proflow: Learning to predict optical flow,”
in British Mach. Vis. Conf. (BMVC), 06 2018.

[25] J. Janai, F. Güney, J. Wulff, M. Black, and A. Geiger, “Slow flow:
Exploiting high-speed cameras for accurate and diverse optical flow
reference data,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2017.

[26] S. Ricco and C. Tomasi, “Dense lagrangian motion estimation with
occlusions,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2012,
pp. 1800–1807.

[27] R. Garg, A. Roussos, and L. Agapito, “A variational approach to video
registration with subspace constraints,” Int. J. Comput. Vis., vol. 104,
no. 3, pp. 286–314, 2013.

[28] Z. Ren, O. Gallo, D. Sun, M.-H. Yang, E. B. Sudderth, and J. Kautz,
“A fusion approach for multi-frame optical flow estimation,” in IEEE

Winter Conf. Appl. Comput. Vis. (WACV), 2019, pp. 2077–2086.

[29] A. W. Harley, Z. Fang, and K. Fragkiadaki, “Particle video revisited:
Tracking through occlusions using point trajectories,” in ECCV, 2022.

[30] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,
“Asynchronous frameless event-based optical flow,” Neural Netw.,
vol. 27, pp. 32–37, 2012.

[31] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT:
Asynchronous photometric feature tracking using events and frames,”
Int. J. Comput. Vis., 2019.

[32] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Int. Joint Conf. Artificial Intell.

(IJCAI), 1981, pp. 674–679.

[33] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Eur. Conf. Comput.

Vis. (ECCV), Oct. 2012.

[34] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza,
“Lifetime estimation of events from dynamic vision sensors,” in IEEE

Int. Conf. Robot. Autom. (ICRA), 2015, pp. 4874–4881.

[35] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous optical
flow and intensity estimation from an event camera,” in IEEE Conf.

Comput. Vis. Pattern Recog. (CVPR), 2016, pp. 884–892.

[36] L. Pan, M. Liu, and R. Hartley, “Single image optical flow estimation
with an event camera,” IEEE Conf. Comput. Vis. Pattern Recog.

(CVPR), 2020.

[37] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised
event-based learning of optical flow, depth, and egomotion,” in IEEE

Conf. Comput. Vis. Pattern Recog. (CVPR), 2019.

[38] C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and
K. Roy, “Spike-flownet: event-based optical flow estimation with
energy-efficient hybrid neural networks,” in Eur. Conf. Comput. Vis.

(ECCV), 2020.

[39] F. Paredes-Vallés and G. C. de Croon, “Back to event basics: Self-
supervised learning of image reconstruction for event cameras via

photometric constancy,” in IEEE Conf. Comput. Vis. Pattern Recog.

(CVPR), 2021.
[40] C. Ye, A. Mitrokhin, C. Fermüller, J. A. Yorke, and Y. Aloimonos,

“Unsupervised learning of dense optical flow, depth and egomotion
with event-based sensors,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst.

(IROS), 2020.
[41] C. Kerl, J. Stückler, and D. Cremers, “Dense continuous-time tracking

and mapping with rolling shutter RGB-D cameras,” in Int. Conf.

Comput. Vis. (ICCV), 2015.
[42] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza,

“Continuous-time visual-inertial odometry for event cameras,” IEEE

Trans. Robot., vol. 34, no. 6, pp. 1425–1440, Dec. 2018.
[43] H. Seok and J. Lim, “Robust feature tracking in DVS event stream

using bézier mapping,” in IEEE Winter Conf. Appl. Comput. Vis.

(WACV), 2020.
[44] I. Alzugaray López and M. Chli, “Haste: Multi-hypothesis asyn-

chronous speeded-up tracking of events,” in British Mach. Vis. Conf.

(BMVC), 2020.
[45] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature

tracking with probabilistic data association,” in IEEE Int. Conf. Robot.

Autom. (ICRA), 2017.
[46] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy,

and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in IEEE Conf.

Comput. Vis. Pattern Recog. (CVPR), 2016.
[47] D. Sun, D. Vlasic, C. Herrmann, V. Jampani, M. Krainin, H. Chang,

R. Zabih, W. T. Freeman, and C. Liu, “Autoflow: Learning a better
training set for optical flow,” in IEEE Conf. Comput. Vis. Pattern

Recog. (CVPR), 2021.
[48] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image

descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Transactions of the Association for

Computational Linguistics, 2014.
[49] H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: an open event

camera simulator,” in Conf. on Robotics Learning (CoRL), 2018.
[50] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”

in Int. Conf. Learn. Representations (ICLR), 2019. [Online]. Available:
https://openreview.net/forum?id=Bkg6RiCqY7

[51] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza, “Dsec: A
stereo event camera dataset for driving scenarios,” IEEE Robot. Autom.

Lett., 2021.
[52] S. Baker, D. S. J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A

database and evaluation methodology for optical flow,” Int. J. Comput.

Vis., vol. 92, no. 1, pp. 1–31, 2011.
[53] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic

open source movie for optical flow evaluation,” in Eur. Conf. Comput.

Vis. (ECCV), 2012.

11

Supplementary Material

I. INFLUENCE OF TRAJECTORY LENGTH ON THE

TRAJECTORY ERROR

In Figure 1, we examine how the trajectory length influ-

ences the trajectory error on the MultiFlow. As expected, the

trajectory error increases when the trajectory becomes longer

because the task complexity increases. For example, longer

trajectories correlate with more complex motion patterns and

occlusions which are particularly challenging for optical flow

methods.

[0, 24] [2 4 , 25] [2 5 , 2 6] [2 6 , 2 7] [2 7 , ∞]

Trajectory Length [pixels]

2−1

20

21

22

23

T
E
P
E

[p
ix
el
s]

Events + Image-pair

Events

Fig. 1. Trajectory end-point-error (TEPE) as a function of the trajectory
length. We use the log2 scale to better capture the full range of trajectory
length and errors. The error increases with the trajectory length, and image
data generally lowers the error.

II. NETWORK ARCHITECTURE

Figure 2 shows the neural network architecture used

throughout this paper. The architecture is based on the RAFT

neural network [1] with modifications highlighted in red. We

use the same encoder architecture to extract context features

from voxel grids (events) and, optionally, the image at the

reference timestamp, as well as correlation features from

both modalities. This encoder architecture is identical to the

RAFT context and correlation encoder. Instead, the update

block requires a few modifications:

• Instead of encoding pixel displacements (flow), we

encode the Bézier curve parameters Pk−1 from the

previous output of the update block.

• We add a context encoder to extract motion features

directly from event data and optionally use the image

context encoder.

• We predict 2n scalars per feature of the update block

to estimate the increment of n two-dimensional Bézier

curve control points ∆Pk.

The upsampling module, omitted for brevity, is identical to

the one used in RAFT.

III. MULTIFLOW DATASET GENERATION

This section provides a more formal and detailed overview

of the data generation process that was used to create the

MultiFlow dataset.

The duration of each sequence in the dataset is fixed

to one second. We sample either 3 or 4 (random choice

of 50% probability each) control points in the space of

pixel translation, scale, and rotation of the foreground (FG)

and background (BG) objects in the image plane. The time

assigned to control points is sampled from the range [0, 1]
while ensuring strictly increasing values to maintain the

temporal order.

The control points are sampled according to the following

discrete-time process with parameters shown in Table I:

Xk+1 =

{

γ̂ · X̂Det
k+1 + (γ̂ − 1) · X̂Stoch

k+1 (α̂ = 0) ∧ (β̂ = 0)

Xk (α̂ = 1) ∨ (β̂ = 1)
(1)

where

X̂Det
k+1 = Xk +

tk+1 − tk
tk − tk−1

(Xk −Xk−1) (2)

refers to the deterministic part of the process that uses

a constant velocity model. It is inspired by the law of

conservation of momentum from classical mechanics. tk is

the time associated with control point k. To introduce more

variability in the data generation process, we introduce a

stochastic process:

For translation and rotation:

X̂Stoch
k+1 = Xk +∆X ∆X ∼ Uni(−θ, θ) (3)

For scale:

X̂Stoch
k+1 = Xk ·∆X ∆X ∼ (1 + δ0)

(2δ1−1), (4)

δ0 ∼ Uni(0, θ), δ1 ∼ Bern(0.5)

Uni stands for the continuous uniform distribution and

Bern refers to the Bernoulli distribution.

α̂ ∼ Bern(α) models the probability that the similarity trans-

formation (translation, rotation and scale) of the object

remains constant during the whole sequence.

1

Conv 7x7 (64)

Res. Unit (192)

Res. Unit (192)

Res. Unit (128)

Res. Unit (128)

Res. Unit (64)

Res. Unit (64)

Conv 3x3 (256)

Bézier Params Correlation Context: Events Context: Images

C
on

v
G

R
U

 (1
x5

)

C
on

v
G

R
U

 (5
x1

) C
on

v
3x

3
(2

56
)

C
on

v
1x

1
(2

n)

Conv 7x7 (128)

Conv 3x3 (64)

Conv 1x1 (256)

Conv 3x3 (128)

Conv 3x3 (128)

concatconcat

(optional)

Context/Correlation Encoder Update Block

Fig. 2. Neural network architecture adapted from RAFT to predict Bézier curves. Modifications in the update block are highlighted in red. Context and
correlation encoder architectures remain identical to RAFT, with an added context encoder for event data. n refers to the degree of the Bézier curve.

β̂ ∼ Bern(β) is sampled separately for each component

(translation, rotation or scale) of the similarity transfor-

mation and models the probability that the component

remains constant during the sequence.

γ̂ ∼ Uni(0, γ) is sampled separately for each component

(translation, rotation or scale) of the similarity trans-

formation and models the degree of the constant ve-

locity component. For γ̂ = 1, the new control point

is computed deterministically with a constant velocity

model according to equation (2). γ̂ = 0 corresponds to

a purely stochastic update according to equations (3) or

(4). γ̂ ∈ (0, 1) results in a convex combination of both

as shown in equation (1).

Component α β γ θ

Translation BG
0.1

0 0.8 30
Rotation BG 0.7 0.6 10
Scale BG 0.4 0.3 0.15

Translation FG
0

0 0.9 120
Rotation FG 0.3 0.6 30
Scale FG 0.3 0.3 0.30

TABLE I

PARAMETERS OF THE DISTRIBUTION OF THE TRANSFORMATION

COEFFICIENTS FOR FOREGROUND OBJECTS (FG) AND BACKGROUND

(BG). THE VALUES OF θ ARE SHOWN IN pixels FOR TRANSLATION, IN

degree FOR ROTATION AND IN dimensionless quantity FOR SCALE. THE

VALUES OF α AFFECT THE OVERALL SIMILARITY TRANSFORMATION

AND THEREFORE BELONG TO TRANSLATION, ROTATION AND SCALE

SIMULTANEOUSLY.

We compute continuous-time trajectories over similarity

transformations via cubic spline interpolation on the K ∈
{3, 4} acquired control points X0, . . . , XK−1. It would be

possible to sample a higher number of control points, but we

found that 4 control points are sufficient to capture interesting

non-linear motion that we could also observe in real-world

applications of our algorithm (see Fig. 1 and 7 in the paper).

Pixel Trajectory Ground Truth: The ground truth for

the pixel trajectories is computed with respect to a reference

time at 0.4 seconds. The pixel trajectory is expressed as pixel

displacements at different target timestamps with respect to

the original pixel location at the reference time. Overall, the

dataset consists of pixel trajectory ground truth at intervals

of 10 milliseconds up to time 0.9 seconds. The first 0.4 and

last 0.1 seconds can be used as additional context.

Visual Examples: Figure 3 shows examples of frames at

reference timestamp in column (a) and target timestamp in

column (b) as well as corresponding predictions of our model

trained on the dataset. Frames between the reference and

target timestamps are used to generate events that are used by

our model to predict the continuous-time pixel trajectories.

In column (c) we visualize the predicted pixel displacement

between the reference and target timestamp in the Sintel

colorization scheme [2].

REFERENCES

[1] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Eur. Conf. Comput. Vis. (ECCV), 2020.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Eur. Conf. Comput.

Vis. (ECCV), 2012.

2

(a) First Frame (b) Second Frame (c) 2-View Prediction (d) Trajectory Prediction

Fig. 3. Predictions of our model (E+I) on our MultiFlow test set. (a) shows the frame at the reference time, (b) the frame at the final timestamp of the
trajectory, (c) shows the predicted pixel displacement between reference and final timestamp, and (d) shows the full prediction of the pixel trajectories.
The predicted trajectory is shown in blue and the ground truth in red. The background of (d) is the colorization of the 2-view ground truth.

3

	Introduction
	Related Work
	Optical Flow
	Image-based
	Event-based

	Continuous Tracking
	Datasets for Optical Flow
	Image-based
	Event-based

	Methodology
	Problem Definition
	Input Data Preparation
	Multi-View Event Representations
	Optional Frame-based Input

	Feature Extraction
	Multi-View Correlation Volumes
	Iterative Multi-View Flow Updates
	Continuous-Time Flow
	Multi-View Correlation Lookup
	Upsampling of Bézier Curves

	Supervision

	MultiFlow Dataset
	Data Generation Procedure

	Experiments
	DSEC-Flow
	Quantitative Evaluation

	MultiFlow
	Quantitative Evaluation
	Qualitative Analysis

	Qualitative Sim2Real Results
	Ablation Study
	Main Components
	Degree of the Bézier Curves
	Loss Function
	Number of Correlation Lookups
	Voxel Grid Temporal Resolution

	Runtime Analysis

	Limitations
	Conclusion
	References

