
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Weighted Maximum Likelihood for Controller Tuning

Romero, Angel ; Govil, Shreedhar ; Yilmaz, Gonca ; Song, Yunlong ; Scaramuzza, Davide

DOI: https://doi.org/10.1109/ICRA48891.2023.10161417

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-257392
Conference or Workshop Item
Accepted Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Romero, Angel; Govil, Shreedhar; Yilmaz, Gonca; Song, Yunlong; Scaramuzza, Davide (2023). Weighted Maxi-
mum Likelihood for Controller Tuning. In: 2023 IEEE International Conference on Robotics and Automation,
ICRA 2023, London, United Kingdom of Great Britain and Northern Ireland, 29 May 2023 - 2 June 2023. Institute
of Electrical and Electronics Engineers, 1334-1341.
DOI: https://doi.org/10.1109/ICRA48891.2023.10161417



This paper has been accepted for publication at the

2023 IEEE International Conference on Robotics and Automation (ICRA) ©IEEE

Weighted Maximum Likelihood for

Controller Tuning

Angel Romero*, Shreedhar Govil*, Gonca Yilmaz*, Yunlong Song, Davide Scaramuzza

Fig. 1: During training, we sample a set of tuning parameters φ, run a series of simulations with a Model Predictive Contouring Controller
in the loop, and obtain a set of trajectories τ . The reward signal computed from τ is then used to update the policy. The best policy is
directly deployed in the real world and validated against both the hand-tuned controller and the state-of-the-art auto-tuning baseline. Our
approach outperforms these methods and achieves an unprecedented lap time, reaching speeds of 75 kmh−1.

Abstract— Recently, Model Predictive Contouring Control
(MPCC) has arisen as the state-of-the-art approach for model-
based agile flight. MPCC benefits from great flexibility in
trading-off between progress maximization and path following
at runtime without relying on globally optimized trajectories.
However, finding the optimal set of tuning parameters for
MPCC is challenging because (i) the full quadrotor dynamics
are non-linear, (ii) the cost function is highly non-convex,
and (iii) of the high dimensionality of the hyperparameter
space. This paper leverages a probabilistic Policy Search
method—Weighted Maximum Likelihood (WML)—to automat-
ically learn the optimal objective for MPCC. WML is sample-
efficient due to its closed-form solution for updating the learning
parameters. Additionally, the data efficiency provided by the
use of a model-based approach allows us to directly train in
a high-fidelity simulator, which in turn makes our approach
able to transfer zero-shot to the real world. We validate our
approach in the real world, where we show that our method
outperforms both the previous manually tuned controller and
the state-of-the-art auto-tuning baseline reaching speeds of 75
km/h.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/

21junNZ-M38
I. INTRODUCTION

Many fields in modern robotics, such as autonomous

robot navigation or legged locomotion, become impeded

by the complexity of simultaneously handling multiple task

objectives while also dealing with environment changes over

time. For instance, when flying a vision-based quadrotor, it

is essential to include a perception-aware objective in the

cost function due to the limited field of view of the camera

and the underactuated nature of the quadrotor dynamics.

*Equal contribution. The authors are with the Robotics and Perception
Group, Department of Informatics, University of Zurich, and Department
of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
(http://rpg.ifi.uzh.ch). This work was supported by the Swiss
National Science Foundation (SNSF) through the National Centre of Com-
petence in Research (NCCR) Robotics, the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 871479
(AERIAL-CORE), and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Another example comes from quadrupedal robots, where the

robot needs to keep walking forward despite facing highly

irregular profiles, deformable terrain, slippery surfaces, and

overground obstructions [1].

Recent controller designs relying on optimization have

shown the potential to cope with multiple task objectives

and environment changes. Falanga et al. [2] proposed a

perception-aware model predictive controller that can simul-

taneously track a trajectory and maximize the visibility of

a point of interest in the camera image. Similarly, Model

Predictive Contouring Control [3], [4] applied to quadrotor

flight [5], [6] addresses the time-optimal flight problem by

solving the time-allocation and the contouring control prob-

lem simultaneously, in real time, manifesting great adaptation

against model mismatches and unknown disturbances.

However, despite the flexibility provided by numerical op-

timization, the design of a well-formulated task objective is

challenging. To achieve real-time control performance, sev-

eral approximations are introduced in the cost formulation,

resulting in time-consuming hand tuning which leads to sub-

optimal performance. Machine learning can be leveraged to

select optimal parameters for optimization-based controllers

automatically.

There are different existing approaches for automatic

controller tuning. Specifically, one approach that has shown

promising results in the domain of car racing is [7], which

uses Bayesian Optimization to jointly optimize the param-

eters of the dynamic model and tuning parameters of an

MPCC architecture. Similarly, AutoTune [8] tackles the re-

ceding horizon controller tuning for agile flight by leveraging

statistical learning. It has the benefit that it can directly

cope with sparse metrics such as lap times or gate collisions

by sampling the metric function using Metropolis-Hasting,

an efficient version of Monte Carlo sampling that is non-

gradient based. While AutoTune has shown to outperform

existing methods, we show that it has difficulties when

dealing with controllers where the dimensionality of the

parameter space increases. Both these related works have



only dealt with a relatively small dimensionality in the

parameter space (less than 10 parameters).

Recently, Policy-Search methods have successfully been

used for designing a Model Predictive Controller (MPC) to

perform agile flight within very complex environments [9].

The authors exploited the advantages of Policy Search to

learn complex policies using data from past experience and

applied them to achieve optimal-control performance in the

task of agilely flying through fast-moving gates.

In this paper, we propose the use of Policy Search—

in particular, Weighted Maximum Likelihood (WML)—for

searching the space of hyperparameters of a Model Predictive

Contouring Controller (MPCC). In contrast to end-to-end

learning, where the agent needs to learn everything from

data, having an optimal controller in the loop leverages the

use of a model by the optimizer, which allows a sample effi-

ciency that permits training in a high-fidelity simulator [10].

We show that the controller has the ability to transfer zero-

shot to the real world by flying extremely agile maneuvers.

Contributions

The contributions of this paper are: (i) we show that we are

able to find the optimal hyperparameters for a state-of-the-art

MPCC controller in the task of time-optimal flight, pushing

the performance of the controller to the best lap times to date.

We show this by outperforming the best tuning that a human

expert was able to achieve after trying for several weeks, in

both simulation and the real world; and (ii) we demonstrate

the ability to transfer the results obtained in simulation to the

real world by flying through two different tracks at speeds

up to 75 kmh−1.

II. RELATED WORK

A. Automatic controller tuning

There exist different methods for automatically tuning

controllers [11]–[13]. In line with adaptive control [14], the

classic approach (known as the MIT rule [15]) for controller

tuning analytically finds the relationship between a perfor-

mance metric, e.g. tracking error or trajectory completion,

and optimizes the parameters with gradient-based optimiza-

tion [16]–[18]. However, expressing the long term measure

(in our case the laptime and gate passing metrics) as a

function of the tuning parameters is impractical and generally

intractable. Instead of analytically computing it, another line

of work proposes to iteratively estimate the optimization

function, and use the estimate to find optimal parameters

[19]–[21]. However, these methods make over-simplifying

assumptions on the objective function, e.g. convexity or

relative Gaussianity between observations. Such assumptions

are generally not suited for controller tuning to high-speed

flight, where the function is highly non-convex.

Other approaches are mainly data-driven and directly focus

on using a receding horizon optimal control approach in the

center of a learning algorithm. Learning-based MPC [22]–

[32] can leverage real-world data to improve dynamic mod-

eling or learn a cost function for MPC. It allows for a more

robust and flexible MPC design. In particular, sampling-

based MPC [27] algorithms are developed for handling

complex cost criteria and general nonlinear dynamics. This

is achieved by combining neural networks for the system

dynamics approximation with the model predictive path

integral (MPPI) control framework [27] for real-time control

optimization. A crucial requirement for the sampling-based

MPC is to generate a large number of samples in real-

time, where the sampling procedure is generally performed in

parallel by using graphics processing units (GPUs). Hence, it

is computationally and memory expensive to run sampling-

based MPC on embedded systems. These methods generally

focus on learning dynamics for tasks where a dynamical

model of the robots or its environment is challenging to

derive analytically, such as aggressive autonomous driving

around a dirt track [28]. More recent approaches [13], [33],

[34] pose the optimization problem as an additional differ-

entiable layer through which one can apply gradient-based

optimization methods, e.g. back-propagation. In [33], they

are able to directly find the gradient of the MPC controller

with respect to its high level hyperparameters. They use

the KKT (Karush-Kuhn-Tucker) conditions of the convex

approximation to find this gradient. This allows treating

MPC controllers as an extra layer in an end-to-end learning

structure. Another work in this regard applies reverse mode

auto-differentiation and proves to be robust to uncertainties

in the system dynamics and environment in simulation [13].

B. High-speed quadrotor flight

The literature on high-speed, high agile quadrotor starts

with polynomial planning and classical control. The main

focus was directed to exploiting the differential flatness

property of the quadrotor and leverage the use of polynomial

for planning [35]–[38].

More recently, optimization-based methods have achieved

true time-optimal trajectory planning using the quadrotor

dynamics and numerical optimization [39]. However, due to

high computational complexity, it normally requires several

minutes or hours to solve, and the trajectory can only be

computed offline. Additionally, a small deviation from the

planned trajectory leads to catastrophic crashes since the

vehicle is already operating on the edge of its actuator

limits. The solution to this problem is the current state-of-

the-art minimum-time flight: Model Predictive Contouring

Control (MPCC) [5], which simultaneously does online time-

optimal trajectory planning and vehicle control. In contrast

to standard trajectory tracking control (e.g., MPC), MPCC

balances the maximization of the progress along a given

path and minimizes the deviation from it. MPCC has the

freedom to optimally select at runtime the states at which

the reference trajectory is sampled such that the progress is

maximized while the platform stays within actuator bounds.

Latest developments in quadrotor simulations have al-

lowed for evaluation environments where we can not only

train but also evaluate and zero-shot transfer control policies

to the real-world. The state of the art on realistic simu-

lations for quadrotors is [10], which introduces a hybrid



aerodynamic quadrotor model which combines blade element

momentum theory with learned aerodynamic representations

from highly aggressive maneuvers.

III. PRELIMINARIES

In this section, we introduce the basics of Policy Search

followed by Model Predictive Contouring Control. Then, we

briefly introduce quadrotor dynamics.

A. Policy Search

We summarize policy search by following the derivation

from [9]. In particular, we focus on episode-based policy

search (or episodic reinforcement learning). Episode-based

policy search adds perturbations in the policy parameter

space instead of the policy output. A reward function R(τ )
is used to evaluate the quality of trajectories τ that are

generated by sampled parameters φ. In our case, we search

for a constant Gaussian policy where the set of MPCC

parameters φ that maximizes the reward is found. Therefore,

the policy parameters φ are updated by maximizing the

expected return of sampled trajectories

Jφ = E[R(τ )|φ] ≈
∫

R(τ )pφ(τ )dτ . (1)

We focus on a probabilistic model in which the search for

high-level decision variables φ in the MPCC optimization

is treated as a probabilistic inference problem, and use the

Expectation-Maximization algorithm to update the policy

parameters. We use a Gaussian distribution z ∼ πφ =
N (µ,Σ) to represent the policy, where µ is a mean vector

and Σ is a diagonal covariance matrix. The covariance matrix

is needed in order to incorporate exploration. Therefore, the

MPCC parameters are φ = [µ,Σ].

B. Model Predictive Contouring Control

Consider the discrete-time dynamic system with continu-

ous state and input spaces, xk ∈ X and uk ∈ U respectively.

Let us denote the time discretized evolution of the system

f : X × U 7→ X such that xk+1 = f(xk,uk).
In contrast to traditional MPC approaches, where the ob-

jective is to track a dynamically feasible trajectory, the main

objective of MPCC is to maximize the predicted traveled

distance along a path. This idea is encoded in the controller

by introducing the concept of progress, which is the travelled

arc-length measured along the nominal path. In this paper,

we aim to tune this MPCC controller for the task of drone

racing. To that end, we consider the MPCC problem in its

full form:

π(x) = argmin
u

N
∑

k=0

∥el(θk)∥2ql + ∥ec(θk)∥2qc + ∥ωk∥2Qω

+ ∥∆vθk∥2r∆v
+ ∥∆fk∥2R∆f

− µvθ,k

subject to x0 = x

xk+1 = f(xk,uk)

glb ≤ g(xk, uk) ≤ gub (2)

where glb and gub encode the lower and upper bounds on

states and inputs, θN is the progress at the last horizon step,

and eck is the contour error at time k, which is the position

error between the current position and the nominal path. For

more details about the problem definition we refer the reader

to [5].

Fig. 3: Dynamic allocation of the weight in the x axis. When closer
to the gate, the contouring weight qc(px(k)) (shown in blue) grows
to qwp, decreasing the tracking error around the gate. Everywhere
else qc is kept constant and equal to qnom such that the MPCC has
more freedom to optimize for progress.

This MPCC algorithm has been adapted for the task of

drone racing by adding a varying state-dependent cost to the

qc parameters, in the form of a scaled Gaussian distribution

located at every waypoint (or gate) that needs to be passed.

For every gate, the height h and the width w of the Gaussian

are defined, which are additional tuning parameters. This

way, a region of attraction at every gate is created. Therefore,

the set of tunable parameters φ are:

φ =
[

h0, w0, . . . , hng−1, wng−1, qnom, r∆v, r∆f , µ
]

where ng is the total number of gates. The dimensionality

of the hyperparameter space is therefore 2ng + 4. The cost

function of optimization problem (2) can then be written

as Jφ(x,u), where we need to find the set of optimal

hyperparameters φ∗ that solve a given higher level task,

which will be encoded by a reward function R(τ ).

C. Quadrotor Dynamics

In this section, we describe the specific dynamics used,

referred in (2) as f(xk,uk). The quadrotor’s state space

is described from the inertial frame I to the body frame

B, as x = [pIB , qIB ,vIB ,wB ]
T where pIB ∈ R

3 is the

position, qIB ∈ SO(3) is the unit quaternion that describes

the rotation of the platform, vIB ∈ R
3 is the linear velocity

vector, and ωB ∈ R
3 are the bodyrates in the body frame.

The input of the system is given as the collective thrust

fB = [0 0 fBz]
T and body torques τB . For readability, we

drop the frame indices as they are consistent throughout the

description. The dynamic equations are

ṗ = v v̇ = g +
R(q)fT

m
−R(q)DR⊺(q) · v

q̇ =
q

2
⊙ [0 ω]T ω̇ = J−1 (τ − ω × Jω)

(3)



where ⊙ represents the Hamilton quaternion multiplication,

R(q) the quaternion rotation, m the quadrotor’s mass, and

J the quadrotor’s inertia.

Additionally, the input space given by f and τ is decom-

posed into single rotor thrusts f = [f1, f2, f3, f4] where fi
is the thrust at rotor i ∈ {1, 2, 3, 4}.

fT =









0

0
∑

fi









and τ =









l/
√
2(f1 + f2 − f3 − f4)

l/
√
2(−f1 + f2 + f3 − f4)

cτ (f1 − f2 + f3 − f4)









(4)

with the quadrotor’s arm length l and the rotor’s torque

constant cτ . In order to approximate the most prominent

aerodynamic effects, the quadrotor’s dynamics include a

linear drag model [40]. In (3), D is the diagonal matrix

with drag coefficients d such that D = diag (dx, dy, dz).

IV. PROBLEM FORMULATION

In this section, we combine the approaches introduced

in Sections III-A and III-B. We treat MPCC as a con-

troller τ = MPCC(z) that is parameterized by the high-

level decision variables z. Here, τ = [uh,xh]h∈1,··· ,H is a

trajectory generated by MPCC given z, where uh are control

commands and xh are corresponding states of the robot.

By perturbing z, MPCC can result in completely different

trajectories τ . For the MPCC to execute the given task in

minimum time, the optimal z has to be defined in advance.

To formulate the policy search as a latent variable infer-

ence problem, similar to [9], we introduce a binary reward

event as an observed variable, denoted as E = 1. Maximizing

the reward signal implies maximizing the probability of this

reward event. The probability of this reward event is given

by p(E|τ ) ∝ exp {R(τ )}, where R(τ ) is a reward function

for evaluating the goodness of the MPCC solution τ with

respect to a given evaluation metric of the task. This leads

to the following maximum likelihood problem [41]:

max
φ

log pφ(E = 1) = log

∫

τ

p(E|τ )pφ(τ )dτ , (5)

which is intractable to solve directly and can be ap-

proximated efficiently using Monte-Carlo Expectation-

Maximization (MC-EM) [42], [43]. MC-EM algorithms find

the maximum likelihood solution for the log marginal-

likelihood (5) by introducing a variational distribution q(τ ),
and then, decompose the marginal log-likelihood into two

terms:

log pθ(E = 1) = Lθ(q(τ )) +DKL(q(τ )||pθ(τ |E)) (6)

where the DKL is the Kullback–Leibler (KL) divergence

between q(τ ) and the reward-weighted trajectory distribu-

tion pθ(τ |E).
The MC-EM algorithm is an iterative method that alter-

nates between performing an Expectation (E) step and a

Maximization (M) step. In the expectation step, we mini-

mize the KL-divergence DKL, which is equivalent to setting

q(τ ) = pθ(τ |E) ∝ p(E|τ )pθ(τ ). In the maximization step,

0 10 20 30 40 50 60

Iterations

Iterations

30

20

10

0

R
e
w
a
rd
s

0.05

0.10

0.15 Iter. 1 Iter. 5 Iter. 7

20 25 30

0.05

0.10

0.15 Iter. 10

20 25 30

Iter. 13

20 25 30

Iter. 18

Simple Sim. BEM Sim.

Fig. 4: Top: reward evolution as training progresses. The rewards
have been computed for 5 training runs averaged. In the middle of
the training we switch from simple simulator to BEM simulator.
This way, we leverage the faster running time in simple simulation
and transfer the policy from simple to BEM. Bottom: example of
how a the policy evolves and converges for a single parameter
through the iterations.

we update the policy parameters by maximizing the expected

complete data log-likelihood

φ∗ = argmax
φ

∑

i

p(E|τ [i]) log pφ(τ
[i]) (7)

where each sample τ [i] is weighted by the probability of the

reward event, denoted as p(E|τ ). The trajectory distribution

pθ(τ
[i]) can be replayed by the high-level policy πθ . To

transform the reward signal R(τ [i]) of a sampled trajectory

τ [i] into a probability distribution of the reward event, we

use the exponential transformation [41], [44], [45]:

d[i] = p(E|τ ) = exp
{

βR(τ [i])
}

(8)

where the parameter β ∈ R+ denotes the inverse temperature

of the soft-max distribution, higher value of β implies a more

greedy policy update.

A. Learning-Based Hyperparameter Tuning for MPCC

As explained in Section IV, to find the optimal hyperpa-

rameters φ∗, we need to sample a set of trajectories τ [i]

for each episode. We start with a random guess for πφ,

then we sample N different φ[i]. From every φ[i], we run

a simulation experiment that consists of completing L laps

with the MPCC in the loop and a reward R(τ [i]) is calculated.

After all trajectories τ [i] are completed an update step can

be made.

We designed a reward function specifically for the drone

racing task such that it results in robust learning and can be

directly used to find the optimal policy in the large action

space for different tracks. The reward function choice is

driven by three objectives: minimizing the lap time, avoiding

gate collisions, and maximizing the number of gates passed.



TABLE I: We show the results obtained in simulation in both the Split-S track and in the Marv track. Our approach is able to find optimal
solutions in both tracks, whereas the baselines struggle to find solutions in high dimensional hyperparameter spaces.

Split-S track (18 hyperparameters) Marv track (30 hyperparameters)

Lap Time [s] Success Rate [%] Lap Time [s] Success Rate [%]

Simple BEM Simple BEM Simple BEM Simple BEM

Random 6.024 ± 0.519 6.031 ± 0.517 34 27 10.45 10.48 1 1

Hand-Tuned 5.24 5.42 - - 9.17 Collision - -

AutoTune 6.111 ± 0.342 6.471 ± 0.473 63 50 Collision 9.08 0 1

WML (Ours) 5.02 ± 0.008 5.274 ± 0.012 99 90 8.339 ± 0.106 8.381 ± 0.022 100 100

We define the reward function as follows.

π(φ) = argmax
φ

E

[

N
∑

i=0

R(τ [i])

]

(9)

where R(τ [i]) is defined as:

R
(

τ [i]
)

= −t1 − 2t2 − 210
rmiss

+ rpass +
ngp

ng

(10)

where t1 and t2 are the lap times of the first and second lap

respectively, ngp is the number of gates passed, ng is the

total number of gates, and rmiss is the sum of gate passing

errors and

rpass =

{

1 if rmiss ≤ 0.01

0 otherwise
(11)

The miss reward, rmiss, is added exponentially in order to

heavily penalize if the quadrotor passes the gate outside of

a given threshold, which is in our case 0.5 m. We do not

add rmiss as a linear component to ensure that the optimal

solution does not miss the gates and can optimize for lower

lap time, since this error can be very small compared to other

terms in the reward (10). During the training rmiss can never

be greater than 1.5 times the gate passing threshold hence

the exponential never explodes. If the quadrotor passes the

gate with a distance larger than 1.5 times the gate passing

threshold, then we count this as a gate crash and give a large

negative reward. If it passes all the gates with zero error we

give a positive reward in rpass (11). Additionally, we give

higher weight to the t2 than t1 because the first lap is slower

than the second one and the training prefers to decrease t1
more. By giving a higher weight to the t2 we decrease them

both simultaneously.

V. EXPERIMENTS

A. Baselines

For the baselines, we choose three different approaches.

First, we compare against the complete random approach,

where we randomly sample the parameters. Second, we

compare against the best results achieved by the previous lit-

erature where the controller was tuned by hand by an expert

[5]. And third, we implement AutoTune, the current state-of-

the-art in controller tuning [8] for our MPCC controller. All

approaches have the same initialization strategy and allowed

search space. Both AutoTune and our approach have exactly

the same reward function, which is described in Eq. (10).

B. Training

The training experiments are conducted using Flightmare

[46] and two different simulation environments for each

track. One called Simple simulator, where the drone model

is the one described in Section III-C and does not capture

complex aerodynamic environments. The other one is a

high-fidelity simulator called BEM [10], which includes a

high-complexity aerodynamic simulation derived from blade

element momentum theory.

During training, for each sample, we simulate L = 2
consecutive laps. We check whether the quadcopter is flying

through all the gates and measure the lap times in order

to compute the reward (10). We sample N = 16 set of

parameters from the same Gaussian policy, and then do

a policy update step for the episode. During training, our

criterion of gate passing is that the drone passes within 0.5m
of the gate center.

When we train directly in the BEM simulator from a

random initialization, it usually takes longer to converge or

it does not necessarily find the optimal solution. To address

this, we first train in the simple simulator for 30 episodes

and then initialize the training in BEM from the solution

obtained in the Simple simulator. We reset the variance when

we begin the training in the BEM environment so that the

policy recovers its full exploration capabilities and perform

another 30 episodes in BEM. Each episode takes around

35 seconds in Simple simulator and 200 seconds in BEM

simulator around. The evolution of the rewards in Simple

and BEM is shown in Figure 4.

C. Results in Simulation

In this section, we present the results achieved by our

approach when compared against the baselines for two

different tracks. The reference for the Split-S track has been

generated with [39] while for the Marv track, we used [47].

For the comparison, we run 10 trials with different random

initializations with the three approaches (Random, AutoTune

and Ours). We draw 100 samples from our policy and the

best 100 samples from Random and AutoTune. We present

the results in Table I and in Fig. 5. We validate our results

with gate passing threshold 0.6 m to the gate center, as the

gate width is 1.2 m in real-world. As shown in Table I,

our approach greatly outperforms both in laptimes, speed,

success rate and consistency to all other baselines. Even

for the Marv track, where hand-tuning was impossible due



5 0 5 10

x (m)

5

0

5

10

y
(m

)

5 0 5 10

x (m)

4

8

12

16

4

6

8

10

12

14

5

0

5

y
(m

)

BEM Simulator Real World

8

12

16

H
a
n
d
-T

u
n
e
d

(m
/s

)

8

12

16

20

8

12

16

H
a
n
d
-T

u
n
e
d

(m
/s

)

8

12

16

20

O
u
r
s

(m
/s

)

O
u
r
s

(m
/s

)
O
u
r
s

(m
/s

)

O
u
r
s

(m
/s

)

Fig. 5: Top: Split-S track. Bottom: Marv track. References are shown in dashed. Comparison of hand-tuned and our method, in simulation
and in the real-world. The speeds achieved by our method are consistently higher than those achieved by the hand-tuned approaches. In
fact, the human expert was not able to hand-tune a controller that was able to fly the Marv track. The tuning in simulation transfers to
the real-world in both tracks.

to the complexity of the track and the higher amount of

tuning parameters, i.e. 30, our approach finds a set of optimal

hyperparameters that fly through the track with 100% success

rate, whereas the baselines struggle to find a successful

solution.

D. Results in Real World

We deploy the algorithm to the physical platform, which

was built in-house from off-the-shelf components. A more

detailed description of our platform can be found in [48].

The flying results in real-world for both tracks are shown

in Fig. 5. One remark is that the learning-based policy

transfers zero-shot to the real-world for both tracks without

issue. We can see this by comparing them in XY position

and in maximum velocity (blue colorbars). There is no hand-

tuned data for the Marv track because it was not possible for

a human expert to tune a controller that could complete the

track without any collision.

Additionally, it is noteworthy to mention that with

learning-based approach, we are able to get the fastest lap

times ever achieved with the MPCC controller in these tracks.

For the Split-S track, the fastest lap time of the hand-tuned

controller in the real world, as reported in [5], is of 5.8s,

with a maximum speed of 60 km/h, whereas the fastest lap

time achieved by our learning-based tuning method is 5.29
s, with a maximum speed of 75 km/h. This improvement of

around half a second shows how the proposed method can

bring out the full potential of the MPCC controller.

VI. CONCLUSION

In this paper we show that by using the proposed learning-

based algorithm to tune a model-based controller (in our

case a MPCC), we can achieve performance limits that were

impossible to achieve using any other approach. The data

efficiency acquired by having a model-based controller in the

loop allows us to train directly in a high fidelity simulator,

which in turn has shown to allow zero-shot transfer to the

real-world. A possible extension of this work would be to,

instead of fixing the regions of attraction to Gaussians (as

depicted in Fig. 3), one could let the data-driven algorithm

to directly learn the best appropriate set of weights in the

horizon at every time-step.

One limitation of our method is that when starting from

a random initialization for φ, in some cases the algorithm

leads to non-increasing rewards. A solution for this is to

use a warm-starting strategy. We partially address this by

initiating the training in the simple simulator, then continuing

in the BEM simulator. Another limitation is that we need to

re-train for every new track, since the size of the parameter

space depends on the number of gates. This can be tackled by

resorting to more complex network architectures and making

the parameter set track independent. Lastly, the reward

function is specifically tailored for drone racing objectives

and to adapt it to other domains, one would need to re-design

it. These results open the door to finding new real-world

applications for controllers where the high-level objective

can be expressed in terms of a reward function directly.



REFERENCES

[1] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science

robotics, vol. 5, no. 47, p. eabc5986, 2020.
[2] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-

aware model predictive control for quadrotors,” in IEEE/RSJ Int. Conf.

Intell. Robot. Syst. (IROS), 2018, pp. 1–8.
[3] D. Lam, C. Manzie, and M. Good, “Model predictive contouring

control,” in 49th IEEE Conference on Decision and Control (CDC).
IEEE, 2010, pp. 6137–6142.

[4] D. Lam, C. Manzie, and M. C. Good, “Model predictive contouring
control for biaxial systems,” IEEE Transactions on Control Systems

Technology, vol. 21, no. 2, pp. 552–559, 2012.
[5] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive

contouring control for time-optimal quadrotor flight,” IEEE Transac-

tions on Robotics, pp. 1–17, 2022.
[6] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online

replanning for agile quadrotor flight,” IEEE Robotics and Automation

Letters, vol. 7, no. 3, pp. 7730–7737, 2022.
[7] L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N. Zeilinger,

and A. Carron, “Contextual tuning of model predictive control for
autonomous racing,” in 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2022, pp. 10 555–10 562.
[8] A. Loquercio, A. Saviolo, and D. Scaramuzza, “Autotune: Controller

tuning for high-speed flight,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4432–4439, 2022.

[9] Y. Song and D. Scaramuzza, “Policy search for model predictive
control with application to agile drone flight,” IEEE Transactions on

Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.
[10] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,

“Neurobem: Hybrid aerodynamic quadrotor model,” RSS: Robotics,

Science, and Systems, 2021.
[11] A. Schperberg, S. Di Cairano, and M. Menner, “Auto-tuning of

controller and online trajectory planner for legged robots,” IEEE

Robotics and Automation Letters, vol. 7, no. 3, pp. 7802–7809, 2022.
[12] M. Zanon and S. Gros, “Safe reinforcement learning using robust

mpc,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp.
3638–3652, 2020.

[13] S. Cheng, M. Kim, L. Song, Z. Wu, S. Wang, and N. Hovakimyan,
“Difftune: Auto-tuning through auto-differentiation,” arXiv preprint

arXiv:2209.10021, 2022.
[14] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza,

“Performance, precision, and payloads: Adaptive nonlinear mpc for
quadrotors,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
690–697, 2021.

[15] K. J. Åström, “Theory and applications of adaptive control—a survey,”
automatica, vol. 19, no. 5, pp. 471–486, 1983.

[16] M. J. Grimble, “Implicit and explicit lqg self-tuning controllers,” IFAC

Proceedings Volumes, vol. 17, no. 2, pp. 941–947, 1984.
[17] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic

tuning and adaptation for pid controllers-a survey,” Control Engineer-

ing Practice, vol. 1, no. 4, pp. 699–714, 1993.
[18] M. A. Mohd Basri, A. R. Husain, and K. A. Danapalasingam,

“Intelligent adaptive backstepping control for mimo uncertain non-
linear quadrotor helicopter systems,” Transactions of the Institute of

Measurement and Control, vol. 37, no. 3, pp. 345–361, 2015.
[19] M. Menner and M. N. Zeilinger, “Maximum likelihood methods for

inverse learning of optimal controllers,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 5266–5272, 2020.

[20] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 491–496.

[21] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
lqr tuning based on gaussian process global optimization,” in 2016

IEEE international conference on robotics and automation (ICRA).
IEEE, 2016, pp. 270–277.

[22] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser,
“Automatic tuning for data-driven model predictive control,” in 2021

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7379–7385.

[23] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics

and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[24] N. A. Spielberg, M. Brown, and J. C. Gerdes, “Neural network model
predictive motion control applied to automated driving with unknown
friction,” IEEE Transactions on Control Systems Technology, vol. 30,
no. 5, pp. 1934–1945, 2021.

[25] K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh, “Knode-mpc: A knowledge-
based data-driven predictive control framework for aerial robots,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2819–2826,
2022.

[26] A. Saviolo, G. Li, and G. Loianno, “Physics-inspired temporal learn-
ing of quadrotor dynamics for accurate model predictive trajectory
tracking,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 256–10 263, 2022.

[27] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, 2018.

[28] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2017, pp. 1714–1721.

[29] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based nmpc enabling reliable mobile robot path tracking,”
The International Journal of Robotics Research, vol. 35, no. 13, pp.
1547–1563, 2016.

[30] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:
a predictive control approach,” IEEE Transactions on Control Systems

Technology, 2019.

[31] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3769–3776, 2021.

[32] M. Mehndiratta, E. Camci, and E. Kayacan, “Automated tuning of
nonlinear model predictive controller by reinforcement learning,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2018, pp. 3016–3021.

[33] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differ-
entiable mpc for end-to-end planning and control,” in Advances in

Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.
Curran Associates, Inc., 2018, pp. 8289–8300.

[34] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen,
J. Ortiz, D. DeTone, A. S. Wang, S. Anderson et al., “Theseus:
A library for differentiable nonlinear optimization,” in Advances in

Neural Information Processing Systems.

[35] M. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball
juggling,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2011,
pp. 4972–4978.

[36] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robot. Autom.

Mag., vol. 19, no. 3, pp. 20–32, 2012.

[37] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” Int. J.

Robot. Research, vol. 31, no. 5, pp. 664–674, 2012.

[38] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient algorithm for state-to-state quadrocopter trajectory generation
and feasibility verification,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst.

(IROS), 2013.

[39] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56,
2021. [Online]. Available: https://robotics.sciencemag.org/content/6/
56/eabh1221

[40] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp.
620–626, Apr. 2018.

[41] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends® in Robotics, vol. 2, no.
1–2, pp. 1–142, 2013.

[42] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

[43] N. Vlassis and M. Toussaint, “Model-free reinforcement learning as
mixture learning,” in Proceedings of the 26th Annual International

Conference on Machine Learning, 2009, pp. 1081–1088.

[44] G. Neumann et al., “Variational inference for policy search in changing



situations,” in Proceedings of the 28th International Conference on

Machine Learning, ICML 2011, 2011, pp. 817–824.
[45] M. Toussaint, “Robot trajectory optimization using approximate infer-

ence,” in Proceedings of the 26th annual international conference on

machine learning, 2009, pp. 1049–1056.
[46] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,

“Flightmare: A flexible quadrotor simulator,” in Proceedings of the

2020 Conference on Robot Learning, 2021, pp. 1147–1157.
[47] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-

tonomous drone racing with deep reinforcement learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2021.

[48] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Ag-
ilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” AAAS Science Robotics, 2022.


	Introduction
	Related Work
	Automatic controller tuning
	High-speed quadrotor flight

	Preliminaries
	Policy Search
	Model Predictive Contouring Control
	Quadrotor Dynamics

	Problem Formulation
	Learning-Based Hyperparameter Tuning for MPCC

	Experiments
	Baselines
	Training
	Results in Simulation
	Results in Real World

	Conclusion
	References

