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(a) robust fusion (b) fast & temporally consistent motion (c) robustness to event sparsity

Figure 1. Comparison to state-of-the-art event- and image-based video interpolation method Time Lens [24]. Our method makes a series of

key innovations to address the limitations of current approaches. First, it uses feature-level multi-scale fusion which is robust to artifacts in

the fused images (a). Second, it computes continuous flow, parametrized by splines, which have inherent temporal consistency (b, bottom

right vs. left) and can be efficiently sampled, thereby significantly reducing computation for multi-frame interpolation (b). Finally, it

combines images and events to generate flow, even where few events are triggered, thereby mitigating artifacts as in (c). 

Abstract 

Recently, video frame interpolation using a combination 

of frame- and event-based cameras has surpassed tradi- 

tional image-based methods both in terms of performance 

and memory efficiency. However, current methods still suf- 

fer from (i) brittle image-level fusion of complementary in- 

terpolation results, that fails in the presence of artifacts 

in the fused image, (ii) potentially temporally inconsistent 

and inefficient motion estimation procedures, that run for 

every inserted frame and (iii) low contrast regions that do 

not trigger events, and thus cause events-only motion esti- 

mation to generate artifacts. Moreover, previous methods 

were only tested on datasets consisting of planar and far- 

away scenes, which do not capture the full complexity of 

the real world. In this work, we address the above problems 

by introducing multi-scale feature-level fusion and comput- 

ing one-shot non-linear inter-frame motion—which can be 

efficiently sampled for image warping—from events and im- 

ages. We also collect the first large-scale events and frames 

dataset consisting of more than 100 challenging scenes with 

depth variations, captured with a new experimental setup 

based on a beamsplitter. We show that our method improves 

the reconstruction quality by up to 0.2 dB in terms of PSNR 

and up to 15% in LPIPS score. 

Multimedia Material 

For videos, datasets and more visit https://uzh- 

rpg.github.io/timelens-pp/ .



 

1. Introduction 

High-speed videography has captured the imagination 

of the public by producing stunning slow-motion footage 

of high-speed phenomena [1, 11,  24]. While historically 

this was only possible with specialized and expensive 

equipment, today this technology is coming to our smart- 

phones thanks to high-speed cameras and video frame- 

interpolation (VFI) techniques. 

VFI techniques generate high frame rate video by insert- 

ing intermediate frames between consecutive frames of a 

low framerate input video. To this end, they estimate image 

changes in the blind time between consecutive frames, a 

task that remains challenging, especially in the presence of 

large displacements and non-linear motion. Most existing 

VFI methods rely on the information contained in the origi- 

nal video to estimate these changes. However, at low frame 

rates, image-based motion estimation does not accurately 

capture inter-frame motion, especially in presence of large 

and non-linear motion. While using high frame-rate cam- 

eras can alleviate this problem, they are typically expensive 

and produce excessive amounts of data, which cannot be 

recorded for an extended amount of time. For example, the 

Huawei P40 can record only 0.5s of 720p video with 1920 

fps, which fills up its 2GB frame buffer. 

Event cameras address both of these problems. Instead 

of measuring synchronous frames of absolute brightness 

like standard cameras, they only measure asynchronous 

brightness changes at each pixel, which results in a sparse 

and asynchronous stream of events , each encoding the posi- 

tion, time, and polarity (sign) of the measured change. This 

stream of events is simultaneously sparse, provides a low 

data bandwidth, and has a high temporal resolution on the 

order of microseconds capable of capturing high-speed phe- 

nomena, such as gunshots and popping water balloons1. 

The recently introduced Time Lens [24] leverages this 

compressed stream of visual information by combining a 

traditional camera with an event camera to perform video 

frame interpolation. Its key innovation lies in combining the 

benefits of warping-based and synthesis-based interpola- 

tion approaches through an attention mechanism. Warping- 

based interpolation produces intermediate frames by warp- 

ing frames of the original video using nonlinear motion esti- 

mated from events, while synthesis-based interpolation pro- 

duces intermediate frames by “adding” intensity changes 

captured by inter-frame events to the frames of the original 

video. Time Lens combines these two approaches because 

they are complementary: while warping-based interpolation 

usually produces high-quality results, it suffers where mo- 

tion estimation is unreliable due to violation of brightness 

constancy assumption. By contrast, the synthesis-based in- 

terpolation does not rely on brightness constancy and can

 

1https://youtu.be/eomALySSGVU 

easily handle objects with illumination changes such as, for 

example, fire, and water, however, it distorts fine texture due 

to the sparsity of events. 

Motivation . Despite its impressive performance com- 

pared with pure image-based methods,2 previous work suf- 

fers from several drawbacks.First, to combine warping- and 

synthesis-based interpolation it relies on image-level fusion 

which can fail in the presence of artifact in one of the in- 

puts, as shown in Figure  1(a), where “after-image” artifacts 

from synthesis interpolation are propagated to the final re- 

sults. Second, it relies on non-parametric motion estima- 

tion, that runs independently for each inserted frame with a 

computational cost of O  (  N  )  , where N  is the number of in- 

serted frames and produces potentially temporally inconsis- 

tent motion estimates. Third, to leverage information about 

non-linear motion it relies on events-only motion estima- 

tion, which leads to artifacts in low contrast areas without 

events (see Figure  1(c)). 

This work addresses all of these open challenges. Our 

method makes a key innovation in terms of motion estima- 

tion, visualized in Fig. 2. Instead of using linear (b) or 

chunked linear flow from events (c), we use both images and 

intermediate events (a) to predict a continuous flow field (d). 

By doing so our flow method is inherently temporally con- 

sistent and can be efficiently reused for multi-frame inser- 

tion. Additionally, we introduce a novel multi-scale fusion 

module that fuses event and image features on feature-level 

instead of image-level, thereby limiting ghosting artifacts. 

We make the following contributions in this work: 

1. We introduce a novel motion spline estimator , which 

produces non-linear continuous flow from events and 

frames. It is temporally consistent and can be effi- 

ciently sampled, enabling the interpolation of N  in- 

termediate frames with O  (1)  instead of O  (  N  )  com- 

putation. Moreover, leveraging images also produces 

accurate flow in the absence of events. 

2. We introduce a multi-scale feature fusion module with 

multiple encoders and joint decoder with a gated com- 

pression mechanism that selects the most informative 

features from each encoder at each scale and improves 

fusion of warping- and synthesis-based interpolation 

results. 

3. We compare our approach on an existing dataset and a 

new large scale hybrid dataset containing 123 videos 

collected with a beamsplitter setup that has temporally 

synchronized and aligned events and frames. We com- 

pare our method on multiple benchmarks including 

this new dataset and found an up to 0.2 dB improve- 

ment in terms of PSNR and up to 15% improvement in 

perceptual score [32] over the prior art, across datasets.

 

2https://youtu.be/dVLyia-ezvo



 

2. Related Work 

Frame-based video interpolation is a well studied topic 

with an abundance of prior work [10,  16–21,  29]. It aims 

at reconstructing intermediate latent frames at arbitrary or 

fixed timestamps using consecutive frames of the original 

video, called keyframes. Most image-based frame interpo- 

lation methods adopt one of four approaches: While direct 

approaches [11], regress intermediate frames directly from 

keyframes, kernel-based approach [18, 19], apply convolu- 

tional kernels to keyframes to produce the latent frame, and 

phase-based [15] approaches, estimate the phase decompo- 

sition of the latent frame. The most popular approach is 

warping-based [10, 16, 17, 20, 21, 29] and it explicitly esti- 

mates the motion between keyframes and then warps and 

fuses keyframes to produce the latent frame. This fusion is 

usually done on the image level, using visibility masks [10] 

or, more recently on the feature-level [1, 17]. The majority 

of works tackling VFI are image-based and thus suffer from 

two major limitations. First, they rely on image-based mo- 

tion estimation, which is only well defined when brightness 

constancy is satisfied. Secondly, they can not capture pre- 

cise motion dynamics in the blind time between keyframes 

and often resort to a simplistic linear motion assumption. 

Motion Estimation: Indeed, motion estimation, has 

predominantly been studied in the linear case, where cor- 

respondences between pixels are assumed to follow linear 

trajectories. However, in the case of rotational camera ego- 

motion and non-rigid object motion, this assumption is usu- 

ally violated. Only few works use more complex motion 

models, such as quadratic [28] or cubic [2,3]. While [2,28] 

directly regress polynomial coefficients, [3] parametrize the 

pixel trajectories in terms of 2-D knots, using B-Splines. 

Fitting these non-linear models requires multiple frames 

and long time windows, and thus they still fail to model 

high-speed and non-linear motion between keyframes. 

Use of Additional Sensors: To capture this motion, in- 

formation from additional sensors with high temporal res- 

olution can be used. In particular [7, 20] uses an auxiliary 

low resolution, high-speed camera to provide these addi- 

tional cues, and combine them with high-resolution images. 

However, additional high-frame-rate image sensors increase 

data rate requirements. This is a fundamental limitation of 

frame cameras to capture high-speed motions, since they 

oversample the image, leading to wasteful data acquisition. 

Event Cameras: are sensors that ideally address this 

limitation since they mitigate this oversampling by only 

providing data at locations with intensity changes, and do 

this for each pixel independently. The works in [8, 14, 24, 

27,31] have used an auxiliary event camera for VFI, demon- 

strating high accuracy and low bandwidth. Time Lens [24], 

generates frame interpolations from a warping-based and 

synthesis-based module and fuses them on the image-level 

using learned alpha blending parameters. By combining the 

advantages of both, it can handle both regions with bright- 

ness constancy and those with illumination changes where 

optical flow is ill-defined. [31] improves the fusion part by 

performing progressive multi-scale, feature-level fusion. 

However, [31] aligns keyframes to the latent frame using 

flow, computed from original keyframes, and thus can not 

capture non-linear inter-frame dynamic. Instead, [24] com- 

putes flow from events, capturing non-linear inter-frame dy- 

namic, and directly predicts a series of non-parametric lin- 

ear flow between keyframes and the latent frame. However, 

this model does not take into account the continuous na- 

ture of events, and since flow is non-parametric it cannot 

be reused and must be recomputed. While this leads to a 

significant run-time increase, it also leads to temporal in- 

consistency, which manifests in wobbling textures. Finally, 

since flow is computed from events, it is sparse and inaccu- 

rate in low contrast regions that do not trigger events. 

In this work, we combine the advantages of [24] and [31] 

while addressing their limitations. Firstly, we make a key 

innovation in terms of motion estimation, visualized in Fig.  

2. Instead of using linear (b) or chunked linear flow from 

events (c), we use both images and intermediate events 

(a) to predict a continuous flow field (d), based on cubic 

splines, similar to [3]. See Fig. 2 for a visualization of their 

differences. The resulting flow has several advantages: (i) 

it is non-linear, capturing high-speed and highly non-linear 

dynamics with microsecond resolution, (ii) it is dense, thus 

producing flow, even where few events are present and (iii) 

it can be efficiently reused during multi-frame insertion, re- 

sulting in low inference time and high temporal consistency. 

3. Method 

Problem formulation. We are given as input proceeding 

I0  

and following I1  

key frames acquired at time 0 and 1 , and 

event sequence E0  →  1  

consisting of events triggered during 

the time interval t  ∈  [0 ,  1]  , and our goal is to insert one or 

more latent frame(s) Ît  

at some time t  ∈  [0 ,  1]  between the 

key frames. Similar to previous works, we represent events 

as a voxel grid [34]. We will use Va  →  b  

to denote the voxel 

grid formed by converting events between times ta  

and tb. 

System overview . The overall system is shown in Fig- 

ure 3 and key contributions are highlighted with a thick con- 

tour. Our system first generates multi-scale warping inter- 

polation features in two steps. First image I0  

is encoded 

using a warping encoder, resulting in multi-scale features. 

These features are then remapped to the time of the latent 

frame using splines S0  →  1, derived from the voxel grid V0  →  1  

and images I0  

,  I1, resulting in { C
w  

0  →  t  

,  C
w  

1  →  t  

} . The warp- 

ing interpolation features are combined with synthesis in- 

terpolation features { C
s  

0  →  t  

,  C
s  

1  →  t  

} computed from I0  

and 

I1, using a newly proposed multi-scale feature fusion mod- 

ule and produces latent frame Ît  

at time t  . The system 

performs symmetric processing for I0  

and I1, therefore we



 

(a) events and frames (b) linear motion (c) non-parametric motion (d) spline motion 

Figure 2. Different motion estimation types for video-frame interpolation (VFI). More details are in Section 2, “motion estimation".

 

Figure 3. System overview. Main contribution of this work, shown 

with a thick contour, are: multi-scale feature fusion that com- 

bines synthesis and warping-based interpolations on a feature level 

on multiple scales and motion spline estimation that computes 

parametric motion model from boundary frames and inter-frame 

events. See “system overview” in Section 3 for more details. 

only explain processing for I0. 

The synthesis interpolation features C
s  

0  →  t  

are computed 

by a synthesis encoder from the preceding keyframe I0  

and 

voxel grid V0  →  t  

for events between preceding and latent 

frames. Intuitively, this encoder “adds” intensity changes 

registered by events to the keyframe and thus can interpolate 

non-rigid objects with illumination changes, such as fire and 

water. In contrast to prior work, we found it beneficial to 

encode I0  

and I1  

separately using an encoder with shared 

weights, which we call shared synthesis encoder . 

The warping interpolation features C
w  

0  →  t  

are computed 

by a warping encoder which warps features extracted from 

the preceding key frame I0  

to time t  using pixel-wise spline 

model of inter-frame motion S0  →  1  

=  { S∆  x  

0  →  t  

,  S
∆  y  

0  →  t  

,  S  

p  

0  →  t  

} . 

The motion splines S0  →  1  

are computed once per inter- 

frame interval using boundary frames { I0  

,  I1  

} and voxel 

grid V0  →  1  

for inter-frame events using a newly introduced 

motion spline estimator . Note, that in contrast to previ- 

ous works, our motion estimator in addition to events uses 

boundary images to ensure interpolation robustness in low- 

contrast areas without events. In the next paragraphs, we 

explain the key modules of our system in detail. 

Multi-scale feature fusion . To improve fusion of syn- 

thesis and warping interpolation result, we use a multi-scale 

feature fusion decoder shown in Figure 4. The decoder 

progressively combines warping and synthesis interpolation 

features and features from the previous processing stage 

performed on a coarser scale. It relies on a novel gated com- 

pression module, which attenuates features before combin- 

ing them and thus, intuitively selects informative features 

from each source. For example, in Fig.  7, the gated com- 

pression decides to use synthesis-based interpolation for the 

flame, for which optical flow fails (colder colors in image 1, 

and warmer in image 2 of the figure). The gating idea was 

inspired by recent work on HDR fusion [30], where it was 

used for combining multiple exposures. 

In [31], the authors also use a network with multiple en- 

coders for combining images and events, however in con- 

trast to their approach we (i) estimate motion not only 

from keyframes but also from events; (ii) move features of 

keyframes instead of keyframes; (iii) use gating instead of 

location-wise alpha blending for selecting most informative 

source; (iv) use not all inter-frame events in the synthe- 

sis encoder, but only events between keyframe and latent 

frame and (v) combine features from the previous coarse- 

scale processing stage with other features. In the supple- 

mentary materials and ablations studies, we show the bene- 

fits of these design choices. 

Motion spline estimator . Previous work [24] computes 

motion independently from each latent frame to boundary 

frame by re-partitioning the events as shown in Figure 2(c). 

This approach leverages information about non-linear inter- 

frame motion contained in events, however, its computa- 

tional complexity scales linearly O  (  N  )  with the number of 

interpolated frames N  and its motion estimates are indepen- 

dent and, thus, potentially temporally inconsistent. 

In contrast, this work relies on a spline motion esti- 

mator shown in Figure  5 which infers nonlinear inter- 

frame motion (see Figure  2(d)) from events and key 

frames and approximates it with splines. This enables ef- 

ficient sampling of motion between key frames and ar- 

bitrary latent frame and ensures temporal consistency of 

the motion. Our motion estimator computes 3 cubic 

splines { S∆  x  

0  →  1  

,  S
∆  y  

0  →  1  

,  S  

p  

0  →  1  

} for each location. These 

splines model horizontal, vertical displacement and warp-



1

1

repeat 3x

 

Figure 4. Multi-scale fusion decoder progressively combines warping and synthesis interpolation features and features from the previous 

processing stage performed on a coarser scale using novel gated compression module, that selects most informative features from each 

source. For detailed explanation please refer “multi-scale feature fusion” minisection in Section 3. Blank white boxes represents feature 

maps. 

⊙ 

represents the element-wise product.

 

Figure 5. Motion spline estimator uses boundary images in addition to inter-frame events to compute cubic motion splines even in areas 

without events. Motion splines allow computing warping interpolation features for any inter-frame time, e.g. C
w  

0  →  t1  

,  C
w  

0  →  t2  

,  .  .  .  C
w  

0  →  tN

for time t1  
,  t2  

,  .  .  .  ,  tN  
with minimum computational cost. For detailed explanation please refer to “motion spline estimator” in Section 3. 

ing priority of each pixel of the preceding key frame 

as a function of time, correspondingly. Each spline 

we represent by K  control points, e.g. , horizontal dis- 

placement spline S∆  x  

0  →  1  

we represent as displacements 

(∆  x0  

,  ∆  x  1

 

K  −  1  

,  ∆  x  2

 

K  −  1  

,  .  .  .  ,  ∆  x1)  for uniformly sampled 

timestamps (0 ,  

1

 

K  −  1  

,  

2

 

K  −  1  

,  .  .  .  ,  1)  . 

Using these splines, we can compute multi-scale warp- 

ing interpolation features C
w  

0  →  t  

for any time t  ∈  [0 ,  1]  with 

minimum additional computational cost using the warping 

encoder . To this end, for a given time t  the flow sampling 

module firstly samples flow F0  →  t  

and priority P0  →  t  

from 

the splines using the cubic convolution method [12]. Then, 

using the flow and the priority, the softmax splatting module 

projects multi-scale image features C
w  

0  

, extracted from the 

preceding boundary image I0  

by image encoder to time t  . 

Note, that we experimented with different  representations of 

inter-frame motion, including polynomials, Bezier splines, 

Natural B-Splines and they all performed very similar. We 

adopted the representation described above since cubic con- 

volution methods allow to sample motion efficiently. 

Using images and events for motion estimation : Time 

lens only uses events for motion estimation because they 

contain information about non-linear inter-frame motion. 

However, in low contrast areas, where temporal brightness 

changes are below the contrast threshold of a camera, events 

are not triggered [5]. This causes interpolation artifacts such 

as shown in Figure 1(c). These artifacts could be avoided 

if Time Lens used images in addition to events. However, 

since it relies on bi-linear interpolation [9] for image warp- 

ing, it requires motion from the “non-existing” latent frame 

to boundary frames shown in Figure 2(c), which can only 

be approximated from the keyframes. 

We use softmax splatting [17] interpolation for warp- 

ing which requires motion from boundary frame to latent 

frame (see Figure 2(d)) and, thus, allows combining events 

and image-based motion estimation in the proposed motion 

spline estimator . This motion estimator has two encoders: 

image-based motion encoder for estimating motion features 

from the boundary images { I0  

,  I1  

} , and event-based mo- 

tion encoder for estimating motion features from voxel grid 

V0  →  1  

of inter-frame events. These motion features are then 

combined in the joint decoder similar to Figure 4. We use 

an architecture with two encoders, because it is easier for



 

Method

 

BS-ERGB

 

HS-ERGB [24]

 

1 skip

 

3 skips

 

7 skips

 

PSNR ↑ LPIPS ↓

 

PSNR ↑ LPIPS ↓

 

PSNR ↑ LPIPS ↓

 

FLAVR [11]

 

25.95 0.086

 

20.90 0.151

 

27.42 0.031 

DAIN [1]

 

25.20 0.067

 

21.40 0.113

 

29.82 0.022 

Super Slowmo [10]

 

- -

 

22.48 0.115

 

30.05 0.103 

QVI [28]

 

- -

 

23.20 0.110

 

26.28 0.143 

Time Lens [24]

 

28.36 0.026

 

27.58 0.031

 

33.48 0.017 

Ours

 

28.56 0.0222

 

27.63 0.026

 

33.09 0.016

 

Table 1. Quantitative comparison of our method with frame- and 

hybrid frame+event-based methods in terms of PSNR (higher is 

better) and LPIPS (lower is better). For on the HS-ERGB dataset 

[24] we average the score over the close and far subsets. 

the network to learn motion from events than images, and 

therefore in presence of a single encoder network simply 

converges to a local minimum and mostly ignores images. 

4. Experiments 

Next, we justify our design for multi-scale fusion and 

spline motion estimation modules with a series of ablation 

studies. Then, we compare our VFI method to other state- 

of-the-art image and event-based methods on several bench- 

mark datasets, including our newly introduced Beam Split- 

ter Events & RGB (BS-ERGB) dataset. 

All experiments are done using the PyTorch frame- 

work [22]. We use the Adam optimizer [13], batch size 4 

and learning rate 10−  4, which we decrease by a factor of 10 

every 12 epochs. We train each module for 27 epochs. For 

training, we use a large-scale dataset with synthetic events 

generated from the Vimeo90k septuplet dataset [29] using 

the video to events conversion method [6]. 

We train the motion spline and multi-scale fusion module 

separately and then fine-tune them together. Firstly, we train 

the motion module with L1  

and SSIM losses with weights 

0.15 and 0.85. Then, we freeze the motion network and 

train the fusion network with LPIPS [32] and L1  losses with 

weights 1.0 and 2.0. For training each module we also use 

multistage training, which firstly trains each encoder sep- 

arately with dummy decoders and then freezes encoders 

and training decoders, and finally trains the module. This 

training procedure significantly boosts the performance of 

our method. Due to the time limitations, we don’t use this 

method in ablations, if not stated explicitly. For real data, 

we fine-tune our entire network with the losses that we use 

for training the fusion module. To measure the quality of in- 

terpolated images we use peak signal-to-noise ratio (PSNR) 

and structural similarity (SSIM) [25] metrics and LPIPS. 

4.1. Ablation studies 

Next, we ablate the various components of our method. 

For ablation studies, we randomly sample 4k training exam- 

ples and 500 validation examples from the Vimeo90k [29] 

dataset. We first ablate the motion estimation module, and 

then the fusion module. For the motion module we calculate 

errors in non-occluded areas of warped frames. For fusion, 

we compute the error of final interpolated frames. Results 

are summarized in Table  2 for the motion module, and in 

Table  3 for the fusion module.

 

Method 15 frames[ms]

 

SSIM PSNR [dB]

 

Importance of Spline Flow

 

Linear 200

 

0.856 26.83 

Non-parametric 2700

 

0.877 28.20 

Spline (ours) 220

 

0.863 27.41

 

Importance of Images

 

Images

 

0.808 24.51 

Events

 

0.853 26.82 

Images and Events (ours)

 

0.863 27.41

 

Comparison with State-of-the-art

 

EV-FlowNet

 

0.756 22.31 

Time Lens Flow

 

0.866 27.22 

Ours

 

0.879 28.10

 

Table 2. Ablation for motion estimation module: while spline 

motion benefits run-time performance for multiple frame inter- 

polation, using images and events boosts accuracy. Compared to 

methods Time lens flow [24] and EV-FlowNet [33], our method 

achieves superior performance.

 

Method

 

SSIM PSNR [dB]

 

Importance of Fusion

 

Warping

 

0.886 29.42 

Synthesis

 

0.868 29.77 

Synth. & warping (ours)

 

0.912 31.87

 

Importance of Gating

 

No gating

 

0.907 31.67 

Gating (ours)

 

0.912 31.87

 

Comparison with State-of-the-art

 

Time Lens Fusion

 

0.906 31.25 

Ours

 

0.919 32.73

 

Table 3. Ablation studies for fusion module: combining synthe- 

sis and warping features boosts performance, as does gated com- 

pression mechanism. Compared to image-level fusion in [24], our 

method achieves superior performance. 

4.1.1 Motion Estimation Module 

Visualization of Spline Motion . We visualize the output of 

our spline estimator in Figure 6 (right, in yellow). By com- 

bining images with events, it can model the highly non- 

linear trajectory of a soccer ball. Events are an integral 

part of modeling non-linearity since when they are removed 

(blue, right), the flow module defaults to using images alone 

and predicts linear motion. 

Importance of Spline Motion. We compare against linear 

motion and non-parametric motion in Table 2. The results 

suggest that non-parametric motion estimation achieves 

higher accuracy (28.20 dB vs. 27.41 dB) but has a much 

higher run time (2700 ms vs. 220 ms) for 15 flow predic- 

tions since it needs to run for each inserted frame, while 

spline motion can be efficiently re-sampled once computed.



 

Figure 6. Spline motion visualization. The left image shows 

ground truth image sequence with close-ups (animation can be 

viewed in Adobe). The right image shows motion estimated by 

proposed motion spline estimator from images & events (green) 

and from images only (blue). 

This difference becomes especially noticeable when insert- 

ing multiple frames. By contrast, linear motion estimation 

has a low run time but also low performance. 

Importance of Images . We train two variations of our 

motion module: one using only events, and one using only 

frames and report results in Table 2. We note that combin- 

ing both sensor inputs achieves the best results, boosting 

performance by 0.6 dB or 2.9 dB compared to single-sensor 

inputs. This underlines the complementarity of their infor- 

mation: while events provide non-linear motion cues, im- 

ages provide information where events are missing. 

Comparison to State-of-the-art . We compare against op- 

tical flow methods EV-FlowNet [33] and the optical flow 

module from Time Lens [24], which both predict non- 

parametric flow only from events. The resulting warping 

error in terms of PSNR is in Table 2. Our method outper- 

forms the runner up [24] by 0.88 dB in terms of PSNR. Note 

that here we use multistage training explained in Section  4. 

4.1.2 Multi-scale Fusion 

Gated Compression. We firstly confirm the importance of 

gated compression by training the fusion network without 

gated compression. As shown in Table  3 ( Importance of 

Gating ), gated compression improves the fusion module. 

Next, in Figure 7 we show channel-wise averaged weights 

predicted by the gated compression module shown in Fig- 

ure  4 for synthesis and warping features on each scale for a 

specific example. We conclude that: (i) synthesis features 

are used for non-rigid objects, such as fire, while warping 

features are used for rigid objects, such as the bottle (com- 

pare 1 & 2); (ii) areas occluded in the closer left frame I0  

are filled from the right frame I1  

(e.g. see 3 & 4); (iii) on

 

Figure 7. Gated compression weights visualization. The top figure 

shows key frames and latent interpolated frame. The bottom figure 

shows average weight prediction by gated compression for syn- 

thesis and warping features on each scale (smaller weight shown 

in colder colors).For details, please refer to “gated compression 

weight” mini-section in Section  4.1.2  

Table 4. Details of proposed BS-ERGB dataset compared to simi- 

lar GEF dataset. [26]

 

BS-ERGB Ours) GEF [26]

 

Event Camera 970  ×  625  190  ×  180  

№ sequences 123 20 

Scene dynamic high-speed low-speed 

RGB Camera 970  ×  625  , 28 fps 1520  ×  1440  , 20 fps 

Camera motion moving & static moving & static 

Seq. length 100-600 frames 200-250 frames

 

a finer scale warping interpolation features are preferred to 

synthesis features. 

Importance of Fusion: We first study the effect of com- 

bining synthesis and warping features during fusion, which 

we show in Table  3. We see that combining features from 

both modules boosts performance by 2.1 dB. 

Comparison to State-of-the-art: We also compare 

against the image-level fusion module from [24]. As shown 

in Table 3 multi-scale feature-level fusion performs better 

by 1.48 dB. Note that for this final comparison we use mul- 

tistage training explained in Section  4. 

4.1.3 Beamsplitter Events and RGB dataset 

We built a new hybrid setup, that uses a FLIR 4096 ×  2196 

RGB global shutter camera and a Prophesee Gen4 

1280 ×  720 Event camera mounted on a rigid case with a 

50/50 one-way mirror to share incoming light. With this



 

Figure 8. Qualitative results for the proposed method and its closes competitor on test sequences from the BS-ERGB: “Water” (top-left), 

“Fire” (bottom-left) “Fast motion” (top-right) and “Thin objects" (bottom-right). For each sequence, the figure shows our interpolation 

results (the animation can be viewed in Acrobat Reader) and close-up interpolation results on the right. 

setup, we have collected BS-ERGB dataset, summarized 

in Tab. 4. As shown in the table, compared to the GEF 

dataset [26], proposed dataset is larger, has higher event 

resolution and contains high-speed scenes, with a mov- 

ing and static camera. Also, in contrast to GEF, the pro- 

posed datasets include challenging scenarios with fire, wa- 

ter, shadows, transparent objects, high-frequency patterns, 

small and colorful objects, thin structures, close and far 

away scenes, capturing both linear and highly non-linear 

motion. 

4.1.4 Benchmarking 

We quantitatively compare our method to state-of-the-art 

image-based and image-and-event-based VFI methods HS- 

ERGB [24] and newly introduced BS-ERGB dataset, fea- 

turing realistic events and high-quality images. As shown 

in Table 1, the proposed method greatly outperforms not 

only the best image-based methods, but also the event-and- 

image-based Time Lens by up to 0.2 dB in PSNR and im- 

proves its LPIPS score by up to 15%. 

In Figure 8  we also show qualitative comparison of 

our method to state-of-the-art image-based DAIN [1] and 

image-and-event-based Time Lens [24] methods. From the 

examples, it is clear that our method outperforms DAIN 

on the scenes with deformable objects and illumination 

change, such as scenes with fire and water splashes. The 

proposed method also outperforms Time Lens on especially 

complex scenes with thin and low contrast objects. 

Timing Experiments: We highlight the computational 

efficiency of our method by comparing the per-frame com- 

putation time at different upsampling factors, for both Time- 

Lens [24] and our method. The results are reported in 

Tab. 5. Especially at high upsampling factors ( >  10 ) our 

method uses less computation per frame, leveraging the 

continuous flow, while TimeLens requires a constant com- 

putation time.

 

Time per frame [ms] № param 

Upscale Factor 1 ×  3 ×  10 ×  20 ×  [M]

 

Ours 634 303 193 167 53.9 

Time Lens [22] 273 273 273 273 72.2

 

Table 5. Per-frame computation at different upsampling factors. 

5. Conclusion 

Producing stunning slow-motion video from a low fram- 

erate video has been recently made possible through the 

advent of frame-based and event-based methods. Event- 

based methods, in particular, manage to capture the non- 

linear motion between keyframes, especially in high-speed 

and highly dynamic scenarios, by using events in the blind- 

time between frames. Existing event-based approaches rely 

on simple fusion and chunked flow which causes ghosting, 

temporal inconsistencies, and high computational latencies. 

In this work, we presented a novel method that addresses 

all of these limitations. By leveraging continuous flow, our 

method produces a temporally consistent flow that can be 

efficiently queried at several timesteps for multi-frame in- 

sertion. Finally, our novel multi-scale fusion module sig- 

nificantly reduces ghosting artifacts. We demonstrate an up 

to 0.2 dB improvement in PSNR and 15% improvement in 

LPIPS score over state-of-the-art methods while being sig- 

nificantly faster. 
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7. Dataset Licenses 

In this work we use the HS-ERGB dataset [22] which 

is published under the "TimeLens Evaluation License" and 

can be found under the URL  http://rpg.ifi.uzh.  

ch/timelens . The Vimeo90k dataset [26] is published 

under the following URL  http://toflow.csail.  

mit.edu/ . 

8. Network structure 

In this section, we provide a detailed description of our 

network. As explained in the paper, our network consist of 

spline motion estimator and multi-scale feature fusion mod- 

ules. The spline motion estimator consists of 2 encoders and 

one joint decoder and the multi-scale fusion network con- 

sists of 4 encoders and one joint decoder. In both networks, 

encoders and decoders have the same structure shown in 

Fig.  10 and Fig.  9. 

All decoder and encoder are defined by three parameters: 

depth D  , the maximum number of features Cmax  

and the 

base number of features C  . We provide these parameters for 

the motion estimator module and multi-scale fusion module 

in Tab.  6. 

Module D  Cmax  
C

 

Fusion encoders & decoder 3 128 32 

Motion estimator encoders & decoder 4 256 64

 

Table 6. Parameters of encoder and decoder for motion estimator 

and multi-scale fusion modules. 

9. Training Details 

In this section, we provide additional details about the 

training procedure. 

Thresholded losses . As we mentioned in the paper, we 

use SSIM and L1  losses to train the motion estimator. We 

found that it is beneficial to use these losses only in the areas 

where they are beyond a certain threshold (0.06 for L1  and 

0.4 for SSIM). Intuitively, this helps to exclude occluded 

areas and areas with brightness constancy violation from 

the loss computation. 

Multi-stage training . We developed a multi-stage train- 

ing procedure that improves the performance of the motion 

estimator (see Tab. 7) as well as the multi-scale fusion mod- 

ule (see Tab. 8). We use the same procedure for the mo- 

tion encoder and the multi-stage fusion module since they 

share a similar high-level network structure. Firstly, we 

train the image and event-based encoders separately, each 

with its own “dummy” decoder. Secondly, we select sim- 

ilar performing checkpoints for each encoder, we remove 

the dummy encoders and train joint decoder while freez- 

ing parameters of the encoders. Finally, we unfreeze all

 

Figure 9. Architecture of joint decoder.

 

Figure 10. Architecture overview of encoder. 

weights and train the entire network. This procedure helps 

when encoders have different training speeds and forces the 

network to avoid a local minimum where the decoder uses 

features only from the “faster” training encoder, ignoring 

the other. For example, the event-based motion encoder in 

the motion estimation module trains much faster than the 

image-based motion encoder, and thus using a single-stage 

training procedure would learn to simply ignore images and 

only use events. By contrast, our multi-stage training pro- 

cedure forces the network to use both inputs. 

10. Additional Ablations 

Here we present ablations that we omitted from the main 

paper due to space limitations. 

Motion estimator . Here we summarize additional abla- 

tions for the motion estimator in Table 7. We found that us- 

ing two separate encoders in the motion module improves 

results by 0.23 dB, by leaving the encoders more freedom to 

compute separate features for events and frames. Addition- 

ally, we found that by conducting multi-stage training, we 

can further improve the performance of our module by 0.69 

dB. Multistage training consists of firstly training each en- 

coder separately, when freezing encoders and train decoder,



 

Method

 

SSIM PSNR [dB]

 

Importance of Double Encoder

 

U-Net

 

0.858 27.13 

Double Enc. U-Net (ours)

 

0.863 27.41

 

Importance of Multistage Training

 

Single stage

 

0.863 27.41 

Multistage (ours)

 

0.879 28.10

 

Table 7. Additional ablation for motion estimation module.

 

Method

 

SSIM PSNR [dB]

 

Importance of shared synthesis encoder

 

Joined

 

0.911 31.74 

Shared (ours)

 

0.912 31.87

 

Importance of Multistage Training

 

Single stage

 

0.912 31.87 

Multistage (ours)

 

0.919 32.73

 

Table 8. Additional ablation studies for fusion module. 

and finally training the entire motion module. 

Multi-scale feature fusion . We found that, by using 

shared synthesis encoders, we can get a 0.13 dB improve- 

ment, and, by applying multi-stage training, we can further 

boost performance by 1.06 dB in Tab. 8. Additionally, in 

Fig.  11 we show the average attention weights predicted by 

our fusion network for synthesis and warping interpolation 

features on each scale. It is clear that the fusion network 

uses both synthesis and warping interpolation features, but 

prefers synthesis features on coarse scales and warping fea- 

tures on fine scales. This is consistent with observations in 

Time Lens [27].

 

Figure 11. Average attention weights predicted by fusion network 

for synthesis and warping interpolation features on each scale. 

11. Beamsplitter Setup and Dataset 

We built an experimental setup with a global shutter 

RGB Flir 4096 ×  2196 camera and a Prophesee Gen4M 

1280 ×  720 event camera [4] arranged with the beam splitter 

as shown in Fig. 13. 

In our setup, the two cameras are hardware synchronized 

through the use of external triggers. Each time the stan- 

dard camera starts and ends exposure, a trigger is sent to the 

event camera which records an external trigger event with 

precise timestamp information. This information allows us 

to assign accurate timestamps to the standard frames. 

We use a standard stereo rectification procedure using 

images and event reconstructions from E2VID [23] to phys- 

ically align the event and frame cameras and achieve a base- 

line of around 0.6mm. Next, we set the same focus for 

the event and frame camera and match the resolution of the 

RGB camera to the event camera by downsampling the im- 

ages to a resolution of 1280 ×  720. Next, we calibrate each 

camera separately to estimate the lens distortion parame- 

ters and focal lengths. After removing the lens distortion, 

we estimate a homography that compensates for the mis- 

alignment between events and images. While this proce- 

dure removes misalignment for most of the scenes, small 

pixel misalignment still occurs for very close scenes due 

to the residual baseline. We automatically compensate for 

this misalignment for each sequence using a small global 

x-y shift, computed by maximizing the cross-correlation of 

event integrals and temporal image difference. Finally, after 

image acquisition, we adjust the brightness and contrast of 

the images. Using the procedure above, we collected 123 

diverse and challenging scenes with varying depth, some of 

which we show in Fig.  12. The dataset is divided into 78 

training scenes, 19 validation scenes, and 26 test scenes. 
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