
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2022

AEGNN: Asynchronous Event-based Graph Neural Networks

Schaefer, Simon ; Gehrig, Daniel ; Scaramuzza, Davide

DOI: https://doi.org/10.1109/CVPR52688.2022.01205

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-257382
Conference or Workshop Item
Updated Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Schaefer, Simon; Gehrig, Daniel; Scaramuzza, Davide (2022). AEGNN: Asynchronous Event-based Graph Neural
Networks. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Or-
leans, LA, United States of America, 19 June 2022 - 24 June 2022. Institute of Electrical and Electronics Engineers,
12361-12371.
DOI: https://doi.org/10.1109/CVPR52688.2022.01205

This paper is an updated version of the paper published at the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), New Orleans, 2022. ©IEEE

It features updated computational complexity calculations in Sec. 5.

AEGNN: Asynchronous Event-based Graph Neural Networks

Simon Schaefer* Daniel Gehrig∗ Davide Scaramuzza

Dept. Informatics, Univ. of Zurich and

Dept. of Neuroinformatics, Univ. of Zurich and ETH Zurich

Figure 1. Our method processes events (a) as spatio-temporal graphs (b), using a graph neural network (c). For each new event we only

limit computation to a local subgraph of (b), corresponding to the receptive field of the network, thus significantly reducing per-event

computation. Our method has a 11 times lower computational complexity than state-of-the-art asynchronous method [32], while achieving

state-of-the-art results on object recognition and object detection (d).

Abstract

The best performing learning algorithms devised for

event cameras work by first converting events into dense

representations that are then processed using standard

CNNs. However, these steps discard both the sparsity and

high temporal resolution of events, leading to high compu-

tational burden and latency. For this reason, recent works

have adopted Graph Neural Networks (GNNs), which pro-

cess events as “static” spatio-temporal graphs, which are

inherently ”sparse”. We take this trend one step further by

introducing Asynchronous, Event-based Graph Neural Net-

works (AEGNNs), a novel event-processing paradigm that

generalizes standard GNNs to process events as “evolving”

spatio-temporal graphs. AEGNNs follow efficient update

rules that restrict recomputation of network activations only

to the nodes affected by each new event, thereby signif-

icantly reducing both computation and latency for event-

by-event processing. AEGNNs are easily trained on syn-

chronous inputs and can be converted to efficient, ”asyn-

*these authors contributed equally

chronous” networks at test time. We thoroughly validate our

method on object classification and detection tasks, where

we show an up to a 11-fold reduction in computational com-

plexity (FLOPs), with similar or even better performance

than state-of-the-art asynchronous methods. This reduction

in computation directly translates to an 8-fold reduction in

computational latency when compared to standard GNNs,

which opens the door to low-latency event-based process-

ing.

Multimedia Material

For videos, code and more, visit our project page

https://uzh-rpg.github.io/aegnn/.

1. Introduction

Compared to standard frame-based cameras, which mea-

sure absolute intensity at a synchronous rate, event-cameras

only measure changes in intensity, and do this indepen-

dently for each pixel, resulting in an asynchronous and bi-

nary stream of events (Figure 1 (a)). These events mea-

sure a highly compressed representation of the visual sig-

nal and are characterized by microsecond-level latency and

temporal resolution, a high dynamic range of up to 140

dB, low motion blur, and low power (milliwatts instead of

watts). Due to these outstanding properties, event cam-

eras are indispensable sensors in challenging application

domains—such as robotics [9,21,48,53], autonomous driv-

ing [18, 52, 57], and computational photography [3, 45, 54,

55]—characterized by frequent high-speed motions, low-

light and high-dynamic-range scenes, or in always-on ap-

plications, where low power is needed, such as IoT video

surveillance [24, 37]. A survey about applications and re-

search in event-based vision can be found in [14].

The output of event cameras is inherently sparse and

asynchronous, making them incompatible with traditional

computer-vision algorithms designed for standard images.

This prompts the development of novel algorithms that

optimally leverage the sparse and asynchronous nature of

events. In doing so, existing algorithms designed for

event cameras have traded off latency and prediction per-

formance. Filtering-based [40] [29] approaches process

events sequentially, and, thus, can provide low-latency pre-

dictions and a high temporal resolution. However, these ap-

proaches usually rely on handcrafted filter equations, which

do not scale to more complex tasks, such as object detec-

tion or classification. Spiking Neural Networks (SNNs) are

one instance of filtering-based models, which seek to learn

these rules in a data-driven fashion, but are still in their in-

fancy, lacking general and robust learning rules [19,30,50].

As a result, SNNs typically fail to solve more complex

high-level tasks [2, 40, 42, 52]. Many of the challenges

above can be avoided by processing events as batches. In

fact, recent progress has been made by converting batches

of events into dense, image-like representations and pro-

cessing them using methods designed for images, such as

convolutional neural networks (CNNs). By adopting this

paradigm, learning-based methods using CNNs have made

significant strides in solving computer vision tasks with

events [17, 22, 35, 43, 45, 54, 58, 59].

However, while easy to process, treating events as

image-like representations discards their sparse and asyn-

chronous nature and leads to wasteful computation. This

wasteful computation directly translates to higher power

consumption and latency [1, 24, 38]. A recent line of work

[16] showed on an FPGA that by reducing the computa-

tional complexity by a factor of 5, they could reduce the

latency by a factor of 5 while reducing the power consump-

tion by a factor of 4. Therefore, by eliminating waste-

ful computation, we can expect significant decreases in the

power consumption and latency of learning systems.

Currently, this wasteful computation is caused by two

factors: On the one hand, due to the working principle of

event cameras, they trigger predominantly at edges, while

large texture-less or static regions remain without events.

Image representations typically encode these regions as ze-

ros, which are then unnecessarily processed by standard

neural networks. On the other hand, for each new event,

standard methods would need to recompute all network

activations. However, events only measure single pixel

changes and, thus, leave most of the activations unchanged,

leading to unnecessary recomputation of activations.

A recent line of work seeks to address both of these

challenges by reducing the computational complexity of

learning-based approaches while maintaining the high tem-

poral resolution of events. A key ingredient to keeping high

performance in this setting was the adoption of geometric

learning methods, such as recursive point-cloud process-

ing [49] or Asynchronous Sparse Convolutions [36]. In both

works, standard neural networks were trained using batches

of events, leveraging well-established learning techniques

such as backpropagation, and then deploying them in an

event-by-event fashion at test time, thus minimizing com-

putation. However, both of these methods suffer from limi-

tations: While [49] does not perform hierarchical learning,

limiting scalability to complex tasks, [36], relies on a spe-

cific type of input representation, which discards the tem-

poral information of events.

In this work, we introduce Asynchronous, Event-based

Graph Neural Networks (AEGNN), a neural network archi-

tecture geared toward processing events as graphs in a se-

quential manner (Fig. 1). For each new event, our method

only performs local changes to the activations of the GNN,

and propagates these asynchronously to lower layers. Sim-

ilar to [36, 49], AEGNNs can be trained on batches of

events—thus leveraging backpropagation—and can later be

deployed in an asynchronous mode, generating the identical

output. However, they address the key limitations of previ-

ous work: (i) They allow hierarchical learning using stan-

dard graph neural networks and (ii) model events as spatio-

temporal graphs, thus retaining their temporal information,

instead of discarding it. This leads to significant computa-

tional savings. We summarize our contributions as follows:

• We introduce AEGNN, a novel paradigm for process-

ing events sparsely and asynchronously as temporally

evolving graphs. This allows us to process events effi-

ciently, without sacrificing their sparsity and high tem-

poral resolution.

• (ii) We derive efficient update rules, which allow us

to simply train AEGNNs on synchronous event-data,

and then deploy them in an asynchronous mode during

test-time. These rules are general and can be applied

to most existing graph neural network architectures.

• (iii) We apply AEGNNs on object recognition and ob-

ject detection benchmarks. For object detection, we

show similar performance to state-of-the-art methods,

while requiring up to 11 times less compute, while for

object detection we show a 32% computation reduc-

tion with an up to 3.4% increase in terms of mAP.

2. Related Work

Since the advent of deep learning, event-based vision

has adopted many of its models. Early models, relied on

shallow learning techniques such as SVMs [52] or filtering-

based techniques [15,26,29,40], and have gradually shifted

to deeper architectures such as CNN’s [17, 35, 45, 58].

While achieving state-of-the-art performance, these types

of models do not take into account the sparse and asyn-

chronous nature of events, leading to redundant computa-

tion. This prompted the development of sparse network ar-

chitectures such as SNNs, point cloud methods [49], Sub-

manifold Sparse Convolutions [36] and graph neural net-

works [4, 5, 32]. Which all seek to reduce computation.

While SNNs are traditionally harder to train, due to a lack

of efficient learning rules, geometric learning methods such

as [4, 5, 32, 36, 49] have gained popularity in recent years,

since they are more suited to the asynchronous and sparse

nature of events, and are easily trained and implemented

thanks to the existence of well-maintained toolboxes.

In particular, graph-based methods such as [4, 5, 32, 47]

show a significant reduction in computational complexity

compared to dense methods that rely on standard CNNs.

This is because, instead of processing events as dense

image-like tensors, they only consider sparse connections

between events, and confine message passing to these con-

nections. Despite this sparsity, these methods still process

events as batches and thus need to recompute all activations,

whenever a new event arrives. However, each event only in-

dicates a per-pixel change, and thus recomputing activations

leads to the highly redundant computation. To counteract

this, a recent line of work has focused on reusing network

activations as much as possible between consecutive events,

by applying efficient recursive update rules [49] and propa-

gating these to lower layers [36].

These methods, however, do not allow for hierarchical

learning [47, 49] or still rely on sparse but image-like in-

put representations, which discard the temporal component

of events. These factors either limit the scalability to more

complex tasks in the case of [49], or degrade performance

while incurring higher computation in the case of [36].

Most similar to our work, [47] learns on dynamic graphs,

by performing learned updates each time node events are

triggered. However, it also performs shallow learning, i.e.

it only computes node embeddings, but does not use them

for end-task learning.

In this work, we combine the advantages of graph-based

methods with efficient recursive update rules, thus address-

ing these limitations: Asynchronous Event-based Graph

Neural Networks are multi-layered, and can thus learn more

complex tasks than [49], and leverage the spatio-temporal

sparsity of events better than [36], leading to significant

computation reduction.

3. Prerequisites

In this work, we model events as spatio-temporal graphs

G = {V, E} with vertices V and (directed) edges E . In this

context, events are represented as nodes within the graph

and connections are formed between neighboring events

(Fig.2 (c)). We use a graph neural network to process this

graph and generate a prediction y. It can be represented

as a function f(G) = y, which executes a set of opera-

tions on the graph level. Most common operations consist

of graph convolutions and pooling steps, which operate on

node features xi attached to each node, and edge features

eij attached to each edge.

Graph Convolutions: Graph convolutions generally

consist of three distinct steps which are repeated for each

node i in the graph: First the function ψ computes mes-

sages based on pairs of neighbors (i, j), where i is fixed

and j ∈ N (i) is in the neighborhood of i. These messages

depend on the node features at these nodes, the edge feature

but also on the spatial arrangement of nodes i and j. Next,

all messages are aggregated through summation1, and fol-

lowed by a function γΘ, which computes the new value for

node i. These steps are summarized in the equations below:

zi =
∑

j∈N(i)

ψΘ(xi,x, eij) (1)

x̂i = γΘ(xi, zi) (2)

Both ψ and γ denote differentiable functions such as a

multi-layer perceptron, parametrized by Θ = {θγ , θψ}.

Graph Pooling Graph pooling operations transform a

graph G to a more coarse graph Gc. For an overview of the

different types of graph pooling, we refer to [56]. Within

this work, we will focus on cluster-based pooling methods,

which aggregate the graph nodes into clusters Ck with clus-

ter centers k ∈ Vc which form a subset of V . The new fea-

tures at these cluster centers are computed by aggregating

features in each cluster:

xk = max
i∈Ck

xi (3)

Since clustering reduces the number of nodes, the original

edges need to reconnected, and this is performed with the

1While summation is the most common form of aggregation, any func-

tion which is symmetric in its inputs can be used, such as max and min or∑
.

Figure 2. Overview of the processing steps in our method. The event stream (a) is first subsampled using uniform sampling (b). The

subsampled events are used to generate a sparse spatio-temporal graph (c), which is processed by a graph neural network (GNN)(d), which

generates a bounding-box prediction (d). Although our method works for any task, here we illustrate our method for the task of object

detection. In the figure below, we show an overview of the used network architecture. It combines Graph Convolutions (here Spline

Convolutions) with pooling layers, followed by a prediction head. Each graph convolution block consists of several graph convolutions

followed by ELU and Batch Normalization.

function π:

Ec = π(E,C) (4)

resulting in the final coarse graph.

Stacking these operations as layers enables rich, and high-

level feature computation, making these models more pow-

erful than the point cloud method in [49] or shallow features

computed in [52].

4. Approach

Representing event data as spatio-temporal graphs al-

lows us to efficiently process incoming events by perform-

ing sparse but complete graph updates. In the following,

we show how a graph can be constructed from an event

stream (Sec. 4.1), and we demonstrate how it can be used

for efficient and asynchronous computations (Sec. 4.2). An

overview of the full method is illustrated in Figure 2.

4.1. Graph Construction

Event cameras have independent pixels which each trig-

ger events, whenever they perceive a brightness change.

Each event encodes the pixel position (xi, yi), time ti
with microsecond level resolution and polarity (sign) pi ∈
{−1, 1} of the change. A group of event in a time window

∆T , can thus be represented as an ordered list of tuples

{ei}N = {ei}
N
i=1 with ei = (xi, yi, ti, pi) (5)

By embedding these events in a spatio-temporal space R
3

we thus can see that they are inherently sparse and asyn-

chronous (Fig.2 (a,b)).

For the sake of computational efficiency, we first sub-

sample the events uniformly by a factor K (Fig. 2 (b)). In

this work, we select K = 10. While this preprocessing step

removes events, we found that it is critical to combat over-

fitting, since the network learns to consider larger contexts,

focusing on more informative events. In contrast to other

representations of event data such as event histograms [36]

or event volumes [3, 43], the full temporal resolution of

the event stream is preserved. This high temporal resolu-

tion is crucial in robotic applications like obstacle avoid-

ance [9, 34, 48].

We use the remaining events to form an event graph G,

where each event is a node (Fig. 2 (c)). Inspired by [4]

the event’s temporal position is normalized by a factor β to

map it to a similar range as the spatial coordinates. The po-

sition of each vertex is then denoted as Xi = (xi, yi, t
∗
i)

with t∗i = βti.

For each pair of nodes i and j, an edge eij between them

is generated if they are within spatio-temporal distance R,

i.e. R ≥ ∥Xi −Xj∥ from each other. To reduce computa-

tion and regularize the graph, we limit the maximal number

of neighborhood nodes to Dmax, i.e. |N (i)| ≤ Dmax. Fi-

nally, we assign initial node features, xi = pi and edge

features corresponding to the relative position between the

connected vertices, normalized by R.

4.2. Asynchronous Processing

As we slide the time window ∆T , new events enter this

window, and old events leave the window. While traditional

methods would need to recompute all activations once this

happens, here we present a recursive formulation that incor-

porates new events with minimal computation.

As a new event arrives, a new node is added to the graph,

together with new edges connecting this node to existing

vertices. The new connections are sparse, affecting only

neighboring events. In fact, in the first layer, a new event

only affects the state of its 1-hop subgraph (Fig.3, Layer

1), corresponding with the neighborhood of the new node

i′. Therefore, activations in the next layer need to only be

recomputed for this subgraph via Eq. (2).

ẑi =
∑

j∈N (i)

ψΘ(xi, xj , eij) (6)

x̂i = γΘ(xi, zi) for all i ∈ N (i′) (7)

As deeper layers are reached, this subgraph expands, hop-

ping one node after each layer step, until at layer N the

nodes in HN (i′) need to be updated. HN (i′) denotes the N-

hop subgraph which contains all nodes j such that j could

be reached from i′ using N hops or fewer. We visualize

this hopping behavior in Fig. 3. Instead of processing the

whole graph, only this subgraph has to be processed to ob-

tain the same resulting graph activations as Eq. 2. By it-

eratively applying this concept to each graph-convolution

layer of a graph neural network, its forward pass can be

formulated sparsely, which significantly reduces the com-

putational effort. At each layer, the necessary computation

is proportional to the number of nodes in the respective sub-

graph. This number is known in the graph-theory literature

as neighborhood function [6], and is influenced by the av-

erage and variance of the connectivity of the graph, which

together forms the index of dispersion [6].

Figure 3. Message propagation in the event graph. A new event

(red) is generated and added to the graph of precedent events (left).

The added information is propagated to the k-hop neighborhood of

the new event vertex, with k = 1 (middle) and k = 2 (right).

Graph Convolutions Our sparse update rules for graph

convolutions are agnostic to the choice of functions ψ and

γ (Eq. 2) and are therefore applicable to arbitrary types of

graph convolution. It consists of two steps: During the ini-

tialization the convolution is applied to the full graph, while

the resulting graph, i.e., the vertices and edges as well as

their attributes, are stored. We perform this step at the be-

ginning and whenever the camera is stationary and mostly

noise events enter the sliding window. Thereafter, in the

processing step, every time a new vertex is inserted into

the graph, the graph only changes locally. Therefore, a full

graph update is equivalent to updating the 1-hop subgraph

starting from the new vertex, by applying Eq. 2 to its 1-hop

subgraph only. Thereby, the subgraph can be efficiently ob-

tained, as the graph’s edges are known from the initializa-

tion and updated with every subsequent forward pass.

The same procedure can be applied to every subsequent

convolutional layer. Hence, the update of the kth layer is

limited to the k-hop subgraph of the new vertex. These steps

lead to significant computational savings, as demonstrated

in Sec. 5.

Graph Pooling Similar to sparse graph convolutions,

sparse graph pooling operations are composed of an ini-

tialization and a processing step. During initialization, the

procedure described in Sec. 3 is applied to the dense in-

put graph G, which results in the coarse output graph Gc.
Subsequently, in the processing stage, we assign events to

the respective voxels where they are triggered, connecting

them with nodes in the input graph, and then perform the

max operation again for that specific voxel. If a node at-

tribute is changed, we similarly perform the max operation

again at the respective voxel. Finally, the output graph Gc
can be efficiently computed by applying Eqs. 3 and 4 on G′

c.

Other Layers Non-graph-based layers such as linear or

batch normalization can be sparsely updated similarly, by

storing the results of the dense update during initialization

and only processing the subset of the input, which changes

from the previous input, as described in [36]. However,

since these layers are applied at the lowest level, most nodes

need to be updated, leading to only small gains in computa-

tional efficiency.

4.3. Network Details

While the method described in Sec. 4 would allow to

sparsely update any kind of graph convolution, we found

that spline convolutions [13] find a balance between com-

putational complexity and predictive accuracy. In contrast

to the standard graph convolutions [28] used in [32], spline

convolutions maintain spatial information in the encoding

by using a B-spline-based kernel function in the positional

vertex space. This means that spline convolutions also take

the relative position of neighboring nodes into account, a

feature which is ignored in standard GNN-based methods

like [32]. We use voxel-grid-based max-pooling [51] due

N-Caltech101 N-Cars

Methods Representation Async. Accuracy ↑ MFLOP/ev ↓ Accuracy ↑ MFLOP/ev ↓
H-First [40] Spike ✓ 0.054 - 0.561 -

HOTS [29] Time-Surface ✓ 0.210 54.0 0.624 14.0

HATS [52] Time-Surface ✓ 0.642 4.3 0.902 0.03

DART [44] Time-Surface ✓ 0.664 - - -

YOLE [7] Event-Histogram ✓ 0.702 3659 0.927 328.16

EST [17] Event-Histogram ✗ 0.817 4150 0.925 1050

SSC [20] Event-Histogram ✗ 0.761 1621 0.945 321

AsyNet [36] Event-Histogram ✓ 0.745 202 0.944 21.5

NVS-S [32] Graph ✓ 0.670 7.8 0.915 5.2

EvS-S [32] Graph ✓ 0.761 11.5 0.931 6.1

Ours Graph ✓ 0.668 7.31 0.945 0.47

Table 1. Comparison with several asynchronous and dense methods for object recognition. Our graph-based method has the lowest

computational complexity overall while achieving state-of-the-art performance. Especially, it obtains the best accuracy on N-Cars [52]

with 20 times lower computational complexity, compared to the second-best asynchronous method.

to its computational efficiency and simplicity. The method

in [51] clusters the graph’s vertices by mapping them to a

uniformly spaced, spatio-temporal voxel grid, with all ver-

tices in a voxel being assigned to one cluster. In this work

we use voxels of size 12× 16× 16. For each voxel, a node

is sampled, resulting in the nodes of the coarse graph. Eval-

uating the effect of the clustering method on the overall

network performance remains open for future work. Fur-

thermore, we sub-sample the input event stream using uni-

form sampling to a fixed number of events. We found that

other, more sophisticated sampling methods, such as non-

uniform grid sampling [4], only marginally improved the

performance, while being much more costly to compute.

Our model architecture is shown in Figure 2. It consists

of 7 graph convolution blocks (see Figure 2, bottom right)

and 2 pooling layers. For detailed information about our

model architecture, we refer to the supplementary material.

5. Experiments

All experiments within this work have been conducted

using the PyG library [12] in the Torch framework [41]. For

training, we use the Lightning framework [10].

Implementation Details: We used Adam [27] with

batch size 16 and an initial learning rate 10−3, which de-

creases by a factor of 10 after 20 epochs. We apply AEGNN

to the tasks of object recognition and object detection.

We have analytically deduced the computational com-

plexity of a forward pass of our model by adding up the

computational complexity of each layer. A detailed deriva-

tion can be found in the supplementary material.

5.1. Object Recognition

Event-based object recognition tackles the problem of

predicting an object category from the event stream and is

an important application of event cameras. Due to their high

dynamic range and high temporal resolution, event cam-

eras have the potential to detect objects, that would other-

wise be undetectable by frame-based methods, especially

in low-light conditions, or in conditions with severe mo-

tion blur. We demonstrate that our approach is capable of

solving this task very efficiently while achieving state-of-

the-art recognition performance. The model is evaluated

on two diverse datasets: The Neuromorphic N-Caltech101

dataset [39] contains event streams recorded with a real

event camera representing 101 object categories in 8, 246
event sequences. each 300 ms long, mirroring the well-

known Caltech101 dataset [11] for images. The N-Cars

dataset [52] has real events, assigned to either a car or the

background. It has 24, 029 event sequences, each being 100
ms long. For training, we use the cross-entropy loss with

batch-size 64 (N-Cars) and 16 (N-Caltech101).

Recognition Performance We compare AEGNN

against several state-of-the-art methods, both asynchronous

and synchronous, with different event representations (Tab.

1). We term methods as synchronous, if they require

recomputation at each new event, and asynchronous other-

wise. For quantitative comparison, we state the recognition

accuracy on the test set. To assess the computational effi-

ciency of each method, we process windows with 25, 000
events and measure the floating-point operations (FLOPs)

required to update the prediction for each additional event.

H-First [40], HOTS [29], HATS [52] and DART [44]

propose hand-designed features for object recognition.

Typically, they are computationally efficient, but widely

outperformed by our data-driven method. EST [17] is a

learnable and dense event representation that is jointly

optimized with the downstream task. Although yielding

very good recognition accuracy, it introduces additional

data processing by using a learned representation and

(a) MFLOPS over events (b) MFLOP savings per layer (c) Accuracy over events

Figure 4. Computational savings of our method compared to a dense CNN, GNN and the method in [36] on N-Cars [52]. We compare

the cumulative FLOPS for processing events in sequence (a). Here it is visible that already using a GNN reduces the number of FLOPS

by a factor of 10. By additionally using our asynchronous formulation, we further reduce this number by a factor of 30. Additionally, for

our method, computation grows much more slowly than for other methods. We show in (b) the FLOPS saved per layer, compared to a

dense GNN. We see that our method saves most of the computation in the early and middle layers, where high feature dimensions are used.

Finally, we demonstrate the use of our method for early prediction (c). Although the model was trained with 10, 000 events, merely 2, 500

events are required to achieve over 90% accuracy.

cannot be formulated asynchronously. Thus, our method is

3, 000 times more efficient while achieving a similar pre-

dictive performance on N-Cars. AsyNet [36] proposes an

asynchronous, sparse network based on event-histograms.

Hence, it does not explicitly account for the event’s

temporal component. Lastly, NVS-S and EvS-B [32]

also use a graph-based event representation. In contrast

to the standard graph convolutions used in EvS-B, the

spline convolutions AEGNN encode spatial information.

Consequently, our method is 21 times more efficient while

achieving a similar accuracy, in comparison to [32].

Scalability While previously assuming a constant num-

ber of input events, in the following, we analyze the impact

the number of events has on both the computational com-

plex and the recognition accuracy to determine the viabil-

ity of our method for low-latency prediction. To do this,

we compare our model’s test set accuracy on N-Cars for

different numbers of events, and plot the accuracy and re-

quired cumulative computation in Figs. 4 (a) and (c). To

highlight the efficiency of our method, we also plot the

required number of FLOPs for the dense GNN, the asyn-

chronous method [36] and its dense, synchronous variant.

Our proposed method outperforms [36] in terms of accu-

racy (Tab.1) and in terms of FLOPs (Fig. 4 (a)), showing

a computation reduction by a factor of 300. The computa-

tional savings come from the comparably flat architecture

and sparse graph representation. Notably, our model does

not require the full event stream, that it was trained on, for

a correct prediction. As demonstrated in Fig 4 (c), only

5, 000 events are required to achieve state-of-the-art recog-

nition accuracy, further improving the computational effi-

ciency of our method. Moreover, our method takes 30±4.8
kFLOPS/ev for 25’000 events, averaged over all sequences.

The low variance indicates a high level of stability.

Model 2000 4000 6000 8000
GNN 1.72 · 103 4.68 · 103 7.89 · 103 11.2 · 103

AEGNN (ours) 4.29 5.56 5.94 6.11

Table 2. Computational effort in MFLOPs per event of our sparse

method compared to its dense equivalent, evaluated on NCal-

tech101. With a higher number of events, and thus increasing com-

plexity of the event graph, the computational gap becomes larger.

5.2. Object Detection

Event-based object detection seeks to classify and de-

tect object bounding boxes from an event stream and is an

emerging topic in event-based vision. Especially in night-

time scenarios or when objects travel at high speeds, frame-

based object detection degrades due to image degradation,

caused by underexposure or severe motion blur. Event cam-

eras by contrast do not suffer from these issues and are thus

viable alternatives in these cases. We apply our framework

to this task and validate our approach on two challenging

datasets: the N-Caltech101 dataset [39], see Sec. 5.1, and

the Gen1 dataset [8]. While N-Caltech101 contains only

one bounding box per sample, it contains 101 classes, mak-

ing it a difficult classification task. By contrast, Gen1 tar-

gets an automotive scenario in an urban environment with

annotated pedestrians and cars. With 228, 123 bounding

boxes for cars and 27, 658 for pedestrians, the Gen1 dataset

is much larger. To avoid the well-known over-smoothing

problem of GNNs [31], we adopt the same backbone as for

the recognition task but use a YOLO-based object detection

head [46], as illustrated in Fig. 2. Similar to [46] we use

a weighted sum of class, bounding box offset and shape as

well as prediction confidence losses.

Detection Performance To evaluate the performance of

our model, we use the eleven-point mean average preci-

sion (mAP) [33] score as well as the computational com-

plexity per event, as described in Sec. 5.1. We compare

N-Caltech101 Gen1

Methods Representation Async. mAP ↑ MFLOP/ev ↓ mAP ↑ MFLOP/ev ↓
YOLE [7] Event-Histogram ✓ 0.398 3682 - -

Asynet [36] Event-Histogram ✓ 0.643 200 0.129 205

RED [43] Event-Volume ✗ - - 0.40 4712

NVS-S [32] Graph ✓ 0.346∗ 7.8 0.086∗ 7.8

Ours Graph ✓ 0.595 7.41 0.163 5.26

Table 3. Comparison with several asynchronous and dense methods for object detection. The method in [32] was re-implemented and

trained by us, as [32] only reports results for the object recognition task.

Figure 5. Qualitative results of the object detection performed by our model on Gen1 [8] and N-Caltech101 [39] dataset. Our predictions

are shown as a dashed line, the labels as solid line.

with synchronous and asynchronous state-of-the-art meth-

ods and present the results in Tab.3. Qualitative results of

our object detector on N-Caltech101 and the Gen1 dataset

are shown in Fig.5 We reimplement NVS-S [32], as open-

source code is not available.

Our method outperforms NVS-S [32] by 7.7%, while

using 21 times less computation. This is because NVS-

S uses standard graph convolutions, and thus have a re-

ceptive field that is limited to their direct neighborhood,

which deteriorates detection performance. Compared to

RED [43], we achieve a lower accuracy but outperform the

method by a significant margin: While our method uses

0.39 MFLOPs/ev, [43] uses 4712 MFLOPs/ev. This is be-

cause [43] uses a dense, synchronous recurrent network,

and it is thus not capable of event-by-event processing. Fi-

nally, AsyNet [36] outperforms AEGNN on N-Caltech101

by 4.8 mAP, but we show a 3.4 mAP higher performance on

Gen1. While performances are comparable, we achieve this

with 520-540 times fewer MFLOPs per event.

Timing Experiments We timed our method, imple-

mented in Python and CUDA, on an Nvidia Quadro RTX.

To construct the graph we implemented the radius search

algorithm in [32] in CUDA, which takes 2 ms to gener-

ate a graph with 2,500 nodes. For processing one event in

an event graph of 4, 000 from N-Caltech101, the dense up-

date requires 167ms, our sparse method 92ms. For 25, 000
events, the dense GNN needs 1014ms, our sparse method

129ms, an improvement by a factor of 8. A dense CNN

with the same input requires 202ms. While our method

is only 1.5 times faster than a CNN, we point out here

that CNNs have highly optimized implementations in the

PyTorch Library [41]. However, we expect that if imple-

mented on suitable hardware, such as FPGA or IPU [25]

processors, the reported computation reduction will lead to

significant reductions in latency and power consumption, as

was already demonstrated in [16].

6. Conclusion

While event-based vision has made significant strides by

adopting standard learning-based methods based on CNNs,

these discard the spatio-temporal sparsity of events, which

leads to wasteful computation. For this reason, geometric-

learning approaches for event-based vision have gained in

popularity. In this work, we introduced AEGNNs, which

model events as evolving spatio-temporal graphs and for-

mulate efficient update rules for each new event that restrict

recomputation of network activations only to a few nodes,

which are propagated to lower layers. We applied AEGNNs

to the tasks of object recognition and detection. While in

object recognition we achieved an up to a 11-fold reduction

in computational complexity (FLOPs), for object detection

we achieved an up to 32% reduction, while outperforming

asynchronous methods by 3.4% mAP. We showed that this

computation reduction speeds up processing latency by a

factor of 8 compared to dense GNNs. We believe that, if

our method is implemented on specialized hardware such

as FPGA or IPUs [25], we will see additional reductions in

latency and a significant reduction in power consumption.

7. Acknowledgment

This work was supported Huawei, and as a part of NCCR

Robotics, a National Centre of Competence in Research,

funded by the Swiss National Science Foundation (grant

number 51NF40 185543).

8. Appendix

Here we report additional information to support the

main manuscript. In what follows, we will refer to fig-

ures, tables, sections, and equations from the manuscript

by prepending ”M-”. We start by providing a detailed net-

work overview in Sec.8.1. We then show a derivation for

the number of FLOPS required to compute the Spline Con-

volution in [13] for a single node in Sec.8.2. We finally list

the licenses of the datasets used in this submission in Sec.

8.3.

8.1. Network Details

We use two network architectures in this work, one for

object recognition (Sec. M-5.2) and one for object de-

tection (Sec. M-5.3). Both networks consist of convo-

lutional blocks, each containing a SplineConv [13], de-

fined by the number of output channels Mout and kernel

size k, an ELU activation function, and a batch norm. As

shown in Figure M-2, max graph pooling layers after the

fifth and seventh convolution, as well as skip connections

after the fourth and fifth convolution, are used. Also, a

fully connected layer maps the extracted feature maps to

the network outputs. The recognition network has convolu-

tions with kernel size k = 2 and output channels M i
out =

(1, 8, 16, 16, 16, 32, 32, 32). The convolutions in the detec-

tion network have a much larger kernel size k = 8 and more

output channels M i
out = (1, 16, 32, 32, 32, 128, 128, 128).

8.2. Spline Convolutions Complexity

In this work, we make heavy use of Spline Convolutions

[13]. Compared to standard GNN layers which only ag-

gregate features over layers, Spline Convolutions also take

into account the spatial arrangement of these neighbors and

thus produce richer features. Here we will give a summary

of spline convolutions and refer the reader to [13] for more

details. Given nodes i with features f(i) we define convolu-

tion kernels gn, with n = 1, ...,Mout the index of the output

feature. They act as

(gn ∗ f)(i) =
1

|N(i)|

Min
∑

l=1

∑

j∈N(i)

fl(j)gn,l(u(i, j)) (8)

Here fl(j) is the input feature with index j, N(i) counts

the number of neighbors of node i, and u(i, j) are pseudo

coordinates. These are defined as the normalized distance

vector between nodes i and j.

The function g is expanded as

gn,l(u) =
∑

p∈P

wp,l,nB
m
p (u) (9)

Here P denotes an index set, which is a regular grid in 3 di-

mensions. It has two elements in each direction, resulting in

23 = 8 elements (tuples). For each coordinate tuple a learn-

able weight wp,l,n is stored and multiplied by a B-Spline

basis Bmp (u) in three dimensions. Each B-Spline basis is

computed by forming the product of three splines as

Bmp (u) =

3
∏

s=1

Nm
ps,s

(us), (10)

i.e. one for each dimension. Here m is the degree of the

B-Spline, and in this work we use m = 3. Each function

Nm
ps,s

(us) can thus be written Nm
ps,s

(us) =
∑m−1
j=0 aju

j
s.

8.2.1 FLOPS Computation

Here we count the FLOPS necessary. In what follows we

define Ni = |N(i)| and Np = |P | and will proceed in a

series of steps. To evaluate Eq. 8 we first compute u for all

neighbors and dimensions, resulting in:

FLOPS(u(i, j)) = Nid (11)

then we compute the FLOPS to evaluate Bmp (u) as

FLOPS(Bmp (u)) = 2mNid+Ni(d− 1) (12)

For the first term we make use of Horner’s method [23],

which states the optimal number of additions and multipli-

cations for a polynomial of degreem as 2m. For the second

term we count the FLOPS to compute the product. Each

operation needs to be repeated for each neighbor. Next we

compute gn,l(u) as the sum of products over elements of P ,

input features and output features.

FLOPS(gn,l(u)) = (2Np − 1)MoutMinNi (13)

Finally we aggregate these terms, first over neighbors and

then over input features

FLOPS

Min
∑

l=1

∑

j∈N(i)

fl(j)gn,l(u(i, j)

 =

(2Ni − 1)MoutMin + (Min − 1)Mout

Where the first term counts products and summation over

neighbors, and the second counts summation over input fea-

tures. Finally, we divide all output features by Ni, adding

additional Mout FLOPS. We thus have

Ctot =Nid+ 2mNid+Ni(d− 1)

+ (2Np − 1)MoutMinNi

+ (2Ni − 1)MoutMin

+ (Min − 1)Mout +Mout

=NiMoutMin(1 + 2Np) +Ni(2d+ 2md− 1).

8.3. Licenses

We use the Prophesee Gen1 dataset [8] under

the “PROPHESEE GEN1 AUTOMOTIVE DETECTION

DATASET LICENSE TERMS AND CONDITIONS”

found at the URL https://www.prophesee.ai/

2020/01/24/prophesee-gen1-automotive-

detection-dataset/. N-Caltech101 [39] is used un-

der the “Creative Commons Attribution 4.0 license” and

downloaded at https://www.garrickorchard.

com/datasets/n-caltech101. Finally, the N-Cars

dataset [52] is also released by Prophesee under https:

//www.prophesee.ai/2018/03/13/dataset-

n-cars/.

References

[1] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese,

Antonio Rios-Navarro, Ricardo Tapiador-Morales, Iulia-

Alexandra Lungu, Moritz B. Milde, Federico Corradi, Ale-

jandro Linares-Barranco, Shih-Chii Liu, and Tobi Delbrück.

NullHop: A flexible convolutional neural network accelera-

tor based on sparse representations of feature maps. IEEE

Trans. Neural Netw. Learn. Syst., 30(3):644–656, Mar. 2019.

2

[2] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-

frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexan-

der Andreopoulos, Guillaume Garreau, Marcela Mendoza,

Jeff Kusnitz, Michael Debole, Steve Esser, Tobi Delbruck,

Myron Flickner, and Dharmendra Modha. A low power,

fully event-based gesture recognition system. In Conference

of Computer Vision and Pattern Recognition (CVPR), pages

7388–7397, 2017. 2

[3] Patrick Bardow, Andrew J. Davison, and Stefan Leutenegger.

Simultaneous optical flow and intensity estimation from an

event camera. In Conference of Computer Vision and Pattern

Recognition (CVPR), pages 884–892, 2016. 2, 4

[4] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,

and Yiannis Andreopoulos. Graph-based object classifica-

tion for neuromorphic vision sensing. IEEE Int. Conf. Com-

put. Vis. (ICCV), 2019. 3, 4, 6

[5] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,

and Yiannis Andreopoulos. Graph-based spatio-temporal

feature learning for neuromorphic vision sensing. IEEE

Transactions on Image Processing, 29:9084–9098, 2020. 3

[6] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. Hyperanf:

Approximating the neighbourhood function of very large

graphs on a budget. In Proceedings of the 20th International

Conference on World Wide Web, WWW ’11, page 625–634,

New York, NY, USA, 2011. Association for Computing Ma-

chinery. 5

[7] Marco Cannici, Marco Ciccone, Andrea Romanoni, and

Matteo Matteucci. Asynchronous convolutional networks for

object detection in neuromorphic cameras. In CVPRW, 2019.

6, 8

[8] Pierre de Tournemire, Davide Nitti, Etienne Perot, Davide

Migliore, and Amos Sironi. A large scale event-based detec-

tion dataset for automotive. arXiv e-prints, abs/2001.08499,

2020. 7, 8, 10

[9] Davide Falanga, Kevin Kleber, and Davide Scaramuzza. Dy-

namic obstacle avoidance for quadrotors with event cameras.

Science Robotics, 5(40):eaaz9712, 2020. 2, 4

[10] William Falcon and The PyTorch Lightning team. PyTorch

Lightning, 2019. 6

[11] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: an incremen-

tal bayesian approach tested on 101 object categories. In

CVPRW, 2004. 6

[12] Matthias Fey and Jan E. Lenssen. Fast graph representa-

tion learning with PyTorch Geometric. In ICLR Workshop on

Representation Learning on Graphs and Manifolds, 2019. 6

[13] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-

rich Müller. Splinecnn: Fast geometric deep learning with

continuous b-spline kernels. Conference of Computer Vision

and Pattern Recognition (CVPR), 2018. 5, 9

[14] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara

Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,

Andrew Davison, Jörg Conradt, Kostas Daniilidis, and Da-

vide Scaramuzza. Event-based vision: A survey. IEEE T-

PAMI., 2020. 2

[15] Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri

Rebecq, Tobi Delbruck, and Davide Scaramuzza. Event-

based, 6-DOF camera tracking from photometric depth

maps. IEEE T-PAMI., 40(10):2402–2412, Oct. 2018. 3

[16] Chang Gao, Antonio Rios-Navarro, Xi Chen, Shih-Chii Liu,

and Tobi Delbruck. Edgedrnn: Recurrent neural network

accelerator for edge inference. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 10(4):419–432,

2020. 2, 8

[17] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpa-

nis, and Davide Scaramuzza. End-to-end learning of repre-

sentations for asynchronous event-based data. In IEEE Int.

Conf. Comput. Vis. (ICCV), 2019. 2, 3, 6

[18] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide

Scaramuzza. Dsec: A stereo event camera dataset for driving

scenarios. 2

[19] Mathias Gehrig, Sumit Bam Shrestha, Daniel Mouritzen, and

Davide Scaramuzza. Event-based angular velocity regres-

sion with spiking networks. IEEE International Conference

on Robotics and Automation (ICRA), 2020. 2

[20] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3D semantic segmentation with submanifold sparse

convolutional networks. In Conference of Computer Vision

and Pattern Recognition (CVPR), pages 9224–9232, 2018. 6

[21] Jesse J. Hagenaars, Federico Paredes-Vallés, Sander M.

Bohté, and Guido C. H. E. de Croon. Evolved neuromor-

phic control for high speed divergence-based landings of

mavs. IEEE Robotics and Automation Letters, 5(4):6239–

6246, 2020. 2

[22] Javier Hidalgo-Carrió, Daniel Gehrig, and Davide Scara-

muzza. Learning monocular dense depth from events. IEEE

Int. Conf. 3D Vis. (3DV), 2020. 2

[23] W.G. Horner. In Philos. Transact. Roy. Soc. London, 1819.

9

[24] Giacomo Indiveri, Bernabe Linares-Barranco, Tara Hamil-

ton, André van Schaik, Ralph Etienne-Cummings, Tobi Del-

bruck, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie

Renaud, Johannes Schemmel, Gert Cauwenberghs, John

Arthur, Kai Hynna, Fopefolu Folowosele, Sylvain SAÏGHI,

Teresa Serrano-Gotarredona, Jayawan Wijekoon, Yingxue

Wang, and Kwabena Boahen. Neuromorphic silicon neuron

circuits. Frontiers in Neuroscience, 5:73, 2011. 2

[25] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo

Scarpazza. Dissecting the graphcore ipu architecture via mi-

crobenchmarking. ArXiv, abs/1912.03413, 2019. 8

[26] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison.

Real-time 3D reconstruction and 6-DoF tracking with an

event camera. In European Conference of Computer Vision

(ECCV), pages 349–364, 2016. 3

[27] Diederik P. Kingma and Jimmy L. Ba. Adam: A method for

stochastic optimization. (ICLR), 2015. 6

[28] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. (ICLR), 2017.

5

[29] Xavier Lagorce, Garrick Orchard, Francesco Gallupi,

Bertram E. Shi, and Ryad Benosman. HOTS: A hierarchy

of event-based time-surfaces for pattern recognition. IEEE

T-PAMI., 39(7):1346–1359, July 2017. 2, 3, 6

[30] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-

ing deep spiking neural networks using backpropagation.

Front. Neurosci., 10:508, 2016. 2

[31] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights

into graph convolutional networks for semi-supervised learn-

ing. AAAI, abs/1801.07606, 2018. 7

[32] Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng

Cui, Hujun Bao, and Guofeng Zhang. Graph-based asyn-

chronous event processing for rapid object recognition. In

IEEE Int. Conf. Comput. Vis. (ICCV), 2021. 1, 3, 5, 6, 7, 8

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference of Computer Vision (ECCV), pages

740–755. 2014. 7

[34] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias

Müller, Vladlen Koltun, and Davide Scaramuzza. Learning

high-speed flight in the wild. In Science Robotics, October

2021. 4

[35] Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego,

Narciso Garcı́a, and Davide Scaramuzza. Event-based vision

meets deep learning on steering prediction for self-driving

cars. In Conference of Computer Vision and Pattern Recog-

nition (CVPR), pages 5419–5427, 2018. 2, 3

[36] Nico A. Messikommer, Daniel Gehrig, Antonio Loquercio,

and Davide Scaramuzza. Event-based asynchronous sparse

convolutional networks. In European Conference of Com-

puter Vision (ECCV), 2020. 2, 3, 4, 5, 6, 7, 8

[37] Srinjoy Mitra, Stefano Fusi, and Giacomo Indiveri. Real-

time classification of complex patterns using spike-based

learning in neuromorphic vlsi. IEEE Transactions on

Biomedical Circuits and Systems, 3(1):32–42, 2009. 2

[38] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo In-

diveri. A scalable multicore architecture with heterogeneous

memory structures for dynamic neuromorphic asynchronous

processors (dynaps). IEEE Transactions on Biomedical Cir-

cuits and Systems, 12(1):106–122, 2018. 2

[39] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and

Nitish Thakor. Converting static image datasets to spik-

ing neuromorphic datasets using saccades. Front. Neurosci.,

9:437, 2015. 6, 7, 8, 10

[40] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings,

Christoph Posch, Nitish Thakor, and Ryad Benosman.

HFirst: A temporal approach to object recognition. IEEE

T-PAMI., 37(10):2028–2040, 2015. 2, 3, 6

[41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NIPS Workshops, volume 8,

2017. 6, 8

[42] José A. Perez-Carrasco, Bo Zhao, Carmen Serrano, Begoña

Acha, Teresa Serrano-Gotarredona, Shouchun Chen, and

Bernabé Linares-Barranco. Mapping from frame-driven to

frame-free event-driven vision systems by low-rate rate cod-

ing and coincidence processing–application to feedforward

ConvNets. IEEE T-PAMI., 35(11):2706–2719, Nov. 2013. 2

[43] Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan

Masci, and Amos Sironi. Learning to detect objects with a

1 megapixel event camera. Adv. Neural Inf. Process. Syst.,

2020. 2, 4, 8

[44] Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc

Anh Le Thi, and Cheng Xiang. DART: distribution aware

retinal transform for event-based cameras. arXiv e-prints,

Oct. 2017. 6

[45] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide

Scaramuzza. High speed and high dynamic range video with

an event camera. IEEE T-PAMI., 2019. 2, 3

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object detec-

tion. In Conference of Computer Vision and Pattern Recog-

nition (CVPR), 2016. 7

[47] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide

Eynard, Federico Monti, and Michael Bronstein. Tempo-

ral graph networks for deep learning on dynamic graphs. In

Proc. Int. Conf. Mach. Learning Workshops (ICMLW), 2020.

3

[48] Nitin Sanket, Chethan M. Parameshwara, Chahat Singh,

Ashwin Varghese Kuruttukulam, Cornelia Fermüller, Davide

Scaramuzza, and Yiannis Aloimonos. Evdodgenet: Deep dy-

namic obstacle dodging with event cameras. pages 10651–

10657, 05 2020. 2, 4

[49] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. EventNet:

Asynchronous recursive event processing. In Conference of

Computer Vision and Pattern Recognition (CVPR), 2019. 2,

3, 4

[50] Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike

layer error reassignment in time. In Adv. Neural Inf. Process.

Syst., 2018. 2

[51] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. Conference of Computer Vision and Pattern Recog-

nition (CVPR), 2017. 5, 6

[52] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier

Lagorce, and Ryad Benosman. HATS: Histograms of aver-

aged time surfaces for robust event-based object classifica-

tion. In Conference of Computer Vision and Pattern Recog-

nition (CVPR), pages 1731–1740, 2018. 2, 3, 4, 6, 7, 10

[53] S. Sun, G. Cioffi, C. de Visser, and D. Scaramuzza. Au-

tonomous quadrotor flight despite rotor failure with onboard

vision sensors: Frames vs. events. IEEE Robotics and Au-

tomation Letters, 6(2):580–587, 2021. 2

[54] Stepan Tulyakov, Daniel Gehrig, Stamatios Georgoulis,

Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide

Scaramuzza. Time lens: Event-based video frame interpola-

tion. In Conference of Computer Vision and Pattern Recog-

nition (CVPR), pages 16155–16164, 2021. 2

[55] Xiang Zhang, Wei Liao, Lei Yu, Wen Yang, and Gui-Song

Xia. Event-based synthetic aperture imaging with a hybrid

network. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages

14235–14244, June 2021. 2

[56] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,

Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. Graph neural networks: A review of

methods and applications. AI Open, 2020. 3

[57] Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd

Pfrommer, Vijay Kumar, and Kostas Daniilidis. The multi-

vehicle stereo event camera dataset: An event camera dataset

for 3D perception. IEEE RA-L, 3(3):2032–2039, July 2018.

2

[58] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and

Kostas Daniilidis. EV-FlowNet: Self-supervised optical flow

estimation for event-based cameras. In Robotics: Science

and Systems (RSS), 2018. 2, 3

[59] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and

Kostas Daniilidis. Unsupervised event-based learning of op-

tical flow, depth, and egomotion. In Conference of Computer

Vision and Pattern Recognition (CVPR), 2019. 2

	. Introduction
	. Related Work
	. Prerequisites
	. Approach
	. Graph Construction
	. Asynchronous Processing
	. Network Details

	. Experiments
	. Object Recognition
	. Object Detection

	. Conclusion
	. Acknowledgment
	. Appendix
	. Network Details
	. Spline Convolutions Complexity
	FLOPS Computation

	. Licenses

