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Autonomous Power Line Inspection with Drones

via Perception-Aware MPC

Jiaxu Xing∗, Giovanni Cioffi∗, Javier Hidalgo-Carrió, and Davide Scaramuzza

Fig. 1: A quadrotor performing power line inspection in a power line test environment with three masts (labelled: A, B, and C) using our proposed approach.
The original rough reference trajectory is depicted in yellow and the drone deviates from it while avoiding obstacles (the power masts) and keeping the
power line visible in the field of view of the onboard camera.

Abstract— Drones have the potential to revolutionize power
line inspection by increasing productivity, reducing inspection
time, improving data quality, and eliminating the risks for
human operators. Current state-of-the-art systems for power
line inspection have two shortcomings: (i) control is decoupled
from perception and needs accurate information about the
location of the power lines and masts; (ii) obstacle avoidance is
decoupled from the power line tracking, which results in poor
tracking in the vicinity of the power masts, and, consequently,
in decreased data quality for visual inspection. In this work,
we propose a model predictive controller (MPC) that overcomes
these limitations by tightly coupling perception and action. Our
controller generates commands that maximize the visibility of
the power lines while, at the same time, safely avoiding the
power masts. For power line detection, we propose a lightweight
learning-based detector that is trained only on synthetic data
and is able to transfer zero-shot to real-world power line
images. We validate our system in simulation and real-world
experiments on a mock-up power line infrastructure. We release
our code and datasets to the public.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/JA6h-Nv29pU

Code: https://github.com/uzh-rpg/pampc for power line
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I. INTRODUCTION

Drones exhibit the potential to bring about a revolutionary

transformation in the industrial inspection market [1], [2].

Particularly, quadrotors are a fast-to-deploy and cost-effective

solution for power line inspection. The EU and US power

systems consist of more than 10 million km of power lines

and distribution transformers, which connect more than 400

million customers [3], [4]. The power line infrastructure

needs to be inspected regularly to avoid power outages and

natural disasters (California’s second-largest wildfire was

sparked when power lines came in contact with a tree [5]).

Power line inspection requires teams of specialized human

labor who use ad-hoc equipment, such as ropes and scaf-

foldings, to access the power line infrastructure and manned

helicopters for long-range operations. These factors result in

high expenses, significant dangers for human operators, and

low productivity in the inspection operation. Quadrotors can

cut the costs by 50% [1] as a consequence of the increase

of productivity, the reduction of the inspection time, the

improvement of the data quality, and the elimination of the

risks for the human operators [6].

Power line inspection with drones is still done by skilled

pilots. The use of autonomous drones is still limited. De-

veloping a fully autonomous solution is challenging because

the drone needs to take decisions during the flight that are

affected by conflicting goals: the drone needs to fly close

to the power lines to maximize the data quality for visual

inspection starting from a rough knowledge of the reference



trajectory, and at the same time, it must avoid collisions

with the power lines and masts, for which precise location

information is unavailable.

State-of-the-art autonomous systems for power line in-

spection have two shortcomings: (i) Control and motion

planning are separated from perception, and they also require

precise information regarding the location of power lines and

masts. This information is only available in limited cases. (ii)

Collision avoidance and power line tracking are decoupled,

which could lead to losing track of the power lines after

successfully avoiding an obstacle. For further details, we

refer the reader to a survey on autonomous, vision-based

robotic inspection of power lines [7].

We propose a vision-based, tightly-coupled perception

and action solution for autonomous power line inspection

that does not require prior information about the power

line infrastructure, such as the location of the power lines

and masts. Our method plans and tracks a trajectory that

maximizes the visibility of the power line in the onboard-

camera view and, at the same time, can safely avoid obstacles

such as the power masts. We achieve this by developing a

perception-aware Model Predictive Controller (MPC) [8] that

includes two perception objectives: one for line tracking and

one for collision avoidance. Adding multiple, and possibly

conflicting, perception objectives in the MPC is a challenging

task. In particular, the optimization could become infeasi-

ble and computationally intractable on resource-constrained

platforms such as quadrotors. We overcome this problem

by letting the MPC optimize over the weights of the two

perception objectives online.

To detect the power lines, we propose a novel perception

module that extends the deep-learning–based object detector

in [9] to the case of power line detection. The perception

module is trained only on synthetic data and transfers zero-

shot to real-world images of power lines without any fine-

tuning. In this way, we overcome the problem of the limited

amount of annotated data for supervised learning.

We demonstrate our system both on simulated data and on

a physical quadrotor platform operating in a mock-up power-

line infrastructure. We show that our approach is capable

of accurately tracking the power lines and avoiding the

power masts starting from a rough reference trajectory. We

believe that our method will contribute to accelerating the

deployment of autonomous drones for power line inspection.

Our main contributions are:

• A novel system that tightly couples perception and

action for autonomous, vision-based power line inspec-

tion.

• A model predictive controller that optimizes online the

weight of the line tracking and collision avoidance

objectives.

• A learning-based power line detector that is trained only

on synthetic data and transfers zero-shot to real-world

images of power lines.

• Thorough validation of the full system and all its

building blocks both in simulation and in the real world

on a mock-up power line infrastructure.

II. RELATED WORK

An overview of prior works in aerial power line inspection

using drones is in [7]. Planning and control strategies are

presented in [10], [11]. A PID controller to control the po-

sition and orientation of a quadrotor in relation to the power

lines is proposed in [10]. The solution proposed in [11] uses

perspective relation and estimation of the position of the

next tower to guide the drone. Both works loosely couple

perception, planning, and control and consequently either

need to have access to an accurate reference trajectory or

could result in poor line tracking after the collision avoidance

maneuver. A number of works [12], [13], [14], [15], [16]

focus on the perception task of detecting and tracking the

power lines. Model-based approaches, such as variants of

Hough transform and filters, using cameras are proposed

in [12], [13], [14]. In spite of their high weight and computa-

tional load, Lidars could also be employed in some specific

situations as proposed in [15]. Event camera [17] is a novel

sensor that provides lower latency and higher dynamic range

measurements than standard cameras. Combining events and

standard frames can make robotic perception more robust

against motion blur and low light conditions [18]. In [16],

a solution is proposed to detect and track the power lines

using event data.

Extensive literature exists on obstacle avoidance methods

for quadrotor flights. However, state-of-the-art methods [19],

[20] cannot directly be applied to the power line inspection

problem because they neglect the objective of tracking visual

points of interest, such as the power lines.

Model predictive control [21] is a powerful solution

to couple planning and control for quadrotor autonomous

flights. The benefits of MPC compared to other control

strategies are analyzed in [22]. MPC has been used for

perching on power lines [23] and agile flights [24]. The

first work introducing perception awareness in MPC is [8]

where the authors propose to include a perception objective

in the MPC to keep a point of interest in the camera field of

view. Our MPC controller is inspired by [8]. However, we

deal with two different perception objectives, line tracking,

and collision avoidance, which conflict with each other when

the drone approaches the power masts. To enable collision

avoidance capabilities, in [25], the authors utilized a chance-

constrained MPC formulation. This probabilistic collision

constraint allows to account for the perceptual uncertainty

and consequently enhances the obstacle avoidance robust-

ness. In [26], it is shown a real-world application of the

chance-constrained MPC for dynamic obstacle avoidance.

In [27], an MPC-based reactive planner for visual target

tracking and obstacle avoidance is presented. Different from

our method, this MPC does not directly generate control

commands but planned trajectories, which are tracked by

another low-level controller.

III. METHODOLOGY

A. Notation

In this manuscript, we define three reference frames. W
is the fixed world frame, whose z axis is aligned with the
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Fig. 2: Diagram of quadrotor and power line model.

gravity, B is the quadrotor body frame, and C is the camera

frame. These reference frames are depicted in Fig. 2. We

represent vectors and matrices as bold quantities. We use

capital letters for matrices. Vectors have a suffix representing

the frame in which they are expressed and their endpoint. For

example, the quantity pWB represents the position of the

body frame B with respect to the world frame W . We use

the symbol RWB to denote the rotation matrix that rotates

a vector from the frame B to the frame W . We use qWB

to denote the quaternion representation of this rotation. The

time derivative of a vector v is represented by v̇. In the case

of quaternion, the time derivative is defined as q̇ = 1
2Λ(ω),

where Λ(ω) is the screw-symmetric matrix of the vector ω.

The symbol ⊙ represents the quaternion-vector product. The

symbol × represents the cross product between two vectors.

B. Quadrotor Dynamics

Let pWB , qWB and vWB be the position, orientation, and

linear velocity of the quadrotor expressed in the world frame

W . Let ωB be the angular velocity of the body expressed

in the body frame B. Additionally, let c = Σici be the body

collective thrust, where ci is the thrust produced by the i-th

motor, c =
[

0, 0, c
]⊺

be the collective thrust vector, m be the

mass of the quadrotor, and gW be the gravity vector. Finally,

let J be the diagonal moment of inertia matrix and τB the

body collective torque. The quadrotor dynamical model is:

ẋ =









ṗWB

q̇WB

v̇WB

ω̇B









=









vWB
1
2Λ(ωB) · qWB

qWB ⊙ c/m+ gW
J−1(τB − ωB × J · ωB)









(1)

The body torque τB is represented by:

τB =





−dx0
−dx1

dx2
dx3
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Fig. 3: Illustration of a reference and detected line onto the image frame.

where dxi
, dyi

for i = [1, 2, 3, 4] are the distances of

each rotor i to the body frame and cτ is the rotor drag

constant. The state and input vector of the system are x =
[p⊺

WB , q
⊺

WB ,v
⊺

WB ,w
⊺

B ]
⊺ and u = [c,ω⊺

B ]
⊺.

C. MPC Formulation

The system dynamics in Eq. 1 can be written in compact

form as ẋ = f(x,u). We compute the discrete-time version

of it by using a Runge-Kutta method of 4th order with time

step dt: xi+1 = f(xi,ui, dt). The MPC formulation is a

non-linear program with quadratic costs:

Lorg = x̄
⊺

NQx,N x̄N +

N−1
∑

i=0

(x̄⊺

i Qxx̄i + ū
⊺

i Rūi)

argmin
u

Lorg

s.t. x̄0 = xinit

xi+1 = f(xi,ui)
umin ≤ ui ≤ umax.

(3)

This is solved as a sequential quadratic program (SQP)

executed in a real-time iteration scheme [28]. The values

x̄ = x − xs and ū = u − us refer to the difference with

respect to the reference of each value. We implement this

optimization problem in ACADO [29] and use the qpOASES

solver [30].

D. Perception Objectives

We include two perception objectives: one for line tracking

and one for collision avoidance, in the MPC formulation

proposed in Eq. 3.

Line Tracking: The purpose of this objective is to keep

the power line in the center of the image (c.f. Fig. 3), to

maximize data quality for visual inspection, and to keep

a safe distance from the power lines. We derive the line

tracking objective in this section by extending the perception

objective proposed for a single point in [8]. We denote the

position of the line endpoints in the world frame W as

pWLj
j ∈ {1, 2}. These points are transformed to the camera

frame C by:

pCLj
= (qWB · qBC)

−1 ⊙ (pWLj
− (qWB ⊙ pBC + pWB).

(4)

The points: pCL1
and pCL2

are projected into the image

plane coordinates: [u1, v1], [u2, v2] according to the classical



pinhole camera model [31]. The cartesian coordinates are

transformed into the polar coordinates as:

θ = arctan

(

−u2 − u1

v2 − v1

)

, r =

(

v1 −
v2 − v1
u2 − u1

u1

)

sin θ.

(5)

We introduce a new variable z̄ in our MPC formulation:

z =





θ
r
d



 , zs =





0
0
ds



 , z = z − zs. (6)

The variable d represents the distance of the line to

the body frame (c.f. Fig. 2) and ds represents the target

value of d. The value of ds is set by the user according

to the desired distance of the flight from the power lines.

Obstacle Avoidance: Inspired by [32], [26], we include

collision avoidance capabilities in our MPC by means of

a collision cost and a collision constraint. The collision cost

lo is formulated with the logistic function:

lo = Qo/(1 + exp(λo (do − ro))), (7)

where do represents the norm of the distance of the body

frame to the detected obstacle. The values Qo, λo, ro are

constant quantities that represent weight, smoothness, and

distance threshold, respectively.

The collision constraint is formulated as a probabilistic

chance constraint to account for the uncertainty in the drone

state and in the obstacle detection. The objective of this con-

straint is to ensure that the probability of the collision with

an obstacle is less than a predefined threshold: Pr{Co} < δ.

We model obstacles as ellipsoids. Let ao, bo, co be the semi-

principal axes of the ellipsoid modeling an obstacle, and r the

radius of a safety area around the quadrotor body frame. The

quadrotor is considered to be in collision with the obstacle

when:

Co : (pWB − pWO)
⊺
Ωo (pWB − pWO) ≤ 1, (8)

where Ωo is the uncertainty matrix defined as Ωo = R
⊺

WO ·
diag

(

1
(ao+r)2

, 1
(bo+r)2

, 1
(co+r)2

)

·RWO. The quantity pWO

and RWO represent the position and orientation of the

obstacle with respect to the world frame W . Assuming that

the quadrotor and obstacle positions are random variables

distributed according to Gaussian distributions: pWB ∼
N (p̂WB ,Σ), and pWO ∼ N (p̂WO,Σo), respectively, we

derive the deterministic form of the chance constraint as:

n⊺

oΩ
1

2

o (p̂WB − p̂WO)− 1 ≥ erf−1(1− 2δ)·
√

2n⊺

oΩ
1

2

o (Σ+Σo)Ω
1

2

o no (9)

where n is the normalized distance from the body frame

to the obstacle and erf(x) is the standard error function for

Gaussian distributions [33]. We rearrange Eq. 9 and write it

using the shorthand cc(p̂WB , ΣB , p̂WO, ΣO) ≤ 0 hereafter.

Image

512×512

Object Detection

Backbone

Forward passing

Post processing

Patch tracking

······

oi, ci
wi, hi

[uic, vic]

o1, c1
w1, h1

[u1c, v1c]

[u11, v11]

[u12, v12]

[ui1, vi1]

[ui2, vi2]

ith

1st

· · · · · ·

1st ith

Detection patches

KLT Tracker +

Hungarian Method

Tracked patches

Target Line

[u1, v1], [u2, v2]

Fig. 4: Overview of our learning-based power line detector and tracker. The
detector takes a single RGB image as input and outputs end points of the
detected power lines in pixel coordinates. The center patch of each detection
is matched with the prediction of the previous patch using the Hungarian
method [35]. We use a KLT tracker [36] to perform tracking. The final
output is the tracked lines endpoints which are given to the MPC.

E. Perception-aware MPC for power line inspection

The two perception objectives of line tracking and obstacle

avoidance conflict when the quadrotor approaches the power

masts. For this reason, finding constant weights to attribute

to these objectives in the MPC is difficult. Our solution is

to adapt online these weights. To this end, we introduce a

new state variable, α. This variable varies in the interval

[0, αmax]. For values close to 0, high priority is given to

line tracking. On the contrary, for values close to αmax, high

priority is given to collision avoidance. The perception-aware

MPC proposed in this work is:

argmin
u,α

Lorg + Lper

Lper =
N−1
∑

i=0

(

ᾱ2
i z̄

⊺

i Qpz̄i + lo +Qαα
2
i

)

s.t. x̄0 = xinit

xi+1 = f(xi,ui)
umin ≤ ui ≤ umax

cc(p̂WB,i, ΣB,i, p̂WO,i, ΣO,i) + cᾱi ≤ 0
0 ≤ αi ≤ αmax,

(10)

where ᾱ = 1 − α/αmax and c is a constant value that is

used to weight the priority of the chance constraint.

F. Line Detection and Tracking

In this work, we propose a novel deep-learning-based

power line detector based on the object detector [9], [34].

As shown in Fig. 4, our detector takes monocular RGB

images as input and outputs: (i) width wi and height wi of

the bounding boxes that fully contain the detected power

line, where i indicates the number of detection; (ii) the

inclination of the line oi (either +1 or -1). The endpoints

of positive inclined lines, i.e., oi = +1, correspond to the

top-left and bottom-right corners of the bounding box. The



Fig. 5: Sample images from the proposed power line dataset.

endpoints of negative inclined lines correspond to the top-

right and bottom-left corners of the bounding box; (iii) the

center of the line [uic, vic]; (iv) the confidence score c of

the prediction. If the confidence score is not larger than a

predefined threshold (we use 0.8 in all our experiments), the

detection is labeled as invalid and is not used. To perform

tracking, we use a tracking-by-detection approach to track

the detected power lines. In the first step, we track the center

patch of the detected bounding box, of dimension 25×25

pix, using a 4 layers Lukas-Kanade tracker (KLT)] [36]. In

the second step, we compute the similarity score between

bounding boxes in two consecutive frames as the sum of the

KLT error and the area difference between the two bounding

boxes normalized by the image size. In the final step, we

find the best matches using the Hungarian method [35].

The final outputs are the endpoints of the tracked line in

the pixel coordinate [u1, v1], [u2, v2]. Then we transform the

endpoints, incorporating depth detection and state estimation,

into the world frame to derive pWL1
,pWL2

.

Among the datasets which contain power lines [37], [38],

there is a limited amount of labeled data and scene vari-

ability. Consequently, they are not suitable for training a

robust power line detector. For this reason, we created a

new dataset for power line detection based on the photo-

realistic simulator Flightmare [39]. We collected a dataset

of ∼30k images of labeled power lines of different colors

and thicknesses in different 6 environments (c.f. Fig. 5). The

dataset is split into training (80%), validation (10%), and

test (10%) sequences. We train our power line detector on

the training sequence and use the validation sequence for

hyperparameters tuning.

Our current approach requires that the user specifies which

power line to track, e.g., the ID i from the detection. The

ID cannot be changed during the flight. We leave as part

of future work the extension of the MPC formulation to

track different lines. A current limitation of the line tracked

is the missing information on the temporal history of the

lines. If a power line is not tracked between two frames, the

detector is unable to continue tracking the previous line. To

address this issue, a possible solution would be to implement

a hibernation mechanism as in [16].

G. Obstacle Detection

We use ellipsoids with constant but unknown sizes to

represent obstacles. The state of an obstacle is defined as

(pWO, ao, bo, co), which contains the position of the center

Fig. 6: A sample result of our line detector validated using a real-world
image. Our detector shows correct prediction with high confidence in a
challenging real-world scene, despite only being trained with synthesized
images.

of the ellipsoid in the world frame and the length of its semi-

principal axes. Our obstacle detection module is based on U-

and V- disparity maps as proposed in [40]. The U-map is a

histogram of disparity values accumulated over the columns

of the image. The V-map is a histogram of disparity values

accumulated over the rows of the image. These disparity

maps are used to detect obstacles from depth images.

IV. EXPERIMENTS

In this section, we validate our system by answering the

following questions:

• Why use our learning-based line detector instead of

classical methods?

• The initial reference trajectory can be in collision with

the power masts. In this case, can our system safely

avoid the power masts?

• Does tightly-coupled perception and action improve

data quality for visual inspection?

In addition, we demonstrate our system in the real world on a

mock-up power line infrastructure. The proposed perception-

aware MPC runs inside the quadrotor control stack [41].

Benefits of our learning-based line detector: In these

experiments, we compare the proposed learning-based

line detector against a traditional line detector approach

based on the Hough transform algorithm [42]. We design

a traditional line detection baseline that uses the Canny

edge detector algorithm [43] to detect edge features in the

image and the Hough transform algorithm to estimate the

line parameters. We also design a probabilistic version of

this algorithm, Probabilistic Hough Transform (P-Hough),

that runs on a sampled subset of the detected edges. The

dimension of this subset depends on predefined thresholds

that vary according to the number of detected edges. The

parameters of the traditional approach were tuned on the

training sequences of our simulated power line dataset.

The results on the test sequences are listed in Table I. We

use the metrics proposed in [44], which are the Precision,

Recall, and the F1 score of the line matching results based

on Chamfer distance and EA score [44]. Our line detector

greatly outperforms the traditional approach. Generally, it



Method Chamfer Distance EA Score

P R F P R F
Hough 0.70 0.32 0.44 0.46 0.19 0.28
P-Hough 0.26 0.31 0.28 0.10 0.16 0.10

Ours 0.92 0.77 0.84 0.93 0.78 0.85

Improvement (%) 31 141 91 102 311 204

TABLE I: Quantitative evaluation of the performance of the proposed
learning-based line detector and of the classical approaches.

is difficult to find a set of parameters for the traditional

approach that generalizes to the different environments of

our dataset. On the contrary, our learning-based detector is

able to generalize to all the environments in the dataset.

Furthermore, we demonstrate that our proposed line detector

is able to generalize to real-world data without fine-tuning.

Fig. 6 shows the output of the line detector on a real-world

power line image recorded onboard a quadrotor. We refer

the reader to the accompanying video where we include

the results of our line detector on the full sequence of

images recorded onboard a quadrotor flying above the

real-world power lines. We also evaluate the line detection

algorithms in terms of the time they need to process a single

frame, which we name running time. Such a running time

was computed on a laptop equipped with an Intel Xeon

E3-1505M v5 (2.80GHz) CPU and Nvidia Quadro M2000M

GPU, and on Nvidia Jetson TX2, which is the computer

available onboard our quadrotor platform. The results

are shown in Table III. Furthermore, to justify the need

for the proposed line detector, we compare our approach

against the state-of-the-art models [45], [46], [47], [48],

[49] for pixel-wise line detection regarding the computation

time. As shown in Table II, the high latency of these

models makes them unsuitable for real-time deployment

onboard resource-constrained platforms such as quadrotors.

The high latency is mainly because these methods predict

pixel-wise segmentation, which is not needed in our use case.

Robustness to unknown location of the power masts:

Generally, the location of the power masts is either unavail-

able or GPS coordinates with errors up to several meters (>
10) are available. For this reason, it is not possible to plan

a collision-free reference trajectory.

In this experimental setting, we evaluate the performance

of our system in the case where the initial reference

trajectory is in collision with the power masts. We run our

Method Run Time [ms] GFlops

SCNN [45] 133.33 328.4
LaneATT [46] 38.46 70.5
CondLaneNet [47] 17.18 44.8
Line-CNN [48] 27.93 -
PointLaneNet [49] 14.08 -

Ours 1.80 0.0042

TABLE II: Comparison of the state-of-the-art line detection methods with
respect to their inference speeds and operation numbers. Our approach out-
performs the state-of-the-art methods in terms of computational efficiency,
All experiments use the same input image size of 512 × 512 on Nvidia
GeForce RTX 2080Ti GPU.
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Fig. 7: Visualization of the flown trajectories color-coded according to the
values of α, c.f. Sec. III-E. Our MPC is able to find collision-free trajectories
starting from non-collision-free reference trajectories.

Method Run Time Laptop [ms] Run Time TX2 [ms]

Hough 7.19 18.52
P-Hough 4.61 16.13

Ours 4.69 20.83

TABLE III: Running time, i.e. time required to process a single image, of
the proposed learning-based line detection algorithm and of the classical
approaches.

tests within the Flightmare simulation environment and

assume that the MPC has access to the ground truth obstacle

position and only vary the reference trajectory. We designed

an environment with 3 power masts (labelled A, B, C) as

shown in Fig. 7. We randomly sampled 100 starting points

in a rectangular region of size 8×3 m in the vicinity of the

power mast A (the center of A is located in the middle of

the bottom edge of this rectangular region). The endpoint

is fixed 1 m away from the left side of the power mast C.

The reference trajectory given to the MPC is a straight line

connecting the starting and end points with no yaw change.

Some of these reference trajectories are in collision with the

power mast B. Our system achieves a 100% success rate,

i.e. no collision with the power masts. We show in Fig. 7,

13 flown trajectories.

Benefits of tightly-coupling perception and action: In

this experiment, we evaluate the benefits of tightly-coupling

perception, planning, and control in terms of visibility of the

power lines compared to the classical MPC formulation (c.f.

Eq. 3). We use the proposed learning-based line detector and

assume that the MPC has access to the ground-truth position

of the power masts. We use the similarity score S as the

evaluation metric, which is defined as:

Sθ = 1− 2θ

π
, Sd = 1− h√

w2 + l2
, S = (Sθ · Sd)

2 (11)

where θ is the normalized angular distance between the



Fig. 8: Quadrotor used in real-world experiments.

Simple Warehouse Forest Village Mean

Our MPC 0.74 0.63 0.61 0.67 0.67

Classical MPC 0.53 0.49 0.44 0.45 0.48

TABLE IV: Quantitative comparison of the proposed perception-aware MPC
(Eq. 10) against the classical MPC formulation (Eq. 3). The evaluation
metric refers to the visibility of the line (Eq. 11).

detected and the reference line, and h is the normalized

distance between the center points of the lines (c.f. Fig. 3).

The quantity h is normalized by the length of the image

diagonal, where w and l are the image width and height,

respectively. We run the experiments on the testing sequences

of our dataset which are from 4 different environments:

Simple, Warehouse, Forest, and Village. The results are in

Table IV. Our perception-aware MPC improves the line

visibility on average by 40%.

In addition, we evaluated the run time of our perception-

aware MPC formulation (c.f. Eq. 10), the classical MPC for-

mulation, an MPC including the only line tracking objective

(Tracking MPC), and, an MPC including the only collision

avoidance objective (Avoidance MPC). We report the update

and solver time when running the algorithms on an Nvidia

Jetson TX2 platform, which is the computer onboard our

quadrotor. The update time is the period of time between

two consecutive control commands. The solver time is the

period of time taken by the solver to optimize the MPC

objective. The results are shown in Table V. Our proposed

MPC requires more computational time than the classical

formulation mainly due to the collision objective. However,

the update is fast enough to deploy the proposed MPC on a

real quadrotor.

Real-world deployment: We deploy our system on a

quadrotor equipped with an Intel Realsense T265 tracking

camera and an Intel Realsense D435i depth camera. The on-

board computer is an Nvidia Jetson TX2. Detailed informa-

tion about our quadrotor platform is in [41]. We use the VIO

algorithm from the tracking camera to obtain an estimate of

the 6-DoF pose of the quadrotor and the depth camera to

obtain RGB images for the line detection algorithm and depth

measurements for the collision avoidance algorithm. All the

Update Time [ms] Solver Time [ms]

Classical MPC 0.88±0.27 0.65 ±0.01
Tracking MPC 0.99±0.03 0.75 ± 0.02
Avoidance MPC 7.31±3.15 7.14 ±3.01
Our MPC 7.90±3.63 7.67±3.62

TABLE V: Comparison of multiple MPC formulations with respect to their
update time and solver time.

components of our system run on the onboard computer

in real-time. We set up a mock-up power line environment

featuring 3 power masts. The distance between each pair of

power masts is 7.5 m. A top view of the power environment

including a trajectory flown by our quadrotor is in Fig 1.

We run several experiments with different starting positions

sampled in the vicinity of mast A. In all the experiments,

the proposed MPC does not have access to the ground-truth

location of the power lines and power masts. For this reason,

a classical MPC approach without perception awareness is

not a suitable solution. We demonstrate that our quadrotor

is able to track the power line by adapting its heading (c.f.,

Fig 1) and to avoid the power masts. We refer the reader

to the accompanying video for the visualization of these

experiments.

V. CONCLUSIONS

In this work, we present a system for autonomous power

line inspection using perception-aware MPC. Our approach

generates control commands that maximize the visibility of

the power lines while safely avoiding the power masts. Our

MPC formulation includes two perception objectives, one

for line tracking and one for obstacle avoidance. The MPC

adapts the weights of these two objectives online. To detect

the power lines, we propose a novel learning-based detector.

This learning-based detector is only trained on synthetic data

and is able to transfer to real-world images without any fine-

tuning. We show that our system is robust to unknown infor-

mation on the position of the power lines and power masts.

We also show that our perception-aware MPC improves

power line visibility by 40%. We demonstrate a real-world

application in a mock-up power line environment. Future

improvements for our system might include i) improving

system robustness against disturbances such as wind [50],

model mismatch [51] or sensor failures [52] and ii) perching

on the power line [23] in order to recharge the battery on

the fly [53].
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