
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2022

Learning Minimum-Time Flight in Cluttered Environments

Penicka, Robert ; Song, Yunlong ; Kaufmann, Elia ; Scaramuzza, Davide

DOI: https://doi.org/10.1109/LRA.2022.3181755

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-257380
Journal Article
Accepted Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Penicka, Robert; Song, Yunlong; Kaufmann, Elia; Scaramuzza, Davide (2022). Learning Minimum-Time Flight in
Cluttered Environments. IEEE Robotics and Automation Letters, 7(3):7209-7216.
DOI: https://doi.org/10.1109/LRA.2022.3181755



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022 1

Learning Minimum-Time Flight

in Cluttered Environments
Robert Penicka, Yunlong Song, Elia Kaufmann, Davide Scaramuzza

Abstract—We tackle the problem of minimum-time flight for
a quadrotor through a sequence of waypoints in the presence
of obstacles while exploiting the full quadrotor dynamics. Early
works relied on simplified dynamics or polynomial trajectory
representations that did not exploit the full actuator potential
of the quadrotor, and, thus, resulted in suboptimal solutions.
Recent works can plan minimum-time trajectories; yet, the
trajectories are executed with control methods that do not
account for obstacles. Thus, a successful execution of such
trajectories is prone to errors due to model mismatch and in-
flight disturbances. To this end, we leverage deep reinforcement
learning and classical topological path planning to train robust
neural-network controllers for minimum-time quadrotor flight in
cluttered environments. The resulting neural network controller
demonstrates substantially better performance of up to 19% over
state-of-the-art methods. More importantly, the learned policy
solves the planning and control problem simultaneously online to
account for disturbances, thus achieving much higher robustness.
As such, the presented method achieves 100% success rate of
flying minimum-time policies without collision, while traditional
planning and control approaches achieve only 40%. The proposed
method is validated in both simulation and the real world, with
quadrotor speeds of up to 42 kmh

−1 and accelerations of 3.6g.

Index Terms—Integrated Planning and Learning, Motion and
Path Planning, Reinforcement Learning

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/wR1niZvI3pI

I. INTRODUCTION

Q
UADROTORS are among the most agile and maneu-

verable flying machines [1] and have recently shown a

substantial increase in autonomy capabilities [2]. This renders

quadrotors the ideal platform for first responders to search

for survivors as quickly as possible after natural disasters like

earthquakes, forest fires, or floods. Though the astonishing

agility of autonomous quadrotors has been demonstrated in

many research labs [2]–[10], planning minimum-time trajec-

tories in cluttered environments and navigating them without

collision remains an open problem. To push research in

the field of agile navigation and minimum-time planning,

autonomous drone racing has emerged as a research field, with

Manuscript received: February, 24, 2022; Revised May, 20, 2022; Accepted
May, 31, 2022. This paper was recommended for publication by Editor
Tetsuya Ogata upon evaluation of the Associate Editor and Reviewers’ com-
ments. The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, and Department of Neuroinformatics,
University of Zurich and ETH Zurich, Switzerland (https://rpg.ifi.uzh.ch).
This work was supported as a part of NCCR Robotics, a National Centre
of Competence in Research, funded by the Swiss National Science Founda-
tion (grant number 51NF40 185543), the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 871479
(AERIAL-CORE) and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT). Digital Object Identifier (DOI):
10.1109/LRA.2022.3181755

Fig. 1: Our quadrotor races through a complex race track in

the real world while avoiding a set of obstacles made from

transparent foil. While racing, the quadrotor reaches speeds

of up to 42 kmh−1 and accelerates with up to 3.6g.

international competitions being organized, such as the Au-

tonomous Drone Racing series at the recent IROS and NeurIPS

conferences [11]–[13] and the AlphaPilot challenge [10], [14].

Drone racing requires flying a drone through a sequence of

gates or doorways in minimum time while avoiding collisions

with the environment, which is an ideal benchmark scenario

for autonomous quadrotors being deployed in search and

rescue scenarios.

By definition, the minimum-time objective requires the

navigation and planning algorithm to constantly push the

platform to its limits and operate the vehicle near the boundary

of its physical envelope. Furthermore, the presence of 3D ob-

stacles results in a highly nonconvex optimization problem that

quickly becomes intractable to solve with traditional methods.

These two aspects render minimum-time flight in cluttered

environments very challenging as any slight disturbance or

model mismatch could lead to a catastrophic crash. To this

end, a planning and control method that tackles this task has

to be robust against disturbances and needs to be able to adapt

the trajectory online.

Previous work in the field of trajectory planning and control

for autonomous quadrotors has solved only a subset of the

problems imposed by minimum-time flight in cluttered envi-

ronments. Existing methods either do not consider obstacles in

time-optimal planning [4], [15], or cannot exploit the full ac-

tuation of the platform due to a simplification of the quadrotor

dynamics [16]. Other methods do not support multi-waypoint

scenarios in combination with a time-optimal objective [17],

or rely on polynomial trajectory representations [18], that

cannot represent time-optimal maneuvers due to their inherent

smoothness. A recently proposed sampling-based method [19]



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

can plan minimum-time trajectories in cluttered environments;

however, it is decoupled from the model predictive controller

(MPC) [20] used to track the planned trajectory. This makes

flying such a trajectory vulnerable to disturbances or model

mismatches as the MPC does not account for the obstacles.

In light of recent successes in deep reinforcement learn-

ing (RL) [15], [21]–[24], we propose to address the problem

using deep RL. RL has the advantage of automatically opti-

mizing a parametric controller via trial and error and the ability

to handle highly nonlinear dynamical systems and nonconvex

objectives that are otherwise intractable to solve by conven-

tional robotics methods. However, successful applications of

RL have been largely limited to video games [21], [22], ground

robots [23], or simple hovering of a quadrotor [24]. Applying

RL to our problem remains a significant challenge due to the

high sample complexity and nonconvexity of the task.

This work contributes a novel learning algorithm for

minimum-time flight in cluttered environments. The key is to

combine classical path planning with model-free deep rein-

forcement learning to optimize a neural network policy. The

resulting policy directly outputs optimal control commands

from high-dimensional observations. We show that the neural

network policy outperforms state-of-the-art methods in terms

of flight time in all tested scenarios that feature complex

geometries. Our results indicate that the learned policy has

obtained an implicit knowledge about the risk of navigating

in close proximity of obstacles when being exposed to distur-

bances. This ability leads to more robust control performance

and higher success rates when dealing with model mismatches.

Our proposed approach is validated in real-world flights at

speeds beyond 42 kmh−1 and accelerations up to 3.6g.

II. RELATED WORK

State-of-the-art methods for agile quadrotor flight mainly

use the conventional approach to decouple trajectory planning

and control. Given a planned trajectory, accurate trajectory

tracking by the controller is instrumental for the vehicle to

navigate through the environment safely. Hence, the final

performance and success rate depend highly on both the

quality of the planned trajectory as well as the robustness of

the controller. One of the most popular paradigms to quadrotor

trajectory generation exploits the differential flatness [25] of

the platform using polynomial [10], [18], [26], [27] or B-

spline [5], [28], [29] representations. However, those repre-

sentations are suboptimal for minimum-time flight, since they

are inherently smooth and cannot represent the rapid state or

input changes at a reasonable order, and only reach the input

limits for infinitesimal short durations [4].

Search-based planning methods [30], [31] use discrete-time

and discrete-state representations and convert the trajectory

planning to a graph search problem. These methods can

optimize time up to discretization, however, they suffer from

the curse of dimensionality and utilize simplified point-mass

models instead of the full quadrotor dynamics. Furthermore,

the existing search-based methods support planning only be-

tween two states. Algorithms like RRT* [17] can be used

for a linearized quadrotor model around hover conditions, but

the linearization around the hover operating point prohibits

planning minimum-time trajectories.

More advanced trajectory planning methods frame the task

as a constrained optimization problem and solve it via non-

linear programming. As such, trajectory optimization can be

used for offline trajectory planning [4] or online tracking of

a fixed reference path in a receding horizon fashion [32].

Optimization-based methods have the advantage of being

able to incorporate nonlinear dynamics and constraints into

the optimization framework. However, those methods either

require long computation times (in the order of hours [4]) or

rely on a series of approximations for the solver, which in turn

results in sub-optimal performance. Neither of [4], [32] can

solve the problem for environments that contain obstacles. In

contrast, the sampling-based method [19] can find minimum-

time trajectories also for cluttered environments. However, also

this method plans a trajectory offline and therefore relies on a

controller for tracking.

Modern control frameworks for trajectory tracking include

nonlinear model predictive control (MPC) and differential

flatness control [33]. However, most approaches struggle to

handle disturbances during high-speed flight such as aerody-

namic drag, thrust mismatches, and system delays. When the

platform is at its actuation limit, the slightest deviation from

the pre-planned trajectory may result in a suboptimal flight

path, and even catastrophic crashes due to the presence of

obstacles. There exist several MPC approaches that can handle

obstacles adaptively online. However, they either consider

simplified spherical obstacles [34], or a limited number of

obstacles [35], [36] at a control frequency of only 10-20 Hz.

Learning-based methods address the aforementioned is-

sues by learning an end-to-end policy that predicts control

commands directly from high-dimensional observations. For

example, imitation learning (IL) methods [2], [7] train neural

network policies that can achieve agile flight in the wild using

only onboard sensing and computing. IL is data-efficient, but

not scalable since it requires designing an expert system for

data collection. Recent works have demonstrated the usage of

reinforcement learning to achieve superhuman performance in

car racing [22], near-time-optimal flight in drone racing [15],

and high-speed trajectory tracking using a learned policy [37].

Inspired by [15], [19], this work combines the topological path

planning approach with deep RL to achieve minimum-time

flight in complex cluttered environments.

III. PROBLEM STATEMENT

A. Quadrotor Dynamics

The quadrotor is modeled with state x =
[

p, q,v,ω,Ω
]T

which consists of position p ∈ R
3, velocity v ∈ R

3, unit

quaternion rotation q ∈ SO(3), body rates ω ∈ R
3, and the

rotors’ rotational speed Ω. The dynamics equations are

ṗ = v

v̇ =
R(q)(fT + fD)

m
+ g

q̇ =
1

2
q ⊙

[

0
ω

]

ω̇ = J−1(τ − ω × Jω)
(1)

where ⊙ denotes the quaternion multiplication, R(q) is the

quaternion rotation, m is the mass, J is diagonal inertia ma-



PENICKA et al.: LEARNING MINIMUM-TIME FLIGHT IN CLUTTERED ENVIRONMENTS 3

trix, and g denotes Earth’s gravity. The speeds of the propellers

Ω are modeled as a first-order system, Ω̇ = 1
kmot

(Ωc −Ω)
with Ωc being the commanded speed and kmot the time

constant.

The collective thrust fT and torque τb are calculated as:

fT =





0
0

∑

fi



 , τ =





l/
√
2(f1 − f2 − f3 + f4)

l/
√
2(−f1 − f2 + f3 + f4)
κ(f1 − f2 + f3 − f4)



 , (2)

where κ is the torque constant and l is the arm length. Here,

individual motor thrusts fi are functions of the motor speeds

using the thrust coefficient cf as in (3),

fi(Ω) =
[

cf · Ω2
]

. (3)

The drag force fD is modeled as a linear function

of velocity in body frame vB [38] with drag coefficients

(kvx, kvy, kvz):

fD = −
[

kvxvB,x kvyvB,y kvzvB,z
]T

. (4)

The motors have a limited thrust range [fmin, fmax]:

fmin ≤fi ≤ fmax, for i ∈ {1, . . . , 4} . (5)

B. Minimum-time Planning Problem

The minimum-time planning problem is defined using the

classical notion of configuration space C [39]. We assume

an environment W = R
3, which contains obstacles O =

{O1, . . . ,Om} ⊂ W . The quadrotor with state x and geom-

etry A(x) ⊂ W has to find a collision-free trajectory in C.

To this end, it can move in free space Cfree = C \ Cobs,
where Cobs = {x ∈ C|δ(A(x),O) ≤ dc} ⊆ C is a set

of configurations (quadrotor states) where the robot is in

collision, i.e., having shortest distance δ(·, ·) to any obstacle

below a given threshold dc.
We formulate the multi-waypoint minimum-time planning

problem as an optimization problem (6) to find trajectories τi
and their durations ti for the dynamics (1)-(5).

minimize
τ0...τN

T =

N
∑

i=0

ti

s.t. τi ∈ Cfree for i ∈ {0, . . . , N},

τ0(0) = xs, τN (1) = xe,

‖τi(0)p − pwi‖ ≤ rtol for i ∈ {1, . . . , N},

τi−1(1) = τi(0) for i ∈ {1, . . . , N},

(1), (2), (3), (4), (5).

(6)

For the multi-waypoint scenario, the quadrotor has to fly

through a given sequence of waypoints Pw = (pwi, i ∈
[1, . . . , N ]) while reaching their position pwi with a certain

proximity rtol. The whole multi-waypoint trajectory can be

described as a continuous sequence of N trajectories τi :
[0, 1] → Cfree for i ∈ {0, . . . , N}. The trajectory is assumed

to have a given start τ0(0) = xs and end τN (1) = xe.

Furthermore, the initial positions of the trajectories τi(0)p
have to be in the waypoints’ proximity ‖τi(0)p − pwi‖ ≤ rtol
for i ∈ {1, . . . , N}, and the sequence has to be continuous

τi−1(1) = τi(0) for i ∈ {1, . . . , N}. The goal of the planning

problem is then to minimize the final time T =
∑N
i=0 ti of

reaching xe, where ti denotes the time duration of τi.

IV. METHODOLOGY

The key ingredients of our approach to minimum-time flight

in cluttered environments are three-fold: 1) generation of a

topological guiding path using a probabilistic roadmap [40],

2) a novel task formulation that combines progress maxi-

mization along the guiding path with obstacle avoidance, and

3) a curriculum training strategy to train a neural network

policy using deep reinforcement learning.

A. Topological Path Planning

We first find the topological paths that connect individual

waypoints to guide the subsequent learning process. The

topological guiding paths are found using a variant of the

Probabilistic Roadmap [40] described in [19]. The algorithm

searches for multiple distinct paths with different homotopy

classes, e.g., going around obstacles from different sides.

It uses random sampling in ellipsoids between individual

waypoints and keeps enlarging each ellipsoid and number of

samples until at least one path between waypoints is found.

The created roadmaps between waypoints are then searched

for the shortest path using Dijkstra’s algorithm. Samples

within the shortest path with the smallest distance to obstacles

are then removed from the roadmap and the shortest path

search is repeated to obtain multiple distinct paths. Such

distinct paths are then shortened, and the paths within the same

homotopy class are removed. The resulting topological paths

then represent the connectivity of the Cfree between waypoints

(as shown in Fig. 2(a)). For more details about the topological

path search, we refer to [19].

B. Reinforcement Learning for Minimum-time Flight

In the following, we present the policy architecture, reward

formulation, and strategy employed in our approach to train a

policy for high-speed flight in cluttered environments.

Policy Architecture. The neural network policy uses an

observation space that consists of three main parts: the

quadrotor state, the next waypoint position, and the relative

position of the farthest collision-free position on the guid-

ing path. Specifically, we denote the observation vector as

o = [p(t), R(q(t)),v(t),W,γ(t)], where p(t), R(q(t)), v(t)
are the quadrotor’s position, rotation matrix and velocity,

respectively. Matrix W ∈ R4,3 contains four positions cor-

responding to the bounding box of the currently targeted

waypoint with edge size of 2rtol. The bounding box is used

to convey information not only about the waypoint position,

but also about the size and orientation of the target gate (see

Fig. 1). Finally, the γ(t) is the farthest point on the guiding

path connectable using a collision-free line segment from

the current position p(t) (see Fig. 4). The γ(t) is used for

indicating the flight direction of the quadrotor to maximize

the progress. Throughout the development of the method, we

found by ablating the observation components that all the

components are necessary to learn minimum-time flight in all

tested scenarios.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

(a) Topological guiding paths (b) Slow speed trajectory (c) Final minimum-time trajectory

Fig. 2: Three main steps of our method (shown in Slalom environment) include: (a) finding topological guiding paths between

the waypoints (gates), (b) learning slow policy that flies through all the waypoints, and (c) learning minimum-time policy.

Position p Velocity v

Observation

Orientation 
R(q)

Body Rates 
⍵

Waypoint 
boundary 𝓦 

Farthest
CF point 𝛾

2 x 256 
ReLu Action

Collective
Thrust

Body Rates
Command
⍵x ⍵y ⍵z

Fig. 3: Illustration of the observation and action produced by

the neural network policy.

The action produced by the policy a(t) = [fT ,w] is the

collective thrust fT in body-z axis and the commanded body

rates w. This action modality has been identified in [37] as

the best performing for learning-based control policies. A low-

level controller then tracks the desired collective thrust and

body rates to produce the speed command for each rotor.

Figure 3 illustrates the observation and action spaces, as

well as the neural network architecture, which is a 2-layer

multilayer perception (MLP).

Path Progress Maximization and Obstacle Avoidance. The

objective of the studied problem is to minimize the time of

reaching the last waypoint, which however, represents a very

sparse signal that is difficult to optimize. This is why prior

works opted for a dense proxy reward using the projected

progress along the center line of a race track in car racing [22],

or progress along the straight line segments between gates [15]

for the task of drone racing. We further extend this progress-

based reward for the task of minimum-time planning in

cluttered environments by calculating the progress along the

topological guiding path.

Figure 4 illustrates how the progress is computed between

two consecutive states with positions p(t−1) and p(t). We as-

sume the guiding topological path between start waypoint and

end waypoint consists of a sequence of n points (g1, . . . , gn)
that form a sequence of line segments (l1, . . . , ln−1). To

calculate the progress at position p, we need to find the closest

point ψ(p) on the guiding path and its line segment index l(p)
as:

l(p),ψ(p) = argmin
l(p),ψ(p)

‖p−ψ(p)‖

s.t. ψ(p) = gl(p) + t(gl(p)+1 − gl(p)),

t =
(p− gl(p)) · (gl(p)+1 − gl(p))

∥

∥gl(p)+1 − gl(p)
∥

∥

2 ,

l(p) ∈ {1, . . . , n− 1} , t ∈ [0, 1].

(7)

𝜓(t-1)

𝜓(t)
𝛾(t)

𝛾(t-1)

p(t-1)

p(t)

g1g2

g3

g4

g5g6
𝓦

Fig. 4: Illustration of the collision-free topological guiding

path between waypoints. The nearest point on the guiding path

ψ from quadrotor position p is used to calculate progress

reward. The farthest collision-free point γ and waypoint

bounding box W are used as a part of observation.

The reached distance s(p) along the guiding path is then

calculated using (8) as the length of the topological path until

the closest point ψ(p). The progress reward rp(t) at time t is

then computed using equation (9) as a difference in reached

distance between the current and previous time step.

s(p) =

l(p)−1
∑

i=1

‖gi+1 − gi‖+
∥

∥ψ(p)− gl(p)
∥

∥ (8)

rp(t) = s(p(t))− s(p(t− 1)) (9)

The total reward r(t) at time t then equals

r(t) = kprp(t) + kss(p(t)) + kwprwp + rT − kω ‖ω‖ , (10)

where kp, kω , and kwp are hyperparameters that define the

contribution of each reward component. The reached distance

s(p(t)) with parameter ks is used as part of the reward mainly

to counteract the fact that the progress along the line segments

can have many singularities. Such singularities emerge due

to the sharp corners of the guiding path (see Fig. 4) and

minimum-distance projection, which can block learning a

policy that flies through all waypoints when negative progress

occurs in the singularities.

The total reward also values passing of a waypoint kwprwp
and discourage high body rates kω ‖ω‖. When a new waypoint

is passed within distance dw ≤ rtol a positive reward of

rwp = e−dwp/rtol is added to prioritize passing close to the

waypoint center and thus to increase robustness during real

flight with disturbances. The terminal reward rT = −10 is

only added when the quadrotor collides with an obstacle.



PENICKA et al.: LEARNING MINIMUM-TIME FLIGHT IN CLUTTERED ENVIRONMENTS 5

During the development of the method, we tested several

reward components and their ablation, rendering only the

presented variant able to learn policies for all tested scenarios.

Training Strategy. Naive optimization of the reward formu-

lation specified in (10) results in suboptimal performance due

to local minima and a higher probability of collisions in high-

speed flight. This is caused by the decoupled nature of the

topological path planning and the reinforcement learning of

minimum-time flight for the dynamic quadrotor model. Such

decoupling makes the learning of high-speed flight along the

topological paths a challenging problem.

We overcome this limitation by employing a curriculum

strategy, where the racing policy is trained in two stages. In the

first stage, a slow policy (see Fig. 2(b)) is trained to fly closely

along the guiding path while the minimal vmin and maximal

vmax speeds are limited through a scaled reward. This helps to

find a policy that flies through the waypoints without collision

as the guiding paths are known to be collision free and the

high velocities would decrease the relative size of narrow

passages. Specifically, in the initial slow flight training stage,

the parameters of progress reward kp and reached distance

reward ks are scaled down by a factor of s computed as:

s = svmax
svmin

sgd, (11)

svmax
=

{

10vmax−‖v‖ if ‖v‖ > vmax,

1 otherwise,
(12)

svmin
=

{

10‖v‖−vmin if ‖v‖ < vmin,

1 otherwise,
(13)

sgd =

{

e−‖p−ψ(p)‖+dmax if ‖p−ψ(p)‖ > dmax,

1 otherwise.
(14)

This adapted reward formulation forces the policy to find

only slow trajectories with speed vmin < ‖v‖ < vmax and

distance from the guiding paths ‖p−ψ(p)‖ < dmax, which

in turn helps finding a trajectory around an already known

collision-free guiding path.

The limited maximal speed in the slow flight training stage

is also used to calculate the initial value of the parameter

ks as ks = 2(vmax · dt)/
∑n−1
i=1 ‖gi+1 − gi‖, where dt is the

simulation time step. This limits the collected reward from

reached distance to be approximately the same as the progress

reward in the slow flight learning phase. While during the

later minimum-time learning phase, the progress reward is, in

comparison, significantly more prominent.

After the trained slow flight policy is able to navigate

through all waypoints, the speed limits and the constrained

distance to the guiding path are removed to enable training a

minimum-time policy as shown in Fig. 2(c).

Training Details. The policy is trained using Proximal Pol-

icy Optimization (PPO) [41], which has demonstrated good

performance in benchmarks for continuous control tasks. We

utilize 100 parallel agents to train the policy entirely in

simulation, which increases the speed of collecting data and di-

versifies the experienced states and observations among agents.

The simulation uses the dynamics 1-5 and forward integrates

them using a 4th order Runge-Kutta scheme. Additionally, the

linear drag coefficients (kvx, kvy, kvz) are randomized with

normal distributions N(0, kvx), N(0, kvy), N(0, kvz) for each

agent after restart, to make the policy robust against unknown

and possibly random aerodynamic effects.

Initialization of the agents is randomized among all spec-

ified waypoints and guiding paths to encourage diversity of

experienced states. Each agent keeps a vector of valid states,

i.e., states that are reached by running the policy from the start

position without collision. In the first learning stage, the valid

states are required to be within the speed limit vmin < ‖v‖ <
vmax and close to the guiding path ‖p−ψ(p)‖ < dmax.

The guiding paths are discretized into 1m parts based on the

distance along the path s(p), and each such part is mapped to

one valid state in the vector of agent’s valid states. These valid

states are then used to randomly initialize the state after an

agent collides with an obstacle or reaches the final waypoint.

All policies are trained using 12 threads on a laptop featur-

ing an Intel Xeon W-10885M CPU and a Quadro RTX 4000

Mobile GPU.

V. RESULTS

The proposed method has been evaluated concerning the

following performance criteria: (i) lap time performance of

the planned trajectory in a simple simulation scenario without

model mismatch, (ii) success rates of navigating the vehicle

through a cluttered environment using high-fidelity simulation,

and (iii) validation of the learned policy in the real world.

We identify a powerful race drone using real world flight

data. The physical properties of the quadrotor, along with

hyperparameters of the proposed and baseline methods, are

summarized in Table I. The hyperparameters of the reward

components were tuned such that the collected rewards from

the individual components follow a particular priority, i.e.

−rT ≫ kprp(t) ≈ kwprwp ≫ kss(p(t)) ≈ −kω ‖ω‖.

The evaluation of the method is done in four environments.

The Slalom environment is shown in Figure 2. The For-

est, Office, and Racing environments, including the Multi-

Waypoint (MW) Racing environment, are illustrated in Fig-

ure 5. The environments are represented as an Euclidean

Signed Distance Field [42] with precision of 0.05m. We

use Flightmare [43] for the simulation and the Stable Base-

lines [44] for policy training.

TABLE I: Parameters of the quadrotor and the algorithms.
Variable Value Variable Value

Q
u

ad
ro

to
r m [kg] 0.85 l [m] 0.15

fmin [N] 0 fmax [N] 7
diag(J) [gm2] [1, 1, 1.7] κ [-] 0.05
wmax [rad s−1] 15 cf 1.563× 10−6

kvx [Nsm−1] 0.26 kvy [Nsm−1] 0.28
kvz [Nsm−1] 0.42

[18] kT 105000 Npoly 10

[30] amax [ms−2] 31.4

R
L

kp[-] 5.0 kω[-] 0.01
kwp[-] 5.0 dt [s] 0.02

vmax [ms−1] 2 vmin [ms−1] 1
dmax [m] 0.3 dc [m] 0.15



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

(a) Forest (b) Office (c) Racing / Racing MW

Fig. 5: Example trajectories found by the proposed method in the selected environments used for evaluation.

A. Lap Time Performance of Planned Trajectories in Simple

Simulation

In the simple simulation, we analyze the quality, such as

duration, of the planned trajectories and compare it with

related baseline algorithms. The first baseline algorithm is the

polynomial method [18] that jointly minimizes snap and time

(using time penalty kT ) of a trajectory that is represented by

an Npoly-th order polynomial. The search-based method [30]

for quadrotor planning uses a discretized state of a point-mass

up to acceleration to plan minimum-time trajectories using

a graph-search algorithm. The search-based method uses an

acceleration limit of amax = 31.4 m s−2, which represents

the optimistic, yet infeasible, limit corresponding to achiev-

able acceleration along one axis in horizontal motion. The

optimization method presented in [4] plans truly time-optimal

trajectories between given waypoints, however, the original

variant had to be extended to allow planning in cluttered

environments. Lastly, the sampling-based method [19] uses

a hierarchical approach of increasing model complexity to

plan minimum-time trajectories for the full quadrotor model

in cluttered environments.

To allow for a fair comparison, the motor dynamics Ω̇
and the aerodynamic drag forces fd are not considered

in the simple simulation. This corresponds to the baseline

methods [4], [18], [19], [30], which all do not account for

both phenomena, except for [4] that can include a simple

linear drag model. The comparison of the planning methods

is presented in Table II. The trajectory duration is reported

as the best-found duration Tb. Additionally, we show the

average duration with standard deviation Ta from 30 different

runs for the methods that are randomized and have non-zero

deviation. We report the computation times for the baseline

methods. For the proposed method, we show the inference

time (including the time for preprocessing observations) of the

trained neural network during evaluation. For each scenario, a

different policy is learned with training time of approximately

45 minutes with a standard laptop.

Table II shows that the polynomial method has the highest

trajectory duration while being the fastest in computation.

In contrast, the search-based method generates substantially

faster trajectories; however, it requires longer computation

times. The search-based method is severely limited by the state

space discretization, which limits finding truly time-optimal

continuous-space trajectories. Furthermore, the method only

returns valid solutions in the 2D Forest and Office environ-

ments, while it failed to find valid solutions for the 3D Racing

environment and multi-waypoint scenarios. The optimization-

based method can find the time-optimal trajectories only for

the three simple Forest test cases. It fails in the other environ-

ments due to the introduced non-convex collision avoidance

constraints. The sampling-based method is capable of finding

high-quality solutions for all considered test cases; however,

the computational time is comparable to [4], [30].

Finally, our learning-based method can achieve on par,

mostly better, solutions compared to the conventional methods.

In test cases where the baselines slightly outperform our ap-

proach, the difference is within, or close to, the time precision

dt = 0.02 s of the RL policy. We observe that the performance

margin of our approach compared to the baselines increases

with increasing environment complexity.

In simplistic environments, our learning-based method has

lower performance than the best baseline. This is due to the

trade-off between flying safe and flying fast. As a result, our

approach opts for safer, however slower, actions in cases where

a time-optimal trajectory almost touches the obstacles. This

effect is difficult to be modeled when using the optimization-

based or the sampling-based method. The risk-awareness

property of our neural network policy plays an essential role

in achieving a high success rate in the presence of a model

mismatch.

In more complex Office and Racing environments, our

approach finds significantly faster trajectories than all base-

lines. This is because the sampling-based method uses a

hierarchical approach where a point-mass trajectory guides

the final trajectory for the quadrotor. It leads to rather bang-

bang body rate behavior, which is favorable for the simple

Forest scenarios. In contrast, for the Office scenarios, smooth

body rates produced by RL are favorable. Finally, the inference

time of the neural network policy is on average less than one

millisecond, which allows fast online adaptation.

B. Success Rate of Minimum-time Flight in High Fidelity

Simulation

To validate the success rate of navigating through given

waypoints in a cluttered environment, we utilize a high-fidelity

simulation which is based on Bade-Element-Momentum

(BEM) theory [45]. Compared to the simple simulation, the

BEM simulation can accurately model lift and drag produced

by each rotor from the current ego-motion of the platform

and the individual rotor speeds. Our proposed approach is

compared with trajectories planned using the sampling-based

method and tracked at 100Hz using Model Predictive Control

(MPC) [46] that outputs the same thrust and body rates

commands as the RL policy. The output of the MPC is then



PENICKA et al.: LEARNING MINIMUM-TIME FLIGHT IN CLUTTERED ENVIRONMENTS 7

TABLE II: Comparison of baseline algorithms and our learning-based method.

Environment
Test
case

Polynomial [18] Search-based [30] CPC [4] Sampling-based [19] RL (ours)

c. time[s] Ta[s] Tb[s] c. time[s] Tb[s] c. time[s] Tb[s] c. time[s] Ta[s] Tb[s] i. time[s] Tb[s]

Forest

0 0.41 4.67±0.63 3.86 17.52 1.60 70.23 0.95 14.92 1.10±0.13 0.96 0.00042 0.98
1 0.30 3.43±0.00 3.43 9.34 1.40 67.40 0.96 2.85 0.97±0.00 0.96 0.00042 1.00
2 0.30 3.74±0.93 3.22 3.12 1.40 65.49 0.95 8.03 0.98±0.01 0.96 0.00042 1.00
3 1.47 7.20±1.17 5.25 41.90 1.80 - - 135.83 1.50±0.17 1.30 0.00052 1.28

Office

0 1.36 8.64±1.03 7.34 28.35 2.60 - - 139.19 2.38±0.28 1.93 0.00040 1.62

1 0.65 7.50±0.44 6.49 100.16 2.20 - - 103.64 1.74±0.06 1.69 0.00043 1.64

2 0.89 9.01±0.77 6.38 47.08 2.20 - - 155.23 2.20±0.13 1.93 0.00045 1.56

3 0.47 5.26±0.35 5.14 48.02 2.00 - - 223.64 1.81±0.11 1.58 0.00040 1.40

Racing

0 1.98 6.56±0.66 5.79 - - - - 365.91 1.61±0.29 1.34 0.00039 1.20

1 2.06 6.21±0.88 5.13 - - - - 428.02 1.63±0.15 1.36 0.00042 1.20

2 1.87 6.26±0.42 4.94 - - - - 138.17 1.45±0.12 1.37 0.00039 1.38
3 1.91 5.27±0.69 4.73 - - - - 604.55 2.14±0.74 1.57 0.00039 1.34

Racing MW 0 8.12 27.54±0.62 26.98 - - - - 734.65 7.10±0.06 7.01 0.00037 6.92

TABLE III: Comparison of success rates of navigating through

waypoints while avoiding obstacles.

Env.
Test
case

SB [19] + MPC [4] RL (ours)

success[%] Ta[s] Tb[s] success[%] Ta[s] Tb[s]

Forest

0 25 1.22 1.13 100 1.23 1.21
1 0 - - 100 1.21 1.18

2 27 1.14 1.11 100 1.20 1.18
3 16 1.70 1.42 100 1.57 1.56

Office

0 41 2.38 2.12 100 1.91 1.89

1 28 1.86 1.78 100 1.84 1.82
2 56 2.29 1.97 100 1.74 1.72

3 70 2.16 1.70 100 1.99 1.96

Racing

0 57 1.61 1.46 100 1.41 1.39

1 51 1.64 1.45 100 1.47 1.44

2 76 1.72 1.51 100 1.51 1.49

3 54 1.80 1.62 100 1.46 1.43

Racing MW 0 25 7.22 7.17 100 7.22 7.18

tracked using the same low-level BetaFlight controller as used

for tracking the policy actions. The sampling-based method

is the only other method capable of computing collision-free

trajectories for all test cases. We use MPC for the trajectory

tracking, since it has been shown to successfully track truly

time-optimal trajectories [4]. The MPC has been tuned to

maximize position tracking performance to stick to the planned

trajectory collision-free positions and thus avoid obstacles. The

thrust limit of the considered platform is increased from the

fmax = 7N used for planning and learning the policies, to

fmax = 8.5N to have control margins for the MPC. Fur-

thermore, the BEM simulation uses, in contrast to the simple

simulation, both the motor dynamics and the aerodynamics.

Table III shows the comparison of the success rate, mea-

sured over 30 runs per test case. A successful run is defined

if the quadrotor passes all waypoints within given tolerance

rtol and avoids all obstacles. The obstacle tolerance dc is

decreased by the ESDF precision to remove the influence of

the discretized ESDF map representation. We also show the

average Ta and best Tb duration of all tested flights for both

methods.

Table III indicates that our learned policy can be trans-

ferred to a different simulator without fine-tuning. The policy

successfully navigates the quadrotor through all environments

without collisions while achieving faster flight trajectories.

By contrast, the sampling-based method combined with MPC

has significantly lower success rates. This is because the

MPC struggles to handle disturbances during high-speed flight.

When the platform is at its actuation limit, the slightest devia-

tion from the pre-planned trajectory results in a suboptimal

flight path, and eventually catastrophic crashes due to the

presence of obstacles.

C. Real-world Validation

We validate our policy in the real world, where the quadrotor

has to navigate through the Slalom environment. Figure 1

shows a successful deployment of the policy. The used

platform is based on the open-hardware and open-source

Agilicious quadrotor framework [46]. We use the BetaFlight

controller to track the commanded collective thrust and body

rates. We conducted our experiment in the world’s largest

indoor drone-testing arena (30 × 30 × 8 m3) equipped with

a motion capture system with 400Hz operation frequency.

The attached video shows the flight with thrust limits of

fmax = 4N and fmax = 7N where in the second case

the maximal velocity reached 42 kmh−1. Our policy achieved

a flight duration of 7.68 s in simulation, while the duration

of the real flight was 7.90 s, when using the thrust limit of

fmax = 7N.

VI. CONCLUSIONS

This paper introduced a novel method that combines deep

reinforcement learning and classical topological path plan-

ning to train robust neural network controllers for minimum-

time quadrotor flight in cluttered environments. We showed

that the proposed method outperforms existing state-of-the-art

approaches in the majority of the test cases, with improved

trajectory quality of up to 19%. More importantly, we showed

that the trained neural network controller can adapt online

to counteract disturbances and model mismatches, and thus

fly robustly. The presented method achieves 100% success

rate of flying minimum-time policies without collision, while

approaches relying on the traditional planning and control

pipeline achieve only 40%. Our findings suggest that model-

free deep RL is a promising method for addressing challenging

tasks in agile flight, such as dynamic obstacle avoidance or

vision-based minimum-time flight in cluttered environments.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

ACKNOWLEDGMENT

The authors would like to thank Leonard Bauersfeld for

helping with the multimedia material.

REFERENCES

[1] E. Ackermann, “Ai-powered drone learns extreme acrobatics,”
accessed 24.2.2022. [Online]. Available: https://spectrum.ieee.org/
ai-powered-drone-extreme-acrobatics

[2] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science

Robotics, vol. 6, no. 59, 2021.
[3] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and

control for quadrotors,” in IEEE ICRA, 2011, pp. 2520–2525.
[4] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for

quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, 2021.
[5] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-

aware trajectory replanning for quadrotor fast flight,” IEEE Transactions

on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.
[6] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and

D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE TRO, vol. 36, no. 1, pp. 1–14, 2020.

[7] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” in RSS, July 2020.

[8] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar,
“Fast, autonomous flight in gps-denied and cluttered environments,”
Journal of Field Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[9] G. Ryou, E. Tal, and S. Karaman, “Multi-fidelity black-box optimization
for time-optimal quadrotor maneuvers,” The International Journal of

Robotics Research, vol. 40, no. 12-14, pp. 1352–1369, 2021.
[10] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing: An

open-source strong baseline for SE(3) planning in autonomous drone
racing,” IEEE RA-L, vol. 6, no. 4, pp. 8631–8638, 2021.

[11] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,
A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter et al.,
“Challenges and implemented technologies used in autonomous drone
racing,” Intell. Service Robotics, vol. 12, no. 2, 2019.

[12] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “FlightGoggles:
Photorealistic sensor simulation for perception-driven robotics using
photogrammetry and virtual reality,” in IROS. IEEE, 2019.

[13] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor, “Airsim
drone racing lab,” PMLR post-proceedings of the NeurIPS 2019’s

Competition Track, 2020.
[14] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,

M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Robotics: Science and Systems, 2020.

[15] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in IROS, 2021, pp.
1205–1212.

[16] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se (3),” IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 2439–2446, 2018.
[17] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically

optimal motion planning for robots with linear dynamics,” in ICRA,
2013, pp. 5054–5061.

[18] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics

Research, 2016, pp. 649–666.
[19] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint

flight in cluttered environments,” IEEE RA-L, 2022.
[20] H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predictive

control for micro aerial vehicles: A survey,” in European Control

Conference (ECC), 2021, pp. 1556–1563.
[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[22] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr, “Super-
human performance in gran turismo sport using deep reinforcement
learning,” IEEE RA-L, vol. 6, no. 3, pp. 4257–4264, 2021.

[23] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, 2020.

[24] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[25] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” IJRR, vol. 31,
no. 5, pp. 664–674, 2012.

[26] M. Burri, H. Oleynikova, , M. W. Achtelik, and R. Siegwart, “Real-
time visual-inertial mapping, re-localization and planning onboard mavs
in unknown environments,” in IROS, Sept 2015.

[27] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally ef-
ficient motion primitive for quadrocopter trajectory generation,” IEEE

Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.
[28] B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time uav replanning

using guided gradient-based optimization and topological paths,” in
ICRA, 2020, pp. 1208–1214.

[29] B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions,” IEEE RA-L, vol. 3, no. 4, pp. 3725–3732, 2018.

[30] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in IROS, 2017, pp. 2872–2879.

[31] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se(3),” IEEE RA-L, vol. 3, no. 3, pp.
2439–2446, 2018.

[32] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model pre-
dictive contouring control for near-time-optimal quadrotor flight,”
arXiv:2108.13205, 2021.

[33] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,
“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” arXiv:2109.01365, 2021.

[34] B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Niko-
lakopoulos, “Nonlinear mpc for collision avoidance and control of uavs
with dynamic obstacles,” IEEE RA-L, vol. 5, no. 4, pp. 6001–6008, 2020.

[35] E. Small, P. Sopasakis, E. Fresk, P. Patrinos, and G. Nikolakopoulos,
“Aerial navigation in obstructed environments with embedded nonlinear
model predictive control,” in ECC, 2019, pp. 3556–3563.

[36] G. Garimella, M. Sheckells, and M. Kobilarov, “Robust obstacle avoid-
ance for aerial platforms using adaptive model predictive control,” in
IEEE ICRA, 2017, pp. 5876–5882.

[37] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark com-
parison of learned control policies for agile quadrotor flight,” in IEEE

ICRA, 2022.
[38] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of

quadrotor dynamics subject to rotor drag for accurate tracking of high-
speed trajectories,” IEEE RA-L, vol. 3, no. 2, pp. 620–626, 2017.

[39] S. M. LaValle, Planning algorithms. Cambridge univer. press, 2006.
[40] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, pp.
566–580, 1996.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[42] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in CVPR, 2019, pp. 165–174.

[43] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in CoRL, 2021, pp. 1147–
1157.

[44] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” JMLR, vol. 22, no. 268, pp. 1–8, 2021.

[45] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” in RSS, 2021.

[46] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza,
“Agilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” 2021, under review.


	Introduction
	Related Work
	Problem Statement
	Quadrotor Dynamics
	Minimum-time Planning Problem

	Methodology
	Topological Path Planning
	Reinforcement Learning for Minimum-time Flight

	Results
	Lap Time Performance of Planned Trajectories in Simple Simulation
	Success Rate of Minimum-time Flight in High Fidelity Simulation
	Real-world Validation

	Conclusions
	References

