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Abstract

The genetic background of inflammatory bowel disease, both Crohn’s disease and ulcerative colitis, has been known for 

more than 2 decades. In the last 20 years, genome-wide association studies have dramatically increased our knowledge on 

the genetics of inflammatory bowel disease with more than 200 risk genes having been identified. Paralleling this increas-

ing knowledge, the armamentarium of inflammatory bowel disease medications has been growing constantly. With more 

available therapeutic options, treatment decisions become more complex, with still many patients experiencing a debilitat-

ing disease course and a loss of response to treatment over time. With a better understanding of the disease, more effective 

personalized treatment strategies are looming on the horizon. Genotyping has long been considered a strategy for treatment 

decisions, such as the detection of thiopurine S-methyltransferase and nudix hydrolase 15 polymorphisms before the initia-

tion of azathioprine. However, although many risk genes have been identified in inflammatory bowel disease, a substantial 

impact of genetic risk assessment on therapeutic strategies and disease outcome is still missing. In this review, we discuss 

the genetic background of inflammatory bowel disease, with a particular focus on the latest advances in the field and their 

potential impact on management decisions.

Key Points 

Inflammatory bowel disease has a strong genetic back-

ground with more than 240 identified susceptibility loci.

Despite the identification of various risk genes, a sub-

stantial impact of genetic risk assessment on therapeutic 

strategies and disease outcome is still missing.

Precision medicine might become a guidance tool for 

inflammatory bowel disease drug dosing or drug sparing 

if patients with a low risk of relapse could be identified 

adequately.

1 Introduction

Inflammatory bowel disease (IBD) refers to a chronic 

inflammation of the gastrointestinal tract with its main 

representatives Crohn’s disease (CD) and ulcerative coli-

tis (UC). While UC is limited to the mucosal layer of the 

colon, CD is a transmural inflammation that may affect any 

part of the gastrointestinal tract between the mouth and anus 
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[1]. Both forms present with a chronic relapsing pattern of 

abdominal pain and diarrhea. Diagnosis is made based on 

clinical, endoscopic, histological, laboratory, and eventu-

ally radiologic findings [1]. Both sexes appear to be equally 

affected [2]. Inflammatory bowel disease can develop at any 

age with a clustering between the age of 15–30 years, and 

a second peak in the elderly population [2]. Historically, 

IBD was considered a disease of the industrialized West-

ern world, including North America, Europe, and Oceania 

[2]. However, while prevalence remains highest in Western 

civilizations with over 3 million people with a diagnosis of 

IBD in the USA and Europe, latest analyses show increas-

ing incidences in South America, Asia, and Africa [3, 4]. In 

the twenty-first century, IBD can therefore be considered a 

global epidemic. Contrasting a tremendous progress in the 

understanding of IBD, its exact pathogenesis remains at best 

partially explained. Inflammatory bowel disease with its sub-

types UC and CD is likely driven by a complex interaction 

of environmental factors with a dysregulation of the immune 

system in response to an altered intestinal flora in genetically 

predisposed individuals [5]. Since the first introduction of an 

anti-tumor necrosis factor (TNF) agent in 1998, the arma-

mentarium of IBD therapeutics has dramatically expanded 

in the last 20 years, with the recent approval of the first 

IBD-specific small molecules, the sphingosine-1-P modu-

lator ozanimod and the Janus kinase inhibitors tofacitinib, 

filgotinib, and upadacitinib [6–8].

With more available therapeutic options, treatment deci-

sions become more complex, with still many patients expe-

riencing debilitating disease course and a loss of response 

to treatment over time. With a better understanding of the 

disease, more effective personalized treatment strategies are 

looming on the horizon. Genotyping has long been consid-

ered a strategy for treatment decisions, such as the detection 

of thiopurine S-methyltransferase and nudix hydrolase 15 

polymorphisms before the initiation of azathioprine [9, 10]. 

However, although many risk genes have been identified in 

IBD, a substantial impact of a genetic risk assessment on 

therapeutic strategies and disease outcome is still missing 

[11]. In this review, we discuss the genetic background of 

IBD, with a particular focus on the latest advances in the 

field and their potential impact on management decisions.

2  Genetic Background of IBD

Analyzing the Swedish twin registry, Tysk and colleagues 

set a milestone with regard to the genetic basis of IBD [12]. 

This landmark study was followed by various twin and fam-

ily studies further supporting the genetic background of both 

UC and CD. However, despite numerous studies performed, 

an accurate genetic risk assessment is still difficult as rates 

vary widely in the literature with a positive family history 

being reported between 1.5 and 28% in CD and between 1.5 

and 24% in UC [12–14]. Simplified, first-degree relatives of 

patients with CD have an eight-fold higher risk of develop-

ing IBD, while first-degree relatives of patients with UC 

have an approximately four-fold higher risk, making a posi-

tive family history of IBD the strongest risk factor for IBD 

[15]. Concordance rates in monozygotic and dizygotic twins 

reach up to 50% and 10% in CD compared with up to 15% 

and 4% in UC, suggesting a lower heritability in UC than CD 

[16, 17]. Interestingly, a nationwide and population-based 

study from Denmark demonstrated a relevant impact of non-

genetic exposures, such as exposure to antibiotics and prior 

ankylosing spondylitis, on the development of new-onset 

IBD in families with pre-existing IBD [18]. Wide variations 

between genetic studies might be explained by their hetero-

geneity with regard to study design and population selection. 

Of note, results from twin studies contrast the much lower 

heritability estimated from genome-wide association studies 

(GWAS, see below). This might be partly explained by the 

shortcomings of heritability estimation, where genetic and 

environmental variance are considered as separate unities 

and epigenetics are neglected. Nevertheless, early family and 

twin studies were able to unravel the relative contribution of 

genetic and environmental influences in the etiology of IBD, 

with none of the genetic background explaining more than 

50% of disease prevalence [16, 17, 19, 20]. Data from the 

UK Biobank even show that in patients with a high genetic 

risk of adult-onset IBD, the risk may be reduced by half in 

patients with adherence to a favorable lifestyle [21].

2.1  GWAS

Whole genome linkage analyses highlight co-segregation of 

certain genetic loci for common complex diseases, thereby 

uncovering Mendelian traits within families or ethnicities 

[22]. In IBD, application of whole genome linkage enabled 

the detection of nucleotide-binding oligomerization domain-

containing protein 2 (NOD2) as a highly susceptible gene 

for CD [22]. In 2005, GWAS emerged representing a very 

efficient method to identify alleles with weak and inconsist-

ent replication that are commonly seen in complex diseases 

such as IBD [22, 23]. Genome-wide association studies 

explore the genome focusing on single-nucleotide polymor-

phisms (SNPs) that are defined genome variations in DNA 

sequences. Several millions of SNPs are genotyped on plat-

forms to uncover specific SNP variants that more often occur 

in a person with a trait than in one without [24]. As men-

tioned above, both GWAS and twin studies have been used 

to calculate heritability showing remarkably different results 

[25]. This gap, also known as missing or hidden heritability 

and not only seen in IBD, might have multiple explanations, 

such as the over-simplification of genetic identity, environ-

mental assumptions, and not considering epigenetics [23].
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Since its first implementation, numerous different study 

populations varying in ethnicity and geographic location 

have been investigated using GWAS, resulting in the detec-

tion of roughly 240 susceptibility loci in IBD. Of these 

SNPs, the majority were associated with both UC and CD, 

assuming similar disease liability and common signaling 

pathways. Identification of mechanistic pathways was suc-

ceeded by expansion of disease knowledge of intestinal 

homeostasis, most importantly, regulations in epithelial and 

barrier function, adaptive immunity, a host-pathogen inter-

action such as an immunity response, as well as autophagy 

[23, 26, 27]. Furthermore, over 60% of the susceptibility loci 

are associated with other immune-mediated diseases such as 

psoriasis, celiac disease, and ankylosing spondylitis [1, 28]. 

The strongest genetic effects have been seen for interleu-

kin-23 receptor (IL-23R) in IBD, NOD2 in CD, and human 

leukocyte antigen (HLA) complex in UC [29].

Genome-wide association studies have several limita-

tions. One limiting factor is linkage disequilibrium of the 

human genome [19]. Linkage disequilibrium refers to alleles 

(two or more) of SNPs that are non-randomly associated 

with each other and therefore tend to be passed on together 

[30]. Genome-wide association studies are thought to iden-

tify SNPs through linkage disequilibrium in the case where 

a significant gene does not lie within the examined region of 

the genome. If linkage disequilibrium is insufficient, SNPs 

may not be inherited with the coded gene and therefore 

key genes might not be captured. Indeed, not every poly-

morphism can be covered by GWAS. Roughly 30% of the 

genes are not detected; in particular, rare SNPs with high 

penetrance or common SNPs with low penetrance might be 

missed [19, 30]. In addition, it is known that the contribu-

tion of common variations to disease liability is small, with 

odds ratios mostly between 1.05 and 1.5 [22]. Furthermore, 

even highly associated GWAS SNPs might not be causative. 

As a consequence, the question of functionality and causal-

ity remains unresolved. Nevertheless, GWAS expanded our 

knowledge far beyond a basic genetic influence on human 

diseases and their potential has probably not been fully 

unlocked yet.

2.1.1  NOD2

NOD2 is located on chromosome 16p21 [31]. NOD2 wild 

type acts as an intracellular bacterial sensor regulating 

immune response such as defense or tolerance against/to 

pathogens. It is expressed in different cell types such as epi-

thelial cells, endothelial cells, macrophages, T cells, and in 

particular, ileal Paneth cells, thereby approaching immune 

response in various ways. NOD2 mutations were the first 

to be described as associated with CD. Until now, NOD2 

confers the greatest risk in the development of CD, out of all 

genetic variations known so far [31–33]. Moreover, studies 

suggest that disease characteristics, particularly earlier 

onset of CD and an increased severity of disease course, 

are influenced by NOD2 polymorphisms [34, 35]. Disease-

related NOD2 is remarkably less active and can even result 

in complete unresponsiveness to bacterial pathogens [33]. 

The most frequent variants in NOD2 are R702W, G908R, 

and 1007fs. All of these variants appear to influence pro-

tein function and signaling inflammatory pathways through 

impaired activation of the NF-kB pathway or reduced/absent 

cytokine production in response to pathogens [36]. Carri-

ers of one of these disease-related NOD2 alleles have an 

approximate two- to four-fold increased risk of developing 

CD, while individuals with homozygous or compound het-

erozygous mutations have a 15- to 40-fold increase in CD 

risk. However, mutated NOD2 alleles occur in 0.5–2% of 

healthy individuals and about 60% of patients with CD carry 

no NOD2 mutation, suggesting synergistic effects of more 

than one factor in the development of CD [37–39]. Moreo-

ver, the common genetic variants in NOD2 confer a disease 

risk specific to European and African-American populations, 

but not the Asian population, as it could not be reproduced 

in studies with Japanese and Chinese individuals [40–42].

2.1.2  IL23R

IL23R is located on chromosome 1p31 encoding a subunit 

of the proinflammatory cytokine IL-23R [43]. Variants in 

IL23R have been associated with a protection against IBD, 

presumably with a loss of function of the receptor itself or 

at least through mediated cell function impairment [44]. In 

addition, IL-23 as the ligand of IL23R plays a key role in 

the pathogenesis of intestinal inflammation: IL-23 and its 

closely related cytokine IL-12 with their common subunit 

p40 have become an attractive target of neutralizing antibod-

ies in the treatment of IBD [45]. However, the main anti-

inflammatory effect is achieved by blocking IL-23 or more 

specifically its p19 subunit (instead of p40), which has led 

to development of more selective IL-23 antibodies such as 

guselkumab, risankizumab, mirikizumab, and brazikumab, 

which are currently being evaluated in phase II or phase 

III trials [46, 47]. Their efficacy can be explained by the 

disruption of a wide variety of signaling pathways includ-

ing JAK-STAT, NF-κB, interleukin-17, as well as a loss of 

cell function in T helper-17, CD4+, and CD8+ T cells [48].

2.1.3  HLA Complex

The HLA complex, also known as the major histocompatibil-

ity complex, is located on chromosome 6p21.3. HLA genes 

encode specific cell surface proteins of antigen-representing 

cells to initiate a T-cell-mediated immune response [49]. The 

HLA region plays a key role in most chronic inflammatory 

diseases. The exact pathophysiological mechanisms of HLA 



30 J. El Hadad et al.

involvement in IBD remain elusive [50]. It is hypothesized 

that molecular mimicry is one of the main mechanisms by 

which a foreign antigen causes autoimmunity. Cross-reactive 

epitopes present through the major histocompatibility com-

plex and trigger an immune response by T-cell activation 

[51]. This proinflammatory response, which is essential to 

clear pathogens, may persist if there is sequential or struc-

tural homology between foreign and self-antigens [52]. Not 

surprisingly, HLA is the genetic region where the most sig-

nificant risk variants with the largest effect sizes are located, 

for the development of IBD and other immune-mediated dis-

eases such as psoriasis, rheumatoid arthritis, or spondyloar-

thropathies [53]. In the case of IBD, classical HLA genes are 

most strongly associated with disease development. Those 

can be divided into two groups: (I) class I gene region with 

its HLA traits A, B, and C and (II) class II genes with the 

HLA traits DR, DQ, and DP [54]. The most consistent asso-

ciation of HLA class II alleles in IBD are seen with HLA-

DRB1 and HLA-DQB1. DRB1 has been the most extensively 

studied gene and confers the greatest risk out of all HLA 

genes in IBD. HLA-DRB1*0103 is strongly associated with 

both entities, UC and CD. Nevertheless, it is considered 

a rare allele with a less than 2% frequency in European, 

White North American, and Jewish populations. The vari-

ant shows a particularly strong association in patients with 

severe extensive UC and those with colonic CD [49]. Further 

associations have been seen with HLA-DRB1*1502 in UC, 

especially affecting the Japanese population, with a high 

prevalence of about 20% [49]. In CD, most reproducible 

associations have been found with HLA-DRB1*07, particu-

larly with ileal disease, and HLA-DRB1*04, predominantly 

in the Japanese population [49]. Overall, the influence of 

HLA has been found to be greater in UC than CD [29, 55]. A 

genome-wide association study showed that the carriage of 

the HLA-DQA1*05 allele (approximately 40% of European 

individuals) doubled the risk of immunogenicity to anti-TNF 

therapy [56]. Taken together, the association of HLA alleles 

and IBD remains complex and difficult to resolve, particu-

larly because of the high density of genetic variants/candi-

date genes and a strong linkage disequilibrium.

3  Genetics in EIM and Perianal Disease

It is well known that IBD is a systemic disease with many 

patients presenting with extraintestinal manifestations (EIM) 

[57]. Prevalence of these EIM ranges from 6 to 47% [58–65]. 

The classic EIM involve the following four organ system: 

(1) joints; (2) skin; (3) eyes; and (4) hepatobiliary system 

[57, 65]. The pathogenesis of EIM in the context of IBD 

is only partially understood, but several mechanisms have 

been proposed, among which are aberrant lymphocyte hom-

ing, cross-reactivity (also called molecular mimicry), or a 

simple proinflammatory state with upregulation of specific 

cytokines and chemokines resulting in a disbalance of com-

ponents of the immune system [66]. The overlapping genetic 

background between EIM and IBD further supports a com-

mon pathophysiology.

Association studies show concordance rates of 70–80% 

in parent-child pairs or sibling pairs with EIM [67], while a 

positive family history has been known as an independent 

predictor for the presence of EIM, at least in patients with 

CD [65]. Differences in EIM prevalence among different 

ethnicities further support the concept of a genetic back-

ground of EIM: (1) EIM appears more frequently in Western 

countries compared with Eastern countries [68, 69], which is 

particularly true for primary sclerosing cholangitis; (2) joint 

manifestations are more frequent in African-American indi-

viduals and Asian individuals; and (3) EIM are more often 

diagnosed in Indian individuals compared with Malay or 

Chinese subjects [70, 71]. Several genes have been identified 

in the pathogenesis of EIM. The following HLA genotypes 

have been implicated as genetic risk factors: HLA-B27 in 

joint, skin, and ophthalmologic manifestations, particularly 

axial spondyloarthropathy; HLA-B8/DR3 in primary scleros-

ing cholangitis; HLA-B35 in type 1 arthritis; HLA-B44 in 

type 2 arthritis; HLA-B58 in joint, skin, and ophthalmologic 

manifestations; HLA-DRB1*0103 in joint, skin, and oph-

thalmologic manifestations. HLA-A2, HLA-DR1 and HLA-

DQw5 are risk factors for EIM in general [66]. Genome-

wide association studies for axial spondyloarthropathy 

and IBD revealed the following risk genes: IL23R, IL12B, 

STAT3, PTERG4, CARD9, IL1R2, and ORMDL3. Genome-

wide association studies for psoriasis and IBD showed the 

involvement of IL12B, IL23R, JAK2, and STAT3, while 

GWAS for erythema nodosum and IBD revealed CLCA2, 

LY75, and 2q24.1 as risk loci. Furthermore, NOD2 has 

been shown to be a risk factor for ileal CD, sacroiliitis, and 

uveitis [72] However, the role of NOD2 in perianal disease 

remains unclear. Newer data point to an important role of a 

SNP in Complement Factor B. The non-synonymous vari-

ant rs4151651 in Complement Factor B has been associated 

with perianal CD in three independent cohorts [73]. Presum-

ably, the genetic contribution to the pathogenesis of EIM and 

IBD is a combination of overlapping and independent gene 

loci, reflecting the occurrence of EIM that parallel and do 

not parallel intestinal inflammation [74].

4  Pharmacogenomics

The field of pharmacogenomics studies how genetics influ-

ence an individual’s response to drug therapy potentially 

opening the door to individualized precision medicine. Its 

value in clinical practice has not yet been exhausted and may 

grow as knowledge increases [75]. While the identification 
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of patients who will or will not respond to a specific treat-

ment, based on genetic testing, is still an unmet need, only 

a few pre-therapeutic genetic tests have made it into clini-

cal practice, largely those that identify patients at risk for 

drug toxicity. Such drug toxicity affected by genotypes has 

been most extensively studied in the context of thiopurine 

treatment. Genotypes of the two enzymes thiopurine meth-

yltransferase and nudix hydrolase 15 slow down thiopurine 

metabolism leading to elevated drug concentrations and 

therefore increased toxicity (e.g., severe myelosuppres-

sion) [9, 10]. Pre-treatment genotyping is endorsed by the 

European Crohn’s and Colitis Organisation guidelines [76], 

but does not substitute monitoring of drug toxicity under 

treatment.

Apart from pre-treatment assessment of thiopurine toxic-

ity, no genetic test has made it into clinical practice. Nev-

ertheless, several genetic polymorphisms have been linked 

with response to treatment with anti-TNF, particularly those 

within the TNF and TNFR genes (rs1800629, rs1799724, 

rs767455, rs1061624, and rs976881 showing an inferior 

outcome, and rs4149570, rs361525, and rs3397 showing a 

superior outcome) [77], but also in innate immunity genes 

(TLR4, IL6, IL1, IL17, TLR2, TLR9) [77, 78], and genes 

involved in autophagy and apoptosis (Fas-L, CASP9, and 

ATG16L1) [77]. Further data are evolving with regard to 

responses to other treatments such as anti-IL-12/23 usteki-

numab (e.g., rs7234029) [79].

5  Epigenetic Mechanisms

As previously mentioned, only a part of the IBD risk can be 

explained by genetic factors. Additional epigenetic mecha-

nisms have long been proposed and considered among path-

ogenic factors contributing to IBD, potentially accounting 

for the “hidden heritability”. Epigenetics is considered the 

link between environmental factors and the genetic back-

ground. Epigenetic studies analyze the heritable changes in 

gene function that cannot be explained by changes in DNA 

(e.g., through mutation, recombination, or translocation) 

[80]. The three major epigenetic modifications are: (1) DNA 

methylation, which is the most studied; (2) post-translational 

modifications of histones, such as acetylation of H3K27; and 

(3) the expression of non-coding RNAs.

DNA methylation has been shown to play a key role in 

cell processes such as cell differentiation or gene expression, 

eventually defining cell phenotypes. Of note, DNA methyla-

tion is dependent on several cofactors, one of them being 

nutrition [24, 81, 82], thereby linking genetic with envi-

ronmental factors. In mouse models, a low-methyl diet has 

been shown to be associated with increased rates of obesity 

and diabetes [83–85]. In IBD, DNA global hypomethylation 

was found in the rectal mucosa from patients with UC, but 

not healthy controls [86]. In addition, there is evidence that 

local inflammation (such as seen in uncontrolled IBD) can 

accelerate DNA methylation changes, thereby resulting in 

cancer development [87].

Post-translational modification refers to a process that 

stimulates alteration in nucleosome composition [88]. 

Nucleosomes consist of DNA segments and the histones 

they wrap around. They form the smallest packaging unit of 

chromatin. Molecular differences between different nucle-

osomes result from numerous chemical modifications of 

the histone proteins [80]. As an example, G9a is a lysine 

methyltransferase and catalyzes demethylation of histone 

H3 lysine 9 (H3K9me2). Lysine methylation alters tran-

scriptional activity without affecting the DNA sequence 

itself and thereby regulates gene expression in response to 

environmental stimuli [89]. T-cell-intrinsic G9a has recently 

been associated with altered T-cell differentiation inducing 

colitis [90].

Non-coding RNA refers to RNA that is not translated 

into proteins [91]. It regulates gene expression at transcrip-

tional and post-transcriptional levels. Non-coding RNA can 

be divided into two classes by the number of nucleotides, 

short with < 200 nucleotides or long with >200 nucleotides. 

Both classes have received increasing attention as most of 

the IBD-associated SNPs are linked to non-coding genetic 

sequences [92]. They account for several changes in the 

adaptive immune system (e.g., T-cell and T-helper regula-

tion, T-helper differentiation) as well as the innate immune 

system (e.g., NOD2- and Toll-like receptors), potentially 

influencing disease activity and disease course [93, 94].

6  Clinical Implications: The Road 
to Precision Medicine

A wide armamentarium for the treatment of IBD is avail-

able that ranges from topical formulations, systemic ster-

oids, and immunomodulators to more specific therapeutics 

such as anti-TNF, anti-integrins, anti-IL-12/23, anti-IL-

23p19, and more recently, small molecules. Currently, 

clinicians, together with the patients, face the difficult 

challenge of where to position all the available options in 

the treatment algorithm. While many drugs appear to be 

equally effective, loss of response in the long term is a uni-

versal problem. The question remains as to which patient 

might respond best to the chosen treatment and which 

patient does not lose this response over time. A genetic 

risk assessment appears to be an appealing strategy. In 

fact, polygenic risk scores have been used not only to pre-

dict IBD in the general population, but also to stratify 

patients, performing better in CD than UC [95–98]. How-

ever, the universal use of genotyping has never (or not yet) 

made it into clinical practice given the high costs, but low 
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benefits [99]. Among potential implications are: assess-

ment of disease risk in relatives (diagnostic biomarker), 

prediction of disease complications/progression (predic-

tive biomarker), or prediction of therapeutic response or 

side effects to biological treatment regimens (response 

biomarker, safety biomarker) [100, 101]. Precision med-

icine might become a guidance tool for drug dosing or 

drug sparing if patients with a low risk of relapse could be 

identified adequately. Unnecessary immunosuppression, 

at least for a certain time period, could be avoided in such 

patients (Fig. 1).

7  Conclusions

The progress made in the genetics of IBD over the last 20 

years is impressive with over 200 different gene loci iden-

tified. However, the contribution of a single polymorphism 

to the development of IBD or its disease course is small, 

and most risk alleles are rare. The pathophysiology of IBD 

appears to be too complex in order to be explained by a 

few genes or pathways. The most appealing advantage of 

a genetic risk assessment will lay in the field of precision 

medicine where the presence or absence of one or several 

risk genes might help in the therapeutic decision-making 

process. However, many more studies are needed to fill 

this important gap.
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