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Theories help organize concepts and define constructs 
and are particularly valuable because they represent sys-
tems or phenomena of interest (Swoyer, 1991). This rep-
resentation allows us to reason using the theory to make 
predictions about the phenomena, and if the theory ade-
quately represents the phenomena (and our reasoning is 
sound), our predictions will be accurate. Theories do not 
need to be highly complex and detailed to be useful— 
much usefulness is because theories are simpler to 
work with than the phenomena themselves. Robinaugh 
et al. (2021) describe learning to navigate Paris by map, 
which contains enough detail to locate oneself, but not 
so much that it is difficult to find points of interest. 
Rather than such maps, many theories in developmental 
science are more like faded signposts and approximate 
directions— clearly relevant and provide some guidance, 
but lacking the detail to make clear predictions. The 
imprecision of natural language is posed as one cause 
of this vagueness, as many theories are expressed only 
in words (Robinaugh et al.,  2021; Smaldino,  2017). In 
contrast, through their use of a more precise language, 
formal mathematical theories facilitate more precise 
predictions. Moreover, formal theories help organize 
and integrate empirical observations made in different 
contexts and help generate novel predictions of unob-
served phenomena.

However, on their own, formal theories are not nec-
essarily easy to work with, and theoretical claims are 

usually not falsifiable at the broader framework or the-
ory levels. For practical purposes, theories need to be 
expanded with auxiliary assumptions and instantiated 
in software. Computational modeling, wherein vague, 
verbal, descriptions of ideas are developed into formal 
mathematics and software (Guest & Martin, 2021), offers 
a clear and powerful approach to linking theory, data, 
and inferences. Being forced to explicitly state how data 
arise from a phenomenon of interest can help scientists 
understand the repercussions of their ideas.

Borsboom et al.  (2021) outline a process of theory 
construction centered around modeling: (1) phenomena 
of interest are identified, (2) a “prototheory” is devel-
oped using broad theoretical principles that explain the 
phenomena, (3) the prototheory is used to construct a 
mathematical model encoding these principles, (4) the 
adequacy of the model is assessed by checking whether 
it reproduces the phenomena of interest, and (5) the ad-
equacy of the theory is assessed by evaluating whether 
the phenomena are reproduced faithfully, and whether 
the explanatory principles are sufficiently parsimonious 
and plausible.

In terms of exactly how formal theories may look 
and how they can be instantiated, Vallacher and 
Nowak (1997) and van Geert (1994) offer extended dis-
cussions on the value of nonlinear dynamic systems 
and links to theorizing in psychology. Such approaches 
offer the f lexibility needed to instantiate theories of 
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Abstract

We demonstrate how developmental theories may be instantiated as statistical 
models, using hierarchical continuous- time dynamic systems. This approach 
offers a flexible specification and an often more direct link between theory and 
model parameters than common modeling frameworks. We address developmental 
theories of the relation between the academic competencies of mathematics and 
language, using data from the online learning system Mindsteps. We use ability 
estimates from 160,164 observation occasions, across N = 4623 3rd to 9th grade 
students and five ability domains. Model development is step- by- step from simple 
to complex, with ramifications for theory and modeling discussed at each step.
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complex processes and interactions developing over 
time. Many works address the topic (e.g., Boker, 2012; 
Haslbeck et al., 2022), yet the actual process of instan-
tiating theory in dynamic system equations, and using 
the equations as a vehicle to assess and improve the-
ory, remains challenging. This work aims to familiar-
ize researchers with the hierarchical continuous- time 
dynamic systems approach, which sometimes offers 
a closer link between theories and model parame-
ters than the standards of mixed- effects regression or 
structural equation modeling. This work is primarily 
intended as a tutorial on instantiating verbal theories 
of development as continuous- time dynamic systems 
models of varying complexity. Considering the theory 
development stages posed by Borsboom et al.  (2021), 
this work focuses on the third stage, in that we describe 
how multiple prototheories may be turned into a statis-
tical model. However, we also anticipate somewhat the 
fourth and fifth stages of model and theory checking, 
by including a range of known and expected phenom-
ena in the model that were not explicitly described by 
the theories and also by building and fitting the model 
step- by- step and considering relations to theory at each 
point. By taking seriously sources of confusion when 
interpreting parameters and inherent limitations in 
the formalization and data, we hope such an approach 
to “initial formalization” can be fruitfully employed 
in theory development procedures such as posed by 
Borsboom et al.  (2021) and Haslbeck et al.  (2022). At 
the same time, we leverage a novel data source and 
approach for considering competence development in 
mathematics and language, providing a basis for more 
developed empirical works.

DEVELOPM ENTA L RELATIONS 
BETW EEN M ATH EM ATICS 
A N D LA NGUAGE

Two hypotheses, that of the “medium function” and 
that of the “thinking function,” are currently consid-
ered to explain the consistent finding of positive corre-
lation between mathematics and language development 
(Bailey et al.,  2020). The medium function hypothesis 
(Bruner, 1966; Cohen & Dahaene, 1995; Fetzer & Tiede-
mann, 2018) posits language as a tool for communicat-
ing mathematical concepts and building and retrieving 
mathematical knowledge from long- term memory. Ac-
cordingly, students with good language skills will not 
only profit more from instruction and hence grasp 
mathematical concepts more easily but also retrieve 
mathematical knowledge more easily from memory, and 
communicate this more competently.

In contrast, the thinking function hypothesis 
(Daneman & Merikle,  1996; Lombrozo,  2006; Peng 
et al., 2018) posits higher- level cognitive functions un-
derlying both language and mathematics performance, 

similar to g- factor in research on intelligence. Indeed, 
research shows a strong overlap between cognitive pro-
cesses underlying both (Cirino et al.,  2018; Korpipää 
et al., 2017).

Drawing from the broader developmental literature, 
the idea that competence development in language and 
mathematics could show a competing relation arises 
from general theories of development such as selection, 
optimization, and compensation (Baltes,  1987; Fre-
und,  2008). The selection of developmental pathways, 
contexts, and goals aims to effectively invest resources 
in the most viable directions, driving age- related in-
crease in specialization of competencies and interests 
(Hofer, 2010; Köller et al., 2001). We include this notion 
as a third theory, which we will refer to as the specializa-

tion hypothesis. Specialization may explain some changes 
in the relation between competencies with age, given 
higher demands on students as they progress through 
schooling and the necessity of focusing on specific areas 
(van Geert, 1991).

Four recent reviews or meta- analyses investigated 
competence development in language and mathemat-
ics. Chow and Jacobs (2016) consider four works on the 
influence of language on fraction outcomes in school- 
age children, all suggest that language contributes to 
fraction performance. de Araujo et al. (2018) synthesize 
75 qualitative studies focusing on multilinguistic edu-
cational contexts and foreign language students. Here 
language is assumed as a prerequisite for mathemati-
cal competence development, and the authors conclude 
that it may be easier for foreign language students to 
learn mathematics in their native language. Koponen 
et al.  (2017) investigated the association between rapid 
automatized naming (a component of phonological pro-
cessing) and mathematics performance, finding a signif-
icant correlation (r = .37). Almost half of the 33 studies 
reviewed were longitudinal, but the authors did not in-
vestigate the direction of effects. Finally, a meta- analysis 
by Peng et al.  (2020) of 344 studies examined whether 
cognitive function could explain relations between lan-
guage and mathematics. They found an overall relation 
between language and mathematics of r = .42, compa-
rable in magnitude with the meta- analysis by Koponen 
et al.  (2017). Working memory alone accounted for  
8%– 16%, and general intelligence alone accounted for 
21%– 23% of variance in the relation between language 
and mathematics, providing some evidence for the 
thinking function hypothesis. The longitudinal studies 
included were used to address the direction of effects 
between language and mathematics performance. There 
was an average path from language to mathematics of 
r = .20, whereas the reversed path from mathematics to 
language was r = .22— quite comparable in magnitude. 
Age was also investigated (among other variables) as 
a moderator of this relationship, but generally did not 
moderate between- construct relations. We have dis-
cussed three theories describing how mathematics and 
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language performance may relate developmentally. The 
thinking- function hypothesis poses a common cause 
behind the two, the medium- function hypothesis poses 
supportive relations from language to mathematics, 
and specialization would suggest that learning in either 
domain may detract from the other, and that this may 
increase with age. Meta- analytic results appear mixed 
and inconclusive with respect to distinguishing between 
the theories, and indeed, given their vague specification, 
they may all be plausible to some degree.

EM PIRICA L RESEARCH AGEN DA

Because of their vague specification and inconclusive 
empirical results, we do not propose any strong test of 
the three theories. For similar reasons, we will not and 
cannot build models based purely on the theories in ques-
tion. Instead, we will build and fit models of competence 
development using a general approach that can encapsu-
late both the theoretical aspects under consideration and 
the necessary auxiliary model elements (e.g., age trends, 
individual differences) and can be easily expanded or ad-
justed as needed. Our aim is to provide indications of 
theoretical support or debunking, the potential to inte-
grate the theories in a formal model, a basis from which 
additional models and/or data may be included, and an 
example of specifying and interpreting broad theories in 
a continuous- time dynamic systems framework.

The data come from the Mindsteps online learning 
platform (see https://www.minds teps.ch/). Mindsteps of-
fers practice and tests with questions drawn from a bank 
of many thousands across a range of subjects and is used 
by teachers and students in a variety of Swiss regions. 
The system covers topics from the third grade in elemen-
tary school until the third grade in secondary school, 
spanning 7 years of compulsory schooling. Currently, 
the item bank comprises up to 15,000 items per school 
subject.

In Mindsteps, there are two types of item banks. A 
practice item bank is available to all students and teach-
ers for training and teaching. Students can use this item 
bank to create and answer an item set from a topic do-
main on which to practice. A testing item bank is used 
to evaluate students' abilities. Teachers can select items 
according to desired competency domains or topics of 
the curriculum, and create assessments for students.

For our analyses, we use data from both item banks. 
Each assessment consisted of at least 10 items. In an 
initial modeling step, data from the years 2018 to 2022 
was fit to multiple large unidimensional item response 
theory- based models, and individual ability scores for 
each assessment session were extracted. More details 
on the Mindsteps software, as well as a discussion of 
an earlier iteration of the modeling approach, are pro-
vided by Tomasik et al.  (2018) and Berger et al.  (2019). 
For pragmatic (i.e., computational) reasons, we subset 

available data to students with at least 10 assessments 
(in any of five domains), who have used the system for 
at least 1 year, and for whom at least four out of five do-
mains have been assessed at least once. This left us with 
N = 4623 students and 160,164 observation occasions in 
total. We use variables from the two German language 
domains, reading and grammar, and three mathemat-
ics domains, “forms and space” (MATHS1), “measures, 
functions, and probability” (MATHS2), and “numbers 
and variables” (MATHS3).

CH A LLENGES IN 
BRIDGING TH EORY A N D 
EM PIRICA L RESEARCH

Many of the studies that have investigated the topic 
cannot clearly distinguish between different theories of 
competence development in language and mathematics, 
partly due to limitations in the models employed. Such 
a disconnect between theory and formal mathemati-
cal specification is not uncommon and does serve some 
function— uncritical eagerness to specify complex mod-
els can lead to an unwitting dependency on auxiliary as-
sumptions of the models, generating overconfidence in 
either uncertain or wholly wrong inferences. In contrast, 
without explicit formal specification, language can be 
vague and interpreted in many ways. This means that 
certain theories may sound perfectly sensible and garner 
apparent support from a range of studies, yet offer little 
to no predictive value for new circumstances.

However, even with a formal mathematical specifi-
cation of theory, there is yet another gap to be bridged. 
As Fried (2020) points out, common statistical modeling 
approaches often do not allow for a direct connection 
to theories. This latter gap often receives even less con-
sideration than the former, and modeling approaches 
sometimes appear to guide and limit the variety of for-
mal theories considered. A related but distinct issue 
concerning longitudinal modeling is that statistical 
models of change are usually not formulated in terms 
of direct effects, but in terms of expected change over 
some length of time— making it difficult to link model 
parameters to theoretical concerns. The difficulties of 
theoretical vagueness, model inflexibility, and linking 
model parameters to theory, can all be seen in the theo-
ries of mathematics and language skill development we 
are considering.

Regarding theoretical vagueness: If there is some 
truth to the medium function, then improvements in 
language will result in improvements in mathematics— 
but when? How long should it take for gains in language 
to result in gains in maths? Considering the proposed 
mechanism of action behind the theory we can develop 
some expectations; for example, if it is really the case that 
language facilitates retrieval of mathematical knowl-
edge, this suggests to us that resulting gains should be 
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near instantaneous. On the other hand, to the extent that 
language facilitates learning mathematics, there needs to 
be time for improved learning to take place, before any 
gains in mathematics performance are realized— though 
how long this should take is not clear.

Considering the lack of model flexibility critique 
while staying with the medium function hypothesis: it 
is not explicitly stated whether the theory should apply 
equally to students at different levels of performance. It 
seems almost self- evident that some fundamental abil-
ities to communicate are a prerequisite for learning 
mathematics in a classroom, but should we expect com-
parable gains for university students studying high- level 
literature? Most modeling frameworks can accommodate 
some forms of heterogeneity, but certain features tend to 
be much harder to handle. One such difficult- to- model 
feature is continuous (i.e., not group- based) differences 
in complex parameters such as those in a multivariate 
correlation (see, e.g., Driver & Voelkle, 2018), but these 
can be useful for representations of development, as the-
oretical components can become more or less correlated 
with age.

The final reason we focus on the disconnect between 
theory and statistical models is that of direct effects 
and linking parameters to theory. Three seemingly in-
nocuous statements are key to this: First, theories tend 
to be formulated in terms of direct causal mechanisms 
between constructs— the medium function hypothesis, 
for instance, suggests that language plays a causal role 
in mathematics performance. Second, constructs tend to 
be thought of as continuously in existence— we assume 
that a person has an ability in maths, whether or not we 
measure it. Third, constructs are continuously subject to 
all manner of influences— a person's maths ability is sub-
ject to all known and unknown influences (e.g., cognitive 
maturation, schooling), and these take effect indepen-
dent of how often we observe the individual. These points 
might all seem obvious, yet modeling approaches regu-
larly used to represent developmental theories involve 
assumptions that run counter to these statements. A core 
assumption built into common multivariate modeling 
frameworks is that of discrete time, wherein constructs 
(typically) change and interact only at moments when an 
observation occurs. Such discrete- time approaches can 
be perfectly viable in terms of the predictions they offer, 
yet problematic when the parameters are used for infer-
ence about underlying causal mechanisms, as is typical 
of interest when psychological theories are being consid-
ered. While there are works that go into much greater 
detail on this (Aalen, 1987; Aalen et al., 2016; Deboeck 
& Preacher,  2016; Driver,  2022; Kuiper & Ryan,  2018; 
Ryan & Hamaker,  2021), as an example, consider the 
following: Assuming that maths and language ability 
are continuous- time processes (i.e., continuously exist-
ing and interacting); there is a causal effect of language 
on maths (i.e., medium function); the two processes are 
subject to independent causes; we only measure abilities 

once per year. When common representations, such as a 
cross- lagged panel or vector- autoregressive models, are 
applied to such a case they are likely to find correlated 
fluctuations in the two processes that are not explained 
by directed effects (Driver, 2022). This could lead some 
to the conclusion that there are common- causes operat-
ing between the two, when in fact there are none. Such 
erroneous conclusions easily arise when thinking in 
terms of direct causal influence, but using models that 
parameterize change over some time interval.

The three challenges discussed— theory vagueness, 
model inflexibility, and linking model parameters to 
theory— draw us in somewhat different directions. Given 
vague theories and worries about inflexible models, one 
could be tempted to limit formal or theory- based mod-
eling and pursue data- driven approaches to simply de-
scribe observed patterns. However, such a direction all 
but ensures that model parameters themselves have little 
obvious meaning, and the link to theoretical concerns is 
more difficult or impossible to deduce. In contrast, going 
the other direction to a single statistical model that most 
closely represents the verbal theory in question will likely 
result in invalid or overconfident inferences, as there is 
so much uncertainty regarding statistical model choice. 
In this work, we approach the problem from somewhere 
in the middle and describe the use of a class of statisti-
cal models that is capable of representing psychological 
theories in a direct causal sense, while flexible enough 
to accommodate the fact that we know very little about 
the process dynamics and our models may need further 
updating or complexity.

LIN K ING TH EORY A N D 
STATISTICS W ITH 
CONTIN UOUS - TIM E 
DY NA M IC SYSTEMS

The most common approaches to questions of change 
in developmental psychology are probably multilevel 
regression and structural equation modeling. While 
one can usually find ways to get any theory and data 
combination into a particular modeling approach, 
when the modeling approach is not a good fit for the 
theory and data, theories may be altered to suit the 
modeling, unnecessary auxiliary assumptions may 
be required, or even, as we described with the direct 
effects example above, the theory that was thought 
to be examined is unknowingly not! A hierarchical 
continuous- time dynamic systems perspective allows 
for a relatively direct link between parameters and 
typical developmental theories, reducing issues related 
to misfits between theory and model. A continuous- 
time approach helps to address the issue of linking 
theory and parameters because the temporal effects 
are direct rather than a lagged aggregate— more on 
this below. The broad concern of model f lexibility, 
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and the capacity of the model to represent varied 
hypotheses, is also easily addressed in a continuous- 
time framework— software is available that can 
specify a broad array of linear or nonlinear systems, 
measurement models, and heterogeneity across time, 
individuals, or contexts. The concern regarding 
theory vagueness can, of course, not be rectified by 
any modeling approach. Nevertheless, a modeling 
framework that is otherwise more appropriate may be 
more likely to lead the modeler to the right questions 
for reducing vagueness and clarifying theory.

The core of a continuous- time system is a stochastic 
differential equation. Differential equations are a math-
ematical language for continuously changing processes, 
and the “stochastic” addition simply allows for uncer-
tainty in the direction of change. Such models have been 
discussed in the social sciences since Coleman  (1964), 
with further development closer to psychology by 
Singer  (1993), Oud and Jansen  (2000), Boker  (2012), 
Chow  (2019) and Voelkle et al.  (2012), among others. 
Some software packages for stochastic differential 
equation modeling in the social sciences include ctsem 
(Driver et al.,  2017), dynr (Ou et al.,  2019), OpenMx 
(Neale et al., 2016), and BHOUM (Oravecz et al., 2016). We 
will describe models in a general form, but in some cases 
include additional labeling relevant to the ctsem soft-
ware. Code for model fitting with ctsem plus additional 
results are available in the supplementary material.

Discrete- time processes

To understand the continuous- time systems framework, 
it can be helpful to start from the discrete- time perspec-
tive. Most models that address coupled and fluctuating 
processes over time, such as vector autoregressive, cross- 
lagged panel, and multivariate change- score models, 
contain, or can be re- written to contain (e.g., Voelkle & 
Oud, 2015), equation components for modeling the pro-
cesses that look like this:

where � is a d length vector of process values (which might 
be observed data or hypothetical latent states), u indexes 
measurement occasion,  is a matrix of temporal regres-
sion coefficients, ℬ is an intercept, and  is the effect ma-
trix of the d length system noise vector z, where z contains 
independent and identically distributed deviations with 
zero mean. Typically,  is where we would expect to see 
parameters reflecting directed influences between pro-
cesses (i.e., psychological constructs) that are included in 
the model, and  is where we would find the influence of 
fluctuations in unknown elements that are not included in 
the model. The intercept ℬ sets the trend (which is in some 
cases flat) and can reflect the influence of unchanging (or 
very slowly changing with respect to our observations) 

external elements. In the case of observing mathematics 
and language performance, their influence on each other 
would likely be found in , while the effect of fluctuations 
in unmodeled constructs such as motivation would ap-
pear in  . For a recent overview contrasting different ap-
proaches to cross- lagged models and software, see Ruissen 
et al. (2022).

Continuous- time processes

In discrete- time systems, the temporal effects repre-
sent regression strengths between two points in time. 
When the processes we are interested in fluctuate and 
interact continuously (or near continuously), discrete- 
time regressions represent an aggregated effect over 
the time interval from all sources, rather than a direct 
effect. Consider a system where motivation to exercise 
causes exercise, and exercise causes fitness. If we use a 
discrete- time approach to examine this system with in-
tervals of 1 year between measurements, then we will 
also obtain a positive cross- effect of earlier motivation 
on later fitness— even though achieving increases in fit-
ness requires actual exercise, rather than simply motiva-
tion! Nothing is inherently “wrong” here, except that it 
is relatively common for researchers to assume that such 
cross- effects represent mechanistic causal relations be-
tween the variables. Driver (2022) discusses this example 
in more detail, and other works also address the topic 
(Aalen et al., 2016; Deboeck & Preacher, 2016; Kuiper & 
Ryan,  2018; Ryan & Hamaker,  2021). Continuous- time 
approaches allow for parameters that represent direct re-
lations between changing constructs over time, thereby 
allowing more direct mapping between theories (which 
often involve direct relations) and parameters. In the ex-
ercise example, the continuous- time temporal relations 
matrix would always contain a zero for the effect of moti-
vation on fitness, regardless of the time interval at which 
observations were made, allowing for a genuine test of 
the hypothesis that exercise mediates the effect of moti-
vation on fitness.

One can intuitively think of continuous- time ap-
proaches as similar to discrete- time, but simply com-
pressing the time interval to a “very small” value. A 
continuous- time form of the vector autoregression dis-
cussed is

This looks similar to the discrete- time form, but 
instead of telling us the new value of latent processes 
� given one step forward in time, it tells us how � is 
changing at the moment. Some complications due to 
stochastic differential equations are present. First, 
the dt on the right- hand side can be thought of as a 
very small step in time. Second, the dW(t) represents 
Gaussian white noise in continuous time and enters the 
system via the G matrix. We will at times refer to the 

(1)�
u
=𝒜�

u−1+ℬ+𝒢z
u

z∼N(0, 1),

(2)d�(t) = (A�(t) + b)dt +GdW(t).
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GdW(t) in combination as the system noise. This rep-
resents all the changes in our latent processes � that are 
not accounted for by other parts of the system model. 
Ideally, this would capture short- term, unpredictable 
f luctuations such as changes in study habits due to 
exams leading to increased competence. However, al-
lowing for such system noise also allows the model to 
dynamically compensate somewhat for the misspec-
ification of other components, such as neglecting to 
model a trend when we know competencies increase 
with time. In such a case, reasonable forward predic-
tions may still be possible, but parameter interpreta-
tion is confounded.

Because A now represents the influence of the cur-
rent state of the system on the direction of change in the 
system, its interpretation differs somewhat from the 
discrete- time form. In continuous- time, both the cross 
(off- diagonal) and auto (diagonal) effects in the temporal 
effects matrix offer the same interpretation— when the 
effect is positive, higher values of the causal (column) 
variable lead to rises in the caused (row) variable, and 
vice versa. To understand the temporal effects interpre-
tation, and how parameters in the matrix may relate to 
our theoretical interests, consider the example:

Here, we see that the diagonals, containing the auto- 
effects, are both negative. This means that whenever lan-
guage or maths performance rises above its baseline trend 
(determined by other model elements), a downwards force 
pushes performance back toward the baseline— the sys-
tem stabilizes itself. That maths has a more negative auto- 
effect indicates that fluctuations away from the baseline 
dissipate faster, as there is more force pushing deviations 
back to the baseline. We can crudely approximate how 
fast this dissipation is by calculating the rate of change at 
one moment and assuming that rate is constant for some 
length of time: If maths is 1.0 at time 0, then the rate of 
change in maths at that point (based only on the auto- 
effect for now) is − 0.8 × 1 = − 0.8. Assuming a constant 
rate of change over 1 unit of time, we have a change of 
1 × − 0.8 = − 0.8, leaving us with 0.2, or 20% of the ini-
tial change— also understandable as an auto- regression 
strength of 0.2 after a time interval of 1. More precise 
results can be obtained by taking multiple smaller steps 
in time or using an “exact” solving approach. The basic 
component of the exact approach is the matrix exponen-
tial, with temporal regression coefficients for particular 
time intervals given by eAΔt (the full solution is described 
in Driver & Voelkle, 2018).

The A matrix is often of particular interest because 
it is generally where causal relations, or at least within- 
person temporal relations, are to be found— and in-
deed, it is relevant in the case of our three theories. The 

example A matrix shown above depicts a case where, as 
is highly typical, each process influences itself, these are 
the auto- effects on the diagonal already described. Then 
there are the cross- effects: The 0 in the top right corner 
reflects that maths ability (the column variable) does not 
influence language (the row variable), whereas the 0.2 in 
the lower left reflects a positive influence of language 
on maths— this would be consistent with the medium- 
function hypothesis, wherein language supports math-
ematics learning. The thinking function hypothesis, in 
which maths and language arise from higher- level cogni-
tive functions, would also lead to patterns in the A ma-
trix, but only if we had an appropriate cognitive function 
process in the system. In that case, the A matrix might 
look something like this, where we see that there are two 
cross- effect coefficients of 0.4 from cognition to each of 
maths and language:

Because we, unfortunately, do not have a cognition 
variable in the current data set, we would expect to see 
the influence of this and any other unmeasured com-
mon causes show up in other model elements, or some-
what confusingly, in different elements of the A matrix. 
A fast- changing (relative to our observation frequency) 
common cause could be found in the correlations or 
covariances given by the system noise effect matrix G, 
where the covariance of the system noise is GG

⊤. For our 
purposes, the thinking- function hypothesis could lead 
us to expect a positive correlation in the system noise, to 
the extent that cognitive performance fluctuates unpre-
dictably over our time span of assessment. It may also be 
that changes in cognitive performance are so slow and 
smooth that the common- cause effect instead shows up 
only or primarily in stable individual difference effects, 
discussed below. The trickiest circumstance is some-
where in the middle, where a common- cause changes 
too slowly to be well represented by white noise, but too 
quickly to be well captured as a stable individual differ-
ence. In such a case both off- diagonals of the A matrix 
could show (more) positive effects. Attempts to mitigate 
this with model sophistication are possible, but aware-
ness of the possibility when making inferences is crucial.

The system noise correlation may also be relevant 
when considering the specialization hypothesis in which 
time spent improving one domain predicts reduced 
growth in the other domain. In this case, there is good 
reason to expect that there may be short- term fluctua-
tions, for instance, before an exam on a particular subject 
more study in that subject may occur. Again, however, 
we cannot be sure of the time scale of such fluctuations, 
should they exist. It may be that specialization appears 
as a lowering of the system noise correlation, but if study 

language maths

A=
language

maths

[

−0.5 0

0.2 −0.8

]

.

language maths cognition

A=

language

maths

cognition

⎡⎢⎢⎣

−0.5 0 0.4

0 −0.8 0.4

0 0 −0.1

⎤
⎥⎥⎦
.

 1
4

6
7

8
6

2
4

, 2
0

2
3

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://srcd
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/cd
ev

.1
3

9
9

0
 b

y
 U

n
iv

ersitaet Z
u

erich
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

2
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



1460 |   DRIVER and TOMASIK

patterns have some temporal consistency, it may also ap-
pear as more negative values in the cross- effects of the A 
matrix— time spent studying for maths leads to reduced 
growth or decline in language and vice versa.

Measurement model

To represent and estimate theoretical constructs in a sta-
tistical model of observed data, it is important to account 
for how the constructs are measured. Some constructs 
may be perfectly represented by available observations, 
others may be measured but imperfectly, while others 
may only be defined based on relations between latent 
constructs— with no direct observations at all. In our 
case, we have observed variables that we believe roughly 
represent math and language competence, but we do not 
want to assume that these observations are perfect, and 
we wish to combine multiple observed variables (e.g., 
from three maths subdomains). Additionally, in order 
to understand and model, our theoretical constructs of 
math and language competence better, we will (even-
tually) break each construct down into multiple latent 
processes, some reflecting long- term change with others 
capturing short- term change. This is all accomplished 
through the use of a measurement model. Regarding 
imperfect observations, observed variables are usually 
contaminated by factors that are extraneous to the con-
struct of interest. If these other factors are not accounted 
for, all manner of problems can occur in the estimated 
relations at the process level. Commonly, it is assumed 
that these additional factors are numerous and varied 
enough such that their influence increases variance but 
does not bias results. Ignoring such measurement error in 
longitudinal models can lead to downward- biased auto- 
regression coefficients and potentially spurious cross- 
regression relationships (Schuurman & Hamaker, 2019), 
as well as inducing a dependency wherein the apparent 
time scale of the processes (inferred from estimates) 
can depend strongly on the frequency of observation 
(Driver, 2022). It should also be noted that observations 
always occur in discrete time, in that there are gaps in 
time between observations— the continuous- time aspect 
is that we use such observations for inference about an 
underlying continuous- time process.

A state- space modeling approach, as used in this 
work, couples a latent system process model with a mea-
surement model. This feature is shared with structural 
equation modeling, and indeed the two share many simi-
larities (Chow et al., 2010; Oud & Jansen, 2000). The state- 
space representation shows a general state of the system 
and how this changes, rather than laying out every time 
point, and can be simpler to work with when there are 
many time points. These approaches allow for the vari-
ance of observations to be composed into two (or more) 
portions. A measurement error portion contains varia-
tion that is essentially discarded from one observation 

to the next, while the system noise component contains 
variation that, although it could not be predicted by the 
deterministic portion of the model, is nevertheless infor-
mative for predicting future states.

The classic linear factor model, widely used in 
state- space and structural equation modeling, offers a 
convenient and tractable approach to account for mea-
surement error. Moreover, it allows for the possibility of 
combining multiple noisy measurements to improve the 
precision of estimated constructs, and vice versa, for one 
observation to arise due to multiple latent constructs.

The linear factor model for the observed variables in 
a system is

where y is the c length vector of observed variables, � con-
tains the factor loadings, and � observation level intercepts. 
The manifest residual vector � has covariance matrix Θ, 
which captures the variation in the observed variables that 
do not aid in predicting future states of the system, which 
is often thought of as a measurement error.

Individual differences

Stable individual differences, between- person effects, 
or sometimes simply “heterogeneity”— since Mole-
naar (2004) the field has gradually become more aware 
of the need to distinguish within- person change from sta-
ble characteristics that differ among individuals. Often 
though, this distinction is thought of in a black- and- 
white manner, as though there is some true individual 
difference, and then what is left is evidently within- 
person change. However, this split is highly dependent 
on both the data that are available and the model that 
is used. An example of data dependency is when what 
initially looks like a stable difference between individu-
als fluctuates substantially when examined at a longer 
timescale. Model dependency can arise via inadequate 
models, and an example of such can be seen in the typical 
pattern of heterogeneity in linear growth- curve models 
of learning, where a higher initial value correlates with a 
lower slope. Such slope differences are very often not be-
cause of some innate or stable individual difference, but 
because the true growth function is nonlinear, such that 
improvement gets more difficult and slower as perfor-
mance rises— so those who start the assessment period 
at a higher level tend to show reduced growth (https://
cdriv er.netli fy.app/post/heter ogene ity/ elaborates on 
this example). Considered in light of such phenomena, 
individual differences in statistical models may best be 
understood as a tool to represent differences in the ideal 

model parameters between subjects, conditional on the 

specified model and data.
To estimate such individual differences, there are a 

variety of approaches: Given sufficient data, the process 

(3)y(t) = ��(t) + � + �(t) where�(t) ∼N
(

0
c
,Θ

)
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and measurement model may simply be fit separately for 
each individual, resulting in unique parameter estimates 
for every subject. Large and informative enough data 
sets for doing this with complex models are still quite 
rare, so approaches that assume some sort of similarity 
across subjects, thereby increasing the precision of pa-
rameter estimates, are helpful. Such approaches can as-
sume certain parameters are (a) fixed across all subjects, 
(b) vary as a function of some observed covariate(s), and/
or (c) vary according to some underlying distribution. 
For (b), the term “fixed effects” is often used, and for (c), 
“random effects,” though the use of such terms can be 
heterogeneous and confusing across fields.

In linear models such as those we have described for 
the theoretical processes and measurements, individual 
differences in intercept type terms (i.e., initial values, 
continuous process intercepts, observation intercepts) 
are generally the most straightforward parameter types 
to model as random effects. Hamaker et al. (2015) detail 
the importance of this for a discrete- time structural equa-
tion model, whereas Oud (2002) demonstrates this for a 
continuous- time state- space form. Such an approach, 
wherein most parameters (such as temporal dynamics, 
factor loadings, measurement error variance, etc.) are 
assumed to take the same value across individuals, can 
offer a reasonable and tractable “first- pass” type model. 
The assumption that non- intercept type parameters do 
not differ over individuals is generally very strong, how-
ever, and it is often worth at least including a check for 
substantial between- person differences, whether or not 
there are theoretical concerns related to such differences.

Approaches to estimate individual differences in pa-
rameters such as a standard deviation or correlation can 
be complicated because only certain values for such pa-
rameters result in a valid model. In ctsem this is handled 
by having a linear “unconstrained” form of the parame-
ter, which is subject to any covariate and random effects, 
inside a mathematical transformation that ensures the re-
sulting “constrained” parameter is appropriate (e.g., has 
the correct sign or does not violate positive- definiteness 
of the matrix, etc.).

Although there is nothing in the formulation of our 
three theories that specifically focuses on individual 
differences, individuals' cognitive capacities, living sit-
uations, and all manner of other causes of performance 
differences can be stable over long timespans and will 
need to be accounted for in our model. This “could” be 
as simple as allowing for individual differences in initial 
performance level, though given the broad age range 
(developmentally speaking) in question, to us it seems 
more reasonable to assume that all aspects of the sys-
tem may differ. One plausible possibility would be that 
fundamental levels of language competence, as attained 
in lower school grades, are critical for learning mathe-
matics, but at higher levels, this is no longer the case— so 
the medium function becomes less relevant with age. In 
contrast, higher grades could see the emergence of the 

specialization phenomena, wherein time constraints and 
the importance of focusing on study areas become more 
substantial concerns.

MODEL BU ILDING

If we had a complete, formalized theory of competence 
development, a reasonable starting point for modeling 
would simply be to instantiate that theory and work 
from there. Instead, we are faced with what may be the 
more typical scenario, wherein we have some vaguely 
specified theories and want to see to what extent each 
may have something to offer. Because the three theo-
ries of interest are only a small piece of the compe-
tence development puzzle, we also need many more 
pieces— these may be seen as auxiliary assumptions 
when it comes to considering the theories in question. 
Some auxiliary pieces are likely to be more important, 
in terms of explained variance in the data than those 
elements which are directly relevant from a theory com-
parison perspective. A good example of such is the gen-
eral growth trend across subjects— ignoring this aspect 
would force all of the growth to be accounted for in the 
system dynamics and measurement error terms, likely 
leading to large temporal cross- effects between maths 
and language even though growth in the two may be 
only due to a common cause. Because of such consid-
erations, we will walk through a progression of models, 
starting with basic components and building up in com-
plexity, including parameters of more theoretical inter-
est only in the later stages. The fact that we begin with a 
linear growth curve should not be taken to indicate that 
the model is “primarily” a growth curve— eventually 
the model will have components that function like la-
tent change score models (Ghisletta & McArdle, 2012), 
common/dynamic factor models (Molenaar,  1985), 
and vector autoregressive models, in a hierarchical 
continuous- time framework with parameters moder-
ated by covariates. For inference, we use the maximum 
a posteriori estimation approach of ctsem (Driver & 
Voelkle, 2021), which can also be thought of as a form of 
penalized likelihood. For main effect type parameters 
in a data set of this size, this will have very little influ-
ence, but for moderated parameters in complex models 
such as we will come to, it can lessen capitalizing on 
chance results by keeping estimates more conservative 
than maximum likelihood. Results from all model fits, 
both with priors and without, are available in the sup-
plementary material. When time is discussed, we use the 
metric of years, unless explicitly specified.

Linear growth

Although linear growth without individual differences is 
a highly unrealistic specification for most developmental 
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processes, it provides a basis on which to build. At this 
stage, none of the three theories are of specific relevance, 
we only include the most fundamental of auxiliary 
assumptions— that there might be non- zero growth 
over time. In this case, the process (Equation 2) can be 
simplified by dropping matrices of zeros and reverting to 
ordinary differential equation form (with dt on the left), 
leaving:

This tells us that the rate of change in maths and lan-
guage processes � at time (t) is determined by the con-
tinuous intercepts b. In our model, there are two latent 
processes, language and maths, so � and b are vectors 
of length two. The measurement model is as shown in 
Equation  (3) and involves five indicator variables. Two 
variables measure language skill and three measure 
mathematics. The first indicator for each process is con-
strained to a factor loading of 1.0 and an intercept of 0.0, 
to identify the model.

The point estimates of the model fit are shown in 
Appendix  A in expanded matrix form, with the zero 
matrices left in place to facilitate understanding. From 
the estimates, we obtain the most basic sanity check of 
our data and model combination, as there is an upward 
growth trend in both mathematics and language per-
formance over time, based on the positive values for the 
continuous intercept b vector.

Individual differences in linear growth

Of course, single values for the expected initial values 
and growth across individuals and age is a highly 
unlikely proposition. An obvious next step then is to 
allow individual differences in these parameters. At this 
point, we will still not have an instantiation of the three 
theories, but can start to look at the relation between 
maths and language development, and also changes in 
this relation over age.

Because we do not have sufficient data (i.e., hun-
dreds or thousands of time points per subject) to es-
timate our more complex models separately for each 
individual, we will ignore such a possibility. Then, 
individual differences in model parameters can be 
achieved either via including additional latent vari-
ables to estimate the mean and standard deviation of 
the distribution of parameters (i.e., a ‘random effects’ 
model), or by (also) regressing model parameters on 
one or more covariates.

Linear growth— Random effects
Starting with random effects, we can allow for varying 
initial intercepts (in ctsem “T0MEANS” for “time 
zero latent process means”) by estimating the initial 
covariance matrix parameters (“T0VAR” for “time zero 

variance/covariance matrix” in ctsem) for the latent 
processes. For random variation in any parameters 
other than the initial intercept, these need to be 
included as additional processes in the system model, 
which exert appropriate influence depending on which 
type of parameter they are (For users of ctsem, this 
occurs in the background when individually varying 
parameters are requested). Continuous intercepts 
are one of the simplest parameter types to specify as 
random- effects; they can be included as additional 
processes exerting an influence of 1.00 on the original 
processes of maths and language. This influence occurs 
via the temporal effects, or drift, a matrix that we could 
previously ignore as it contained only zeroes. Now, the b 
vector from Equation (2) is no longer needed— instead, 
the continuous intercepts are included in the extended 
state vector �. Equation  (5) shows the point estimates 
for this expanded initial latent state distribution. Here 
we see the pattern both the medium and thinking 
function theories would predict. The initial latent 
states for maths and language positively covary (top- 
left quadrant), the continuous intercepts do also (lower- 
right quadrant), and the initial states are negatively 
related to the continuous intercepts— performance 
growth is expected to be lower for those who start with 
higher performance (lower left/top- right quadrants). 
The terminology of initial states and continuous 
intercepts may be confusing to those accustomed to 
intercepts and slopes, but clarity here is important: In 
this case, because we have a simple linear model, the 
initial latent state �

(

t0

)

 is equivalent to the intercept 
term in a growth model and sets the expected value of 
the process for the first observation. The continuous 
intercept is then equivalent to the linear slope. Once 
more complex models are used, this one- to- one relation 
breaks down— for instance, in systems that fluctuate 
around a baseline, as in many vector autoregressive 
type models, the continuous intercept (in combination 
with temporal effects) serves to determine the baseline.

With the incorporation of the continuous intercepts 
as latent states, the drift (temporal- effects) matrix is no 
longer all zero but contains some fixed values of 1.00 
where the effect flows from the two continuous intercepts 
(columns 3 and 4) to our language and maths processes 
of interest (rows 1 and 2):

(4)
d�(t)

dt
= b.

(5)

⎡⎢⎢⎢⎢⎣

LANG

MATHS

cintLANG

cintMATHS

⎤⎥⎥⎥⎥⎦

�
t0

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�(t0)

∼N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

−0.31

−0.52

0.14

0.1

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⏟⏟⏟

T0MEANS

,

⎡⎢⎢⎢⎢⎣

0.5 0.33 −0.07 −0.05

0.33 0.27 −0.05 −0.04

−0.07 −0.05 0.02 0.01

−0.05 −0.04 0.01 0.01

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Q∗
t0

⏟⏟⏟

T0VAR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Our specified measurement model appears reasonable, 
with point estimates suggesting that all indicators load simi-
larly on the latent factors (seen in the � matrix) and have sim-
ilar measurement error standard deviations (the Θ matrix):

At this point, we have the classic multivariate linear 
latent growth curve model with (co)varying slopes and 
intercepts, formulated as a state- space stochastic dif-
ferential equation. With just this random- effects linear 
growth model, we cannot substantially distinguish be-
tween the three theories, except to say that specializa-
tion does not appear as a dominant feature— maths and 
language performance positively, rather than negatively, 
co- vary. The positive correlations in growth are consis-
tent with both thinking and medium function.

Linear growth— Covariate moderated parameters
Although the random effects approach can account 
for individual differences in model parameters, and 
relations between such individual differences, there are 
often substantive and pragmatic reasons for including 
covariate effects to moderate parameters of the model. 
Substantive reasons are typically when system parameters 

are expected to vary along with the covariate, and one 
wishes to account for and understand this relation— as 
with our case and the specialization hypothesis, wherein 
changes in relations based on age are expected. Pragmatic 
reasons can be that individual differences are expected 
on more parameters, but the computational cost and 
difficulties are too high to include random effects 
everywhere. Including moderation effects can allow for 
at least some of the heterogeneity, and generally imposes 
substantially less computational burden than random 
effects. At present, ctsem allows only linear moderation 
effects (expandable to polynomials via the inclusion 
of transformed covariates), though in principle any 
functional form is possible. A similar approach but using 
step- functions (i.e., groups) can be seen in structural 

equation model trees (Brandmaier et al.,  2013) and the 
proof- of- concept with ctsem (Brandmaier et al., 2018).

While we could restrict moderated parameters to only 
those parameters we included random effects for— our 
initial states and continuous intercepts— a key benefit of 
the sometimes awkward seeming approach to covariance 
matrices used in ctsem is that we can also allow for mod-
erated standard deviations and correlations, along with 
any other parameter. We could of course treat all of these 
as random effects, but elect not to for ease of both com-
putation and explanation. For our model development, 
we will include an age covariate, centered at 13 years. Not 
only does this allow us to account for changing relations 
between starting points and growth as children age, but 
this can also be used to detect and account for changes in 
measurement properties, such as factor loadings or mea-
surement error variance. Although this is still not a direct 
theoretical concern of ours, we want to ensure that major 
changes across age are accounted for to avoid biasing the 
theoretical parameters of interest we will include in later 
steps. The one restriction we do impose on the covariate 
effects is that we do not allow a change in the measure-
ment intercept with age, as this would be akin to allowing 
distinct growth curves for each indicator variable when we 
are really interested in characterizing the change in the la-
tent process. Fitting this model results in a similar overall 
pattern to the unmoderated model, with all age modera-
tion effects shown in Appendix Table B1. These moder-
ation effects indicate that, as expected, initial language 
and maths performance rise with age. The growth rate 
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for language appears largely unaffected by age, while the 
growth rate for maths also rises with age. Factor loadings 
are relatively unaffected, while measurement error stan-
dard deviation reduces with age for all indicators except 
German reading performance. In terms of correlations 
among initial states and continuous intercepts, there are 
two effects where the 95% confidence interval does not 
include zero. The correlation between initial maths per-
formance and the rate of growth appears to increase with 
age, while the relation between mathematics growth and 
language growth appears to decrease. While such results 
are useful for inferences regarding the direction of effects, 
it is difficult to comprehend the magnitude of effects due 
to the nonlinear matrix transformations needed to convert 
the age- moderated “unconstrained correlation” parame-
ters into correlations. For such purposes, plots of the ex-
pected correlations, conditional on age, are very helpful. 
Figure 1 shows all correlations within and between initial 
states and slopes. From this figure, it is clear that the gen-
eral pattern is no change in the correlation between ini-
tial states, reduced correlation in slopes as age increases, 
and a lessening of the negative correlation between initial 
states and slopes with age. The lower correlation in slopes 
with age is what we would expect to see if  specialization 
is occurring— children who devote energy to one domain 
may not be able to devote the same energy to the other, 
once the demands from schooling increase with age.

Including dynamics

So far, we have only developed a static model of change— 
the model predictions for an individual's state at any point 
in the future depend only on the system parameters for that 

individual, and time (Voelkle et al., 2019). If we shift to a truly 
dynamic model, in which we acknowledge that unpredictable 
changes occur in the constructs, the model is likely to 
perform (i.e., predict) better, and can be used to consider 
questions on the relation between these unpredictable 
fluctuations— including those from our three theories of 
competence development. To allow for such fluctuations, 
it is usually necessary to relax the implicit assumption that 
all information from earlier states is carried forward in time, 
represented by the zeroes in the temporal effects matrix 
diagonal. This is because if the new variation is now to 
be continually added, representing fluctuations, the total 
variance will continually increase, which is often unrealistic 
and undesirable. To relax this assumption, we (generally) 
need negative values instead of zeroes in the diagonals of 
the temporal effects matrix (similar to a discrete- time vector 
autoregressive model where autoregressions of less than 1.00 
are needed). With a negative auto- effect (the diagonals of 
the temporal effects matrix), when a system fluctuates above 
its deterministic trend, the negative dependency on earlier 
states pushes the system back down toward the expected 
trend and vice versa for downward fluctuations. Positive 
dependencies may also be plausible over limited timespans 
but become “explosive” without other mitigating model 
elements. Allowing for temporal effects and system noise 
brings us back to the full Equation (2). At first, we will only 
free the diagonals of the temporal effects, such that any 
dependency between changes in the maths and language 
latent processes is solely due to the correlated system noise. 
Put differently, we assume that maths and language may have 
correlated changes that the deterministic trend component 
could not account for, but we do not allow for directionality 
between these changes at present. This means that we will 
at present not be able to distinguish between the common 
cause posed by the thinking function hypothesis and that 
of the directional effect from language to maths posed by 
the medium function hypothesis. However, to the extent that 
specialization is occurring, further evidence for these could 
appear in the form of lower correlations in system noise as 
age increases.

By freeing the auto- effects in the temporal dependency 
matrix, the deterministic trend becomes nonlinear and 
incorporates the idea that performance may rise more 
slowly, the higher performance is. This relation could al-
ready be seen when we fit the linear growth model with 
random effects, in that there was a negative correlation 
between the initial state and the growth rate— but in that 
case, it was only a relation between- subjects, and any spe-
cific subject would be (apparently wrongly) assumed to 
grow linearly. The updated formulation accommodates 
such a concept within- subject.

With free auto- effects and correlated system noise in-
cluded, the point estimates for the system equation are 
shown in Equations (9) and (10). Expected trajectories for a 
typical student in the sample, before knowing any of their 
individual scores, are shown in Appendix Figure C1. After 
accounting for students' performance scores, the estimated 

F I G U R E  1  Correlations of initial states and slopes, conditional 
on age, for the moderated linear growth model. 95% confidence 
intervals are shaded.
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forward predictions (i.e., conditioned on past scores) of the 
model are far less smooth, as Figure 2 demonstrates. In this 
plot, it is easy to see that for periods of time when there is 
more data on a student, the students' scores in this period 
influence predictions and can result in substantial fluctua-
tions in the expected trajectory. This contrasts with periods 
of less data, where predictions are more dependent on the 
overall trend. In either case, the proportion of measurement 
error is estimated to be relatively large, meaning that pre-
dictions do not closely track each individual observation.

What can we learn from our model after including 
some dynamics? Two main aspects are the shape of 
the overall trend, which is now more flexible, and the 
shorter- term fluctuations. Regarding the overall trend, 
it seems that individual growth in performance slows as 
performance rises— this we can infer from the negative 
auto- effects or the expected trends shown in Appendix 
Figure C1. Regarding shorter- term fluctuations in per-
formance, the system noise covariance in Equation (10) 
shows that unexpected changes in language and maths 

performance are highly correlated, with similar vari-
ances. Such results suggest that specialization is clearly 
not the primary feature driving short- term fluctuations 
in learning in the two domains. Had we seen negative 
correlations in the system noise, or at least substantially 
lower correlations than between the long- term trends, 
there would have been a good reason to consider spe-
cialization as a substantial phenomenon overall. Nev-
ertheless, the age moderation effect on the system noise 
correlation is negative, as seen in Appendix Figure D1. 
This reduced correlation with age is supportive of  the 
idea that some amount of  specialization may be oc-
curring, as this is thought to increase with age. Distin-
guishing between the thinking and medium function 
hypotheses is not yet possible, given the lack of  direc-
tionality in the model at this point.

Multiple time scales and directional dynamics

So far, we have built up the basic components of the 
model, and see some level of support for specialization, 
but have not been able to distinguish between the 
medium and thinking function theories— to what 
extent does language support maths development and 
to what extent are they driven by common causes. To 
address this theoretical issue, our model will need 
directional dynamics incorporated, wherein changes in 
one process can lead to changes in the other. The results 
from such a directional dynamic model can contain lots 
of information, sometimes verging on overwhelming 
once individual differences in parameters are included. 
There is, however, a need for caution in interpretations. 
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F I G U R E  2  One step ahead forward predictions (shown by lines) 
for one student based on past data (shown by dots), generated based 
on the model fit with individually varying trends, auto- regression 
effects, and correlated system noise.

−1.0

−0.5

0.0

0.5

1.0

1.5

9 10 11 12 13 14

Time

C
o

m
p

e
te

n
c
e

Variable

GRAMMAR

MATHS1

MATHS2

MATHS3

READING

 1
4

6
7

8
6

2
4

, 2
0

2
3

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://srcd
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/cd
ev

.1
3

9
9

0
 b

y
 U

n
iv

ersitaet Z
u

erich
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

2
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



1466 |   DRIVER and TOMASIK

One issue in the model specification, as it stands 
presently, is that the shape of the long- term trends is 
confounded with the time scale of fluctuations. That is, 
the auto- effects terms on the diagonal of the temporal 
effects matrix A are doing double duty, as they set 
the curvature of the overall deterministic trend, and 
also how long the short- term fluctuations persist in 
the system. While there, may of course, be no need to 
distinguish the two since the long- term trend might 
arise due solely to the temporal dynamics included 
in the model, this would be a strong assumption— we 
think it is more likely that there are persistent 
influences on maths and language development that 
are not maths and language performance themselves, 
such as cognitive function. Ideally, we would have well- 
measured data for all possible influences on the system 
and could simply model everything as interrelated 
dynamics. This is of course generally not possible, so 
it is important to model reasonable proxies for such 
influences and to remember when interpreting model 
parameters that they will depend on such assumptions.

This issue with the trend over time (i.e., nonsta-
tionarity) is why two- step procedures, where the data 
first have trends removed, are sometimes used; how-
ever, it can be more meaningful and statistically ap-
propriate to include the trend and the dynamics in 
the same model, unless one component is known with 
fairly high certainty. To achieve this, we can expand 
the system in a similar way as when we included the 
continuous intercepts as a random effect. The full 
model specification is visible in Appendix  E. Essen-
tially, we create an extra process for each language 
and maths to contain the f luctuations or dynamics. 
The temporal effects and initial covariance matrices 
are fixed to zero in many elements such that these new 
dynamics processes do not interact or covary with the 
other processes in the system. The auto- effect of the 
dynamics processes is estimated, setting the speed of 
the f luctuations. The initial state and continuous in-
tercept for each dynamics process is set to zero, to en-
sure that the processes capture only the f luctuations 
and not the general trends. We duplicate the first two 
columns of the factor loading matrix �, as these addi-
tional dynamics processes will not interact with what 
is now the trend and continuous intercept processes 
but are essentially just added on top to generate the 
model predictions. In this way, we estimate an over-
all trend, and then around this trend we have dynamic 
f luctuations, with neither contaminated by parameter 
estimates for the other.

To address the theoretical question of common cause 
versus language- driven growth, we now also free the 
cross- effect parameters between language and maths 
dynamics. The system structure and fitted point esti-
mates for the model are now seen in the temporal effects 
matrix of Equation (11) and the system noise matrix of 
Equation (12).

In the model with only one auto- effect for language 
and one for maths, the auto- effects were approximately 
−0.70, which implies autoregressions after 1 year of 
exp( − 0.70 × 1) = 0.50. Now that we have allowed for 
different timescales by splitting trends and dynamics, 
auto- effects for the trend components are closer to zero, 
giving trends that are closer to the linearity of  our earlier 
growth models. The timescale of  the dynamics compo-
nents is now faster (more negative), and there is a nega-
tive cross- effect from maths to language. These dynamics 
may be easier understood by referring to Figure 3. The 
top half  of  this diagram shows the typical interpreta-
tion, wherein an upward shift in maths performance 
tends to be followed in the coming months by a drop in 
language performance, while improvements in language 
do not (significantly) predict later changes in maths. 
The medium- function hypothesis suggests that language 
facilitates mathematics learning, so the most basic ex-
pectation would be that we would have seen a positive 
cross- effect from language to maths. Instead, the picture 
is more mixed, as one can still make some argument for 
support since improvements in language do appear to 
have a more positive influence going forward than im-
provements in maths— yet this “more positive influence” 
appears to be approximately zero.

The typical interpretation of the negative cross- effect 
from maths to language partly aligns with the specializa-
tion idea that time is scarce, and moments spent focusing 
on one domain inevitably mean other domains may suf-
fer. However, such an interpretation is tricky to recon-
cile with the high correlation in the system noise term. 
Plotting the temporal dynamics in combination with the 
system noise, as suggested in Driver  (2022), means the 

(11)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.22 0 1 0 0 0

0 −0.14 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −2.03 −2.86

0 0 0 0 1.23 −7.78

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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A
⏟⏟⏟

DRIFT

⎡
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⎢
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⎢
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⎤
⎥
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⎥
⎥
⎥
⎥
⎥
⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0.37 0.32

0 0 0 0 0.32 0.38

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

LANG

MATHS

cintLANG

cintMATHS

dynLANG

dynMATHS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

 1
4

6
7

8
6

2
4

, 2
0

2
3

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://srcd
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/cd
ev

.1
3

9
9

0
 b

y
 U

n
iv

ersitaet Z
u

erich
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

2
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



   | 1467FORMALIZING DEVELOPMENTAL PHENOMENA

lower half of Figure 3 tells quite a different story. In this 
case, we can see that whenever one process fluctuates up-
ward, the other typically does the same but to a slightly 
lesser extent. Here then, the negative cross- effect from 
maths to language essentially means that when maths 
rises, so too does language, but that this perturbation in 
language dissipates faster than is typical, due to the neg-
ative cross- effect from maths. So, when language perfor-
mance fluctuates together with maths performance, the 
change tends to dissipate quicker than when language 
performance fluctuates alone or in the opposite direction 
to maths performance.

Interestingly, when we look at the age moderation ef-
fect on system parameters in Appendix Table F1, both 
cross- effect parameters become more negative with age. 
While we still urge caution because of the strong correla-
tion in system noise, these more negative effects with age 
do neatly map onto the specialization idea— there is in-
creased competition for resources between domains as 
students progress in their education (Hofer, 2010; Köller 
et al., 2001). Moreover, as seen in Appendix Figure G1, 
the cross- effect of language on maths changes substan-
tially with age, such that there is some evidence for the 
medium function hypothesis at younger ages when lan-
guage skills are more likely to be decisive for general 

skill learning. In this plot, we also see that fluctuations 
in competence at younger ages tend to persist for lon-
ger, though our theories have nothing to say on such a 
matter.

DISCUSSION

To examine different theories of competence 
development, we have built up models of development 
beginning with linear growth, through to combined long- 
term growth and dynamic fluctuations with individual 
differences. This development was designed to allow 
the incorporation and examination of the different 
theories, which in themselves were not sufficiently 
specific to lead to an obvious single formal instantiation. 
As such, any interpretation of the parameters and their 
relation to the theories is also contingent on the many 
auxiliary elements included in the models. While this is 
in some sense less than ideal for serious consideration 
of theory, it is also very much the norm across fields of 
psychological research, where theories tend to be only 
vaguely specified in words. Our step- by- step build of the 
model hopefully helps to familiarize readers with some 
of the many difficulties when it comes to instantiating 

F I G U R E  3  Temporal dynamics of fluctuations in maths and language performance, implied by the multiple timescale model with directed 
effects. 95% confidence intervals are shaded. At time zero, the process indicated in the column heading receives a perturbation of 1.00, leading 
to changes in both maths and language processes. The perturbation may be independent or correlated with a perturbation in the other process 
according to the estimated system noise correlation. Note the substantial difference in interpretation suggested by the independent compared 
with correlated perturbation— what looks like a drop in language due to rises in maths (top right) may just be a faster dissipation to baseline 
trend (bottom right).
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developmental theories as formal statistical models and 
drawing inferences with respect to the theories.

In no sense do we pose this work as a perfect exem-
plar— it is intended as an informative walk- through of an 
initial theory formalization process, hopefully similar 
enough to what other researchers encounter in their em-
pirical works to offer useful insights, rather than some 
Platonic ideal. The formalizations in use here should 
be viewed skeptically, as initial forays to be further de-
veloped based on iterative model and theory- checking 
processes. That said, there are consistent patterns found 
across the range of models considered, and the relatively 
unique data set offers new opportunities to consider 
the relation between short-  and long- term changes in 
competence.

In general, we found that initial states and long- term 
growth trends all correlated positively, random fluctua-
tions in maths and language were highly correlated, and a 
small negative temporal relation is apparent wherein up-
ward fluctuations (i.e., above the expected growth trend) 
in maths predict downward fluctuations in language. In 
older children, initial states were (unsurprisingly) higher, 
measurement error tended to be lower, contemporane-
ous changes became less positively related, and directed 
temporal effects became more negative. The pattern of 
age relations that applies to short- term fluctuations can 
also be seen in the long- term trends, as growth in maths 
and language becomes less correlated with age.

The thinking function hypothesis poses both language 
and maths as driven by the common cause of higher- 
level cognitive functions, and that at least some of this 
occurs is perhaps so obvious as to not require verifica-
tion. Nevertheless, modeling can help to distinguish the 
relative contributions, and in this case, we see high cor-
relations in both short-  and long- term change, yet these 
reduce as children get older. So, there is clearly some 
form of developmental differentiation (Breit et al., 2021; 
Garrett,  1946) occurring, with abilities becoming less 
correlated with age. The mechanism behind the differ-
entiation is not clear though— is the common cause of 
cognitive function merely becoming less relevant to one 
or both skills or is the differentiation driven by the in-
creased specialization and time demands suggested by 
the specialization idea? To the extent that we accept 
cognitive function as relatively stable across weeks and 
months, then specialization or some other phenomena 
must be at play. This is because the reduced correlations 
in change between maths and language are seen not 
just for the long- term change, but also the short. With 
the available data, it would be quite a leap to compre-

hensively claim that the reduced correlations are due to 
specialization— for this, we would ideally have data on 
both study behavior and general cognitive function— yet 
the results are consistent with such an idea, as long- term 
trends, short- term fluctuations, and the forward predic-
tions from such fluctuations all reduce or become more 
negatively related with age.

The medium function hypothesis places language as 
a facilitator of mathematics learning. This too, seems at 
least somewhat obvious, as without any language capac-
ity a child would surely struggle in a modern classroom. 
Nevertheless, it is interesting to know to what extent this 
idea may be relevant for the regular student population. 
Based on the directed temporal effects in our final model, 
there may be limited support for this idea, from two di-
rections. First, while the cross- effect from maths to lan-
guage is negative, from language to maths, it is positive 
but nonsignificant. This is qualified, however, by a sub-
stantial shift in this cross- effect across age, with a posi-
tive effect of language on maths at younger ages shifting 
to a negative effect at older ages, as seen in Appendix 
Figure G1. Considering these results together does pro-
vide some support for the idea of a medium function to 
language if one also accepts that this medium function 
is likely to be most relevant at lower levels of language 
ability, which generally occur at younger ages. Although 
plausible to us, we could find no such theorizing in the 
literature. While further work should verify such find-
ings, this provides an example of how preexisting the-
ory may be updated and constrained by computational 
modeling.

Looking at the models we have developed, the “the-
oretical” portion of the models seems relatively small 
in comparison with all the auxiliary elements. We do 
not think this is unusual, as there are many complexi-
ties related to both development and measurement that, 
while critical for modeling, may be less interesting or rel-
evant when formulating initial vague theories. Perhaps 
counter- intuitively, relatively more auxiliary assump-
tions are likely necessary when the number of variables 
included is relatively low, or at least, when only some 
aspects of the core system are observed. In such cases, 
the model needs to account for structural forces from 
unobserved variables (such as cognition or brain devel-
opment in this case) in hopes of being able to tease apart 
relations between the variables of interest, without (too 
much) confounding due to unaccounted for additional 
variables. In our case we accounted for persistent influ-
ences on growth by including a state- dependent trend 
structure, then considered how the shorter- term tem-
poral dynamics we included lined up with the various 
theories. By including a second form of long- term devel-
opment structure— that of age moderated parameters for 
each individual— we were also able to address how the 
relevance of the different theories may change through-
out development. While we believe and have argued for 
some justification to the model building process, it is as 
noted still an initial formalization, and any elements of 
the models are open to critique, both from theoretical as 
well as data- driven perspectives. Do our measurements 
sufficiently reflect competence in maths and language, 
across the age range we have assessed? Is it reasonable 
to think that fluctuations in observed performance at 
least partly reflect fluctuations in actual competence?  
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Is a linear age effect sufficient to capture major patterns 
of developmental change in the parameters of interest? 
These are but a few examples of the sorts of questions 
researchers engaged in similar modeling exercises will 
have to consider.

Limitations

While the Mindsteps online- learning data are won-
derfully rich in some dimensions, the unsurprisingly 
large amount of measurement uncertainty, as well as 
the relatively short observational period for most stu-
dents (median observed time range is 1.73 years), does 
somewhat hinder the endeavor to distinguish long- term 
trends from genuine short- term variation. More years 
of the Mindsteps system running should offer further 
opportunities.

The lack of covariates such as working memory also 
means that while we could address some questions re-
garding relations between domains, questions as to the 
cause of commonalities, or change in such commonali-
ties, were unable to be addressed. This means that there 
are substantial influences on the system for which we 
do not have data, making interpretations of system pa-
rameters very dependent on how we have modeled these 
unmeasured influences, via the trend and system noise 
components. Ideally, alternative plausible specifications 
would also be considered. A core example here is the 
modeling of the trend and dynamics as separated, which 
may be more conservative than necessary— a higher- 
order model combining both slower and faster dynamics 
would be an interesting contrast (Boker et al., 2016).

The two- step modeling approach, in which ability 
estimates for each occasion were first generated from 
binary test data, is inevitably not ideal, but necessary 
for computational reasons. Although including the age- 
moderated measurement model should have minimized 
the cost of such a two- step approach, we are investigat-
ing possibilities for combining both steps.

We did not discuss model fit throughout this paper, 
though note that as models increased in complexity, out- 
of- sample likelihoods (based on 10- fold cross- validation) 
continued to rise, suggesting improved model perfor-
mance. Nevertheless, a more comprehensive model 
validation approach would be important to increase 
confidence in inferences. This might include comparing 
various quantities of interest between simulations from 
the fitted model and the raw data (Gelman et al., 1996), 
assessment of residuals (Lin et al.,  2002), or compari-
sons to alternative more flexible models (Chow, 2019). A 
small example of residual checks is shown in Appendix 
Figures  H1 and H2. A more comprehensive approach 
should also consider if inferences depend on data- driven 
modeling choices— leaving a portion of data untouched 
except for a verification model fit at the end can be help-
ful to break any such dependency.

CONCLUSION

Probably, the most striking result in this work is the high 
correlation between short- term fluctuations in perfor-
mance of maths and language. Unfortunately, there are 
a variety of possible reasons for this high correlation that 
need further research to disentangle— is it an artifact 
of our low- stakes measurement procedure or measure-
ment model, or genuine fluctuations in a common cause 
such as motivation? With respect to the three theories 
relating maths and language considered, the directional 
results we have provided at best very tenuous evidence 
for the medium function hypothesis (Bruner,  1966; 
Cohen & Dahaene, 1995; Fetzer & Tiedemann, 2018) in 
which language facilitates mathematics performance. 
The high correlation in system noise and correlated 
trends between maths and language would seem to sup-
port the thinking- function hypothesis (Daneman & 
Merikle,  1996; Lombrozo,  2006; Peng et al.,  2018). Al-
though this high correlation in system noise would seem 
to speak against the idea that learning mathematics or 
language draws potential resources away from learn-
ing the other, the fact that cross- effects in both direc-
tions became more negative with age, when students may 
struggle more with time pressure and demands, does fit 
with the ideas of specialization discussed by Hofer (2010) 
and Köller et al. (2001).

In terms of the modeling framework, while it is cer-
tainly not the only approach to instantiating theories 
and fitting them to data, the flexibility of combining sto-
chastic differential equations with measurement models 
and individual differences does offer opportunities. The 
models discussed in this paper can easily be extended 
using ctsem or other software to include additional pro-
cesses (cognitive performance such as working memory 
would be invaluable) as well as more sophisticated dy-
namics and measurement as needed. Some downsides of 
this framework are computational cost, the unfamiliar 
mathematical language (for social scientists), and some-
times unexpected dependencies in parameterization— 
some of which we have discussed in hopes of mitigating 
problems. However, given that the continuous- time pa-
rameterization employed here is, arguably, closer to the 
way we think about developmental processes than com-
mon modeling frameworks, these costs are likely worth 
bearing in at least some cases. By taking the step to ex-
plicitly formalize developmental theories in such a way, 
we take steps to interrogate and expand our understand-
ing of the theories, hopefully leading to more thoughtful 
theory development and model instantiation.
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