
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Evaluating Learning-to-Rank Models for Prioritizing Code Review Requests using
Process Simulation

Yang, Lanxin ; Liu, Bohan ; Jia, Junyu ; Xue, Junming ; Xu, Jinwei ; Bacchelli, Alberto ; Zhang, He

DOI: https://doi.org/10.1109/saner56733.2023.00050

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-257174
Conference or Workshop Item
Accepted Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Yang, Lanxin; Liu, Bohan; Jia, Junyu; Xue, Junming; Xu, Jinwei; Bacchelli, Alberto; Zhang, He (2023). Evaluating
Learning-to-Rank Models for Prioritizing Code Review Requests using Process Simulation. In: 2023 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER), Taipa, Macao, 21 March 2023
- 24 March 2023. Institute of Electrical and Electronics Engineers, 461-472.
DOI: https://doi.org/10.1109/saner56733.2023.00050

Evaluating Learning-to-Rank Models for Prioritizing

Code Review Requests using Process Simulation

Lanxin Yang∗, Bohan Liu∗, Junyu Jia∗, Junming Xue∗, Jinwei Xu∗, Alberto Bacchelli†, He Zhang∗

∗State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, China
†Department of Informatics, University of Zurich, Switzerland

yang931001@outlook.com, bohanliu@nju.edu.cn, {jjyu_keji, xjm990917, jinwei_xu}@163.com,

bacchelli@ifi.uzh.ch, hezhang@nju.edu.cn

Abstract—In large-scale, active software projects, one of the
main challenges with code review is prioritizing the many Code
Review Requests (CRRs) these projects receive. Prior studies have
developed many Learning-to-Rank (LtR) models in support of
prioritizing CRRs and adopted rich evaluation metrics to com-
pare their performances. However, the evaluation was performed
before observing the complex interactions between CRRs and
reviewers, activities and activities in real-world code reviews.
Such a pre-review evaluation provides few indications about
how effective LtR models contribute to code reviews. This study
aims to perform a post-review evaluation on LtR models for
prioritizing CRRs. To establish the evaluation environment, we
employ Discrete-Event Simulation (DES) paradigm-based Soft-
ware Process Simulation Modeling (SPSM) to simulate real-world
code review processes, together with three customized evaluation
metrics. We develop seven LtR models and use the historical
review orders of CRRs as baselines for evaluation. The results
indicate that employing LtR can effectively help to accelerate
the completion of reviewing CRRs and the delivery of qualified
code changes. Among the seven LtR models, LambdaMART and
AdaRank are particularly beneficial for accelerating completion
and delivery, respectively. This study empirically demonstrates
the effectiveness of using DES-based SPSM for simulating code
review processes, the benefits of using LtR for prioritizing
CRRs, and the specific advantages of several LtR models. This
study provides new ideas for software organizations that seek
to evaluate LtR models and other artificial intelligence-powered
software techniques.
Data&materials: https://figshare.com/s/a033e99cd2a61e64c8bc.

Index Terms—Modern code review, code review request, learn-
ing to rank, software process simulation modeling, discrete event
simulation

I. INTRODUCTION

Code review is a widespread process in which peer review-

ers manually examine code changes to detect quality issues [1,

2]. Code review was originally conducted in a synchronous and

heavyweight manner, known as Fagan inspections. Nowadays,

the Pull-based Development (PbD) model [3] has become

dominant and allows code authors and reviewers to participate

in code reviews in an asynchronous and lightweight man-

ner [4]. Such a form of code review is known as Modern

Code Review (MCR) [5].

Despite its benefits, conducting proper MCR is challeng-

ing [6, 7, 8, 9]. In large-scale, active software projects, one of

the main challenges with code review is prioritizing the many

Code Review Requests (CRRs) these projects receive [10].

CRRs sometimes fail to get a timely response because their

number exceeds the workload of reviewers, thus leading to

delayed post-review software activities such as build, testing,

and deployment; a long wait may result in code authors

experiencing negative feelings, especially if their code changes

are eventually rejected [11]. Such long delays and rejections

are especially unpleasant to newcomers in Open-Source Soft-

ware (OSS) communities, who could be discouraged from

making further contributions [12, 13]. A solution to this

problem is to prioritize CRRs. In fact, a good prioritization

mechanism can help detect important and urgent code changes

(e.g., fixes for high-impact bugs), which can be merged more

quickly and their delivery to post-review software activities

accelerated. Also, such a mechanism can help code reviewers

better schedule their time and pay attention to the high-priority

CRRs, and help code authors receive more timely feedback to

improve their changes [14, 15].

As shown in Figure 1, so far most software platforms (e.g.,

GitHub and GitLab) provide only basic rules for ranking

CRRs, e.g., newest and recently updated. There is a wider

range of complex considerations besides recency in practice,

e.g., outcome and urgency [14]. Studies [14, 15, 16, 17, 18]

have employed learning-based prioritizers to address this prob-

lem automatically. These prioritizers are based on a model

(henceforth: Learning-to-Rank or LtR model) that decides on

an optimal ordering of an entire list of CRRs. Selecting an

effective LtR model is critical to prioritize CRRs.

Open PRs
础ersI Q IS p rISOp en
l'l 256 Op en ✓ 21,613 Closed

Ranking rules
O Labels 1037estones9

Author T Label T Proj ect s T Milest ones T Revi ews T Assig nee了 Sort T

-
l'l Cherry-pick Tensor.numpy() segfault fixes on 2.10 x #58012 opened 10 hours ago by reedwm • Approved

Sort by ✓ Newest

X
l'l Cherry-pick Tensor.numpy() segfault fixes on 2.9 x #58011 opened 10 hours ago by reedwm • Approved

Oldest Most commented
l'l Cherry-pick Tensor.numpy() segfault fixes on 2.8 x #58010 opened 10 hours ago by reedwm • Approved Least commentedRecently updated
li. Remove empty glob x #58008 opened 13 hours ago by limdor • Approved － Least recently updated Most reactions
l'l [ROCm] fixed unit test tor gpu_compiler_test on ROCm x #58005 opened 19 hours ago by i-chaochen 一 志

曾

平

夕
l'l [oneDNN] Fix AvgPool3d Floating point exception x #57998 opened yesterday by sachinmuradi • App『oved L�/ 、，一 一

l'l [oneDNN] Adding AddN unit test for bfloat16 x #57989 opened 2 days ago by syedshahbaaz c-

Fig. 1. A motivating example of prioritizing CRRs (TensorFlow project)

Prior studies [14, 15, 16, 17, 18] have developed a range of

LtR models based on different techniques, such as Bayesian

Network [19], Random Forests [20], RankBoost [21], and

ListNet [22]. As LtR models apply supervised machine learn-

ing (ML) for ranking [23], researchers have followed classic

ML procedures for evaluating LtR models. Generally, the

evaluation consists in measuring the similarity between two

ordered lists of CRRs: one representing the ground truth (i.e.,

the “ideal” review orders predefined by reviewers, rather than

the historical review orders) and the other representing the

output of a LtR model. The similarity can be measured with

a variety of metrics such as Mean Average Precision (MAP)

and Normalized Discounted Cumulative Gain (NDCG) [23].

The more similar the two lists are, the better we consider the

LtR model for prioritizing CRRs.

This kind of evaluation is performed before the complex

interactions between CRRs and events (e.g., commenting on

code changes), artifacts (e.g., review comments), and reviewers

take place. Such a pre-review evaluation, together with using

abstract evaluation metrics (e.g., NDCG), provides limited

indications on how LtR models contribute to code review.

Specifically, the state of a CRR (especially its priority) changes

as it crosses events in code reviews, and consequently impacts

the review events, artifacts, and reviewers’ behaviors in a dy-

namic manner. Therefore, the pre-review evaluation provides

only an instantaneous evaluation of LtR models. Moreover,

existing evaluation metrics mainly work for measuring the

distance between the LtR models’ outputs and the “ideal”

orders predefined by reviewers. However, the “ideal” orders

are based on reviewers’ experience that may or not match the

current state of code review. As a result, a pre-review approach

may provide an imprecise evaluation of LtR models.

This study aims to perform a post-review evaluation of

LtR models for prioritizing CRRs. Toward this goal, we

used Discrete-Event Simulation (DES)-based Software Process

Simulation Modeling (SPSM) [24] to customize a dynamic,

iterative environment (i.e., allowing CRRs to correlate with

activities, artifacts, and reviewers in code reviews) for evalu-

ation. Moreover, we customized three post-review evaluation

metrics, two for measuring the completion of reviewing CRRs

and one for measuring the delivery of qualified code changes

at the stage of code review, for providing realistic quantitative

measures of the impact of LtR models on code review.

We developed seven LtR models and compared the orders

resulting from LtR models with the historical review orders

(baseline) on ten OSS projects with more than 117K CRRs

for experiments. The results indicate that using LtR models

can effectively help to accelerate the completion of reviewing

CRRs and the delivery of qualified code changes at the stage

of code review. Among the seven LtR models, LambdaMART

contributes more to completion, while AdaRank contributes

more to delivery, in general.

With this study we make the following main contributions:

• Empirical evidence showing the effectiveness of using

DES-based SPSM for simulating code review processes,

the benefits of using LtR for prioritizing CRRs, and the

specific advantages of several LtR models.

• A novel simulation model that provides a dynamic, itera-

tive experimental environment for post-review evaluation.

• Three new evaluation metrics that provide realistic

quantitative values for understanding how effective LtR

models impact code review. Together, the ideas behind

SPSM and evaluation metrics can help software organi-

zations to evaluate a wider range of artificial intelligence-

powered software techniques besides LtR models.

II. BACKGROUND AND RELATED WORK

This section briefly reviews work that is related to ours.

Code review is one of the critical quality assurance pro-

cesses in software development and maintenance [2, 25, 26].

However, sometimes it becomes wasteful [27]. Software re-

searchers have worked out many intelligent techniques to

improve the efficiency and effectiveness of code review, e.g.,

recommending suitable reviewers [28, 29], and automating

code review [30, 31]. Besides, prioritizing CRRs1 as a tech-

nique to support code review at an early stage, has received

increasing concern.

To select the best ranking model for prioritizing CRRs, Van

Der Veen et al. [16] developed three LtR models: Random

Forests, Logistic Regression, and Naïve Bayes, and evaluated

them with Precision and Accuracy metrics. The results

indicated that Random Forests performed best.

Zhao et al. [14] developed six LtR models: RankNet,

RankBoost, Coordinate Ascent, MART, ListNet, and Random

Forests and two heuristic rule-based models: First-In-First-

Out and Small-Size-First. The authors used the NDCG metric

to compare eight ranking models. The results indicated that

Random Forests win the best model.

Azeem et al. [18] developed seven LtR models to sup-

port prioritizing CRRs, including Logistic Regression, Sup-

port Vector Machine, Random Forests, Decision Trees, Naïve

Bayes, k-Nearest Neighbors, and XGBoost. Among them,

XGBoost outperformed the others in terms of F1-score,

Accuracy, MAP, and Average Recall metrics.

Saini and Britto [15] constructed five LtR models to select

the most appropriate one for constructing a CRR priori-

tizer, including Bayesian Network, Random Forests, Gradi-

ent Boosting, Logistic Regression, and k-Nearest Neighbors.

Among them, Bayesian Network worked best on Root Mean

Square Error and Mean Absolute Error metrics.

Fan et al. [17] used Random Forests to build the LtR model

and reinforced it with cost-sensitive learning strategies. The

results indicated this model outperformed random guess as

well as other baselines (Bayesian Network in Jeong et al.

[32], Random Forests in Gousios et al. [3]) in terms of AUC,

Precision, Recall, and F1-score metrics. These four

metrics together with Cost-effectiveness were adopted

by Islam et al. [33]. The authors developed six LtR models,

including LightGBM, DNN, Random Forests, GradientBoost-

ing (GBT), ExtraTrees, and Logistic Regression. The results

indicated that LightGBM occupied the leading position.

Overall, prior studies have developed many LtR models to

prioritize CRRs and employed very rich evaluation metrics.

1As most studies do not specify the stage of PRs and the beneficiaries
(reviewer or integrator), this section does not distinguish CRRs and PRs.

However, there are no commonly accepted evaluation metrics

or best LtR models so far. Moreover, they rarely considered

the dynamic, iterative code review processes. The evaluation

was performed in a pre-review style, i.e., LtR models were not

correlated with the complex activities, artifacts, and reviewers

in code reviews. Therefore, the evaluation metrics can be

immediately calculated before performing code reviews. Due

to this, developers are not clear exactly how effective LtR

models contribute to code review.

III. PRELIMINARIES

This section outlines (1) learning-to-rank, the core tech-

nique for developing evaluation subjects; and (2) software pro-

cess simulation modeling, the core technique for developing

the environment for post-review evaluation.

A. Learning-to-Rank

Learning-to-Rank (LtR) refers to applying supervised ma-

chine learning techniques for training models in a ranking

task [23], which has been widely employed in the information

retrieval field. In LtR, a system maintains a collection of

examples, and when a query is submitted, the system retrieves

examples associated with the query from its collection, ranks

examples, and returns top examples. When developing datasets

for training LtR models, each query is associated with several

examples and their relevance (i.e., label) to the query. Given

the context of prioritizing CRRs, the query could be “which

CRRs are most likely to be merged?”, “which CRRs are easiest

to review?”, etc. Once the query is clear, we can focus on

training LtR models and testing/evaluating them.

There are three main learning strategies in LtR: pointwise,

pairwise, and listwise. Pointwise LtR models transform the

ranking problem into classification, regression, or ordinal re-

gression. Pairwise LtR models take example pairs as instances

in learning and formalize the ranking problem as that of classi-

fication or regression. Finally, listwise LtR models determine

the optimal ordering of an entire list of examples [22, 23].

Besides constructing the LtR models investigated in the prior

related studies, we develop several classic LtR models to

ensure that each of the three learning strategies is investigated

in this study.

In this study, the goal of LtR models is to assign priority to

each CRR and output the optimal ordering of the entire list of

CRRs. We are particularly interested in (1) whether there is

a difference between prioritization and non-prioritization, and,

(2) if differences exist, whether there are differences among

multiple LtR models.

B. Software Process Simulation Modeling

A software process is defined as a set of activities, methods,

practices, and transformations that people use to develop and

maintain software and associated artifacts [34]. A model is

an abstraction of a real or conceptual complex system [35].

Software Process Simulation Modeling (SPSM) is a set of

modeling techniques that imitate behaviors of real-world

software processes [24]. Kellner et al. [35] summarized six

main purposes of using SPSM: (1) strategic management, (2)

planning, (3) control & operational management, (4) process

improvement & technology adoption, (5) understanding, and

(6) training & learning. SPSM has now been employed to ad-

dress various issues in software development [36, 37, 38, 39].

There are three main simulation paradigms in SPSM:

Discrete-Event Simulation (DES), System Dynamics (SD),

and Agent-Based Simulation (ABS). DES simulates a sys-

tem/process as a sequence of discrete events that occur over

time. SD focuses on simulating the nonlinear behavior of a

dynamic system rather than the fine details. SD simulates a

dynamic system at a high level of abstraction and in contin-

uous time. While ABS simulates a system by its individual

active agents that interact with each other [35, 38].

A code review process consists of a series of time-varying

sub-processes (events) in which CRRs pass through each sub-

process sequentially and interact with various events (e.g.,

commenting), artifacts (e.g., comments), and reviewers si-

multaneously [4]. DES is a good fit for simulating such a

process as it assumes few changes between events (the events

in a code review process are clear). In addition, DES has the

capability of modeling events in a process at a relatively low

or medium level of abstraction, providing rich quantitative and

qualitative feedback for observing simulation details. More

importantly, DES can distinguish each simulated object (CRR

in this study) with extensive attributes, while the other two

paradigms cannot do so [35, 38]. Therefore, we use DES-

based SPSM to simulate code review processes.

IV. THE PROCESS SIMULATION MODEL FOR EVALUATION

This section presents the research methods and procedures

for developing the process simulation model, which comprises

three steps: (1) review process analysis; (2) descriptive model

construction; and (3) simulation model construction.

A. Descriptive Model

As a first step, we investigated code review processes

by analyzing GitHub documents and then interviewing five

developers with code review experience from large software

companies. Specifically, we drafted a GitHub-style code re-

view flowchart and presented it to each developer individually.

We revised the flowchart based on their feedback to output a

widely accepted descriptive model.

We found there are two main roles in code reviews: code

authors and reviewers. Code authors fork the main branch

of a project and make local changes such as adding new

features, fixing bugs, and refactoring; then commit and submit

CRRs to the project. Code reviewers pick up CRRs from the

waiting list and comment on the CRRs when defects are found.

Code authors fix defects according to review comments and

resubmit CRRs. When no further defects are found, the CRRs

are qualified to be merged into the main branch.

Then we customized the prioritization-specific code review

processes as the focus of this study is to evaluate LtR

models in the context of prioritizing CRRs. Specifically, we

divided the prioritization-specific processes into eight main

events, which together constitute the descriptive model. The

descriptive model is an abstraction of real-world situations that

can be used to explain prioritizing CRRs and to construct

the simulation model. Figure 2 shows an overview of the

descriptive model, where the eight main events are labeled

E1-E8, respectively. Compared with general code review pro-

cesses in the real-world situation, we particularly customized a

“prioritization” part (E2) and its implementation—“LtR” (E3).

The customized code review processes are as follows: Code

authors create and submit CRRs (E1); code reviewers decide

whether to automatically prioritize CRRs (E2); if prioritized,

reviewers enable LtR models to obtain an ordered list of

CRRs (E3); otherwise, reviewers personally decide the review

order of CRRs (E4); reviewers check their daily workload to

decide whether to continue reviews (E5); if continue, reviewers

examine a CRR and leave comments if needed (E6); after then,

reviewers check whether the CRR needs further review (E7);

finally, integrators decide whether to merge the CRR and then

close it (E8).

B. Simulation Model

1) Basic Assumptions: To better simulate real-world situa-

tions while developing a customized experimental environment

for evaluating LtR models in the context of prioritizing CRRs,

we propose three main assumptions behind the simulation

model. The first assumption is that prioritizing CRRs has

no impact on the outcomes (e.g., number of review times

and acceptance) of a CRR. According to our interviews,

such outcomes depend heavily on the code changes and the

authorship of a CRR. Therefore, it is possible to evaluate

the impact of LtR models from a process perspective. The

second assumption is that a review team stops reviewing CRRs

once it reaches its daily workload (so there are open CRRs

in the project repository) and the team’s daily workload can

be measured by its total number of review times for CRRs.

Therefore, the number of open CRRs could be used to calibrate

the parameters and variables of our simulation model as well

as to verify it. The third assumption is that the distribution of

the datasets rarely changes [40] when adjusting the order of

adjacent CRRs; otherwise, the performance of LtR models is

easily affected. Therefore, we could re-train LtR models after

a certain amount of time (e.g., 24 hours) because real-time

training of LtR models within the simulation model is highly

time- and cost-consuming.

2) Model Construction: We employed DES-based SPSM

with AnyLogic [41] which is a popular simulation modeling

software (specifically, its process modeling library), to transfer

the descriptive model into an executable simulation model.

The process modeling library provides rich components, which

can be used to describe a series of discrete events over time.

Figure 3 shows an overview of the simulation model. For

descriptions of the main components used, please refer to the

Library Reference Guides [42]. Note that some components

are set for implementation convenience in AnyLogic, e.g.,

“Ordered_List2” is set to cache “Ordered_List1”.

We present the major events in the customized code re-

view processes by elaborating on the mappings between the

descriptive model (cf. Figure 2) and the simulation model (cf.

Figure 3).

E1: Start. The E1 simulates the event of creating and

submitting CRRs. The internal system time of the model is

set to the start of the historical time span (01/06/2021 –

15/06/2022), and then the model starts to run. When each

CRR is submitted, a delay time is set with it for simulating

the time spent on creating and submitting. The simulation

model assigns each CRR’s attributes with a set of parameters

and variables (cf. Table I) based on historical data such as

the number of review times, merge outcome, and so on.

When E1 occurs for a while, the model has accumulated

some ordered (based on the submission time) CRRs that are

awaiting prioritization (if E3 triggers) and review. For the sake

of practical application (e.g., re-training LtR models once a

day), the simulation unit is set to one day; and for the sake of

succinctness (e.g., ignoring discrete changes within a CRR),

the review unit is set to one CRR.

E2: Switching to Prioritize CRRs. The E2 simulates the

event of the switching to prioritize CRRs. If the prioritization

switch is turned on, then the E3 (Learning to Rank) is

triggered; otherwise, the E4 (Human Decision) is triggered.

E3: Learning to Rank CRRs. The E3 simulates the event

of re-ranking the list of CRRs by employing LtR. Note that

the priority of each CRR is definite in one round of review,

referring to leaving a review comment or closing without any

review comments, and the priority of a CRR can be adjusted

in the next round of review (if needed). The E3 outputs an

“ideal” optimal ordering of the entire list of CRRs, i.e., the

most promising and urgent CRRs have the highest priority

(labeled with “Ordered List” in Figure 2). In the E3, the

simulation model directly leverages the outputs of LtR models

to accelerate the process of prioritizing CRRs. Note that the

processes of training and testing LtR models are not described

in the descriptive and simulation model. The role of LtR

models, in this case, is merely to provide an ordered list.

Since LtR is a supervised learning task, we used labeled CRRs

to train LtR models. For details on the datasets and training

settings, please refer to Section V-B.

E4: Human Decision on CRRs. The E4 simulates the

event of re-ranking the list of CRRs based on human de-

cisions. In reality, the waiting list of CRRs is sent directly

to code reviewers if the prioritization switch is off. While in

the simulation model, the waiting list of CRRs (ordered by

the historical submission time) is re-ranked by querying the

historical review time of each CRR (labeled “Ordinary List” in

Figure 2). Technically, the model simulates human decisions

on prioritization by querying historical time.

E5: Checking Review Team’s Workload. The E5 simu-

lates the event of whether to continue to review CRRs. Before

reviewing CRRs, the simulation model checks whether the

review team’s workload remains. If the workload remains, then

the E6 (Code Review) is triggered; otherwise, the E2 (Switch-

ing to prioritize CRRs) is triggered. The daily workload of a

E2:

Prioritization?

E7:

Review for a

CRR completes?

E8: EndE1: Start

E3: Learning

to Rank

N

Y

Waiting

List

Ordinary

List

Ordered

List

E5:

Workload of a

Team Remains?

E6: Code Review

N

Y

N

Y

E4: Human

Decision

Fig. 2. An overview of the descriptive model

E1: E2: E3:

E4:

E5: E6: E7: E8:

Fig. 3. An overview of the simulation model (implemented with AnyLogic 8.8.0)

review team is measured with the “number of review times”,

which can be accessed from the historical data. Please refer to

E7 for the measure of “number of review times”. The review

team stops working when it has completed its daily workload,

and the team continues to work the next day.

E6: Code Review. The E6 simulates the event of picking up

and reviewing CRRs. In this event, code reviewers regularly

pick up a CRR from the top of the list of CRRs (“Ordered List”

or “Ordinary List”). When there are defects or issues that are

unclear, reviewers leave comments for specific lines of code

changes or the whole file. For different types of CRRs (e.g.,

adding features and fixing bugs), the time spent on reviewing

is unequal. We followed the code review experience at one

of the global Information and Communication Technology

(ICT) enterprises, and set six types of CRRs in the simulation

model based on the keywords occurring in the descriptions or

function names of a CRR, specifically, “feature”, “bug/test”,

“refactor/improve”, “documents”. The time spent on reviewing

CRRs is set as “feature”–10 minutes, “bug/test”–5 minutes,

“refactor/improve”–15 minutes, “documents”–5 minutes, none

(i.e., without occurring any predefined keywords)–10 minutes,

mix (i.e., occurring multiple predefined keywords)–15 min-

utes. Moreover, the simulation model does not personalize

each code reviewer, but rather considers them as a whole team.

E7: Checking CRR’s Completion. In some cases, a CRR

receives several rounds of feedback (review comments) or

receives no feedback at all before closing. The E7 simulates

the event of re-commenting on a CRR (if needed). The number

of review times is defined for a CRR, and it is measured

with the “number of review comments plus 1”. Despite being

checked by reviewers, the integrator still makes the final check

on a CRR. The ‘1’ accordingly is set to simulate this case. On

the other hand, the ‘1’ works for the case in which a CRR

receives no feedback but is closed, i.e., merged or rejected.

The number of review times for a CRR can be accessed from

the historical data. In the simulation model, when a CRR

receives a comment, its number of review times is reduced

by 1. Therefore, the judging condition is set as “number of

review times > 0”. If the judging condition is true, the CRR is

sent back to the waiting list to be prioritized (if needed) and

reviewed; otherwise, the E8 is triggered.

E8: End. The E8 simulates the event of closing (i.e.,

merging or rejecting) a CRR. This study does not consider

the “reopen” situation as it rarely appears [43]. Therefore, a

CRR has reached the end of its life cycle in the simulation

model after E8. In the E8, those CRRs that have not yet been

closed (i.e., remaining in the simulation model) on the end

day (15/06/2022) of simulation are either sent to the “Ordered

List” or the “Ordinary List” according to their previous events,

to ensure that the number of exit CRRs is equal to the number

of entry CRRs (as shown at the bottom of Figure 3).

3) Model Calibration: It is critical to assume that param-

eters and variables follow probability distributions in order to

simulate real-world processes. In this study, however, we did

not rigorously require such an assumption and corresponding

calibration procedures since we utilized the historical data

to develop a realistic evaluation environment. The workload

of a review team is one of the most important variables of

the simulation model. The lack of recording makes modeling

this part the most challenging. We assumed using a given

number of CRRs or a given duration of time spent at first. By

employing such settings, we found very high accumulations of

CRRs, which was clearly contrary to the real-world situation.

After interviewing developers with this issue, we used the

historical “number of review times” to measure a review

team’s workload as it dynamically reflects the real-world

situation on a daily basis.

Table I presents the main parameters and variables of the

simulation model. Parameters are mainly used to describe the

static characteristics of the modeled objects; while variables

are mainly used to describe the dynamic state of the modeled

objects or store results.

TABLE I
DESCRIPTIONS OF MAIN PARAMETERS AND VARIABLES

Parameter Description

id The identifier of a CRR.

type The type of a CRR. It is characterized by the keywords

occurring in the description.

submission_time The time of submitting a CRR.

review_time The time spent reviewing a specific type of CRR.

comments_num1 The number of historical review comments of a CRR.

comment_time1 The date list of commenting on a CRR. It is only used to re-

rank the historical waiting list of CRRs (to model E4).

merge_time The time of merging a CRR. It is only used to re-rank the

historical waiting list of CRRs (to model E4).

close_time1 The time of closing a CRR. It is only used to re-rank the

historical waiting list of CRRs (to model E4).

is_merged Whether a CRR is merged into the main branch?

switchOn Whether enabling prioritizing CRRs?

submission_delay The delay time of submitting a CRR.

prioritization_delay The delay time of prioritizing CRRs.

transfer_delay The delay time of transferring CRRs to the waiting list.

Variable Description

priority The priority score of a CRR. It is assigned by the LtR model.

comments_num2 The number of review comments of a CRR in the simulation

model.

comment_time2 The time of commenting on a CRR in the simulation model.

close_time2 The time of closing a CRR in the simulation model.

day_num The time span of the simulation. It is measured by the number

of days.

workload The number of review times that a review team undertakes in

a day.

merge_num The number of CRRs merged in a day.

review_num The number of CRRs reviewed in a day.

review_time_spent The time spent on reviewing CRRs of a day.

open_num The number of open CRRs when starting to perform code

reviews in a day.

open_time_spent The time spent on reviewing all the open CRRs in a day.

4) Model Verification and Validation: Verification and val-

idation are critical procedures in SPSM to secure the quality

and credibility of a model [44]. Following Lindland et al.’s [45]

and Ahmed et al.’s [46] framework for understanding quality in

conceptual modeling, we verified and validated the simulation

model by considering three major aspects of quality.

Syntactic quality concerns the syntactic correctness of the

model corresponding to modeling grammars. Toward this goal,

two researchers independently checked the parameters and

variables of each component, links between components (e.g.,

condition branches and loops), and the model meets the syntax

defined in the simulation software—AnyLogic.

Semantic quality concerns the feasible validity and feasible

completeness of the model. Four researchers first confirmed

the structure of the DES-based simulation model is consistent

with the descriptive model. Specifically, for feasible validity,

four researchers checked the model’s settings that may be

invalid but should not be eliminated (e.g., CRR types and time

spent). For feasible completeness, four researchers checked the

completeness of the model and removed duplicate settings.

Pragmatic quality concerns the comprehension and under-

standability of the model. The former is related to audience

groups and the latter is related to models. This aspect re-

quires a model to be easily understood and manipulated by

users. Especially for the former, we first invited dozens of

postgraduate students who have little knowledge of SPSM

and three doctoral students who have at least five years of

experience in SPSM to check and correct our descriptive

model and simulation model. Then, we invited four developers

with knowledge and experience in SPSM from the software

development division at an ICT enterprise to further verify and

validate our models.

It is worth reporting on one of the measures we have

taken to test the validity of our simulation model. As one

of the objectives of this study is to investigate the differences

resulting from prioritization; therefore, the historical review

orders (“Ordinary List”) rather than the historical submission

orders were expected to be baselines. Figure 4 shows an

example of measuring the simulation biases on the Tensor-

Flow project. The dependent/observed variable is the number

of open CRRs. Specifically, “Real-world” is the number of

open CRRs accessed from history. While “Simulated” is

the number of open CRRs resulting from “Ordinary List”,

which is subject to many settings of the simulation model,

e.g., the “workload” of a review team. Intuitively, although

there are some fluctuations, the trends of the two curves are

generally similar. We used the Mean Magnitude of Relative

Error (MMRE) [47] to measure the distance between the two

sets of variables. The MMRE for simulating the TensorFlow

project is 0.177 (the complete data items are available in the

online replication package [48]), which quantitatively validates

the reasonableness of our settings. Accordingly, the historical

review orders are adopted as baselines.

0

50

100

150

200

250

300

350

400

20
21

/6
/1

20
21

/7
/1

20
21

/8
/1

20
21

/9
/1

20
21

/1
0/

1

20
21

/1
1/

1

20
21

/1
2/

1

20
22

/1
/1

20
22

/2
/1

20
22

/3
/1

20
22

/4
/1

20
22

/5
/1

20
22

/6
/1

Real-world Simulated

Fig. 4. A comparison of the number of open CRRs from the real-world
situation and simulation model for the TensorFlow project

V. EXPERIMENTS

This section reports on the experimental designs and results.

A. Research Questions

Given a definite workload of a review team that is measured

by the number of daily review times, two Research Questions

(RQs) are proposed to guide experiments.

• RQ1: How effective are LtR models in accelerating the

completion of reviewing CRRs?

• RQ2: How effective are LtR models in accelerating the

delivery of qualified code changes?

B. Experimental Designs

1) Project Selection: Table II outlines the demographics

of ten OSS projects selected for experiments. The selection

criteria are as follows: (1) has been investigated in the prior

related studies (i.e., [14, 16, 17, 18]); (2) has more than 40%

merge rate (to exclude projects adopting non-PbD model) [14];

(3) has accumulated more than 2000 CRRs (to exclude small-

scale, inactive projects) as we found the numbers of CRRs

of the majority of projects exceed 2000 after meeting the

previous two criteria. Moreover, the projects should be diverse

in terms of project domains, programming languages, etc. With

these measures, we expect to ensure the projects’ suitability

for experiments.

TABLE II
DEMOGRAPHICS OF THE SELECTED PROJECTS

Project Time span #CRR #Merge #Author #Reviewer

Katello (P1) 04/2012–06/2022 9852 8845 199 127

Kuma (P2) 02/2011–06/2022 6687 5739 373 116

Moby (P3) 02/2013–06/2022 21795 17057 2362 1168

OpenCV (P4) 07/2012–06/2022 13108 10580 1898 665

React (P5) 05/2013–06/2022 12289 8329 1725 958

scikit-learn (P6) 09/2010–06/2022 13626 9139 2624 1614

TensorFlow (P7) 11/2015–06/2022 21164 14650 4016 1547

Terraform (P8) 07/2014–06/2022 12258 10011 1992 575

NetBeans (P9) 09/2017–06/2022 3875 3224 215 139

Phoenix (P10) 01/2014–06/2022 2661 2065 1129 267

Total – 117315 89639 16533 7176

* Data collection ends on 15/06/2022.

2) Priority Setting: After experimental projects are se-

lected, the next step is assigning each CRR a priority score to

build ground truth datasets for training LtR models. Unfortu-

nately, so far there is no commonly agreed definition of CRRs’

priority. In this study, we measured the priority of a CRR from

two perspectives: outcome and urgency. An urgent CRR that

also has a positive outcome should be given high priority.

Specifically, we characterized the outcome of a CRR with its

acceptance on merging into the main branch, i.e., accept or

reject [49, 50, 51]; we characterized the urgency of a CRR

with the time waiting for the first round of review feedback

that was inspired by a large number of prior related stud-

ies [52, 53, 54, 55, 56]. The sub-label outcome is quantified

with two values: 4–accept, and 0–reject; the sub-label urgency

is quantified with five values: 0–very slow, 1–slow, 2–medium,

3–fast, and 4–very fast through equally dividing the time span

for receiving the first feedback in historical data for a project.

The ultimate label (i.e., relevance with respect to the unique

query) of a CRR is the sum of two scores, which was inspired

by prior studies [18].

3) LtR Models and Features: In the simulation model, each

CRR is assigned a priority score by calling the pre-trained

LtR models. Specifically, we trained the following seven LtR

models. Two of them (i.e., Random Forests and Bayesian

Network) have been intensively studied [14, 16, 17, 18], others

are popular in various tasks in the field of information retrieval,

thus serving as experimental subjects in this study.

• Bayesian Network (BN) [19] is a probabilistic graphical

model that leverages Bayesian inference on a directed

acyclic graph to model causal relationships among a set

of variables. It is implemented in a pointwise style.

• Random Forests (RF) [20] is an ensemble of multiple

decision tree models, each of which is independent of the

others. It is implemented in a pointwise style.

• RankBoost [21] is a pairwise LtR model. It uses the

boost strategy to iteratively create and aggregate a group

of “weak rankers” to build a ranking model.

• AdaRank [57] is a listwise LtR model. It also iteratively

constructs “weak rankers” as RankBoost, but its loss

function is directly defined on performance measures.

• Coordinate Ascent (CA) [58] is a listwise LtR model. It

differs from other LtR models by employing “coordinate

ascent” which iteratively optimizes the objective function

by solving a series of one-dimensional searches.

• ListNet [22] is a listwise LtR model. It learns the joint

probability distribution via neural network and gradient

descent for a ranking list rather than the point or pairwise

probability of examples.

• LambdaMART [59] is a listwise LtR model. It is a

combination of LambdaRank [60] and MART (Multiple

Additive Regression Tree) [61].

Table III presents the extracted features for training LtR

models. Considering LtR models assign a CRR with a priority

score when it remains on the waiting list and has not been

reviewed in the simulation model. Therefore, we did not con-

sider features related to review processes when training LtR

models. Moreover, we did not consider features related to the

quality of code changes due to the lack of evidence indicating a

correlation between code quality and acceptance [62]. Despite

this, Table III aggregates a wide range of features, such as

source code, project information, and author experience.

We collected the experimental datasets through the GitHub

REST API [63] and developed LtR models with the RankLib

library [64]. Then, we performed the min-max normalization

to mitigate the impact of data scales. Finally, we trained the

LtR model for each project. The time span of the training

dataset is from each project’s start time to 31/05/2021, and the

time span of the testing dataset is 01/06/2021 – 15/06/2022.

TABLE III
FEATURES EXTRACTED FROM CODE REVIEW REQUESTS

Feature Description Ref.

is_merged Whether the patch is merged? [18]

assignees The number of assignees (i.e., “@xxx”). [18]

has_test Whether the function name contains the word “test”? [16]

has_bug Whether the description contains a “bug”? [17]

has_feature Whether the description contains a “feature”? [17]

has_improve Whether the description contains a “improve”? [17]

has_document Whether the description contains a “document”? [17]

has_refactor Whether the description contains a “refactor”? [17]

directories The number of directories modified. [17]

subsystems The number of subsystems modified. [17]

language_types The number of programming language types used. [17]

file_types The number of file types in the CRR. [17]

lines_added The number of lines of code added. [17]

lines_deleted The number of lines of code deleted. [17]

segs_added The number of segments of code added. [17]

segs_deleted The number of segments of code deleted. [17]

segs_changed The number of segments of code changed. [17]

files_added The number of files added. [17]

files_deleted The number of files deleted. [17]

files_changed The number of files changed. [17]

file_developer The number of developers who changed files. [17]

change_num The average number of commits of a CRR submitted

by the author.

[17]

files_modified The number of times files were modified before. [17]

is_core_member Whether the author is a core member of the project? [65]

commits The number of commits. [65]

labels The number of labels affiliated. [65]

prev_CRRs The number of CRRs created by the author. [65]

title_words The number of words in the title. [65]

body_words The number of words in the body. [65]

commits_average The average number of commits per CRR. [65]

4) Evaluation Metrics: As the post-review evaluation aims

to explain to developers how effectively LtR models accelerate

reviewing CRRs and delivering qualified code changes, the

commonly used metrics such as MAP and NDCG are no

longer appropriate due to ignoring review outcomes. There-

fore, we customized the following evaluation metrics.

• Completion (RQ1)

Ec1 =
1

K

K∑

i=1

Nir

Nio

(1)

where, K is the number of days simulated, Nir and Nio are

the number of reviewed CRRs (is recorded after the simulation

ends) and the number of open CRRs (is recorded before the

simulation starts) on the i
th day, respectively.

Ec2 =
1

K

K∑

i=1

Tir

Tio

(2)

where, Tir and Tio are the time spent on the reviewed CRRs

and the time spent (should) on the open CRRs on the i
th day,

respectively.

• Delivery (RQ2)

Ed =
1

K

K∑

i=1

Nim

Nir

(3)

where, Nim and Nir are the number of merged CRRs and

the number of reviewed CRRs on the i
th day, respectively.

Ec1, Ec2, and Ed are percentages from 0% to 100%.

C. Results and Analysis

Table IV summarizes the performance of each LtR model

for prioritizing CRRs (the best results are highlighted in bold).

1) Answer to RQ1: We first focus on each LtR model’s con-

tribution to accelerating the completion of reviewing CRRs.

When it comes to the completion-specific metric Ec1, i.e., the

ratio of the number of reviewed CRRs to the number of open

CRRs, LambdaMART has an average Ec1 of 0.132 on ten

projects, which occupies the first among seven models as well

as significantly higher than the real-world situation (0.075).

Followed by BN and RankBoost, their performances in terms

of Ec1 are 0.120 and 0.115, respectively. RF and ListNet

performed the worst whose Ec1 are 0.071 and 0.074, respec-

tively, which is slightly lower than the real-world situation.

Such a revelation occurs in the second completion-specific

metric Ec2, i.e., the ratio of the time spent on the reviewed

CRRs to the time spent on the open CRRs, the top-3 well-

perform LtR models are LambdaMART (0.127), BN (0.120),

and RankBoost (0.114), the worst-perform LtR model is RF

whose Ec2 is merely 0.069. RF is the only LtR model with

Ec2 lower than the real-world situation (0.073). In summary,

LambdaMART leads both metrics across four projects; BN

dominates in two projects; ListNet and RankBoost each work

best in one project.

2) Answer to RQ2: AdaRank achieves the leading average

performance (0.472) with regard to the delivery-metric Ed

(i.e., the ratio of the number of merged CRRs to the number

of reviewed CRRs) among seven LtR models and the real-

world situation on ten projects. Followed by CA and RF,

their average performances on ten projects in terms of Ed

are 0.453 and 0.438, respectively. ListNet and RankBoost are

in the last two places whose performances in terms of Ed are

0.424 and 0.431, respectively, falling behind the real-world

situation (0.432). AdaRank holds a leading position on seven

projects, and RF and CA occupy one project, respectively. In

particular, none of the LtR models perform better than the

real-world situation (0.545) on the project ‘Katello’ (P1). The

only close performance results from RF (0.544), while the

others are far behind it. Though AdaRank performs best in

most projects, the Ed of AdaRank is merely 0.479 in this

case. In a nutshell, among the seven LtR models, AdaRank has

the highest effectiveness in accelerating code delivery on ten

projects, while the others differ little in terms of the delivery-

specific metric Ed.

By answering two RQs, we find that (1) applying LtR

effectively helps to accelerate the completion of reviewing

CRRs and the delivery of qualified code changes at the stage

of code review; (2) the performances vary among different

LtR models. However, it is worth noting that either for the

completion-specific metrics (Ec1 and Ec2) or the delivery-

specific metric (Ed), there are a few cases in which the

performances of LtR models are inferior to that of the real-

world situation. Although LtR can facilitate code review, it

still needs to reinforce LtR models carefully.

VI. DISCUSSION

This section discusses the considerations and implications

of the process simulation model.

A. Considerations for Historical Data

1) Historical Data for Simulating Review Processes: We

considered the following aspects when leveraging historical

data for simulating code review processes. First, though simu-

lation software (e.g., AnyLogic) can generate CRRs and other

types of data, we made full use of the majority of historical

data because it reflects the most realistic situations such as

the submission time, the waiting time, the type of CRRs,

and the workload of review teams We carefully minimized

the number of assumptions and estimations to reflect real-

world code review processes, in order to provide a realistic

evaluation environment. Second, some historical data may not

be recorded or exist in project repositories (e.g., types of

CRRs, time spent reviewing CRRs, and review expertise). In

this case, we have to make several assumptions and estimations

to ensure the integrity of the code review processes and

the rigor of the simulation model. Finally, there are several

historical data that reflect reality but are not ideal as ground

truth for training models, and therefore require adjustment.

For instance, the code reviewers assigned for CRRs are not

appropriate [66, 67]. Therefore, we treated the reviewers as a

team, without differentiating between individuals.

2) Historical Data for Training LtR Models: The historical

orders of CRRs that had been reviewed may not be an

appropriate benchmark for training LtR models. For example,

code reviewers randomly pick up CRRs or/and carefully select

TABLE IV
PERFORMANCE SUMMARY OF EACH LTR MODEL (post-review EVALUATION)

Non-Prioritization Prioritization

Reality BN RF CA RankBoost ListNet AdaRank LambdaMART

Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed Ec1 Ec2 Ed

P1 .116 .105 .545 .145 .144 .525 .095 .082 .544 .089 .081 .507 .136 .135 .520 .066 .058 .492 .133 .137 .479 .176 .171 .517

P2 .022 .021 .097 .030 .030 .118 .016 .014 .124 .034 .037 .120 .020 .020 .103 .045 .047 .113 .020 .021 .113 .022 .022 .094

P3 .044 .046 .376 .078 .079 .403 .030 .029 .367 .076 .080 .455 .077 .077 .380 .051 .050 .392 .064 .073 .463 .071 .066 .409

P4 .071 .064 .546 .129 .121 .528 .131 .128 .580 .095 .086 .577 .168 .156 .526 .055 .050 .466 .042 .037 .606 .100 .091 .509

P5 .084 .085 .373 .152 .160 .398 .074 .071 .381 .100 .088 .359 .131 .132 .379 .131 .116 .367 .103 .094 .405 .148 .149 .386

P6 .074 .072 .679 .118 .115 .660 .061 .062 .676 .132 .132 .687 .112 .110 .685 .071 .063 .660 .118 .117 .714 .222 .199 .694

P7 .076 .076 .490 .195 .196 .490 .061 .061 .479 .039 .038 .502 .197 .194 .482 .068 .066 .492 .093 .094 .587 .190 .184 .498

P8 .057 .059 .380 .070 .070 .399 .044 .043 .401 .053 .053 .424 .069 .071 .417 .056 .054 .404 .053 .054 .449 .097 .097 .388

P9 .113 .107 .578 .165 .165 .601 .078 .082 .580 .159 .150 .629 .151 .154 .582 .102 .102 .598 .121 .116 .634 .165 .165 .601

P10 .095 .090 .251 .116 .118 .240 .124 .122 .249 .121 .116 .274 .094 .093 .239 .090 .095 .252 .074 .075 .266 .124 .120 .252

Avg .075 .073 .432 .120 .120 .436 .071 .069 .438 .090 .086 .453 .115 .114 .431 .074 .070 .424 .082 .082 .472 .132 .127 .435

Std .028 .025 .163 .047 .047 .155 .036 .035 .159 .039 .036 .161 .049 .048 .160 .026 .023 .151 .036 .035 .171 .057 .054 .163

* The higher the Ec1, Ec2, and Ed of the model, the better of the LtR model is.

CRRs by following specific rules (e.g., First-In-First-Out and

Small-Size-First). As a result, the promising and urgent CRRs

are delayed. In this study, we re-rank the historical list of

CRRs according to the premise that “the most promising and

urgent CRRs should be placed at the top of the list” to train

LtR models. It is worth noting that the testing/evaluation of

LtR models was performed with the customized DES-based

SPSM environment (post-review evaluation) rather than using

the refined datasets (pre-review evaluation).

B. Considerations for Process Simulation

Leveraging LtR models for prioritizing CRRs is an impor-

tant measure to secure the efficiency and effectiveness of code

review at an early stage. While prior studies have primarily

employed pre-review evaluation to select appropriate models,

this study employs post-review evaluation using SPSM. The

main reasons are that although LtR models can provide an

ordered list of CRRs that should be close to the pre-defined

“ideal” list, they cannot test the extent to which the “ideal”

output influences code review. Code review is a dynamic,

iterative software process, e.g., a CRR may be commented on

more than one time by more than one reviewer. The state of a

CRR is subject not only to its original priority assigned by LtR

models, but also to the specific code review process in which

it is positioned. We have conducted a pre-review evaluation

on seven LtR models with three classic evaluation metrics

(i.e., NDCG, MRR, and Kendall’s Tau [23]). The detailed

results are shown in Table V. Random Forests outperformed

the other models among all the three evaluation metrics in

the pre-review evaluation; while LambdaMART and AdaRank

performed well in the post-review evaluation but performed

poorly in the pre-review evaluation. These differences confirm

the necessity of using SPSM to evaluate LtR models in the

context of prioritizing CRRs.

Moreover, since the actions and decisions made at one

point in the process impact others in complex or indirect

ways and must be accounted for, SPSM provides feedback

mechanisms for investigating “what if/whether”-style and un-

expected questions. With SPSM, software organizations can

better understand prioritizing CRRs and test a setting in

a more realistic scenario, thereby reducing costs and risks.

Specifically, many problems remain to be explored in this

study, such as (1) what if changing the settings of types of

CRRs and time spent? (2) what if considering the experience

and expertise of code reviewers (i.e., distinguishing between

each reviewer)?

We would never recommend replacing the pre-review eval-

uation with a post-review evaluation. Instead, the post-review

evaluation could be used as a measure to assist the pre-review

evaluation. For instance, the post-review evaluation metrics

could be used to guide the priority settings of CRR examples

(e.g., giving higher weights to merged CRRs) and the training

of LtR models (e.g., using a cost-sensitive learning strategy).

The ideal LtR models are expected to perform well in two

types of evaluation.

C. Beyond Evaluating LtR Models

Artificial Intelligence (AI) has rapidly evolved over the past

few years, along with an increasing number of its applications

in software engineering [68]. However, AI-powered software

techniques are at risk of being untrustworthy [69]. One of the

major reasons is the weak explainability and interpretability

of their core component—AI algorithms [70]. Researchers

have developed methods for explaining and interpreting the

“black box” AI algorithms [71]; however, these methods are

difficult to understand for non-AI professionals. In addition to

confusion regarding the mechanism of AI algorithms, there

is uncertainty in software organizations about what impact

they will have (e.g., prioritizing CRRs with LtR on code

review). Therefore, AI-powered techniques are applied in

reality with great caution. This paper reports a case study

of adopting SPSM to evaluate LtR models in the context of

prioritizing CRRs. Compared with existing evaluation manners

that focus only on the ranking task itself, SPSM allows AI-

powered techniques (e.g., LtR) to correlate with complex

activities (e.g., prioritization and commenting), artifacts (e.g.,

review comments), and professionals (e.g., code reviewers) in

dynamic, iterative processes (e.g., code review). With SPSM,

software organizations are able to elaborately test an AI-

powered technique and its settings from a broad range of

feedback (e.g., the acceleration of the completion of reviewing

CRRs and the delivery of qualified code changes). Finally, an

AI-powered technique can be safely implemented in reality.

TABLE V
PERFORMANCE SUMMARY OF EACH LTR MODEL (pre-review EVALUATION)

BN RF CA RankBoost ListNet AdaRank LambdaMART

NDCG*MRR KT NDCG MRR KT NDCG MRR KT NDCG MRR KT NDCG MRR KT NDCG MRR KT NDCG MRR KT

P1 .670 .122 .392 .771 .164 .295 .766 .172 .344 .697 .098 .447 .755 .153 .315 .627 .083 .513 .674 .123 .444

P2 .691 .279 .334 .751 .393 .319 .620 .213 .352 .599 .182 .386 .742 .331 .303 .665 .266 .379 .617 .204 .366

P3 .683 .093 .421 .753 .129 .329 .709 .130 .376 .664 .072 .424 .708 .117 .349 .620 .073 .490 .732 .107 .360

P4 .698 .157 .278 .848 .357 .124 .643 .082 .307 .796 .278 .144 .793 .313 .250 .515 .056 .547 .549 .059 .512

P5 .548 .123 .410 .742 .286 .332 .666 .212 .374 .644 .201 .409 .677 .208 .323 .459 .084 .590 .650 .195 .352

P6 .585 .046 .489 .664 .100 .408 .691 .107 .424 .575 .034 .493 .591 .063 .494 .647 .040 .447 .618 .034 .485

P7 .671 .040 .375 .764 .125 .324 .625 .025 .462 .650 .068 .465 .714 .066 .326 .623 .025 .458 .627 .023 .427

P8 .583 .093 .324 .675 .153 .258 .639 .239 .471 .586 .159 .462 .657 .117 .230 .574 .095 .386 .569 .125 .415

P9 .572 .058 .490 .741 .201 .272 .695 .165 .369 .686 .158 .386 .687 .132 .356 .570 .079 .521 .708 .164 .360

P10 .799 .298 .287 .881 .458 .187 .820 .367 .278 .778 .341 .452 .803 .353 .256 .678 .284 .546 .769 .328 .460

Avg .650 .131 .380 .759 .237 .285 .687 .171 .376 .667 .159 .407 .713 .185 .320 .598 .108 .488 .651 .136 .418

Std .073 .086 .071 .063 .121 .076 .061 .090 .059 .071 .092 .093 .061 .104 .071 .066 .086 .066 .066 .087 .054

* The higher the NDCG and MRR of the LtR model, the better the model is; the lower the KT of the LtR model, the better the model is.

VII. THREATS TO VALIDITY

This section describes possible threats to the validity of this

study and our efforts to mitigate their impact.

Internal Validity. One of the possible threats to internal

validity may result from the settings of CRR types. Since

the effort (measured with time spent) put into different CRRs

varies in practice, they may have an impact on the outcomes

of prioritizing CRRs. After analyzing hundreds of CRRs and

interviewing a dozen code reviewers at a global ICT enterprise,

we set six types of CRRs based on keywords that appear in de-

scriptions or function names of CRRs. Another threat concerns

the setting of time spent reviewing different types of CRRs.

Such information varies among code reviewers, and they were

not recorded. Thus, the times spent were set as constants by

interviewing code reviewers, rather than randomly generated

by setting specific probability distributions in the simulation

model. Finally, though our pilot experiments show that the

selected features were slightly different in importance for each

project, we did not customize the project-aware feature set;

otherwise, it would have been difficult to distinguish the effects

generated by the features or LtR models.

Construct Validity. There is no consensus on the measure

of the workload of a review team. In this study, we used the

historical review times for CRRs as a measure of the workload

because it is a realistic record and has been quantitatively

confirmed to be valid in most cases (cf. Section IV-B4).

Another threat to the construct validity may result from the

setting of the priority of CRRs. In this study, we followed the

premise that “the most promising and urgent CRRs should be

reviewed first” and used “acceptance” and “wait” to measure

CRRs’ outcome and urgency, respectively. These settings are

reasonable as merged CRRs indicate that they are important

to the project; otherwise, they may be rejected. While the

longer a CRR waits for review, the lower its urgency is

likely to be. On the other hand, although there are several

metrics for evaluating LtR models, they are generally pre-

review metrics. Therefore, we customized three post-review

metrics to measure the impact of LtR models on code review.

The new evaluation metrics have been confirmed valid by

many software researchers and practitioners.

External Validity. We have only followed the code review

processes at GitHub projects to construct the simulation model.

The processes may slightly differ from those in the industrial

context. However, we have only considered the main processes

of code review. Therefore, the simulation model can be easily

adapted to other contexts with minor customization. Moreover,

some parameters and variables in the model cannot be ac-

cessed by fitting historical data (e.g., time spent on reviewing,

the workload of a review team) that were set by following the

experience at one global ICT enterprise. When employing the

simulation model, especially for the setting of the workload

of a review team, should be tailed according to the specific

contexts of code reviews.

VIII. CONCLUSIONS

Prioritizing CRRs in large-scale, active software projects

nowadays has become one of the major challenges in code

review. Even though a number of LtR models have been

developed to support the prioritization of CRRs, their impact

on code reviews is unclear because existing evaluations of LtR

models are still conducted in a pre-review style. This study

uses DES-based SPSM to simulate code review processes and

proposes three evaluation metrics for post-review evaluation,

i.e., allowing CRRs to correlate with activities, artifacts, and

reviewers in code reviews first, then analyzing LtR models’

impact on the completion of reviewing CRRs and the delivery

of code changes at the stage of code review. The experimental

results indicate that using LtR has a positive impact on accel-

erating the completion of reviewing CRRs and the delivery of

qualified code changes. Especially, LambdaMART is benefi-

cial for accelerating completion; while AdaRank is beneficial

for accelerating delivery. This study provides new ideas and

techniques for software organizations that seek to evaluate LtR

models and other AI-powered software techniques.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China (No.62072227, No.62202219), the Na-

tional Key Research and Development Program of China

(No.2019YFE0105500) jointly with the Research Council of

Norway (No.309494), as well as the Key Research and De-

velopment Program of Jiangsu Province (No.BE2021002-2).

Alberto Bacchelli gratefully acknowledges the support of the

Swiss National Science Foundation through the SNF Project

200021_197227.

REFERENCES

[1] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International

Conference on Software Engineering. IEEE, 2013, pp. 712–721.
[3] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of

the pull-based software development model,” in Proceedings of the 36th

International Conference on Software Engineering. ACM, 2014, pp.
345–355.

[4] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 21th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. ACM, 2013, pp. 202–212.
[5] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,

“Modern code review: A case study at google,” in Proceedings of

the 40th International Conference on Software Engineering: Software

Engineering in Practice. ACM, 2018, pp. 181–190.
[6] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka,

“Code reviewing in the trenches: Challenges and best practices,” IEEE

Software, vol. 35, no. 4, pp. 34–42, 2017.
[7] L. Dong, H. Zhang, L. Yang, Z. Weng, X. Yang, X. Zhou, and Z. Pan,

“Survey on pains and best practices of code review,” in Proceedings of

the 28th Asia-Pacific Software Engineering Conference. IEEE, 2021,
pp. 482–491.

[8] E. Doğan and E. Tüzün, “Towards a taxonomy of code review smells,”
Information and Software Technology, vol. 142, pp. 106 737:1–24, 2022.

[9] L. Yang, H. Zhang, F. Zhang, X. Zhang, and G. Rong, “An industrial
experience report on retro-inspection,” in Proceedings of the 44th Inter-

national Conference on Software Engineering: Software Engineering in

Practice. IEEE, 2022, pp. 43–52.
[10] Q. Chen, D. Kong, L. Bao, C. Sun, X. Xia, and S. Li, “Code reviewer

recommendation in tencent: Practice, challenge, and direction,” in Pro-

ceedings of the 44th International Conference on Software Engineering:

Software Engineering in Practice. IEEE, 2022, pp. 115–124.
[11] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and

challenges in pull-based development: The contributor’s perspective,”
in Proceedings of the 38th International Conference on Software Engi-

neering. ACM, 2016, pp. 285–296.
[12] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why do

newcomers abandon open source software projects?” in Proceedings of

the 6th International Workshop on Cooperative and Human Aspects of

Software Engineering. IEEE, 2013, pp. 25–32.
[13] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa,

“Newcomers’ barriers... is that all? an analysis of mentors’ and newcom-
ers’ barriers in oss projects,” Computer Supported Cooperative Work,
vol. 27, no. 3, pp. 679–714, 2018.

[14] G. Zhao, D. A. da Costa, and Y. Zou, “Improving the pull requests
review process using learning-to-rank algorithms,” Empirical Software

Engineering, vol. 24, no. 4, pp. 2140–2170, 2019.
[15] N. Saini and R. Britto, “Using machine intelligence to prioritise code

review requests,” in Proceedings of the 43rd International Conference

on Software Engineering: Software Engineering in Practice. IEEE,
2021, pp. 11–20.

[16] E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically priori-
tizing pull requests,” in Proceedings of the 12th Working Conference on

Mining Software Repositories. IEEE, 2015, pp. 357–361.
[17] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code

changes to prioritize reviewing tasks,” Empirical Software Engineering,
vol. 23, no. 6, pp. 3346–3393, 2018.

[18] M. I. Azeem, S. Panichella, A. Di Sorbo, A. Serebrenik, and Q. Wang,
“Action-based recommendation in pull-request development,” in Pro-

ceedings of the 2020 International Conference on Software and System

Processes. ACM, 2020, pp. 115–124.
[19] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-

sifiers,” Machine Learning, vol. 29, no. 2, pp. 131–163, 1997.
[20] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[21] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting

algorithm for combining preferences,” Journal of Machine Learning

Research, vol. 4, pp. 933–969, 2003.
[22] Z. Cao, T. Qin, T. Liu, M.-F. Tsai, and H. Li, “Learning to rank: From

pairwise approach to listwise approach,” in Proceedings of the 24th
International Conference on Machine Learning. ACM, 2007, pp. 129–

136.
[23] H. Li, “A short introduction to learning to rank,” IEICE Transactions

on Information and Systems, vol. 94, no. 10, pp. 1854–1862, 2011.
[24] T. Abdel-Hamid and S. E. Madnick, Software project dynamics: An

integrated approach. Prentice-Hall, Inc., 1991.
[25] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical

study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189,
2016.

[26] F. Zampetti, G. Bavota, G. Canfora, and M. Di Penta, “A study on
the interplay between pull request review and continuous integration
builds,” in Proceedings of the 26th International Conference on Software

Analysis, Evolution and Reengineering. IEEE, 2019, pp. 38–48.
[27] N. Fatima, S. Nazir, and S. Chuprat, “Software engineering wastes-

a perspective of modern code review,” in Proceedings of the 3rd

International Conference on Software Engineering and Information

Management. ACM, 2020, pp. 93–99.
[28] G. Rong, Y. Zhang, L. Yang, F. Zhang, H. Kuang, and H. Zhang,

“Modeling review history for reviewer recommendation: A hypergraph
approach,” in Proceedings of the 44th International Conference on

Software Engineering. ACM, 2022, pp. 1381–1392.
[29] P. Pandya and S. Tiwari, “Corms: A github and gerrit based hybrid

code reviewer recommendation approach for modern code review,” in
Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.
ACM, 2022, pp. 546–557.

[30] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu et al., “Automating code review
activities by large-scale pre-training,” in Proceedings of the 30th ACM

Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 2022, pp. 1035–1047.
[31] P. Thongtanunam, C. Pornprasit, and C. Tantithamthavorn, “Autotrans-

form: Automated code transformation to support modern code review
process,” pp. 237–248, 2022.

[32] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code
review by predicting reviewers and acceptance of patches,” Research on

software analysis for error-free computing center Tech-Memo (ROSAEC

MEMO 2009-006), pp. 1–18, 2009.
[33] K. Islam, T. Ahmed, R. Shahriyar, A. Iqbal, and G. Uddin, “Early

prediction for merged vs abandoned code changes in modern code
reviews,” Information and Software Technology, vol. 142, pp. 106 756:1–
16, 2022.

[34] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush,
“Key practices of the capability maturity model, version 1.1,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1993.

[35] M. I. Kellner, R. J. Madachy, and D. M. Raffo, “Software process
simulation modeling: Why? what? how?” Journal of Systems and

Software, vol. 46, no. 2-3, pp. 91–105, 1999.
[36] C. Gao, H. Zhang, and S. Jiang, “Constructing hybrid software process

simulation models,” in Proceedings of the 2015 International Conference

on Software and System Process. ACM, 2015, pp. 157–166.
[37] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder, “Com-

paring pre commit reviews and post commit reviews using process
simulation,” in Proceedings of the International Conference on Software

and Systems Process, vol. 29, no. 11. Wiley, 2017.
[38] J. A. García-García, J. G. Enríquez, M. Ruiz, C. Arévalo, and

A. Jiménez-Ramírez, “Software process simulation modeling: System-
atic literature review,” Computer Standards and Interfaces, vol. 70, pp.
103 425:1–18, 2020.

[39] Y. Li, H. Zhang, L. Dong, B. Liu, and J. Ma, “Constructing a hybrid
software process simulation model in practice: An exemplar from indus-
try,” in Proceedings of the 2020 International Conference on Software

and System Processes. ACM, 2020, pp. 135–144.
[40] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,

B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift,” in
Proceedings of the 33rd Conference on Neural Information Processing

Systems. Curran Associates, Inc., 2019, pp. 13 991–14 002.
[41] “Anylogic simulation software,” https://www.anylogic.com/.
[42] “Process modeling library,” https://anylogic.help/

library-reference-guides/process-modeling-library/pml-blocks.html.
[43] A. Mohamed, L. Zhang, J. Jiang, and A. Ktob, “Predicting which pull

requests will get reopened in github,” in Proceedings of the 25th Asia-

Pacific Software Engineering Conference. IEEE, 2018, pp. 375–385.

[44] H. Gong, H. Zhang, D. Yu, and B. Liu, “A systematic map on verifying
and validating software process simulation models,” in Proceedings of

the 2017 International Conference on Software and System Process.
ACM, 2017, pp. 50–59.

[45] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in
conceptual modeling,” IEEE software, vol. 11, no. 2, pp. 42–49, 1994.

[46] R. Ahmed, T. Hall, and P. Wernick, “A proposed framework for evalu-
ating software process simulation models,” in Proceedings of the 2003

International Workshop on Software Process Simulation and Modeling,
2003.

[47] Y. Mahmood, N. Kama, and A. Azmi, “A systematic review of studies
on use case points and expert-based estimation of software development
effort,” Journal of Software: Evolution and Process, vol. 32, no. 7, pp.
e2245:1–20, 2020.

[48] “Data and materials,” https://figshare.com/s/a033e99cd2a61e64c8bc.
[49] A. Alami, M. L. Cohn, and A. Wąisowski, “How do foss communities

decide to accept pull requests?” in Proceedings of the 24th International

Conference on Evaluation and Assessment in Software Engineering.
ACM, 2020, pp. 220–229.

[50] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey, “Effects of personality
traits on pull request acceptance,” IEEE Transactions on Software

Engineering, vol. 47, no. 11, pp. 2632–2643, 2021.
[51] D. Wang, Q. Wang, J. Wang, and L. Shi, “Accept or not? an empirical

study on analyzing the factors that affect the outcomes of modern
code review?” in Proceedings of the 21st International Conference on

Software Quality, Reliability and Security. IEEE, 2021, pp. 946–955.
[52] C. Maddila, C. Bansal, and N. Nagappan, “Predicting pull request

completion time: A case study on large scale cloud services,” in
Proceedings of the 27th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.
ACM, 2019, pp. 874–882.

[53] D. Moreira Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino,
“What factors influence the lifetime of pull requests?” Software: Practice

and Experience, vol. 51, no. 6, pp. 1173–1193, 2021.
[54] S. Wang, C. Bansal, and N. Nagappan, “Large-scale intent analysis for

identifying large-review-effort code changes,” Information and Software

Technology, vol. 130, pp. 106 408:1–15, 2021.
[55] G. Kudrjavets, A. Kumar, N. Nagappan, and A. Rastogi, “Mining code

review data to understand waiting times between acceptance and merg-
ing: An empirical analysis,” in Proceedings of the 19th International

Conference on Mining Software Repositories. IEEE, 2022, pp. 579–
590.

[56] X. Zhang, Y. Yu, T. Wang, A. Rastogi, and H. Wang, “Pull request
latency explained: An empirical overview,” Empirical Software Engi-

neering, vol. 27, no. 6, pp. 1–38, 2022.
[57] J. Xu and H. Li, “Adarank: A boosting algorithm for information

retrieval,” in Proceedings of the 30th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval.
ACM, 2007, pp. 391–398.

[58] D. Metzler and W. Bruce Croft, “Linear feature-based models for
information retrieval,” Information Retrieval, vol. 10, no. 3, pp. 257–
274, 2007.

[59] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting for
information retrieval measures,” Information Retrieval, vol. 13, no. 3,
pp. 254–270, 2010.

[60] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost
functions,” Advances in Neural Information Processing Systems, vol. 19,
pp. 395–402, 2006.

[61] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[62] V. Lenarduzzi, V. Nikkola, N. Saarimäki, and D. Taibi, “Does code
quality affect pull request acceptance? an empirical study,” Journal of

Systems and Software, vol. 171, pp. 110 806:1–14, 2021.
[63] “Rest api,” https://docs.github.com/en/rest.
[64] “Ranklib,” https://sourceforge.net/p/lemur/wiki/RankLib/.
[65] M. I. Azeem, Q. Peng, and Q. Wang, “Pull request prioritization

algorithm based on acceptance and response probability,” in Proceedings

of the 20th International Conference on Software Quality, Reliability and

Security. IEEE, 2020, pp. 231–242.
[66] I. X. Gauthier, M. Lamothe, G. Mussbacher, and S. McIntosh, “Is

historical data an appropriate benchmark for reviewer recommendation
systems?: A case study of the gerrit community,” in Proceedings of

the 36th International Conference on Automated Software Engineering.
IEEE, 2021, pp. 30–41.

[67] K. A. Tecimer, E. Tüzün, H. Dibeklioglu, and H. Erdogmus, “Detection
and elimination of systematic labeling bias in code reviewer recommen-
dation systems,” in Proceedings of the 25th International Conference on

Evaluation and Assessment in Software Engineering. ACM, 2021, pp.
181–190.

[68] S. Wang, L. Huang, A. Gao, J. Ge, T. Zhang, H. Feng, I. Satyarth,
M. Li, H. Zhang, and V. Ng, “Machine/deep learning for software
engineering: A systematic literature review,” IEEE Transactions on

Software Engineering, 2022.
[69] D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy artificial

intelligence: A review,” ACM Computing Surveys, vol. 55, no. 2, pp. 1–
38, 2023.

[70] M. Krishnan, “Against interpretability: A critical examination of the
interpretability problem in machine learning,” Philosophy & Technology,
vol. 33, no. 3, pp. 487–502, 2020.

[71] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai:
A review of machine learning interpretability methods,” Entropy, vol. 23,
no. 1, pp. 18:1–45, 2020.

