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Abstract
Ranking the spreading influence of nodes is of great importance in practice and research. The key
to ranking a node’s spreading ability is to evaluate the fraction of susceptible nodes being infected
by the target node during the outbreak, i.e. the outbreak size. In this paper, we present a dynamic
Markov process (DMP) method by integrating the Markov chain and the spreading process to
evaluate the outbreak size of the initial spreader. Following the idea of the Markov process, this
method solves the problem of nonlinear coupling by adjusting the state transition matrix and
evaluating the probability of the susceptible node being infected by its infected neighbors. We have
employed the susceptible-infected-recovered and susceptible-infected-susceptible models to test
this method on real-world static and temporal networks. Our results indicate that the DMP
method could evaluate the nodes’ outbreak sizes more accurately than previous methods for both
single and multi-spreaders. Besides, it can also be employed to rank the influence of nodes
accurately during the spreading process.

1. Introduction

Complex networks are widely used to represent interactions between people, technology, and various
entities. Among all the studies within the area of network theory, understanding the dynamics of spreading
processes is of particular interest. Although the spreading dynamics on networks are not a new phenomenon,
studies in this field lead to better understandings of many important social and natural processes [1], such as
the spreading of infectious diseases [2–4], the propagation of computer virus [5], the cascading process [6],
traffic congestion [7], the centralization in Bitcoin system [8–10], and so on. One important approach in
studying the spreading dynamics is to estimate and rank nodes’ spreading abilities. Through this approach,
one might first locate influential nodes of complex networks and later on control the outbreak of epidemics
[11–13], target the opinion leaders in social networks [14–16], quantify the scientific impact [17, 18], and
accelerate the adoption of innovation [19], etc.

Classical centrality measures have been developed to identify the nodes’ spreading influence. The degree
centrality [20] is probably the most straightforward one. Nodes with a larger degree centrality are considered
to have better spreading abilities than the other nodes within a graph. The betweenness centrality [21], which
calculates the number of shortest paths crossing through a certain node, represents the controllability of
information flow over the networks. The closeness centrality [22] measures the inverse of the mean geodesic
distance from a certain node to all other nodes. The more central a node is, the closer it is to all the other
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nodes. The eigenvector centrality [23] assigns relative scores to all nodes in the network based on the concept
that connections to influential nodes, i.e. high-scoring nodes, would be more important than that to
low-scoring nodes. The k-shell decomposition method [24] assigns nodes to different shells and considers
those located within the core of the network are the most efficient spreaders. Furthermore, a lot of methods
for identifying the node spreading influence have been developed from different perspectives [25–31].

The classical centrality measures are based on the network topological structure solely. However, recent
studies have shown that the nodes’ spreading influence is determined not only by the network structure but
also by the parameters of the dynamical processes [32–35]. Therefore, various structural-based centralities
cannot properly identify nodes’ influences since the rankings remain the same under different dynamical
parameters. Šikíc et al [32] argued that for a given susceptible-infected-recovered (SIR) model [36], the rank
of nodes’ influence largely depends on the spreading rate and recovering rate. Klemn et al [33] suggested that
the eigenvector centrality could only identify the nodes’ spreading influence accurately when the
spreading rate is close to the inverse of the largest eigenvalue of the network [36]. Considering the
susceptible-infected-susceptible (SIS) model [37], Ide et al [38] have proposed a numerical framework that
uses the importance of the centrality type to determine how the vulnerable nodes change along the diffusion
phases. Besides, Liu et al [34] have described the infectious probabilities of nodes by a matrix differential
function and have developed the dynamics-sensitive (DS) centrality to predict the outbreak size for ranking
nodes’ spreading influence.

The centrality measures proposed in [32–34] are all linear methods based on discrete Markov process.
However, it is important to note that the spreading process in SIR and SIS models is usually a non-linear
couple process. Therefore, without taking the non-linear couple process into consideration, all the nodes’
influence would be overestimated. For instance, if a susceptible node has n′ infected nodes, the probability of
this node being infected is 1− (1−β)n ′

instead of n ′β approximated by the linear methods, where β is the
spreading rate in the SIR or SIS model. In this paper, we present a dynamic Markov process (DMP) to
evaluate the outbreak size of the nodes at given time steps. This method can be directly applied in ranking
nodes’ spreading influence. It overcomes the problem of nonlinear coupling by calculating the susceptible
node to be infected by its neighbors sequentially and adjusting the state transition matrix during the
spreading process. Our simulation results on SIR model show that the DMP method has comparable
accuracy to the linear methods [32–34] for both single spreader and multi-spreaders [39]. Furthermore,
we have employed the SIR and SIS models to test the DMP method on real static and dynamic
networks [36, 37, 40, 41]. The simulation results show that the DMP method can rank the spreading
influence of nodes accurately.

2. Methods

2.1. Centrality measures
A network G = (V,E) with n = |V| nodes and e = |E| links could be described by an adjacency matrix
A=

{

aij

}

where aij = 1 if node i is connected to node j, and aij = 0 otherwise. For directed network, if only
node i is pointing to node j, then aij = 1 and aji = 0.

The degree of node i is defined as the number of its neighbors, namely

ki =
n

∑

j=1

aij, (1)

where aij is the element of matrix A.
The main idea of eigenvector centrality is that a node’s importance is not only determined by itself, but

also by its neighbors’ importance [23]. Accordingly, eigenvector centrality of node i, i.e. vi, is defined as

vi =
1

λ

n
∑

j=1

aijvj, (2)

where λ is a constant. Obviously, equation (2) can be written in a compact form as

Av= λv, (3)

where v= (v1,v2, . . . ,vn)
T. That is to say, v is the eigenvector of the adjacency matrix A and λ is the

corresponding eigenvalue. According to Perron–Frobenius Theorem [42], the elements of the leading
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eigenvector are positive. Since the influences of nodes should be positive, v must be the leading eigenvector
corresponding to the largest eigenvalue of A, therefore we have v= q1.

2.2. DMPmethod
In order to calculate the probabilities of nodes being infected, one needs to solve the problem of the
nonlinear couple during the spreading process. Consider the union of a finite number of event A ′

1, . . . ,A
′
n ′ ,

the probability of the event ∪n ′

i=1A ′
i could be written as [43]:

P(∪n ′

i=1A ′
i ) = 1−

n ′

∏

i=1

(1− P(A ′
i )) = P(A ′

1)+ (1− P(A ′
1))P(A

′
2)+ · · ·+

n ′−1
∏

i=1

(1− P(A ′
i ))P(A

′
n ′). (4)

The equation (4) means that the probability of the event ∪n ′

i=1A ′
i equals the probability of the event A ′

1

plus the probability of the event A ′
2 while event A ′

1 does not happen plus the probability of the event A ′
3 while

both event A ′
1 and A ′

2 do not happen, so on and so forth. Based on the above-described probability theorem,
for a susceptible node with n′ infected neighbors, the probability of being infected during the spreading
process can be represented in the non-linear format as 1− (1−β)n ′

, or as β+(1−β)β+(1−β)2β+
· · ·+(1−β)n ′−1β, where the first term β represents the probability that this node has been infected by its
first infected neighbor, the second term (1−β)β represents the probability that it has not been infected by
its first infected neighbor but has been infected by its second infected neighbor, and the third one (1−β)2β
represents the probability that the node has not been infected by its first infected neighbor nor its second
infected neighbor but has been infected by its third infected neighbor, etc.

By combining the above-described process with the standard SIR model where an infected node would
infect its susceptible neighbors with a spreading rate β and recover immediately, we propose a dynamics
Markov process method as follows: define x(t) (t ⩾ 0) as an n× 1 vector whose components are
approximated as the probabilities of nodes to be infected at time step t. Especially, if node i is the initially
infected node, then xi(0) = 1 and xj̸=i(0) = 0. In the dynamics Markov process, the initial Markov state
transition matrixM= AT, where AT is the transpose of A. If mij = 0, node j could not be infected by node i
anymore. Otherwise, mij is the probability of node i to be susceptible. When t = 0, if node i is the initially
infected node, it could not be susceptible anymore. Therefore we have mij = 0, where j = 1,2, . . .n. When
t ⩾ 1, we denote C(t) as an n× n matrix, where cji(t) is the probability of node j to be infected by node i at
time step t.

The updating rules are described below. We first calculate the influence of node 1 on all its susceptible
neighbors. If x1(t− 1)> 0, node 1 would infect its susceptible neighbors with a probability β at time step t.
The probability of node j being infected by node 1 is then

cj1(t) = βmj1x1(t− 1), (5)

where j = 1,2, . . .n. After that, for all the nodes j, if mjl > 0, where l = 1,2, . . .n, we calculate the probability
of node j to be susceptible, i.e. the probability of node j that has not been infected by node 1. It equals to
mjl − cj1(t). After that, for all the nodes j, we update the element of the state transition matrix as follows:

mjl := mjl − cj1(t), (6)

where l = 1,2, . . .n. Once the state transition matrix has been updated, we continue to calculate the impact of
node 2,3,4, . . .n sequentially in the same way. In the end, the probability of node i being infected at time step
t is

xi(t) =
n

∑

j=1

cij, (7)

The spreading influence of the target node within a certain time T∗ is
∑T∗

t=1

∑n
j=1 xj(t). During the

spreading process, the DMP method solves the problem of nonlinear coupling by calculating the probability
of the node being infected by its infected neighbors sequentially via adjusting the state transition matrixM.
As shown in figure 1, node 1 and node 3 are the initial spreaders. According to the DMP method, we first
calculate the probability of node 2 being infected by node 1, which is β. Then we update the state transition
matrixM. After that, we calculate the probability of node 2 to be infected by node 3, which is β(1−β). And
in the end, we get the probability of node 2 to be infected by its both infected neighbors, which equals
β+β(1−β) = 1− (1−β)2. We note that this is the exact probability of the node 2 being infected.
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Figure 1. An example network with three nodes, where node 1 and node 3 is the initially infected nodes. The probability of node 2
x2(1) to be infected at time step 1 is 2β−β2 generated by the DMP method.

The DMP method could be extended to the SIS model with γ= 1, where γ is the probability of the
infected nodes entering the susceptible state (see the details in the Data Analysis section). In SIS model, the
difference is that at each time step t, the transition matrixM could be updated by mij = aji(1− xi(t− 1)). For
the temporal network, the network could be described by A(t) at each time step t. Thus, at time t the
transition matrixM could be updated by mij = aji(t)(1−

∑t−1
r=0 xi(r)).

2.3. Kendall’s Tau
In this paper, we use Kendall’s tau to measure the correlation between the nodes’ spreading influence and
centrality measures (e.g. degree, eigenvector centrality and DMP method). For each node i, we denote yi as
its spreading influence and zi as the target centrality measure, the accuracy of the target centrality in
evaluating nodes’ spreading influences can be quantified by the Kendall’s Tau [44], as

τ =
2

√

(n(n− 1)/2− n1)(n(n− 1)/2− n2)

∑

i<j

sgn[(yi − yj)(zi − zj)], (8)

where n1 =
∑

i vi(vi − 1)/2, vi is the number of the ith group of ties for the first quantity and
n2 =

∑

j uj(uj − 1)/2, uj is the number of the jth group of ties for the second quantity and sgn(y) is a
piecewise function: when y> 0, sgn(y) = +1; y< 0, sgn(y) =−1; when y= 0, sgn(y) = 0. τ measures the
correlation between two ranking lists, whose value is between [−1,1] and a larger τ corresponds to better
performance.

3. Data andmodels

3.1. Data description
We test the performance of the DMP method in estimating the nodes’ spreading influence according to the
SIR and SIS models on four real networks. The first network is ‘C. elegans’, a directed network representing
the neural network of Caenorhabditis elegans [45]. The data is available at https://snap.stanford.edu/data/C-
elegans-frontal.html. The second network is a scientific collaboration network, ‘Erdós’, where nodes are
scientists and edges represent the co-authorships. The data can be freely downloaded from the website http://
wwwp.oakland.edu/enp/thedata/. The third one is an email communication network of the University
Rovira i Virgili of Spain, involving faculty members, researchers, technicians, managers, administrators, and
graduate students [46]. The data can be found at http://konect.cc/networks/arenas-email/. The last network
is a directed network based on the ODLIS dictionary network. This a hypertext reference resource for library
and information science professionals, university students and faculty, and users of all types of libraries. The
node represents website of Odlis and the edge represents the connection between two websites. This data is
available at http://networkdata.ics.uci.edu/netdata/html/ODLIS.html. The basic statistical properties of these
four networks are presented in table 1.

Besides, we have also analyzed four real-world dynamic networks in order to evaluate the effectiveness of
the DMP method. The first temporal network is Contacts in a workplace (CW) network. This data includes
contacts between individuals measured in an office building in France, from June 24 to July 3, 2013 [47]. The
second one is the Primary school (PS) temporal network, where nodes are the children and teachers, and
edges represent the contacts between them [48, 49]. The CW and PS network could be downloaded at www.
sociopatterns.org/datasets/. The email-Eu-core-temporal-Dept1 (EM01) and email-Eu-core-temporal-Dept2
(EM02) [50] temporal network are generated by using email data from a large European research institution,
where edges present email between members of the research institution. These two datasets are available at
http://snap.stanford.edu/data/index.html. In table 2, we provide the detailed statistical properties of the
above temporal networks.
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Table 1. Basic statistical features of C. elegans, Erdös, Email, and Odlis networks, including the number of nodes n, the number of the
edges e, the average degree ⟨k⟩ or ⟨kout⟩ (for directed networks) and the reciprocal of the largest eigenvalue 1/λ1.

Network n e ⟨k⟩,⟨k⟩out 1/λ1

C. elegans 297 2345 7.896 0.109
Erdös 454 1313 5.784 0.079
Email 1133 5451 9.622 0.048
Odlis 2900 18241 6.290 0.077

Table 2. Basic statistical features of CW, PS, EM01, and EM02 temporal networks, including the number of nodes n and the number of
the edges e respectively.

Network n e

CW 92 1492
PS 242 21295
EM01 309 11106
EM02 162 7758

3.2. The SIR and SISModel
We apply the SIR model [36] and the SIS [37] model to simulate the spreading process and record the nodes’
spreading influence at each time step. In the SIR model, there are three kinds of individuals: (a) susceptible
individuals that could be infected, (b) infected individuals who can infect their susceptible neighbors, and
(c) recovered individuals that will never be infected again. At each time step, every infected node will contact
its neighbors and each of its susceptible neighbors will be infected with a probability β. Then the infected
nodes enter the recovered state with a probability µ. While in the SIS model, there are only two kinds of
individuals, i.e. the susceptible individuals and the infected ones. The infected nodes would infect their
susceptible neighbors with the probability β and enter the susceptible state with a probability γ. For
single-node spreading, only one seed node is infected at the beginning, and all the other nodes are
susceptible. While for multiple-nodes spreading, a set of nodes are infected and the rests are initially
susceptible. At each time step t, the number of nodes that switch from the susceptible state to the infected
state represents the node’s spreading influence. In this paper, all the analyses are based on discrete-time
dynamics.

4. Results

4.1. Comparison between the DMPmethod and DS centrality
Figure 2 shows the comparison between the DMP method and DS centrality for evaluating the spreading
influence of nodes on regular network with N = 1000 and ⟨k⟩= 20. The results suggest that the DMP
method could evaluate the outbreak size for both single and multi spreaders more accurately than the DS
centrality. One could easily observe that the theoretical results generated by the DMP method are
over-estimated. The main reason for this overestimation is that the nodes infected by the initial node would
infect themselves when time steps t ⩾ 3. One could then expect that a network without any loops would
diminish this bias. As shown in figure 3, in a network without any loops, the DMP method could evaluate the
spreading scope of nodes accurately compared with the simulation result on networks. We also test the
performance of the DMP method for evaluating the outbreak size on empirical networks including the C.
elegans, Erdős and Twitter network [51], where in the Twitter network there are n= 116408 nodes and
e= 150818 edges. As shown in figures 4 and 5, the DMP method performs better than the DS centrality for
evaluating the outbreak size generated by single and multiple spreaders on empirical networks, with a quality
that remains for larger times.

4.2. Ranking the spreading influence of nodes in SIRmodel
We test the performance of the DMP method in ranking nodes’ spreading influence during the spreading
process on the SIR model with different spreading rates β. The spreading influence of an arbitrary node i is
quantified by the number of infected nodes and recovered nodes at t, where the spreading process starts with
only node i being initially infected. Here the Kendall’s τ is used to evaluate the correlation between the nodes’
spreading influence and the centrality measures (DMP method, degree and eigenvector centrality), where τ
is in the range [−1,1], and a larger value of τ indicates a better performance. As shown in figure 6, in all the
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Figure 2. The performance of the DMP method and the DS centrality for evaluating the outbreak generated by both single
spreader and multiple spreaders on a regular network of N = 1000 and ⟨k⟩= 20 during the SIR spreading process with spreading
rate β= 0.1. The symmetric bars indicate the fluctuations around the average value computed on 105 realizations of the
stochastic process.

Figure 3. The accuracy of the DMP method for evaluating nodes’ spreading influence in a model network without any loops of
N = 500 and ⟨k⟩= 8 during the SIR spreading process. Subplots (a) and (b) show the outbreak size of node 1 in the model
network generated by the DMP method at each time step when the spreading rate β is 0.05 and 0.1 respectively. Subplots (c) and
(d) show the outbreak size of all nodes in the model network generated by the DMP method when the spreading rate β is 0.05 and
0.1 respectively. The symmetric bars indicate the fluctuations around the average value computed on 105 realizations of the
stochastic process.
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Figure 4. The performance of the DMP method and the DS centrality for evaluating the outbreak of different initial nodes on C.
elegans and Erdős networks during the SIR spreading process with spreading rate β= 0.1. The symmetric bars indicate the
fluctuations around the average value computed on 105 realizations of the stochastic process.

Figure 5. The performance of the DMP Method and the DS centrality for evaluating the outbreak generated by both single
spreader and multiple spreaders on the Twitter network during the SIR spreading process with spreading rate β= 0.1. The
symmetric bars indicate the fluctuations around the average value computed on 105 realizations of the stochastic process.

cases, the values of τ of the DMP method are always between 0.915 and 1.0, which suggests that the ranking
lists generated by the DMP method are almost the same as the ones generated by the simulation result.

Furthermore, one can find that the accuracy of the DMP method for ranking nodes’ spreading influence
is affected by the network structure. As shown in figure 6, the descent speed of τ in the C. elegans network is
smaller than the ones in the Email network. To get a deeper insight into how the network structure affects the
performance of the DMP method, we analyze the correlation between the minimum Kendall’s tau of the
networks in figure 6 and the inverse of the largest eigenvalue of the network 1/λ1. The results are shown in
figure 7. With an increasing value of 1/λ1, the minimum Kendall’s tau increases. For instance, in the C.
elegans network, the reciprocal of the largest eigenvalue 1/λ1 is 0.109, which is significantly larger than that
of the Email network (0.048). The fact that the DMP method performs particularly well in the C. elegans
network for ranking nodes’ spreading influence indicates that the largest eigenvalue of the network is the
main factor affecting the accuracy of the DMP method. A larger value of 1/λ1 would lead to a better
performance of the DMP method.

4.3. Parameter sensitivity
In the above subsections, we set µ= 1. To analyze the influence of the parameters on the performance of the
DMP method, in figure 8 we set µ= 0.1, 0.5 and fix β= 0.1, i.e. β/µ= 1 and 0.2. We select different nodes as
initially infected seeds. According to the simulation results, we still can see that the DMP method performs
better than DS centrality for evaluating outbreak size generated by different initial nodes. Figure 9 shows the
results with µ= 0 and 1 on a directed tree network. We can see that when µ= 1, both the DMP method and

7
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Figure 6. The accuracy of the DMP method in evaluating nodes’ spreading influences according to the standard SIR model in the
four real networks, quantified by Kendall’s Tau. The spreading rate β varies from 0.01 to 0.10. Each data point is obtained by
averaging over 105 independent runs.

Figure 7. The correlation between the minimum Kendall’s tau τmin and the inverse of the largest eigenvalue of the network
1/λ1.

DS centrality can evaluate outbreak size accurately on a directed tree network. Because when µ= 1, in a
directed tree network, a susceptible node would only be infected by one infected in-neighbors. In this special
situation, the spreading process is a linear couple process. Thus, both the DMP method and the DS centrality
can evaluate the outbreak size accurately.

In figure 4, we have shown the spreading influence of nodes during the whole process. In the current
experiment, we rank the spreading influence of nodes in a special situation: the running time of the
simulation is long enough such that there is not any infected node in the network. For each node, since we do
not have the exact convergent time step in the simulation, here we set a fixed time step T∗ as 5 in the DMP
method. The results are shown in figure 10. The Kendall’s tau τ of the DMP method is between 0.893 to
0.995, which indicates that the ranking lists generated by the DMP method and the SIR spreading process are

8



New J. Phys. 25 (2023) 023014 J Lin et al

Figure 8. The performance of the DMP method and the DS centrality for evaluating the outbreak of different initial nodes on C.
elegans and Erdős networks during the SIR spreading process with spreading rate β= 0.1. The symmetric bars indicate the
fluctuations around the average value computed on 105 realizations of the stochastic process.

Figure 9. The performance of the DMP method and the DS centrality for evaluating the outbreak of different initial nodes on the
directed tree network during the SIR spreading process with spreading rate β= 0.1. The symmetric bars indicate the fluctuations
around the average value computed on 105 realizations of the stochastic process.

9
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Figure 10. The comparison among the DMP method, degree and eigenvector in evaluating nodes’ spreading influences according
to the standard SIR model with enough time steps until there are not any infected nodes in the networks, quantified by Kendall’s
Tau. The spreading rate β varies from 0.01 to 0.10, each data point is obtained by averaging over 105 independent runs.

Figure 11. The accuracy of the DMP method with fixed β= 0.05 in evaluating the spreading influence of nodes in the SIR model
with spreading rate β varying from 0.01 to 0.10 in four real networks, quantified by Kendall’s Tau τ . In the simulation, the total
time steps T = 5 and 10. Each data point is obtained by averaging over 105 independent runs.

almost the same. Compared with the degree and eigenvector centrality, the DMP method could locate the
influential spreaders more accurately.

Another clear limitation of our method is that before applying the DMP method, we have to know the
spreading rate, which is usually a hidden parameter. This parameter can be effectively estimated according to
the early spreading process [52]. However, if we do not know the spreading rate, we can fix the spreading rate
when calculating the DMP method. In figure 11, we fix β= 0.05 in the DMP method to rank the spreading
influence of nodes with different spreading rates in the SIR model. We find that the values of Kendall’s τ are
between 0.86 and 1. It indicates the DMP method with fixed β can accurately evaluate the spreading
influence of nodes in the SIR model with different spreading rates.

10
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Figure 12. The accuracy of the DMP method in evaluating nodes’ spreading influences according to the standard SIS model in
four real networks, quantified by Kendall’s Tau. The spreading rate β varies from 0.01 to 0.10. Each data point is obtained by
averaging over 105 independent runs.

4.4. Ranking the spreading influence of nodes in the SIS model
The DMP method can also be used to evaluate the outbreak size in SIS model. For simplicity, we set γ= 1 in
the SIS model. In this case, nodes in the network could be infected several times for high spreading rates β
and long time step t. We set the final time step t∗ to 30. The results are shown in figure 12. The results are
very similar to the ones in the SIR model. The Kendall’s tau τ of the DMP method is between 0.865 and 1.0.
This indicates that the DMP method could also rank the nodes’ spreading influence accurately in the SIS
model.

4.5. Ranking the spreading influence of nodes in temporal networks
We have extended the DMP method to temporal networks. The results are shown in figure 13. The values of
Kendall’s τ are between 0.923 to 0.992, which indicates that the ranking lists generated by the DMP method
and the real SIR model on temporal are highly identical to each other. Therefore, the DMP method could be
used to detect the influential nodes in the temporal network accurately.

4.6. Pearson correlation coefficient
In figure 14 we check the performance of the DMP method by both Kendall’s τ and Pearson correlation
coefficient r. We can see that for most of the range, the values of r (Pearson coefficient) are larger than the
ones of Kendall’s τ . It indicates the ranking lists generated by the DMP are still the same as the simulation
results evaluated by the Pearson correlation coefficient. In this way, we can conclude that DMP properly
allows us to recover the characteristics of the dynamics on the network.
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Figure 13. The accuracy of the DMP method in evaluating nodes’ spreading influences according to the standard SIR model in
four real temporal networks, quantified by Kendall’s Tau. The spreading rate β varies from 0.01 to 0.10. Each data point is
obtained by averaging over 105 independent runs.

Figure 14. The accuracy of the DMP method in evaluating the spreading influence of nodes according to the standard SIR model
in four real networks, quantified by Kendall’s Tau τ and Pearson correlation coefficient r. The spreading rate β varies from 0.01 to
0.10 and the total time steps T = 5 and 10. Each data point is obtained by averaging over 105 independent runs.
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5. Discussions

The essential question of ranking the node spreading influence is how to estimate the outbreak size of the
initial spreader [53–56]. To answer this question, one needs to fix the nonlinear coupling issue during the
spreading process. In this paper, we present a new method to evaluate the spreading scope from the
perspective of the Markov chain process, namely the DMP. This method solves the problem of nonlinear
coupling by adjusting the state transition matrix, in which the elements of the matrix are the probabilities of
nodes in a susceptible state. The simulation results show that the DMP method could estimate the nodes’
spreading scope at each time step accurately in a directed network without any loops. Compared with the DS
centrality, the DMP method can evaluate the outbreak size more accurately on the model and empirical
networks.

Furthermore, according to the empirical results on four real networks, for both the SIR and SIS model,
the ranking list generated by the DMP method is very close to the ones of the simulation results, especially
when the spreading rate and time step are small. It indicates that the DMP method can recover the
characteristics of the spreading dynamics on the network.

The DMP method could also be used to evaluate the nodes’ spreading scope generated by
multi-spreaders. Our simulation results indicate that when there exist multiple spreaders, the DMP method
significantly outperforms the DS [34] centrality with increasing values of spreaders and time steps. The key
to identifying multiple influential spreaders is to solve the overlap problem [57], which is the non-linear
couple problem during the spreading process. Given the fact that the DMP method is non-linear, it will be
able to identify multiple influential spreaders by using the greedy approach [58–60]. Moreover, the DMP
method is also suitable for detecting influential nodes in temporal networks.

Compared to the other methods in evaluating the outbreak size of the spreading dynamics, e.g. the
Message-Passing Techniques [58] and the Percolation [61], the DMP method evaluates the spreading scope
from the perspective of Markov process, and provides a general framework for ranking node spreading
influence. Therefore, it can be extended and applied in modeling many other important dynamics such as
Ising model [62, 63], Boolean dynamics [64], voter model [65], synchronization [66], and so on.
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