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SUMMARY

Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular

heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will

support the development of personalized therapies. We report a spatially resolved single-cell imaging mass

cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four

prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that

CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly

correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associ-

ated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is

correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our

data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.

INTRODUCTION

Lung cancer is the deadliest cancer worldwide, accounting for

18% of all cancer-related deaths.1 The most prevalent type of

lung cancer is non-small cell lung cancer (NSCLC), with an

estimated 5-year survival of 10–23%,1,2 and with lung adenocar-

cinoma (LUAD) and lung squamous cell carcinoma (LUSC) sub-

types accounting for more than 70% of all NSCLC cases.3 Lung

cancer is often diagnosed at an advanced stage, and mortality

drops to 5.5% for patients with distant metastases at diagnosis.4

Thus, there is an urgent need to identify effective therapeutic tar-

gets for NSCLC.

Immune checkpoint inhibitor therapy has increased the overall

survival of NSCLC patients, showing the potential to target the

tumor microenvironment (TME) in this disease,5,6 as also seen

for other indications.7–11 Cancer-associated fibroblasts (CAFs)

are a heterogeneous set of cells that are the main constituents

of the tumor-surrounding stroma. CAFs drive fibrosis in the

TME, causing increased extracellular matrix (ECM) deposition

and remodeling, which can actively hamper the anti-tumor im-

mune response by excluding immune cells.12 In many tumor

types, including NSCLC, CAFs impact treatment efficiency;

GPR77+ and CD10+ CAFs are associated with tumor stemness

and chemoresistance,13 whereas LRRC15+ CAFs have tumor-

promoting and immunosuppressive activity.14 In NSCLC, the

stromal compartment is also important for cancer progression

and therapeutic success but is not well understood.15

The effects of CAFs on tumor progression are likely to bemulti-

factorial.16 CAFs exert their tumor-promoting effects through

modulation of inflammation,10 T cell exclusion via altered matrix

production,17 or promotion of cell survival.13,18Certain CAF sub-

types also display tumor inhibitory functions and have been

linked with improved therapy outcome.18–20 For instance, the

dense collagen matrix produced by CAFs can restrict tumor

growth and metastasis.19,21,22 On the other hand, stromal cell

depletion has also been linked to tumor outgrowth despite

enhanced immune cell infiltration.19,21,22 Due to their tumor

promoting and inhibiting properties, CAFs have recently moved

into the spotlight as potential therapeutic targets, but clinical

trials broadly targeting the tumor stroma have so far not suc-

ceeded.23–26 The full extent of CAF heterogeneity and its

relationship to tumor biology and clinical outcome needs further

study.

We and others have previously proposed a CAF classification

system based on single-cell RNA sequencing (scRNA-seq)

data from breast, lung, colon, head and neck cancer, and

pancreatic ductal adenocarcinoma tumors.17,27–37 The 9 CAF

types we annotated in this previous work are tumor type inde-

pendent, recapitulate CAF types identified in molecular biology

studies27,36,38–40 and are present in NSCLC.30 Here, we used

Cancer Cell 42, 1–17, March 11, 2024 ª 2023 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

Please cite this article in press as: Cords et al., Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung

cancer, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.12.021



IMC41 to characterize heterogeneous CAF phenotypes and the

interactions of these cells with tumor and immune cells in

NSCLC.42–44 We identified most of our previously annotated

CAF types in this dataset, showed that CAF phenotypes were

a strong prognostic factor for NSCLC, and identified specific

CAF phenotypes associated with good and poor patient prog-

nosis. Further, we discovered that different CAF types varied in

their spatial distribution in the TME. Our data lay the foundation

for future mechanistic studies to identify CAF phenotypes that

causally affect tumor growth or improve immune infiltration.

RESULTS

IMC analysis of non-small cell lung cancer samples

We investigated the phenotypic heterogeneity of CAFs in

NSCLC. The tumor microarray (TMA) was generated from sam-

ples from a patient cohort (n = 1,070) with at least 15 years

follow-up (Table 1).42–44 The samples included 618 pathologist-

classified LUADs and 401 LUSCs; the remaining (n = 51) were

mixed or undefined. Most cancers were stage 1–2, 60 patients

had stage 4 tumors. 82 patients who received neoadjuvant ther-

apy (were excluded from survival analyses; all other patient sam-

ples (n = 987) were treatment naive. 730 patients were smokers

at diagnosis; 26 patients identified as former smokers and 86 as

never smokers. The smoking status of 228 patients and ethnicity

of all patients were unknown. Lymph node metastases (TNM:

N1-N3) were found in 503 patients and distant metastases

(TNM: M1 and M2) in 90 patients at diagnosis. Of all patients,

480 experienced relapses within the 15 years of follow-up. We

analyzed two cores for 85% (n = 909) and one core for 15%

(n = 161) of patients; all cores were sampled from the tumor inva-

sive front. For patients with two cores, the distribution of all cell

types except hypoxic tCAFs was the same in both cores (STAR

Methods), which were pooled for analysis. We also acquired im-

ages of 92 cores from normal lungs and patients with other pul-

monary morbidities as staining controls. In total, 2,070 cores

were analyzed from 1,070 subjects.

We stained the TMA with 45 metal-labeled antibodies, per-

formed IMC analysis, and quantifiedmarker expression in the re-

sulting highly multiplexed images at single-cell resolution (Fig-

ure 1A). These data were then used for cellular phenotyping

and correlation of cell types and spatial structures with clinical

parameters such as survival (Figure 1B). The antibodies were

selected to ensure a comprehensive analysis of CAFs and of

other cells of the TME such as endothelial cells, epithelial cells,

and immune cells including myeloid cells, neutrophils, B cells,

and multiple subsets of T cells (Figures 1C and S1A; Table S1).

Marker selection for the identification of CAF subsets was based

on our previously established CAF panel for IMC analysis of

CAFs37 (STAR Methods) which was also validated against

scRNA-seq data from NSCLC.30

Cell masks were generated using ilastik45 training andCellPro-

filer46 (Figures 2A and S1B‒S1E), using a strategy we previously

described and validated for fibroblasts (STAR Methods).37 We

also generated tumor-stroma masks (Figures 2A and S1B‒

S1E), which showed the expected average marker (SMA and

panCK) expression per cell (Figures 2A and S1E).

For cell phenotyping, all cells were first split into tumor

(n = 2,979,712) and non-tumor cells (n = 3,004,742) using a

Gaussian mixture model based on the expression of panCK.

The non-tumor cells were further clustered into immune cells

(n = 1,179,114), endothelial cells (n = 150,062), and CAFs

(n = 1,086,678). Immune cells were then categorized intomyeloid

cells (HLA-DR+ and CD68+), neutrophils (MPO+), B cells (CD20+),

and T cells (CD3+). T cells were further clustered into those

expressing CD4 and those expressing CD8 and then both

types were further grouped into IDO+, PD-1+, TCF1/7+ and

dividing Ki-67+. CD4+/FOXP3+ cells were identified as regulatory

T cells. Endothelial cells were divided into blood endothelial cells

(CD31+/vWF+/LYVE-1-/CD146+), lymphatic endothelial cells

(LYVE-1+/CD146+), and high endothelial venules (PNAd+). Tumor

cells were further clustered into non-hypoxic (panCK+/CAIX�)

and hypoxic (panCK+/CAIX+) cells (Figure 2B). CAFs were iden-

tified as cells expressing vimentin, SMA, FAP, and PDGFR-b and

lacking panCK expression. All cores showed varying proportions

of tumor, stromal, and immune cells (Figure 2C). Roughly 50% of

cells were classified as tumor cells, 20% as stromal cells, and

20% as immune cells; about 10% of cells could not be assigned

with our panel (Figures 2D and 2E). We observed no correlation

between compositions of these general cell types and clinical

parameters such as grade, metastasis, or relapse (Figure 2C).

CAF phenotypes in NSCLC

In order to understand whether CAFs are associated with

different states of the TME and with tumor progression in

NSCLC, we first analyzed CAF phenotypes in our cohort. The

1,086,678 CAFs were clustered using FLOWSOM47 to identify

subtypes (Figures S2A and S2B). We previously classified CAF

subtypes based on scRNA-seq data from breast, lung, colon,

head and neck cancer, and pancreatic ductal adenocarcinoma,

and validated an IMC panel to identify these CAF types in tumor

tissue samples.37

Most of these previously definedCAF typeswere alsopresent in

the NSCLC cohort analyzed here, including ifnCAFs (IDO+), tCAFs

(CD10+/CD73+), hypoxic tCAFs (CAIX+/CD10+), iCAFs (CD34+/

CD248+), vCAF (CD146+/CD34-), dCAFs (Ki-67+), SMA CAFs

(SMA+/FAP�/MMP�/Collagen�), and hypoxic CAFs (CAIX+). We

also identified PDPN CAFs (PDPN+), which were unique to this

NSCLC dataset, and split collagen-expressing CAFs into mCAFs

(MMP11+/SMA+/Collagen+), as in our previous scRNA-seq study,

and collagen CAFs (Collagen+/FN+/MMP11-/SMA�) (STAR

Methods for technical differences with our previous work)

(Figures 3A–3D). SMA CAFs made up the biggest proportion of

CAFs in our NSCLC dataset, followed by mCAFs, vCAFs, and

iCAFs; all CAF types were present in LUAD and LUSC samples

(Figure3A, top). Lackingasuitableantibody for thepericytemarker

RGS5, we were not able to distinguish pericytes from fibroblasts.

This is especially relevant for SMACAFs and vCAFs, as their char-

acteristic markers (SMA, CD146, and PDGFR-b, respectively) are

abundant around vessels. Visual assessment however showed

that SMA CAFs as well as PDGFR-b+ CAFs did not exclusively

cluster around vessel structures, indicating that these cells are

not solely pericytes or smooth muscle vascular cells (Figure 3D).

However, as we cannot define pericytes with our current marker

panel, they are most likely merged into other CAF phenotypes

near vessel cells, especially CD146+ vCAFs.

CAFs showed different enrichment patterns between LUAD

and LUSC. dCAFs, tCAFs, iCAFs, vCAFs, and SMA CAFs were
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more abundant in LUAD, while hypoxic tCAFs, PDPN CAFs, and

mCAFs were enriched in LUSC (Figure S3A). We found in addi-

tion minor differences between different growth patterns of

LUAD, with mCAFs and collagen CAFs enriched in solid and mi-

cropapillary tumors, consistent with the relatively high stroma

content of these tumor types (Figure S3B). Patients clustered

into four patient groups based on proportions of CAF types

(Figures 3E, 3F, and S3C), with group 1 enriched in SMA CAFs,

group 2 in matrix and collagen CAFs, group 3 in several CAF

types including tCAFs, hypoxic CAFs, hypoxic tCAFs and

vCAFs, and group 4 in iCAFs and ifnCAFs.

CAF phenotypes are an independent prognostic factor

in NSCLC

We next asked whether the CAF types and compositions in a

tumor were associated with patient outcome or clinical

Table 1. Clinical cohort description

Sex

Male 710 (66.4%)

Female 348 (32.5%)

Missing 12 (1.1%)

Age

Mean (SD) 64.0 (9.96)

Median [Min, Max] 64.5 [18.0, 87.0]

Missing 12 (1.1%)

Tumor type

Adenocarcinoma 618 (57.8%)

Squamous cell carcinoma 401 (37.5%)

Adeno squamous cell carcinoma 32 (3.0%)

Large cell carcinoma 9 (0.8%)

NSCLC 2 (0.2%)

Grade

1 62 (5.8%)

2 481 (45.0%)

3 515 (48.1%)

Missing 12 (1.1%)

Size [cm]

Mean (SD) 4.04 (2.26)

Median [Min, Max] 3.50 [0.300, 16.0]

Missing 12 (1.1%)

T

1 131 (12.2%)

2 129 (12.1%)

3 381 (35.6%)

4 118 (11.0%)

5 215 (20.1%)

6 84 (7.9%)

Missing 12 (1.1%)

N

0 555 (51.9%)

1 268 (25.0%)

2 220 (20.6%)

3 14 (1.3%)

Missing 13 (1.2%)

M

0 967 (90.4%)

1 71 (6.6%)

2 19 (1.8%)

Missing 13 (1.2%)

Stage

1 (IA) 182 (17.0%)

2 (IB) 191 (17.9%)

3 (IIA) 191 (17.9%)

4 (IIB) 113 (10.6%)

5 (IIIA) 289 (27.0%)

6 (IIIB) 32 (3.0%)

7 (IV) 60 (5.6%)

Table 1. Continued

Missing 12 (1.1%)

Chemotherapy (neoadjuvant)

No neoadjuvant chemotherapy 961 (89.8%)

Neoadjuvant chemotherapy 78 (7.3%)

Missing 31 (2.9%)

Radiotherapy (neoadjuvant)

No neoadjuvant radiotherapy 1035 (96.7%)

Neoadjuvant radiotherapy 4 (0.4%)

Missing 31 (2.9%)

Relapse

No relapse 555 (51.9%)

Relapse 480 (44.9%)

Missing 35 (3.3%)

Overall survival

Mean (SD) 1490 (1190)

Median [Min, Max] 1230 [0, 5730]

Missing 2 (0.2%)

Disease free survival

Mean (SD) 1430 (1220)

Median [Min, Max] 1060 [0, 5100]

Missing 138 (12.9%)

Smoking status

No 86 (8.0%)

Currently 730 (68.2%)

Former 26 (2.4%)

Unknown 197 (18.4%)

Missing 31 (2.9%)

Chemotherapy (adjuvant)

Yes 138

No 901

Missing 31

Table 1. Cohort description including number and percentage informa-

tion on the distribution of sex, age, tumor type, tumor grade, tumor

size, TNM classification, tumor stage, neoadjuvant and adjuvant chemo-

therapy, neoadjuvant radiotherapy, relapse, and smoking status as well

as overall and disease-free survival. Categories are printed bold.
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A

B

C

Figure 1. Overview of experimental and analytical set-up

(A) Experimental set-up. NSCLC samples (2070 cores, 1,070 patients) and controls were stained with metal-tagged antibodies and imaged using IMC. Cell and

tumor-stroma masks were generated.

(B) Analytical setup. Single-cell data were used to identify cell phenotypes, and to evaluate correlations between cell types and clinical data. CAF based patient

stratifications were used for survival and TMA composition analyses. Finally, spatial properties of CAFs and immune cell types were analyzed and integrated with

clinical data.

(C) Markers in the antibody panel.
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A B

C

D E

Figure 2. Cell phenotypes and distribution in NSCLC

(A) Exemplary LUAD (left) and LUSC cores (right) after cell segmentation based on panCK as a tumor marker and SMA as a stromal marker. Top to bottom, cells

colored by average expression of SMA and panCK; cell assignment based on the generated tumor-stroma masks; cell category assignment; and the binned

distance of all non-tumor cells to the nearest tumor-stromaborder (30 mmbins [red, orange, yellow, green, blue, purple] from tumor-stroma interface; gray: tumor).

(B) Heatmap of marker expression (normalized from 0 to 1) for all cell phenotypes (labeled cell types). The bar chart above the heatmap shows the number of cells

(square root for visualization) of each cell phenotype per tumor type.

(legend continued on next page)
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presentation. A comparison between patients with overall sur-

vival longer or shorter than the median (3 years in this cohort)

identified CAF phenotypes associated with longer survival (ifn-

CAFs and iCAFs), whereas all other CAF types (e.g., hypoxic

tCAFs, tCAFs) were associated with shorter survival (Figure 4A).

Similarly, patients who relapsed within the follow-up period of 15

years had tumors enriched for hypoxic tCAFs, hypoxic CAFs,

PDPNCAFs, collagen CAFs, tCAFs, and dCAFs (all p < 0.05; Fig-

ure S3D), again suggesting that these CAF types are associated

with poor patient outcome. Analysis of the association between

CAF types and relapse as well as sex generally supported these

observations (Figure S3D). Differential analyses conducted

separately for LUAD and LUSC tumors showed similar enrich-

ments to the joint analysis (Figures S3E and S3F).

We next studied whether the CAF groups were associated

with distinct survival. CAF groups 1 and 4 were enriched for

good prognosis CAFs and groups 2 and 3 with poor-prognosis

CAFs; these groups indeed showed a significant difference in

overall survival (Figure 4B). While the patient groups did not

have the same distribution of LUAD and LUSC tumors (Fig-

ure 4B), the differences in prognosis between these groups re-

mained in a Cox proportional hazard (CoxPH) model corrected

for tumor type (Figure 4C), suggesting that these effects are

not explained by tumor type alone. This model was also cor-

rected for grade, which in LUAD is correlated with histological

growth patterns, again suggesting that the prognostic differ-

ences in the patient groups are independent of LUAD subtypes.

Analysis of patients stratified as high and low for some individual

CAF types also showed associations with survival, with high pro-

portions of SMA CAFs, ifnCAFs, and iCAFs (only in LUSC) asso-

ciatedwith longer survival (p < 0.05) (Figure 4D), and high propor-

tions of hypoxic CAFs, collagen CAFs, and tCAFs (only in LUAD)

associated with shorter survival (p < 0.05) (Figure 4E). High pro-

portions of collagen CAFs, ifnCAFs, and iCAFs and low propor-

tions of vCAFs were also associated with disease-free survival

(Figure S4A). Stratifying patients by the median density of the

CAF types gave similar results (Figures S4B and S4C). Interest-

ingly, high mCAF density was associated with significantly lower

overall survival in LUSC (p = 0.025, Figure S4B).

A lasso regressed CoxPH model for overall survival consid-

ering all CAF types and all clinical factors selected the propor-

tions of tCAFs and hypoxic tCAFs as independent predictors

of poor prognosis (Figure 4F). ifnCAF, dCAF, and SMA CAF pro-

portions were predictors of good prognosis, albeit with low haz-

ard ratios (Figure 4F). As expected, other prognostic factors

included tumor grade, stage, and metastasis. When density

(rather than proportion) of all cell types and clinical parameters

were analyzed, hypoxic tCAFs and tCAFs, as well as vCAFs,

hypoxic CAFs in general, and mCAFs were predictors of poor

prognosis (Figure S4D). Other than the mCAF low stratification,

no CAF type was selected as a predictor of good outcome, but

clinical features (M0, low stage) were, as expected (Figure S4D).

Overall, our differential abundance analysis suggests that spe-

cific CAF types and compositions are associatedwith poor prog-

nosis (tCAFs, hypoxic tCAFs, collagen CAF, and mCAFs) or bet-

ter prognosis (ifnCAFs, iCAFs, and SMA CAFs) in NSCLC.

CAF types are associated with chemoresistance and

metastasis

To gain further insight into potential mechanisms that underlie

the prognostic value of specific CAF types, we investigated their

relationship with chemoresistance and metastasis as clinically

relevant drivers of poor patient outcome in NSCLC. We first

asked whether chemotherapy affected CAF type distribution in

NSCLC tumors by comparing the 74 patients who had received

neoadjuvant chemotherapy with a matched untreated control

group (n = 72, STAR Methods). The neoadjuvant-treated group

was significantly enriched in dCAFs in both LUAD and LUSC

(Figures 5A and 5B, p% 0.001 each), as were SMA CAFs in neo-

adjuvant-treated LUSC (Figure 5B, p = 0.023), suggesting a reac-

tive remodeling stroma after therapy. In LUAD, treatment naive

patients were enriched in ifnCAFs and tCAFs (p = 0.01 and

0.011) (Figure 5A). We observed no other differences between

the two groups.

Next, we examined tumors of patients treated with chemo-

therapy after surgery (n = 138 patients) and asked whether the

distribution of CAF types was associated with relapse and there-

fore potentially with resistance to treatment. We detected a sig-

nificant enrichment of ifnCAFs in LUAD and LUSC patients who

did not experience relapse (n = 65 patients) in comparison to

those who did (n = 68 patients) (Figures 5C and 5D). Associations

with relapse were different for the two tumor types, with dCAFs,

collagen CAFs, and tCAFs being significantly associated with

relapse in LUAD (Figure 5C) and PDPN CAFs, hypoxic tCAFs

and hypoxic CAFs in LUSC (p < 0.05) (Figure 5D). Notably, the

CAF type associations with relapse in this smaller, chemo-

therapy-treated subset were similar to our observations in the

entire cohort, suggesting that these associations are indepen-

dent of treatment.

We next sought to investigate whether CAF types in the

primary tumor were correlated with the occurrence of metas-

tasis. We first compared CAF-type abundance in patients with

(n = 503) and without (n = 555) lymph node metastasis. Interest-

ingly, we observed that positive-prognostic iCAFs and SMA

CAFs were enriched in patients with no dissemination to lymph

nodes, while negative-prognostic tCAFs, hypoxic CAFs and hyp-

oxic tCAFs showed the opposite effect (Figures 5E and 5F). Next,

we compared patients with distant metastasis at the time of

diagnosis (n = 90) to a matched control group (n = 90, STAR

Methods). We compared LUSC and LUAD samples together,

given the relatively small sample numbers, and found that higher

proportions of tCAFs were associated with distant metastasis at

the time of diagnosis, while dCAFs showed the opposite effect

(Figure 5G, p < 0.05 in both cases).

Taken together, these results are consistent with our identifi-

cation of tCAFs and hypoxic tCAFs as poor prognostic factors

and of ifnCAFs, iCAFs, SMA CAFs, and dCAFs as good prog-

nostic factors in NSCLC.

(C) Mean proportions of the indicated cell categories per patient, annotated for clinical features. Dist. Met.: distant metastasis; LN met.: lymph node metastasis;

Neoad.: neoadjuvant therapy.

(D) tSNE of a subset of 1,000 cells per image colored by cell category.

(E) Proportions of cell categories for all cells measured. For D, E, colors as in B.
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A B

C D

E F

Figure 3. CAF phenotypes in NSCLC

(A) Heatmap of mean marker expression (z-scaled from �2 to 3) for all CAF phenotypes identified after FLOWSOM clustering. The bar chart above the heatmap

shows the number (square root for visualization) of CAFs per tumor type for each cluster.

(B) UMAP of a random subset (n = 200,000 cells) of CAFs showing the mean intensity per cell (scaled from 0 to 1) for the indicated markers.

(C) UMAP of a random subset (n = 200,000 cells) of CAFs colored by subtype.

(D) Images showing all CAFs (left) and SMA CAFs (right); CAFs are shown with white masks overlaid on the indicated markers.

(E) Mean proportions (left plot) and absolute numbers (right plot) of each CAF type per patient are shown. Color bar (right) indicates CAF types. The hierarchical

clustering tree is colored (different color scale from CAF types) by four meta-clustered patient groups (1, 2, 3, 4).

(F) Heatmap (z-scaled expression) showing enrichment of each CAF type per patient group as defined in E.
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A B

C D E

F

Figure 4. Association of CAF types with clinical parameters

(A) Differential abundance testing of all cell types between patient groups defined by long (left) and short (right) overall survival, split bymedian. p Values < 0.05 are

shown in blue, p values > 0.05 in grey.

(B) Kaplan-Meier overall survival curves for patient groups (PG) defined by CAF composition (PG 1–4). The table shows patient numbers according to tumor type

and p values for comparison between groups (*p < 0.05, ***p < 0.001).

(legend continued on next page)

ll
OPEN ACCESS Article

8 Cancer Cell 42, 1–17, March 11, 2024

Please cite this article in press as: Cords et al., Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung

cancer, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.12.021



CAF types are associated with distinct TME

compositions

Wenext sought to understandwhether the prognostic CAF types

we have defined are associated with distinct immune composi-

tions. We first analyzed the proportions and the densities of all

cell types across the cohort. Neither CAF-type proportions nor

densities were strongly correlated with those of other cells of

the TME, but a few clusters that included CAFs were detected

(Figures S5A and S5B). ifnCAFs formed part of an immune

cell cluster that also included B cells, lymphatic endothelial cells,

and IDO+ T cells (Figure S5A, cluster 1). vCAFs and iCAFs were

weakly positively correlated with endothelial cells (lymphatic and

blood) (Figure S5A, cluster 2); the samewas foundwhen cell type

densities were analyzed (Figure S5B).

When we analyzed only CAF types, we saw no strong correla-

tions in the data, except that the proportions of mCAFs and SMA

CAFs in individual patient images were strongly anti-correlated

(p < 0.001; Figure S5A); we observed the opposite effect in an

analysis of cell density (Figure S5B), most probably reflecting

the high density of both of these CAF types in the TME. In addi-

tion, proportions of iCAFs were anti-correlated with those of

SMA CAFs and mCAFs (p < 0.001), and proportions of ifnCAFs

were positively correlated with those of iCAFs and tCAFs

(p < 0.001; Figure S5A).

iCAFs were significantly, if weakly, anti-correlated with all hyp-

oxic cells (LUAD r = �0.14, p = 0.00033/LUSC: r = �0.16, p =

0.0012) and were enriched in normoxic patches (p < 0.05,

Figures S5C‒S5H), in contrast to recent findings in pancreatic

cancer,48,49 which, however, defined iCAFs using a different

marker (IL6) than in this study. Indeed, all of the CAF types

were enriched in normoxic patches in our lung dataset, with

the exception of CAIX+ hypoxic cells as expected (Figures

S5G‒S5H). Endothelial cells (marking blood vessels) were en-

riched in normoxic patches, supporting our definition of CAIX+

cells as genuinely hypoxic.

In the absence of strong correlations at the level of individual

CAF phenotypes, we investigated the TME composition of the

prognostic patient groups that reflect different CAF composi-

tions. We found that the poor prognostic patient groups (2, 3)

were enriched in hypoxic tumor cells as well as neutrophils but

depleted of immune cell types (Figures 6A and S6). In contrast,

the two good prognostic patient groups (1, 4) showed an overall

immune cell-enriched phenotype with little to no hypoxia sug-

gesting a more inflamed TME state in these groups (Figures 6A

and S6). Analysis at the level of individual CAF types for patients

stratified as ‘‘high’’ or ‘‘low’’ also showed similar trends (Figures

S7A andS7B). The exceptionwas TMEs high in tCAFs and PDPN

CAFs, which were enriched in PD-1+/CD4+ T cells, IDO+ T cells,

neutrophils, regulatory T cells, and myeloid cells, indicative of

immune exhaustion (Figure S7A). Taken together, these data

show that CAF types and prognostic patient groups defined by

CAF composition are associated with distinct TME states.

Poor prognosis groups and their CAF types are found in tumors

enriched for exhausted immune cells and hypoxia, and, in

contrast, good prognosis patient groups and their CAF types

present with a more inflammatory TME.

CAFs have defined spatial distributions within the TME

Since CAF types are associated with TMEs with distinct charac-

teristics, we analyzed the spatial distributions of cell types in

NSCLC TMEs. We defined tumor-stroma masks, ensured that

the basic cell types were indeed localized in the expected com-

partments, and calculated the distances of each cell to the

closest tumor-stroma interface. We saw striking differences in

the spatial distributions of different CAF types (Figure 6B).

SMA CAFs and mCAFs were almost exclusively in the stromal

compartment, whereas hypoxic tCAFs were almost exclusively

in the tumor compartment. Further, tCAFs and iCAFs were

generally found in the tumor compartment, whereas ifnCAFs

accumulated at the tumor-stroma interface. These results were

independent of tumor type (Figure 6B).

Next, we assessed the pairwise spatial interaction between

CAFs and all other cells and their association with distinct struc-

tures within the TME. A neighborhood analysis over a radius of

20 mm (STAR Methods) revealed that SMA CAFs, mCAFs, and

vCAFs were spatially near each other and that vCAFs and iCAFs

were near blood and lymphatic endothelial cells, independent of

tumor type (Figures 6C and 6D). The latter observation likely ex-

plains the presence of iCAFs in the tumor compartment as a

result of vessels being incorporated into tumor masks (Fig-

ure 6C). ifnCAFs were near IDO+/CD4+ and IDO+/CD8+ T cells,

likely a result of IFN stimulation from surrounding cells; however,

only ifnCAFs and IDO+/CD8+ T cells showed positive interaction

scores with tumor cells. Poor-prognosis tCAFs did not show

strong spatial interactions with other cell types but had a slight

tendency to neighbor tumor cells and ifnCAFs. All hypoxic cells

(hypoxic tCAFs, hypoxic CAFs, and tumor cells) clustered

spatially in a hypoxic neighborhood that included collagen

CAFs to some extent tCAFs. Collagen CAFs also showed strong

interactions with mCAFs. SMA CAFs and mCAFs showed the

most cellular interactions, likely reflecting their high abundance,

whereas dCAFs and PDPNCAFs showed no strong interactions,

consistent with their relative sparsity within the TME. Splitting the

neighborhood analyses by tumor type (LUAD vs. LUSC) showed

similar patterns (Figure 6C). We did not find any major differ-

ences for cell-to-cell interactions when comparing additional

clinical parameters or our prognostic patient groups (data

not shown).

It is known that fibrosis and a dense stroma can prevent im-

mune cells from reaching the tumor, resulting in poor patient

prognosis.50,51 Our data revealed that mCAFs are a dominant

constituent of the tumor stroma (Figure 3E). Further, high

mCAF density was a predictor of poor overall survival in LUSC

(Figure S4B) and the mCAF-enriched patient group 2 was

(C) CoxPH-model for patient groups, corrected for tumor type and grade. Patient group 1 serves as a reference. p Values < 0.05 are shown in blue, p values > 0.05

in grey.

(D and E) Kaplan-Meier (plots for overall survival comparing patients stratified as high and low based on the median proportion of indicated CAF types. Good

prognosis CAFs are in D, poor prognosis CAFs in E. All comparisons with significant differences (log rank testing p < 0.05) are shown.

(F) Lasso-regressed CoxPH model including mean CAF type proportions per patient, patient stratification into high and low for each CAF type (by median

proportion), and all clinical data.
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immune cell depleted compared to the other patient groups (Fig-

ure 6A). We therefore analyzed the effects of mCAF density on

the spatial distribution of immune cells, by comparing cellular in-

teractions in LUSC patients stratified by median mCAF density

(STAR Methods, Figure 7A).52 This revealed that all immune

cells were enriched spatially near tumor cells in patients stratified

as mCAF density low (Figure 7A). Further, all immune cells,

including CD4+ and CD8+ T cells, B cells, myeloid cells, and

neutrophils were found significantly more often near the

tumor-stroma interface (�30 mm–0 mm) or invading the tumor

(0 mm–30 mm) in mCAF-low patients compared to mCAF-high

patients (p < 0.05); with the reverse effect seen further away

p< 0.05

False
True

p< 0.05

False
True

-1
logFC (HR)

0 1 3210-1
logFC(HR)

dCAF
Collagen CAF

tCAF
hypoxic CAF
hypoxic tCAF

iCAF
SMA CAF

vCAF
mCAF
ifnCAF

PDPN CAF

PDPN CAF
hypoxic tCAF
hypoxic CAF

Collagen CAF
mCAF
vCAF

SMA CAF
dCAF
iCAF
tCAF

ifnCAF

A

B

C
AF

 ty
pe

 L
U

AD

RelapseNo relapseRelapseNo relapse

C
AF

 ty
pe

, L
U

SC

F

dCAF
p=0

0.0

0.2

0.4

0.6

Pr
op

or
tio

n 
,L

U
AD

ifnCAF
p=0.01

0.000

0.025

0.050

0.075

0.100

Pr
op

or
tio

n 
, L

U
AD

tCAF
p=0.011

0.0

0.2

0.4

0.6

Pr
op

or
tio

n 
, L

U
AD

dCAF
p=0.001

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n 
, L

U
SC

SMA CAF
p=0.023

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n 
,L

U
SC

dCAF
p=0.047

Dist
an

t M
eta

sta
se

s

No M
eta

sta
se

s
0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n 
, b

ot
h 

tu
m

ou
r t

yp
es

tCAF
p=0.045

Dist
an

t M
eta

sta
se

s

No M
eta

sta
se

s
0.00

0.05

0.10

0.15

Pr
op

or
tio

n 
, b

ot
h 

tu
m

ou
r t

yp
es

Ne
oa

dju
va

nt

Na
ïve

Ne
oa

dju
va

nt

Na
ïve

Ne
oa

dju
va

nt

Na
ïve

Ne
oa

dju
va

nt

Na
ïve

Ne
oa

dju
va

nt

Na
ïve

D

GE

C

N 0 N 1/2

dCAF

tCAF

Hypoxic CAF

vCAF

mCAF

SMA CAF

ifnCAF

Hypoxic tCAF

Collagen CAF

iCAF

PDPN CAF

logFC

C
A

F
 t

y
p
e
, 

L
U

A
D

-2 0 2-1 1

Hypoxic tCAF

Hypoxic CAF

dCAF

vCAF

Collagen CAF

mCAF

SMA CAF

tCAF

iCAF

ifnCAF

PDPN CAF

logFC

C
A

F
 t

y
p
e
, 

L
U

S
C

N 0 N 1/2

-2 0 2

p< 0.05

False
True

p< 0.05

False
True

Figure 5. CAF types are associated with chemoresistance and metastasis

(A and B) Boxplots showing the average patient proportions for the indicated CAF types comparing patients that received neoadjuvant therapy versus amatched

treatment-naı̈ve cohort for LUAD (A) and LUSC (B). Exact p values are indicated.

(C and D) Differential abundance testing of all CAF types comparing patients receiving adjuvant chemotherapy who did or did not relapse, in LUAD (C) and LUSC

(D). p Values < 0.05 are shown in blue, p values > 0.05 in grey.

(E and F) Differential abundance testing of all CAF types comparing patients with (N1/2) and without (N0) lymph node at diagnosis, in LUAD (E) and in LUSC (F). p

Values < 0.05 are shown in blue, p values > 0.05 in grey.

(G) Boxplot showing the average proportions per patient of the indicated CAF types in matched patient groups with and without distant metastases at diagnosis.

Exact p values are indicated.
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A B

C

D

Figure 6. The spatial relationship of CAFs with the tumor microenvironment

(A) Heatmap showing enrichment or depletion of cell types between patient groups defined by CAF composition (1, 2, 3, and 4).

(B) Density curves showing the distance per cell of the indicated CAF types to the closest tumor-stroma border for LUAD (left) and LUSC (right).

(C) Neighborhood analysis heatmap showing nearest 15 neighbors of each cell within a radius of 20 mm (to cell, Y axis; from cell, X axis). Plotted are mean

significances over all images, split by LUAD (left) and LUSC (right). Positive/negative (red/blue) mean scores indicate higher/lower cellular interactions compared

to a random null-distribution.

(D) Images with mask overlays (white) of SMA CAFs (SMA+), mCAFs (MMP11+), collagen CAFs (Collagen I/Fibronectin+), vCAFs (CD146+), iCAFs (CD34+), tCAFs

(CD10+), hypoxic CAFs (CAIX+). The general stromamarker SMA is in red in all cases except for images showing SMACAFs and hypoxic CAFs. Pan cytokeratin is

in magenta in all cases except for the image showing hypoxic CAFs (lower right), all CAFs are panCK�; DNA is in blue. Scalebars are in mm.
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from the tumor (�90 to�30 mm) (p < 0.05) (Figure 7B). This effect

was also visible in images of mCAF density high (Figure 7C) and

low samples (Figure 7D). None of the other CAF types showed

this effect. Our data thus show that the density of mCAFs might

contribute toward poor patient prognosis by driving fibrosis and

thus affecting immune cell access to the tumor in NSCLC.

In summary, we have shown that fibroblast phenotypes in the

TME are a strong prognostic factor for NSCLC patient outcome.

Our data provides evidence for both good- and poor-prognosis

CAF types. The presence of tCAFs was strongly correlated

with poor prognosis and associated with tumors characterized

by hypoxic and immune-exhausted microenvironments. In

contrast, iCAFs that express CD34 and CD248 as well as

ifnCAFs were associated with inflamed tumor microenviron-

ments and higher overall patient survival.

DISCUSSION

Understanding cellular processes and interactions in the TME

and how they are connected to disease progression and patient

outcome is of key importance for patient stratification, therapy

development, and ultimately precision oncology applications.

A B

C D

Figure 7. High mCAF density blocks out immune cells

(A) SpicyR analysis of cell pairs in patients stratified by median mCAF density. Positive scores (red) indicate higher cellular interactions between cell pairs in

patients with low mCAF density, negative scores (blue) indicate higher cellular interactions in patient with high mCAF density; white indicates no difference.

(B) Proportions of B cells (upper) and CD4+ T cells (lower) in patients stratified by mCAF density, within bins of 30 mm from the tumor-stroma border (*p values

< 0.05).

(C and D) Images showing the indicated markers for a mCAF density high image (C) and a mCAF density low image (D), together with the corresponding masks

colored by tumor cells (magenta), immune cells (yellow) and mCAFs (cyan). Scale bar, 150 mm.
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Studies of stromal cells are particularly crucial. The first experi-

mental therapies broadly targeting the tumor stroma have not

been successful in clinical studies, suggesting that more precise

stromal targets are needed.53 Here, we identified prognostic

cellular factors within the stroma of NSCLC, a disease with

poor overall survival and moderate therapeutic response rates.

We identified individual CAF types in LUAD and LUSC and stud-

ied the composition and spatial organization of these cells within

the TME and how these relate to clinical parameters including

survival.

Our defined CAF types share markers with CAF types defined

by others. CD34+ iCAFs have been previously described

as Pi16+ CAFs,17,35 as were cells similar to our ifnCAFs,34 typi-

cally as a subpopulation of a broader iCAF or myofibroblast

group17,36,54,55; the same is also true for CCL19/CCL21+

rCAFs.17,56 We note that iCAFs are frequently described as

IL6+ CAFs, but we did not include IL-6 in our marker panel due

to the lack of a suitable antibody and therefore cannot describe

IL-6 expression in our CD34+ iCAFs. Previous work has defined

inflammatory CAFs with different markers.21,39,55,57 Also, matrix-

associated CAFs have been described in the literature as having

high expression of MMP11 and collagens.17,36,54,55 In our study,

we distinguished between mCAFs (FAP+ MMP11+) and collagen

CAFs (FAP+MMP11-), with the latter cells likely to be a subgroup

within the diverse group of matrix-associated CAFs,17,34 but that

express matrix deposition and remodeling factors other than

MMP11.17,36,37,54,55 CD10/CD73+ CAFs, which we have named

tCAFs, have also been previously described, in all cases specif-

ically identified as panCK-negative fibroblasts17 and thus distin-

guishing them from epithelial populations that are also known to

express CD10.58 While CD10 is generally used as a marker for

alveolar fibroblasts of the lung, high CD10 expression in

NSCLC CAFs has been associated with chemoresistance and

cancer stemness.58 Finally, our vCAFs are similar to the

MHY11+aSMA+ CAFs described by Grout et al.17 as well as

with previously identified vascular or vessel CAFs.36 Taken

together, our analyses show that the commonly used stratifica-

tion of CAFs into iCAFs, myofibroblasts and apCAFs can be

further refined into smaller, functionally relevant groups. Our

study unfortunately does not identify MHC-II+ antigen-present-

ing CAFs due to widespread expression of this marker.38

We showed that patients can be classified into good and poor

prognosis groups based on their CAF composition, independent

of tumor type (i.e., LUAD or LUSC), andwith individual CAF types

also being strong independent prognostic factors in NSCLC.

Good prognostic patient groups 1 and 4 were enriched in SMA

CAFs, iCAFs, and ifnCAFs, and showed also an immune-en-

riched microenvironment. Since SMA CAFs and iCAFs are, in

addition, spatially near vessel structures, this suggests that

these CAF types actively promote immune cell infiltration.

ifnCAFs may be an indirect marker for an ongoing immune

response; they have been previously associated with inflamma-

tion and IFN expression and we previously showed that they

strongly express the IFN stimulated chemokines CXCL9,

CXCL10, and CXCL11. Further, ifnCAFs are close to tumor cells,

suggesting that the ongoing inflammation may directly affect

these cells. However, the effect of interferons on tumor cells is

complex andmay be pro- or anti-tumor.59,60 Intriguingly, ifnCAFs

were enriched in the tumors of non-relapsing patients both in the

whole cohort and in the subset of patients who received chemo-

therapy post-surgery, suggesting a tumor-suppressing role of

ifnCAFs through interferon signaling cues.

In contrast, tCAFs and mCAFs (among others) were enriched

in poor-prognosis patient groups 2 and 3 and were found in hyp-

oxic TMEs enriched in poor prognostic neutrophils. tCAFs and

hypoxic tCAFs were further enriched in patients with distant me-

tastases at the time of diagnosis, suggesting the hypothesis that

a role of these cell types in metastasis is the reason for their poor

prognostic effect. In our previous study, tCAFs also showed

enrichment of TGF-b signaling, glycolysis, stress response and

angiogenesis in a functional enrichment analysis, further pointing

toward pro-tumourigenic functions. Since early micrometastasis

is a driver of poor patient prognosis,61 it is conceivable that

tCAFs could drive early metastatic dissemination and hence

worsen prognosis. This is consistent with their close spatial inter-

action with tumor cells. We interestingly also observed that

tCAFs were depleted in patients post neoadjuvant therapy,

which may suggest that tCAFs are either targeted by chemo-

therapy or that their phenotype depends on close interactions

with tumor cells which are depleted by chemotherapy. In

contrast, tCAFs and hypoxic tCAFs were enriched in relapsing

patients, including those who relapsed after chemotherapy, in

line with the known link between stromal CD10 expression and

chemoresistance in lung cancer.13

Interestingly, our spatial analysis of CAF types in NSCLC re-

vealed no significant differences between LUAD and LUSC as

well as between the different growth patterns of LUAD (data

not shown). It further showed good correspondence with the

spatial CAF-type distributions we detected in our multiplexed

imaging study of breast cancer.37 This suggests that the archi-

tecture and spatial distribution of CAF types within the tumor

stroma might be conserved across cancer types. It is also

conceivable that the different CAF types in cancer are the result

of their spatial proximity to different structures (vessels, stroma,

and tumor) and therefore of their interaction with different cell

types. Mechanistic studies using co-cultures would be useful

to investigate CAF plasticity further.

Poor-prognostic tCAFs, as well as good-prognostic and pro-

inflammatory ifnCAFs, are both located near tumor cells, sug-

gesting juxtracrine or paracrine effects between CAFs and tumor

cells. tCAFs express CD73, a 50-nucleotidase that dephosphor-

ylates AMP to adenosine. An increase of available adenosine in

the extracellular matrix facilitates growth, migration, survival,

and adhesion of tumor cells.13,62–64Adenosine also has immuno-

suppressive functions and has been associated with T cell

exhaustion and thus could indirectly drive tumor growth by facil-

itating immune escape.65 tCAFs may therefore promote tumor

growth by making adenosine available in the tumor-surrounding

stroma. Furthermore, it has previously been shown that tumor

cells can reprogram nearby stromal cells for their own metabolic

benefit.66,67 Based on the physical proximity of tumor cells and

tCAFs it could be speculated that this mechanism may be at

play. For good-prognostic ifnCAFs, which are also located

near tumor cells, expression of IDO suggests that these cells

may be reacting to ongoing inflammation, a hypothesis sup-

ported by immune cell enrichment in patients with high propor-

tions of ifnCAFs.68 However, ifnCAF high patients were also

significantly enriched for hypoxic tCAFs, myeloid cells and
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potentially immunosuppressed IDO+ T cells.69,70 This, and their

close interaction with tumor cells stands in conflict with their

overall apparent good prognostic function. Functional experi-

ments are needed to fully understand the mechanisms of CAF

heterogeneity and the synergistic effect between CAFs, tumor

cells and inflammatory processes within the TME.71 Still, CAFs

might serve as a marker for the state of the TME.

We hypothesize that our data may have implications for anti-

CAF directed therapy, which has so far not been successful.72

This may be due to targeting of all CAFs, which we would predict

to reduce therapeutic efficiency given the mixed prognostic ef-

fects we have observed for different CAF types. It would poten-

tially be beneficial, and has been hypothesized before,23 to

target or eliminate poor prognostic CAFs while supporting

good prognostic types. Poor prognostic tCAFs and hypoxic

tCAFs, which we see are correlated with chemoresistance and

metastasis, could be potential cellular targets for precision med-

icine. Further, if our hypothesis is correct that the spatial prox-

imity of tCAFs with tumor cells is functionally important, a

mode of action for potential treatments might lie in interrupting

themolecular interactions between these cell types to potentially

slow tumor growth and decrease metastasis and chemoresist-

ance. Nevertheless, further experiments will be needed to

strengthen the case for these CAF types playing a causal role

in tumor growth.

We showed that mCAF density has a negative effect on im-

mune cell infiltration in NSCLC, whereas other CAF types did

not play this role. Thus, a dense mCAF barrier may exclude im-

mune cells from the tumor, hamper the anti-immune response

and negatively impact patient survival. This finding might sug-

gest that approaches that disrupt the tumor-surrounding stroma

may allowmore immune cells to reach the tumor and yield higher

success rates for immunotherapy. However, previously reported

negative effects of stroma depletion must be considered in such

settings.19,22 In general, a balance between the tumor promoting

and suppressing effects of fibrosis must be found if these cells

are to be effective drug targets.

More generally, our findings highlight the importance of under-

standing CAF heterogeneity to enable development of therapies

that inhibit functions of poor-prognosis CAFs or that support the

good-prognosis ones. Previous work in pancreatic ductal

adenocarcinoma73 and breast cancer34 suggests that there are

links between specific CAF types and patient response to ther-

apy. It will therefore be of interest to analyze in more detail

how the stromal compartment changes after different types of

therapy and how our defined CAF types relate to therapeutic

response. The data we provide here on treatment-naı̈ve patients

can serve as a reference in that regard.

Limitations of the study

Our study has limitations: First, despite the highly multiplexed

nature of IMC, there may be CAF types that are not captured

by our 45-antibody panel. For instance, due to the lack of a

high-quality antibody for pericyte marker RGS5,74 we cannot

distinguish pericytes from vCAFs. We mitigated this effect by

careful antibody panel design informed by intensive literature

research and by our own and public scRNA-seq data.30,37 Sec-

ond, the simplification of fibroblasts to their nuclear core during

segmentation meant that we were unable to investigate interac-

tions that occur at the edges of the cells. Third, only one or two

cores were imaged per patient, and all cores were taken from the

invasive front. Thus, CAF features and heterogeneity that we

describe may be unique to this region of NSCLC tumors. Finally,

our study is descriptive and investigated correlation rather than

causation, thus, our derived hypotheses are speculative. Never-

theless, this study is the largest multiplex imaging analysis of

NSCLC and fibroblasts to date and should serve as a reference

and resource for future work.
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Antibodies

Rabbit monoclonal anti-Vimentin;

Clone (EPR3776); Lot(GR286525-2)

Abcam Cat#ab193555; RRID: AB_2814713

Rabbit polyclonal anti-p75 (CD271); Clone

(polyclonal_ANT-007); Lot(ANT007AN0702)

alomone labs Cat#ANT-007; RRID: AB_2039968

Rabbit polyclonal anti-Collagen I; Clone

(Polyclonal_Collagen I); Lot(GR3271183-3)

Abcam Cat#ab34710; RRID: AB_731684

Mouse monoclonal anti-Fibronectin;

Clone (10/Fibronectin); Lot(6251888)

BD Biosciences Cat#610078; RRID: AB_397486

Rat monoclonal anti-Podoplanin;

Clone (NC-08); Lot(B260834)

Biolegend Cat#337002; RRID: AB_1595511

Mouse monoclonal anti-pan Cytokeratin;

Clone (AE1); Lot(3252910)

Millipore Cat#MAB1612; RRID: AB_2132794

Goat polyclonal anti-Carbonic Anhydrase IX;

Clone (polyclonal_CA9_AF2188); Lot(VNQ0319011)

R&D Systems Cat#AF2188; RRID: AB_416562

Rabbit monoclonal anti-Histone H3;

Clone (D1H2); Lot(15)

Cell Signal Technology Cat#4499BF; RRID: AB_10544537

Rabbit polyclonal anti-CD248;

Clone (Polyclonal_Proteintech); Lot(00019535)

Proteintech Cat#18160; RRID: AB_10858230

Mouse monoclonal anti-CXCL-12;

Clone (79018); Lot(JOJ0519031)

R&D Systems Cat#MAB350-100; RRID: AB_2088149

Goat polyclonal anti-LYVE-1; Clone

(Polyclonal_LYVE-1); Lot(KPY0119052)

R&D Systems Cat#AF2089; RRID: AB_355144

Goat polyclonal anti-CCL21 ; Clone

(Polyclonal_CCL21 / 6Ckine); Lot(AYJ218071)

R&D Systems Cat#AF366; RRID: AB_355327

Mouse monoclonal anti-Cadherin-11;

Clone (283416); Lot(VLT0219091)

R&D Systems Cat#MAB1790; RRID: AB_2076970

Mouse monoclonal anti-CD45RA;

Clone (HI100); Lot(B291512)

Biolegend Cat#304102; RRID: AB_314406

Rabbit monoclonal anti-Caveolin-1;

Clone (D46G3); Lot(7)

Cell Signal Technology Cat#3267BF; RRID: AB_2275453

Mouse monoclonal anti-FOXP3;

Clone (236A/E7); Lot(2129676)

eBioscience Cat#14-4777-82; RRID: AB_467556

Rabbit monoclonal anti-MMP9;

Clone (D6O3H); Lot(4)

Cell Signal Technology Cat#A0398; RRID: AB_2798289

Rabbit monoclonal anti-CD140b/PDGFRb;

Clone (Y92); Lot(GR296584-4)

Abcam Cat#ab215978; RRID: AB_2894841

Mouse monoclonal anti-CD8a;

Clone (C8/144B); Lot(2132595)

eBioscience Cat#14-0085-82; RRID: AB_11150240

Rabbit polyclonal anti-Myeloperoxidase;

Clone (Polyclonal MPO); Lot(20071134)

Dako Cat#AB_2335676; RRID: AB_2335676

Mouse monoclonal anti-CD15; Clone (HI98);

Lot(B291510)

Biolegend Cat#301902; RRID: AB_314194

Rabbit monoclonal anti-CD4; Clone (EPR6855);

Lot(GR3215375-27)

Abcam Cat#ab181724; RRID: AB_2864377

Rabbit monoclonal anti-Indoleamine 2-

3-dioxygenase; Clone (SP260); Lot(GR3259345-2)

Abcam Cat#ab245737; RRID: AB_2894840

Rabbit monoclonal anti-CD10; Clone (E5P7S); Lot(2) Cell Signal Technology Cat#65534; RRID: AB_2894842

Goat polyclonal anti-CD146; Clone (Polyclonal_

MCAM/CD146_RnD_AF932); Lot(ECL0319041)

R&D Systems Cat#AF932; RRID: AB_355721

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse monoclonal anti-SMA; Clone (1A4); Lot(2183900) eBioscience Cat#14-9760-82; RRID: AB_2572996

Rabbit monoclonal anti-CD73; Clone (D7F9A); Lot(2) Cell Signal Technology Cat#13160BF; RRID: AB_2716625

Rat monoclonal anti-PNAd;

Clone (MECA-79); Lot(B257139)

Biolegend Cat#120802; RRID: AB_493555

Rabbit monoclonal anti-VCAM-1;

Clone (EPR5047); Lot(GR3255420-3)

Abcam Cat#ab215380; RRID: AB_2894839

Rabbit monoclonal anti-CD34;

Clone (EP373Y); Lot(GR3271518-1)

Abcam Cat#ab198395; RRID: AB_2889381

Rabbit polyclonal anti-vWF;

Clone (poly vwf); Lot(3322998)

Millipore Cat#AB7356; RRID: AB_92216

Mouse monoclonal anti-HLA-DR;

Clone (TAL 1B5); Lot(GR3306331-1)

Abcam Cat#ab20181; RRID: AB_445401

Rabbit polyclonal anti-CD3;

Clone (polyclonal_A0452);

Lot(20073981)

Dako Cat#A0452; RRID: AB_2335677

Rabbit polyclonal anti-MMP11;

Clone (polyclonal); Lot(GR111256-10)

Abcam Cat#ab53143; RRID: AB_2042361

Mouse monoclonal anti-Keratin Epithelial;

Clone (AE3); Lot(3255457)

Millipore Cat#MAB1611; RRID: AB_2134409

Mouse monoclonal anti-CD20;

Clone (L26); Lot(2172592)

eBioscience Cat#14-0202-82; RRID: AB_10734340

Rabbit monoclonal anti-CD31;

Clone (EPR3094); Lot(GR3229164-1)

Abcam Cat#ab207090; RRID: AB_2889382

Rabbit monoclonal anti-FSP1 / S100A4;

Clone (EPR2761(2)); Lot(GR317174-3)

Abcam Cat#136784; RRID: AB_10807552

Sheep polyclonal anti-FAP; Clone

(polyclonal_FAP); Lot(ZKW0619101)

R&D Systems Cat#AF3715; RRID: AB_2102369

Mouse monoclonal anti-CD68;

Clone (KP1); Lot(2162103)

eBioscience Cat#14-0688-82; RRID: AB_11151139

Rabbit monoclonal anti-CD279 (PD-1);

Clone (D4W2J); Lot(6)

Cell Signal Technology Cat# I44:I47; RRID: AB_2864408

Rabbit monoclonal anti-TCF1/TCF7;

Clone (C63D9); Lot(10)

Cell Signal Technology Cat#2203; RRID: AB_2534154

Mouse monoclonal anti-CD45RO;

Clone (UCHL1); Lot(B291511)

Biolegend Cat#304202; RRID: AB_314418

Rabbit monoclonal anti-K-Cadherin ;

Clone (D3T3I); Lot(2)

Cell Signal Technology Cat#48111; RRID: AB_2799334

Mouse monoclonal anti-Ki-67;

Clone (B56); Lot(8239549)

BD Biosciences Cat#556003; RRID: AB_396287

Biological samples

Human NSCLC TMA sections University Hospital Zurich,

Zurich, Switzerland

https://www.usz.ch/

Chemicals, peptides, and recombinant proteins

Iridium intercalator Fluidigm Cat#201192B

Critical commercial assays

MaxPar X8 Multimetal Labeling Kit Fluidigm Cat#201300

Deposited data

IMC images This paper Zenodo: https://doi.org/10.5281/zenodo.7961844

Clinical data This paper Zenodo:

Software and algorithms

CellProfiler v3.1.9 McQuin et al.46 http://cellprofiler.org

HistoCAT Schapiro et al.75 https://github.com/BodenmillerGroup/

histoCAT/releases

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Please direct all questions regarding this manuscript to Bernd Bodenmiller (bernd.bodenmiller@uzh.ch).

Material availability

No new materials were generated within the scope of this project.

Data and code availability

All data have been deposited at zenodo under https://doi.org/10.5281/zenodo.7961844 and are publicly available as of the date of

publication. DOIs are listed in the key resources table.

All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The TMA cohort used in this study is an existing clinical sample cohort that was kindly provided by the Pathology Department of the

University Hospital Zurich (USZ).42–44 All samples were collected with approval of the Ethics Committee of Zurich #2019-01597 and

Stv. 29-2009. Information regarding the ethnicity of the patients as well as information on the mutation status of the patients is not

available for this cohort. Information about sex and age are provided as part of the anonymised clinical data, information on ancestry,

race, ethnicity and the socioeconomic status was not collected as part of this cohort and is thus not available. The influence of sex as

a co-founding factor on the results was analysed.

METHOD DETAILS

Antibody panel, staining, and imaging

Samples were first deparaffinised using HistoClear and then rehydrated with a graded ethanol series (100%, 96%, 90%, 80%, 70%).

For antigen retrieval, the slides were incubated in heat-induced epitope retrieval (Tris-EDTA) buffer at pH 9.2 at 95�C for 30 minutes.

Afterwards, the slides were blocked with 3% BSA (Bovine serum albumin) in Tris buffered saline with Tween (TBS-T) (TBS plus 0.1%

Tween) for 45 minutes and were then stained with the antibody panel diluted in TBS with 0.1% Tween (Table S1) overnight at 4�C.

After washing in TBS (Trizma and NaCl at pH 7.6) for 30 minutes, the samples were stained with a DNA intercalator (CellID� Iridium

Intercalator, diluted 1:100 in TBS). Finally, the slides were dipped into double distilled H2O and dried with pressured air. Slides were

analysed by IMC over a period of 7 weeks. The samples were laser-ablated at 400 Hz using a Hyperion imaging mass cytometry sys-

tem coupled to a Helios time-of-flight mass cytometer with a resolution of 1 mm. We tuned the machine between each TMA slide to

ensure machine stability. Images of each slide were checked for their staining using histoCAT.75 We acquired data on 2,070 cores;

two cores were acquired in two steps due to technical issues (88A_4,2 and 88A_5,2). 193Ir and 191Ir and Histone were used for

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ilastik v.1.3.3 Berg et al.45 https://www.ilastik.org/news/

2019/09/30/ilastik-1.3.3

Python v 3.4.3 Python Software Foundation https://www.python.org

R v4.1 R Development Core Team https://www.r-project.org

Bodenmiller lab imctools Bodenmiller lab https://github.com/BodenmillerGroup/

imctools

Bodenmiller lab segmentation pipeline Bodenmiller lab https://github.com/BodenmillerGroup/

ImcSegmentationPipeline

Bodenmiller CellProfiler plugins Bodenmiller lab https://github.com/BodenmillerGroup/

ImcPluginsCP

Bodenmiller lab spillover compensation Bodenmiller lab https://github.com/BodenmillerGroup/

cyTOFcompensation

imcRtools v1.3.7 Windhager et al.76 https://doi.org/10.1038/s41596-023-00881-0.

Rphenoannoy v0.1.0 Levine JH et al.77 https://doi.org/10.1016/j.cell.2015.05.047

FLOWSOM v2.2.0 Van et al.47 https://onlinelibrary.wiley.com/doi/

full/10.1002/cyto.a.22625.

Analysis code This paper https://doi.org/10.5281/zenodo.7981268
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segmentation but excluded from subsequent clustering analyses. Cadherin-6 was excluded from all analyses as it did not show any

specific staining pattern. All antibodies were selected based on our previous study of CAF heterogeneity including a scRNA-seq da-

taset of NSCLC.37 There, we first defined different CAF types based on unsupervised clustering of transcriptomic data. Based on

these results, we selected a subset of markers that allowed identification of these different CAF types using IMC. We evaluated their

specificity by re-clustering our scRNA-seq data using only this subset of markers. We were able to identify all of our CAF types with

our IMC marker subset as detected using all transcriptomic data available.37

Segmentation pipeline

The raw data was converted to tiff files and segmented using a pipeline that includes CellProfiler (3.1.9)46 and ilastik.45 Cells were

segmented with ilastik using iridium for nuclear staining, and fibroblasts were reduced to their nuclear cores based on the iridium

signal and treating SMA signal as background. We previously validated this approach for fibroblast segmentation in a study on a

breast cancer cohort, where we showed that this segmentation revealed the same CAF types as detected with scRNA-seq as

well as when using automated Mesmer based78 nuclear segmentation.37 Our previous analyses showed that this segmentation

approach recapitulates CAF heterogeneity and allows us to investigate CAF type heterogeneity. Tumour-stroma masks were also

generated with ilastik using SMA as the marker for stroma identification and panCK as the marker for tumour identification. The

tumour-stroma masks were then used together with the single-cell masks to calculate the mean intensity of each marker per cell

and to assign cells as either stroma or tumour based on spatial location. Compensation was done using themeasured compensation

slide that contained pure spots of each used metal-tagged antibody to correct for spill over between channels. The raw counts were

then censored using a 99th-percentile cut-off and transformed using arc-sinh transformation with a cofactor of 1. For visualisation,

normalised counts based on the arc-sinh transformed counts from 0 to 1 are shown. All analyses were carried out using the arc-sinh

transformed values.

Cell phenotype clustering

All analyses were performed using R (version 4.1.2). All cells were first split into tumour and non-tumour cells using a Gaussian

mixture model based on the mean cellular expression of panCK. This was done for each TMA block, and all tumour (n =

2,855,748) and non-tumour (n = 3,128,955) cells weremerged. The non-tumour cells were subclustered using a combination of Rphe-

nograph (Rphenoannoy) and FLOWSOM.47,77 Both the non-tumour and the tumour cell subsets were clustered again using all

markers to guarantee purity of non-tumour cells from tumour cells. Tumour cells identified at later clustering stages were merged

back with the previously defined tumour cells. The final dataset contained 2,979,712 tumour cells, 1,179,114 immune cells,

1,086,678 fibroblasts, 150,062 vessel cells (both blood and lymphatic endothelial cells), 588,888 undefined (other) cells; 148 cells

that originated from the removed images are not included in the final dataset.

Non-tumour cells were clustered (Rphenograph, k = 30) and split into tumour, vessel, immune, and stromal cells. The tumour cells

were merged into the tumour cell subset. Immune were clustered with all markers. The immune cells were then clustered using

FLOWSOM (k_max = 40, som = 25) to exclude T cells. Cells that expressed CD20 and CD3 were integrated into the T cell subset.

T cells were then clustered with Rphenograph (k = 20, cluster 17) first including CD20, which resulted in a fraction of 16,825

CD20+ B cells that were merged back into the immune cell subset. Subsequently, 391,422 T cells were clustered using only T cell

markers (CD3, CD4, CD8, Ki-67, PD-1, TCF-1/7, IDO, FOXP3)) and grouped into CD4, CD4 T reg, IDO CD4, IDO CD8, Ki-67 CD8,

Ki-67 CD4, TCF1/7 CD4, TCF1/7 CD8, PD-1 CD4, CD8. Immune cells excluding T cells were clustered (Rphenograph, k = 12) and

categorised as myeloid cells (HLA-DR+/CD68+), neutrophils (MPO+/MMP9+), and B cells (CD20+).

Stromal cells were clustered over all markers, and 5,612 tumour and 16,641 immune cells were excluded. Clustering over all CAF

and vessel markers including CD31, vWF, LYVE-1, and PNAd was used to subset 508,786 endothelial and lymphatic cells (Rpheno-

graph, k = 20). These were clustered (using SMA, CD146, FAP, VCAM1, podoplanin, p75 / CD271, vimentin, PNAd, LYVE-1, CD140b,

CD34, vWF/CD31, CXCL12, CCL21) to exclude 384,307 CAFs that were merged back into the CAF subset. Vessel cells (n = 150,062)

were split into high endothelial venules (PNAd+/LYVE-1+/CCL21+), lymphatic endothelial cells (LYVE-1+ /CCL21+), and endothelial

cells (CD146+/CD31+/vWF+/CCL21-). CAFs (n = 1,086,918) were over-clustered using FLOWSOM (k_max: 45, som = 40, markers

displayed in heatmap, Figure 2A) and annotated based on marker expression as: mCAFs (FAP+/MMP11+/Collagen+), iCAFs

(CD34+/CD248+), tCAFs (CD10+/CD73+), hypoxic tCAFs (CD10+/CAIX+), hypoxic CAFs (CAIX+), IFNCAFs (IDO+), vCAFs (CD146+/

CD34-), dCAFs (Ki-67+), PDPN CAFs (PDPN+), and SMA CAFs (SMA+). Some differences were observed between the CAF types de-

tected in this dataset and the CAF types identified in the breast cancer IMC analysis.37 In the breast cancer dataset, we had previ-

ously identified mCAFs as PDPNlow/collagen-fibronectinhigh/FAP+ cells that did not express CD10, CD34, or CD146. In that analysis

we did not stain for MMP-11 due to the lack of an antibody. Now that we had access to an anti-MMP-11 antibody, we identified

mCAFs (MMP11+) as well as Collagen CAFs (MMP-/Collagen+). In the original breast cancer publication these are likely grouped

together asmCAFs. Due to the absence of CXCL13 in this panel, we did not identify CXCL13+CAFs. CCL21+CAFswere also absent,

which is not surprising given their rarity and association with TLS. We also identified PDPN CAFs in this dataset. The final tumour cell

subset (n = 2,979,716) was divided into hypoxic and non-hypoxic cells using a Gaussian mixture model based on panCK expression.

The final cell classification into tumour, stroma as well as cell categorisation into tumour, immune, CAF, vessel and other was eval-

uated by comparing the cell type distribution within the given tumour-stromamasks (Table S2; Figures S1B‒S1E). 95% of all tumour

cells were found in the tumour compartment and over 80% of all CAFs were found in the stromal compartment. The remaining CAFs

were mostly found at the edge of the tumour masks (within the first 10 mm, Table S3).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data exclusion and subsetting

When analysing individual cell categories (e.g., CAFs only), the images with less than 100 cells (lowest 5-10%) were excluded from all

CAF-only analyses, resulting in 1025 patients in total. Proportions were calculated per cell category and overall densities were calcu-

lated over the entire tumour core, if not otherwise indicated, as the area sum of the stromal and tumour masks. When analysing cor-

relations between patients for all cell types, the same threshold (5-10%) was applied to exclude low cell number images, resulting in a

total of 1070 patients. Two cores were available for 85% of the patients. We ran a paired t-test analysis comparing the distribution of

all cell types between the two cores for each patient. Apart from hypoxic CAFs (p = 0.005717), the p-values for all paired cell type

analyses were not significant (p > 0.05), suggesting that the different cell types come from the same overall distribution. For patients

with two cores, proportions were thus calculated for the respective cell type category for both cores together. For density calcula-

tions, the densities were first calculated per core before the mean of the two cores was calculated, similar to the publication by

Fischer et al.79

Analysis of matched cohorts

Matched control cohorts were generated from subsets of the dataset. For the comparison of neoadjuvant chemotherapy treated

versus treatment naive patients were matched based on tumour type, stage, sex, grade. For the comparison of distant metastasis

and the absence thereof, patients werematched by tumour type, TNM (T only), grade, absence of neoadjuvant treatment and sex.We

do not have any information about the development of distant metastasis after diagnosis. Where possible, cell numbers per patient

were also roughly matched if more than one control candidate was available.

Statistical analyses

The Mann-Whitney-U test was used for two-group comparisons and the Kruskal-Wallis test was used for multiple group compari-

sons. Differential abundance tests were carried out using the edgeR80 and diffcyt81 packages. We calculated Kaplan-Meier curves

for survival analyses and tested differences between groups by using log rank test. In case the median survival difference was only

significant for the respective CAF type in one tumour type (LUAD, LUSC) the respective tumour type is indicated in the plot. For all

other analyses survival differences were significant in both tumour types and the analysis is shown for the whole cohort. Pearson

correlation was used for evaluation of cell type proportions and densities. The Bonferroni post-hoc test was used in our analyses

to account for multiple testing. The non-lasso regressed CoxPH models was corrected for tumour type and grade. Differential abun-

dance and survival analyses were carried out for all patients pooled and split by tumour type (LUAD, LUSC) respectively. Non-sig-

nificant results are not being shown.

Spatial analysis

We used the histoCAT neighbourhood analysis included in the imcRtools package.75,80 Themaximal radius per cell was set to 20 mm,

and we analysed the 15 nearest neighbours of each cell. The spicyR package was used to compare the cellular neighbours between

patient groups stratified based on CAF density.52

Hypoxia patch detection analysis

In order to assess the abundance of endothelial cells as an orthogonal measure of hypoxia in CAIX-defined hypoxic versus normoxic

areas, we used patch detection based on cells defined as hypoxic. A spatial graph using expansion with a threshold of 15 was calcu-

lated based on the coordinates of the centroids of each cell. We defined hypoxic and normoxic ‘patches’ using graph-based expan-

sion from all hypoxic (CAIX+) cells (graph threshold: 15, expansion: 5), requiring aminimum of 10 hypoxic cells to define a patch. Note

that these hypoxic patches could also contain normoxic (CAIX-) cells. All regions outside of hypoxic patches were then designated as

normoxic patches.
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