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Cancer-associated fibroblast classification in
single-cell and spatial proteomics data

Lena Cords1,2,3,6, Sandra Tietscher1,2,3,6, Tobias Anzeneder4, Claus Langwieder5,

Martin Rees5, Natalie de Souza1,2 & Bernd Bodenmiller 1,2

Cancer-associated fibroblasts (CAFs) are a diverse cell population within the

tumour microenvironment, where they have critical effects on tumour evo-

lution and patient prognosis. To define CAF phenotypes, we analyse a single-

cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from

tumours of 14 breast cancer patients, based on which we define and func-

tionally annotate nine CAF phenotypes and one class of pericytes. We

validate this classification system in four additional cancer types and use

highly multiplexed imaging mass cytometry on matched breast cancer sam-

ples to confirm our definedCAF phenotypes at the protein level and to analyse

their spatial distribution within tumours. This general CAF classification

scheme will allow comparison of CAF phenotypes across studies, facilitate

analysis of their functional roles, and potentially guide development of new

treatment strategies in the future.

The tumour microenvironment (TME) is a complex ecosystem con-

sisting of diverse and interacting cell populations. These cell popula-

tions include a variety of resident and infiltrating immune cells and

stromal cells, as well as tumour cells. The composition of the TME

influences tumour progression and metastasis1, the anti-tumour

immune response2, and therapy response3. It is thus crucial to study

tumours as complex ecosystems in order to understand intercellular

interactions and to improve patient prognosis.

Fibroblasts are the main constituent of the tumour stroma.

Cancer-associated fibroblasts (CAFs) are diverse cells with numerous

roles within the TME4. They are key players in shaping the tumour

microenvironment with functions in tumour promotion5,6 and

inflammation7–9 as well as maintenance and reshaping of the extra-

cellular matrix (ECM)4,10. Different CAF subpopulations have been

described in various cancer types11–14. In breast cancer, for example,

single-cell RNA sequencing (scRNA-seq) in a mouse model detected

four different CAF phenotypes, termed vascular CAFs, matrix CAFs,

cycling CAFs and developmental CAFs15. A separate scRNA-seq study

using a triple-negative breast cancer mouse model further identified

CAF phenotypes with inflammatory and immune regulatory, ECM-

producing, protein folding, and antigen-presenting functions16. In

human breast cancer, the CAF-S1 subtype is associated with an

immunosuppressive environment13 and cancer cell migration, thus

likely promoting metastasis17.

CAF subsets have been identified and linked to patient prognosis

or therapy response18 in many cancer types including, for example,

pancreatic ductal adenocarcinoma (PDAC)7,9, bladder urothelial

cancer14, melanoma19 and lung cancer11,18, highlighting their impor-

tance in cancer research. While CAF heterogeneity was initially typi-

cally studied in a single cancer type18,20,21, cross-species7,9,12,22 and cross-

cancer22–24 validation has become easier with increased data avail-

ability from published studies. However, different studies may vary in

their biological focus and identify CAF types at different phenotypic

granularity, such that they are not always easily comparable. Thus,

despite recent advances, a simple and decisive set of markers for

unambiguous identification of CAFs and CAF subtypes in the TME

would be very useful10. To define such a marker set, we set out to

establish a tumour-type-independent CAF classification system.

In this work, we analysed a scRNA-seq dataset of human breast

cancer and defined nine CAF and one pericyte populations (Fig. 1). We
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confirmed these populations at the protein level using multiplex

imaging mass cytometry (IMC) on matched samples, defined marker

genes for each CAF type, and investigated their spatial distribution

within the TME such as distance to the stroma/tumour border, to

structures such as vessels, and to classes of neighbouring cells (Fig. 1).

Our analysis across several tumour types showed that these cellular

subpopulations are present across cancer types and thus that the CAF

phenotypes we have defined can be generalised. Our proposed clas-

sification system for CAFs should enable future work by providing

suggested marker genes for generally identifiable and functionally

interpretable CAF types.

Results
Fibroblast classification in breast cancer
To identify and classify CAF types, we analysed our previously gener-

ated scRNA-seq dataset from 14 human breast cancer specimens

(SupplementaryData 1), inwhichwehad identified 16,704 stromal cells

(out of ~119,000 cells total) based on unsupervised clustering25. Of

these stromal cells, we identified 2,389 cells as pericytes based on the

expression of RGS526, resulting in a total of 14,315 CAFs. We used this

dataset to investigate fibroblast phenotypic heterogeneity in breast

tumours.

After batch correction (Supplementary Fig. 1a), we performed

unsupervised hierarchical clustering of the single-cell gene expres-

sion profiles of all stromal cells, which identified 12 clusters at a

resolution of 0.4 (Supplementary Fig. 1b, c and Supplementary

Data 2). This resolution was selected to balance between over-

clustering and retaining the ability to identify rare cell types. We then

examined the top differentially expressed genes (MAST27) for each

cluster relative to all other clusters (Fig. 2a, b). In two instances, we

manually merged two clusters based on the high overlap of func-

tionally related, differentially expressed genes (see “Discussion”),

resulting in a total of 10 cell types, and repeated the differential gene

expression analysis after cluster merging (Supplementary Data 3).

Gene set enrichment analysis was then used to identify hallmark

pathways28 enriched for each cell type (Fig. 2c). Based on these

analyses, we annotated the clusters as nine CAF types and one cluster

of pericytes:

Matrix CAFs (mCAFs): We identified two clusters (clusters 0 and

7), characterised by high levels of expression of genes encodingmatrix

proteins, in particular matrix metalloproteinase MMP11 and COL1A2

(Fig. 2a, Supplementary Fig. 1b and Supplementary Data 2 and 3),

which we combined into a single cluster. The resulting group of CAFs

(n = 4525 cells) expressedMMP11 and other matrix metalloproteinase-

encoding mRNAs, and collagen-encoding mRNAs (COL10A1, COL11A1,

COL8A1, COL1A2, COL12A1, COL3A1, COL8A1 and COL5A2). Further,

mRNAs encoding non-collagenousmatrix proteins (COMP and POSTN)

were also amongst the top 20 differentially expressed genes of this

group (Fig. 2a, b). Cells of this cluster also expressed high levels of

genes associated with adhesion (e.g., LRRC15, LRRC17, and ASPN) and

with migration (e.g., POSTN, SULF1, INHBA and VCAN) (Fig. 2a and

Supplementary Data 2 and 3). As the top two differentially expressed

genes of this cluster were MMP11 and POSTN, we named these cells

mCAFs, also in alignment with prior studies15,16,24. Despite the strong

overlap in their top differentially expressed genes, it remains possible

that the twomerged clusters (0 and 7) represent distinct subgroups of

mCAFs; inparticular the topdifferentially expressedgenes exclusive to

the smaller cluster 7 (MGP and BGN) could suggest an association with

cartilage. Next, we conducted a gene set enrichment analysis (GSEA)

using hallmark pathways to assess our annotations in an orthogonal

manner28,29. For mCAFs, the pathways upregulated included TGF-β

signalling, which is associated with the development of activated

myofibroblasts30, KRAS signalling, and pathways underlying the epi-

thelial to mesenchymal transition (EMT) (Fig. 2c). The EMT pathway is

defined, in this analysis, by multiple collagens, as well as CTHRC1, FAP,

INHBA, LRRC15,MGP, POSTN and VCAN. These are all genes associated

with matrix remodelling and migration, supporting our mCAF

annotation.

Inflammatory CAFs (iCAFs): Cells belonging to the second largest

cluster (n = 3439 cells) were characterised by unique expression of a

phospholipase encoded by PLA2G2A and of genes involved in the

complement pathway (e.g., CFD and C3) (Fig. 2a, b). In addition, CD34

Fig. 1 | Workflow used to define the CAF classification system. scRNA-seq data

from matched breast cancer samples25 were analysed for fibroblast heterogeneity

with subsequent validation of identified fibroblast subtypes in other tumour types.

IMC using formalin-fixed paraffin-embedded tissue sections (FFPE) was used to

validate findings at the protein level and to evaluate spatial distribution. The

resulting CAF classification system (featuring vascular CAFs (vCAFs), matrix CAFs

(mCAFs), interferon-response CAFs (ifnCAFs), tumour-like CAFs (tCAFs), inflam-

matory CAFs (iCAFs), dividing CAFs (dCAFs), reticular-like CAFs (rCAFs) and

antigen-presenting CAFs (apCAFs)) was based on marker genes, biological func-

tions, spatial distribution within the TME, and cellular interactions.
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Fig. 2 | Fibroblast heterogeneity in breast cancer. a Heatmap of the top six

differentially expressed genes for each cell type in scRNA-seq data of all stromal

cells (n = 16,704). Cellular phenotypes are indicated above the heatmap. Key

marker genes are highlighted in red. b UMAP of all stromal cells coloured by CAF

type, together with the corresponding feature plots showing the expression level

of selected marker genes for each cell. c Gene set enrichment analysis comparing

the enrichment of hallmark pathways between CAF types. Boxes indicate the

functional hallmark pathways that we used to define/annotate CAF types (see also

Supplementary Data 7). d Proportion of all CAF types and pericytes per patient.

e Heatmap showing the average gene expression level of all definedmarker genes

per identified cell type (after batch correction).

Article https://doi.org/10.1038/s41467-023-39762-1

Nature Communications |         (2023) 14:4294 3



was among the top differentially expressed genes in this cluster

(Supplementary Data 2 and 3). CD34 is a marker for hematopoietic

stem cells but is known to be expressed by fibroblasts and has pre-

viously been linked to inflammation12,21. This cluster also showed high

expression of cytokines and chemokines, including CXCL12, CXCL14

and IL6 (Supplementary Data 2 and 4). CXCL12 has previously been

used as a marker for CAFs associated with inflammation14,21 and for

immune regulatory CAFs16, and we thus labelled this cluster iCAFs.

Consistent with pro-inflammatory activities, the GSEA revealed that

iCAFs are characterised by an upregulation of the IL6-JAK-STAT3

pathway as well as KRAS and complement signalling (Fig. 2c). The

pancreatic beta cell pathway also showed strong enrichment in iCAFs

which is most likely due to a high gene expression level ofDPP4 in this

cluster (Supplementary Data 2 and 3).

Vascular CAFs (vCAFs): The overall gene expression profile of the

CAF cluster with the third highest number of cells (n = 2886 cells)

suggested a link to angiogenesis since these cells showed high

expression of NOTCH3, an important receptor in vascularisation and

angiogenesis31, of collagen COL18A1, involved in angiogenesis

regulation32, and of MCAM (which encodes CD146) (Fig. 2a, b and

Supplementary Data 2 and 3). A fraction of these cells showed

expression of pericyte marker RGS5 (Fig. 2a, b and Supplementary

Data 2 and 3), butRGS5was not among the top differentially expressed

genes of this cluster (Supplementary Data 2 and 3). We named these

cells vCAFs, in line with other descriptions of CAFs showing pro-

angiogenic features characterised in human and mouse cancer15,21.

While vCAFs did show strong gene expression overlap with RGS5+

pericytes (e.g., MCAM and ACTA2) (n = 2389 RGS5+ pericytes), there

were clear differences between these cell types as well; for instance,

pericytes did not show strong expression of RERGL and MHY11.

Tumour-like CAFs (tCAFs): We observed strong differential

expression of proliferation-, migration- and metastasis-associated

genes (e.g., PDPN, MME, TMEM158 and NDRG1) as well as stress-

response-associated genes (e.g., ENO1), and GAPDH in a small cluster

(n = 786 cells) (Fig. 2a, b and Supplementary Data 2 and 3). This cluster

uniquely expressed high levels of MME (which encodes CD10), a

membrane metalloprotease, and TMEM158, an indicator of Ras path-

way activation, and also expressed high levels of VEGFA, which pro-

motes angiogenesis and vascularisation. Since this gene expression

signature resembles that of tumour cells, we named this cluster tCAFs;

cells with this phenotype have been previously associated with

chemoresistance18. This cluster also showed elevated expression of

hypoxia marker carbonic anhydrase IX (CAIX, Supplementary Data 2

and 3), suggesting proximity to tumour-derived hypoxic regions.

A second cluster of tCAFs (n = 722) expressed high levels of

transcripts encoding heat-shock proteins including HSPH1 and

HSP90AA1 (Fig. 2a, b and Supplementary Data 2 and 3), as well asmost

of the tCAF-characteristic genes. We interpret these cells as tCAFs that

are under higher levels of cellular stress and labelled them heat-shock

protein-high tCAFs (hsp_tCAFs). Although the stress phenotype was

not identified in the GSEA, it did show an upregulation in both tCAF

clusters of numerous pathways including EMT-associated pathways,

TGF-β and KRAS signalling, as well as glycolysis, MTORC1, and PI3K/

Akt/mTOR signalling, the P53 pathway, and hypoxia (Fig. 2c). Since

many of these upregulated pathways are also seen in tumour cells, this

is consistent with our annotation of these cells as tumour-like CAFs.

Interferon-response CAFs (ifnCAFs): We annotated a cluster (n =

655) with high differential expression levels of genes associated with

chronic inflammation (e.g., IL32), as well as of genes upregulated in

response to interferons (e.g., CXCL9, CXCL10, CXCL11 and IDO1) as

ifnCAFs, due to their strong interferon response (Fig. 2a, b and Sup-

plementary Data 2 and 3). This is consistent with previous work

that has identified CAFs secreting IDO, affecting the immune

compartment33. Further, the GSEA of this cluster showed a strong

upregulation of the inflammatory response pathways and of

interferon-α and interferon-γ responses (Fig. 2c), although several

additional signalling pathways were enriched in these cells (e.g., IL2-

STAT5, TNF-α, IL6-JAK-STAT3 and KRAS signalling).

Antigen-presenting CAFs (apCAFs): We identified two clusters

(clusters 8 (n = 427) and 10 (n = 366), Supplementary Fig. 1b and

Supplementary Data 2 and 3)with high expression of genes involved in

MHC-II-associated antigen presentation, including HLA-DRA, HLA-

DRB1 and CD74 (Fig. 2a, b). We manually grouped these clusters

based on strongly overlapping top differentially expressed marker

genes that also shared a biological function (i.e., antigen presentation),

and named the resulting cluster apCAFs, as previously suggested12. In

the GSEA, apCAFs showed the highest upregulation amongst all CAF

types of the allograft rejection pathway, in line with their strong

expression of MHC-II machinery-related genes (Fig. 2c). Despite the

strong relatedness of themerged clusters 8 and 10, we cannot rule out

that they represent different subgroups of apCAFs.

Reticular-like CAFs (rCAFs): A relatively rare cluster (n = 373 cells)

showed strong differential expression of CCL21 and CCL19 (Fig. 2a, b

and Supplementary Data 2 and 3). These are markers of reticular

fibroblasts in lymphoid tissues that facilitate homing of naïve T cells34,

and we named the cells accordingly.

Dividing CAFs (dCAFs): The smallest cluster of CAFs (n = 126 cells)

in our dataset displayed high expression of genes upregulated during

cell division (e.g., TUBA1B and MKI67, Fig. 2a, b and Supplementary

Data 2 and 3); these have been previously defined as cycling CAFs15.

The GSEA supported annotation as dCAFs, showing that E2F targets,

the G2M checkpoint, and mitotic spindle pathways were upregulated

in cells of this cluster (Fig. 2c).

To summarise, differential gene expression analysis together with

gene set enrichment analysis identified 10 biologically interpretable

cell types (9 CAF types and one cluster of pericytes) with unique gene

expressionprofiles. All phenotypes, even rare ones suchas rCAFs,were

detected in each of our 14 patients (Fig. 2d). Further, the cells could

broadly be separated into twogroups (Fig. 2b, e, Supplementary Fig. 1d

and SupplementaryData 4). Amongothermarkers, these groups could

be distinguished by their expression of FAP and SMA, which have been

used in previous studies to define myofibroblasts or CAFs in general

and to preselect CAFs before sequencing7,13,30,35. FAP+ CAFs have pre-

viously been defined as myofibroblast-like30; this group includes the

mCAF, iCAF, tCAF, hsp_tCAF, ifnCAF, apCAF, dCAF and dCAF clusters.

The FAP- CAFs include vCAFs, pericytes, and rCAFs (Fig. 2e). Batch

correction had no substantial effect on the recovered CAF types

(Supplementary Fig. 1e).

To enable a straightforward identification of our defined CAF

types using different methods, for example, flow cytometry or ima-

ging, we sought to define the subset of marker genes that best iden-

tified each CAF type. To this end, we examined the top differentially

expressed genes for each CAF type and selected those markers that

were both in agreement with the current literature10,13,15,16 and also

compatible with our goal of conducting a spatial imaging analysis of

CAF types within tumour tissue (i.e., proteins with high-quality anti-

bodies for multiplex imaging that should not be confounded with

markers for other non-stromal cell types). Our selected markers were

RGS5 for pericytes, MCAM for vCAFs, MME (together with NDRG1 and

ENO1) for tCAFs, IDO1 for ifnCAFs, HSPH1 for hsp_tCAFs, MMP11

(togetherwithCOL1A1 and POSTN) formCAFs,PLA2G2A, CDF andCD34

for iCAFs, MKI67 for dCAFs, CCL21 (and CCL19) for rCAFs, CD74 and

HLA-DR for apCAFs and PDPN and FAP for the general category of

activated CAFs (Fig. 2e). When cells from the scRNA-seq dataset were

clusteredusingonly thesemarker genes,wewere able todistinguish all

our proposed CAF phenotypes (Supplementary Fig. 1f, g). These mar-

kers were then used to select markers for subsequent imaging. In

summary, we identified nine CAF types and a single group of pericytes

in tumours from a cohort of 14 breast cancer patients and identified a

set of 17 markers to effectively distinguish between these CAF types.
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A general CAF classification scheme
To test whether our classification scheme is independent of tumour

type, we next investigated CAF heterogeneity in four publicly avail-

able scRNA-seq datasets from non-small cell lung cancer (NSCLC)11,

colon cancer36, pancreatic ductal carcinoma (PDAC)37 and head-and-

neck squamous cell carcinoma cancer (HNSCC)38. In the lung cancer

dataset, we increased the number of fibroblasts by pooling raw data

of both the test and validation cohorts from the previous study,

resulting in 1377 CAFs as defined by our criteria and 574 cells from

adjacent healthy tissue (Supplementary Fig. 2). The colon cancer

dataset contained 1568 CAFs originating from tumour and 1917 cells

from healthy tissue (Supplementary Fig. 3). The PDAC dataset con-

tained 1762 fibroblasts from tumour tissue (Supplementary Fig. 4).

The HNSCC dataset contained 1354 cells that we identified as fibro-

blasts (Supplementary Fig. 5); of those, 1016 fibroblasts originated

from tumour tissue, and 315 came from matching lymph node

metastases. Taken together, our integrated dataset contained 5723

CAFs from four different primary tumour types (Fig. 3a); we excluded

cells from healthy tissue and metastatic sites to keep the integrated

dataset comparable to our breast cancer dataset, which only inclu-

ded cells from primary tumours. The datasets were integrated using

anchors to correct for batch effects as previously described39, fol-

lowed by further batch correction as was performed for the breast

cancer dataset (Fig. 3a).

We used a two-step approach to identify CAF types in the inte-

grated dataset and to validate our findings. We first performed

unbiased clustering on full single-cell gene expression profiles of the

integrated dataset and identified all our previously defined CAF types

as well as pericytes (Fig. 3b, c, Supplementary Fig. 6a, b and Supple-

mentary Data 5 and 6). All CAF types were detected in all cancer types

(Fig. 3d). Analysis of this integrated dataset yielded similar top differ-

entially expressed genes for each CAF type as identified in the breast

cancer dataset (Fig. 3b, c, e and Supplementary Data 5 and 6), and

GSEA analysis showed that the top five enriched pathways in the breast

cancer dataset were also enriched in the integrated dataset in 60–80%

of cases (Supplementary Data 7). Although imperfect, we saw a parti-

cularly strong overlap in the pathways that informed our functional

annotation of CAF types (Fig. 3f and Supplementary Data 7). Specifi-

cally, the top five enriched pathways in the integrated dataset included

hypoxia in tCAFs, the EMTpathway andKRAS signalling inmCAFs, IL6-

JAK-STAT signalling in iCAFs, allograft rejection in apCAFs, and E2F

targets and theG2M checkpoint in dCAFs, all of which overlappedwith

top enriched pathways in the breast cancer dataset (Fig. 3f). Clustering

the integrated dataset using only our breast cancer-defined CAF mar-

ker genes (Fig. 3e) also identified all our defined CAF types (Supple-

mentary Fig. 6c–e), providing further support that these markers are

sufficient to classify CAFs.

We also clustered each validation dataset individually (Supple-

mentary Figs. 2–5). We detected most CAF types in each tumour

dataset in these analyses, although dCAFs were typically missing, and

vCAFs and pericytes could not be well distinguished in the colon

cancer and PDAC datasets. Further, the PDAC dataset was dominated

by mCAFs and iCAFs when analysed individually, consistent with the

known fibrotic nature of this type of cancer12,20,37. Analysis of a larger

PDAC dataset (GSE212996) with over 7000 CAFs showed that,

although heavily dominated by mCAFs and iCAFs, tCAFs, apCAFs and

vCAFsweredetected (Supplementary Fig. 7).Given the high number of

cells in the large PDAC dataset compared to the other validation

datasets, we did not include it in the integrated analysis as it could

potentially drive the clustering results. In our analyses of the individual

datasets, we also included cells from healthy adjacent tissue or meta-

static lesions to assess the specificity of the CAF types to primary

tumour tissue. All CAF types were detected at all tissue sites but in

different numbers (Supplementary Figs. 2d, 3 and 4d). For example,

tCAFs were almost exclusively found in primary tumours (lung: 262

cells in tumour, 11 cells in healthy tissue; colon: 174 cells in tumour, 1

cell in healthy tissue; HNSCC: 284 cells in tumour, 13 cells inmetastatic

lymph node; two-sided t test, P = 0.019). In summary, we were able to

identify breast cancer-defined CAF types acrossmultiple cancer types,

suggesting that we have defined a general CAF classification system

and marker genes.

Spatial distribution of CAF phenotypes in breast tumours
We next used multiplexed IMC40 to analyse the spatial distributions of

our defined CAF phenotypes in breast cancer samples from the same

patients as were analysed with scRNA-seq. The IMC analysis also

allowed us to validate our findings at the protein level. We used our

scRNA-seq data to guide design of a 41-plex antibody panel to dis-

criminate the different CAF phenotypes (Fig. 4a and Supplementary

Table 1). We used expression of FAP and PDPN to distinguish myofi-

broblasts from FAP- CAFs. We defined vCAFs as CD146high, CD34negative;

and iCAFs as CD34high, CD146+), note that CD146 (encoded by MCAM)

expression in iCAFs is lower than in vCAFs.We used CD10 (encoded by

MME) for tCAFs, CCL21 for rCAFs, IDO to identify ifnCAFs, and the

proliferation marker Ki-67 for dCAFs. Due to the lack of an antibody

suitable for the detection ofMMP11,mCAFswere identified as PDPNlow/

collagen-fibronectinhigh/FAP+ cells that did not express CD10, CD34 or

CD146. Finally, we did not identify apCAFs in IMC because HLA-DR is

highly expressed by myeloid cells in the stroma, causing high signal

overlap. The IMC antibody panel also included markers that allowed

the identification of tumour cells and immune cells with a focus on

T-cell subtypes (Fig. 4a and Supplementary Fig. 8a). Clustering of the

scRNA-seq data using the CAF-targeted subset of the 41markers in this

IMC panel showed that we could recover all our defined CAF types

(Supplementary Fig. 8b).

We stained 12 breast tumour samples (matched tissue samples for

12 of the 14 patient samples analysed by scRNA-seq) with our 41-plex

IMC antibody panel and detected stromal, tumour, and immune cells

(Supplementary Fig. 8c). We selected stroma-rich areas and areas with

tertiary lymphoid structures (TLS) based on immunofluorescence

imaging (Supplementary Fig. 8d), and then analysed these selected

areas (7–13 per patient, depending on the number of visible TLS) with

IMC. After single-cell segmentation (Supplementary Fig. 8e), we iden-

tified a total of 222,318 tumour, 104,767 immune, and 140,999 CAFs as

well as 29,635 endothelial cells and 55,402 other cells. We identified

most of the scRNA-seq-defined CAF subtypes in the IMC dataset

(Fig. 4b, c). We detected mCAFs, iCAFs, vCAFs, hypoxic and non-

hypoxic tCAFs, ifnCAFs, and rCAFs, but not dCAFs. Most patient

samples included multiple CAF types (Fig. 4d). Due to the lack of an

antibody staining for RGS5, we did not distinguish between vCAFs and

pericytes and labelled all CD146+/CD31-/vWF- cells as vCAFs. We also

identified a cluster of CAFs that did not show expression of FAP while

still showing high expression of SMA and PDGFR-b and collagens; we

labelled these cells SMA CAFs.

To study the spatial distributions of CAF types, we conducted a

neighbourhood analysis in which we quantified the cell types within a

radius of 30 µm of a given cell type, across all imaged regions. vCAFs

showed the highest mean interaction score with endothelial cells

(Fig. 4e) and were exclusively found around endothelial cells in

vessel-like structures in the images (Fig. 4c). We observed that rCAFs

were often found in images with TLS-like structures, where they

surrounded aggregated immune cells (mainly CD20+ B cells) (Fig. 4c)

and they further showed a trend towards enrichment in images with

TLS structures (Fig. 4f). The neighbourhood analysis showed that

iCAFs neighbour both vCAFs and endothelial cells (Fig. 4c, e). Among

CAF types, only CD10+/CD73+ tCAFs and ifnCAFs showed positive

interaction scores with tumour cells in the neighbourhood analysis,

suggesting proximity to the tumour (Fig. 4e). We investigated this

further by comparing the distances of all CAF types to the tumour-

stroma border. ifnCAFs were closest to tumour cells with a median
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Fig. 3 | Fibroblast heterogeneity in multiple cancer types. a UMAP showing the

validation datasets (non-small cell lung cancer (NSCLC), head-and-neck squamous

cell carcinoma (HNSCC), colorectal cancer, pancreatic ductal carcinoma (PDAC)).

b Heatmap showing the average marker gene expression of each identified cell

type in the integrated validation dataset. c UMAP showing the final CAF classifi-

cation of the validation cohort. d Bar chart showing the absolute numbers of all

CAF types and pericytes as detected with unbiased clustering of the validation

dataset and the respective proportions of each cell typeper tumour type. e Feature

plot showing the cellular expression levels of selectedmarker genes on the UMAP.

f Heatmap showing the results of gene set enrichment analysis for all defined cell

types. Boxes indicate the overlap of the top five enriched hallmark pathways

between the integrated validation and breast cancer dataset.
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distance of 4 µm followed by tCAFs with a median distance of 14 µm

to the tumour-stroma border (Supplementary Fig. 8f), thus con-

firming that these two CAF types are in relatively close proximity to

tumour cells.

In summary, in addition to showing spatial distributions of var-

ious CAF types (Fig. 5) within breast tumours, this IMC analysis has

further validated our scRNA-seq-based CAF classification system and

showed that most CAF types can be identified in imaging data

with only 2–5 markers per type (Table 1). If pericytes are to be dis-

tinguished, three additional markers are required. Overall, our

demonstration that this classification scheme identifies biologically

interpretable CAF phenotypes in multiple cancer types suggests that

it will be useful as a framework for future investigations of fibroblast

biology.
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Discussion
Studies of CAF heterogeneity in many cancer types have led to the

definition of numerous CAF subtypes12–14,16,21. While early work typi-

cally defined CAF phenotypes in single cancer types11,13–15,21,41, recent

studies have examined pan-cancer CAF heterogeneity and have

found similarities between CAFs in different cancer types20,22–24.

Nevertheless, there remains the need for a general CAF classification

system that allows for simple comparison of CAF types between

studies10. Here, we propose such a CAF classification systembased on

the literature-driven annotation of CAF types in scRNA-seq data,

provide a set of markers for these CAF types, and use multiplex

imaging to analyse their spatial distribution and cellular interactions

in breast tumours. Based on analysis of scRNA-seq data of more than

16,000 stromal cells from 14 human breast cancer tumour samples,

coupled with multiplex single-cell imaging of matched samples, we

identified marker expression and spatial distribution of nine CAF

types as well as pericytes. We further identified these CAF pheno-

types in four additional cancer types based on previously published

scRNA-seq data, suggesting that these phenotypes and the classifi-

cation system are generalisable.

Fig. 4 | Spatial analysis of CAF types in breast tumours using imaging mass

cytometry. a Panel of all markers used in the IMC study (Blood/Lymph v. = blood/

lymph vessel, N. = neutrophil, HEV = high-endothelial venules). b Heatmap of

marker expression of CAF clusters defined by IMC in breast tumour samples. The

histogram indicates the square root of all cell numbers per cluster in eachCAF type.

c Zoomed-in images acquired with IMC showing the expression of key markers

used in our classification system on the image level. The indicated CAF type is

highlighted by arrows. CAFs are identified as follows: vCAFs, CD146; hypoxic CAFs:

CDH-11, CAIX; tCAFs, SMA, CD10; ifnCAFs: IDO, SMA; iCAFs: aSMA, CD34; rCAFs:

CCL21. PanCK indicates tumour cells, CD20 indicates B cells, Iridium (blue)

indicates nuclei in all images. Scalebar, 100 µm. d Proportion of all CAF types

defined by IMC over all patients. e Neighbourhood analysis showing cell-to-cell

interactions at the image level, over all images in the study. The cell-to-cell inter-

actions are compared against a randomnull distribution using permutation testing.

An interaction score is then generated for each cell pair based on the P values

calculated on the image level (two-sided permutation test). Positive interaction

scores mean that a given pair of cells is neighbouring significantly more often than

compared to the null distribution. f Differential abundance analysis comparing

cellular enrichment in TLS containing images versus images not containing any

TLS-like structures.

Fig. 5 | CAF classification scheme. Graphical summary showing the spatial distribution patterns of the seven CAF types (excluding apCAFs) in the TME as detected with

imaging mass cytometry and their interaction with other cell types.
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Both our CAF classification system and naming scheme are

intended as proposals, rather than strict definitions or descriptions of

CAF types. We identified the CAF phenotypes based on unsupervised

clustering of single-cell transcriptomics data, which requires choices

to bemade about the clustering resolution that definesmeaningful cell

types and/or states. Our choice of resolution was aimed at balancing

over-clustering (i.e., defining too many clusters) and identifying rare

but distinct cell types (e.g., dCAFs and rCAFs). In addition, we chose to

merge two sets of clusters with highly overlapping differentially

expressed genes (Supplementary Fig. 1b). While this conservative

clustering choice should help guard against over-clustering due to

technical effects and yielded biologically interpretable cell types

(mCAFs and apCAFs), it remains possible that the merged clusters

correspond to further subgroups of these CAF types.

In addition, naming cell types in a meaningful way that is also

practically useful for the community comes with many challenges. We

sought, when possible, to use already established names, when they

are well grounded and when the described phenotypes matched our

data. In other cases, we have proposed names that are our best inter-

pretation of the functions associated with the top differentially

expressed marker genes in each cell type. As such, our proposed

naming scheme is based on previous studies inmany laboratories, and

we hope that it strikes a useful balance between pragmatism and

biological meaning. Nevertheless, this naming scheme should be

subject to revision based on functional experiments.

It is in any event likely that the CAF phenotypes we have identified

represent a fluid spectrum of phenotypes with different functional

features rather than fixed cellular states. Consistent with this, several

of the phenotypes cluster closely together in the UMAP space, and

clustering with subsets of markers rather than the entire measured

transcriptome show small fluctuations in the distribution of CAF

phenotypes. Time course experiments in model systems would be

needed to study such relationships further. In addition, although we

have defined each CAF phenotype based on differentially expressed

genes that suggest a dominant biological feature or function, these cell

types may harbour subgroups with different expression patterns and

may well have more than one biological function. For example,

althoughwedefinedmCAFs basedon the expression of genes involved

in matrix remodelling and production, they can also produce inflam-

matory factors such as cytokines and chemokines and some express

genes known to facilitate adhesion andmigrationwithout it being their

defining feature. Similarly, while tCAFsmainly express genes similar to

those expressed in tumour cells, they also express MMPs and matrix

proteins and may therefore also function to remodel the ECM.

Our identified phenotypes share markers with previously defined

CAF phenotypes12,15,16,21, especially those previously found in mouse

models of breast cancer15,16. Cells we identified as vCAFs based on

the expression of MCAM, NOTCH3, and COL18A1 are analogous to the

vascular CAFs defined in mouse, and the cells we define as dCAFs are

analogous to cycling CAFs identified in mouse15. Inflammatory CAFs

and immune regulatory CAFs were previously defined based on

expression of Il6, Cxcl12 and Cxcl1 and IL6 and CXCL12, respectively, in

scRNA-seq data from mouse cancer models7,16 and human cancer

samples7,14,16,21,42. Although these patterns were recapitulated in our

data, we defined a single category of PLA2G2A+/CD34+/CFD+ iCAFs,

since all the cells contained within this phenotype expressed genes

actively involved in shaping the immune environment. Friedman et al.

described ECM-CAFs based on the expression of Fbn1, which encodes

fibronectin16. Fbn1 is highly expressedbyourmCAFs, butwe found that

MMP11, also used by Wu et al. to describe myofibroblast-like CAFs21,

wasmore strongly expressed inmCAFs. Finally, our apCAFs, definedby

their expression of mRNAs encoding MHC-II molecules, were pre-

viously described by Elyada et al. in human and mouse PDAC12.

Pericytes in human breast cancer, defined by the expression of

RGS5, have previously been shown to have gene expression patternsT
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similar to those of CAFs21. Wu et al. also defined immature and devel-

oped perivascular-like cells21, offering a potential trajectory from

pericytes to vCAFs. Our vCAFs share features with both pericyte types

but are more closely related to the developed perivascular-like cells in

ref. 21. It remains to be determined whether pericytes are an inde-

pendent cell type or whether they are a subset of specialised fibro-

blasts found in both healthy and diseased tissues.

rCAFs are closely related to vCAFs based on the UMAP. They

expressCCL21 and CCL19 and as such, are similar to reticular fibroblast

cells found in lymphoid structures. CCL19-expressing CAFs have been

previously described in cancer, usually aspart of larger CAF groups14,24,

but a recent study labelled a similar CAF type as TLS CAFs41. We chose

to define rCAFs as an individual category, despite their relative rarity,

since we detected them mostly in close proximity to TLS in the IMC

analysis.

We defined tCAFs based on the fact that their top differentially

expressed genes are typically found expressed in tumour cells, for

instance,MME (encoding for CD10),NT5E (encoding for CD73),NDRG1

and ENO1, and gene set analysis revealed enrichment of the glycolysis

hallmark pathway in this CAF type. Prior evidence also suggests that

cells expressing these markers may have tumour-promoting and

immunosuppressive effects; CD10 expression in tumour stroma and in

CAFs has previously been associated with tumour stemness and che-

moresistance in non-small cell lung cancer as well as with high tumour

grades and poor patient survival18,43–45. The close spatial relationship of

tCAFs with tumour cells suggests that these two cell types might

interact with each other, which would be consistent with a tumour-

promoting role. However, since our study is descriptive, further

functional work will be needed to assess this hypothesis.

The fact that we were able to define almost all CAF phenotypes in

datasets from multiple cancer types, both when analysed individually

and when analysed as an integrated dataset, despite technical noise

and likely biological differences, strongly suggests that CAF pheno-

types are conserved across cancer types.A recent pan-cancer studyhas

compared plasticity of fibroblasts and showed that distinct features

are shared between the different tumour sites23. This may also extend

to subtypes; for example, our breast cancer dataset mainly consisted

of luminal B cancer, but the CAF phenotypes we defined were also

present in samples of the other subtypes. Still, our data also indicate

that different cancer types may be dominated by different CAF types.

In the case of highly fibrotic PDAC, for instance, we were able to

identify all CAF types but the main clusters were mCAFs and iCAFs.

We provide here a general CAF classification system that we have

validated across cancer types; this panel identifies the phenotypic

categories of vascular CAFs, matrix CAFs, immune CAFs, tumour-like

CAFs, interferon-response CAFs, antigen-presenting CAFs, dividing

CAFs, and reticular-like CAFs. We used our data to identify markers for

each of these CAF types, for use inmultiplex IMC. However, should the

nature of follow-up studies require different markers (e.g., investiga-

tion of a particular functional subpopulation of CAFs), our dataset can

also serve as a reference for choosing the most appropriate marker

genes. In either context, our concepts and dataset should establish a

basis for future studies of this important cell type.

Methods
Clinical samples
All clinical samples, as well as the corresponding clinical information,

were collected after approval by theCantonal EthicsCommitteeZurich

#2016-00215 as well as approval by the ethics committee at Rhenish

Friedrich-Wilhelms University of Bonn #255/06 with written and

informed consent from the patients who were not compensated.

All primary breast cancer samples included in this study were

previously collected in collaboration with the Patients’ Tumor Bank of

Hope (PATH, Germany) and analysed by CyTOF46, scRNA-seq, and

IMC25 for in-depth characterisation of tumour and immune landscapes.

All tissue and health-related data were collected under approval of the

Ethics Committee Zurich (#2016-00215) and the faculty of medicine

ethics committee at Friedrich-Wilhelms-University Bonn (#255/06).

The fibroblast scRNA-seq data analysed in this study are part of a

dataset previously generated by our laboratory25. The presented IMC

data were specifically acquired for this study. For two of the 14 breast

cancer samples for which scRNA-seq data were available, IMC mea-

surements were not possible due to missing patient consent for FFPE-

based analysis or due to low-quality FFPEmaterial. Tumour subtypes in

this study were defined as follows: Luminal A (ER+ and/or PR+, HER2−,

Ki-67+ <20%), Luminal B (ER+ and/or PR+, HER2−, Ki-67 ≥20%), Luminal

B-HER2+ (ER+ and/or PR+, HER2+), HER2+ (ER−, PR−, and HER2+), and

triple negative (ER−, PR− and HER2−).

Breast cancer—scRNA-seq dataset and fibroblast identification
The scRNA-seq dataset presented here was previously generated using

the 10x Genomics platform, and the raw data pre-processing, quality

control steps, and main cell type annotation have been described25.

Briefly, gene-by-cellmatrices were generated from the raw sequencing

data using CellRanger (10x Genomics, v3.0.1) and subsequently

transformed into Seurat objects (Seurat v3.0.2). After removing high-

confidence doublets using the DoubletFinder Package, all Seurat

objects were merged, and single cells with >7500 or <200 genes, with

>75000 read counts, or with >20% of reads mapping to mitochondrial

RNA were excluded. Highly variable genes were identified by the

sctransform wrapper in Seurat and used to construct principal com-

ponents. The principal components covering the highest variance in

the dataset were used as input for graph-based clustering. Differential

gene expression analysis was performed for the resulting clusters, and

main cell types were annotated based on the cluster expression of

established marker genes (EPCAM and CDH1 for epithelial cells,

PECAM1 and VWF for endothelial cells, PDGFRB and FAP for fibroblasts,

CD3, CD4, CD8, and NCR1 for the T and NK cell fraction, CD14, ITGAX

and HLA-DRA for myeloid cells, MS4A2 for mast cells and basophils,

MS4A1 for B cells, and immunoglobulin-encoding genes for plasma

cells). For the present study, all clusters annotated as “fibroblasts” in

the original dataset were used for downstream analysis.

Breast cancer—analysis of fibroblast clusters
All scRNA-seq analyses were done using R versions 4.1.2 and 4.1.3. We

used the Seurat package (4.1.1) function sctransform to normalise and

scale the data, using the varia“les “perce”t.mt” (mitochondrial genes),

“percen”.krt”,“and “percen”.MGP” for regression (KRT and MGP were

detected across all cell types in some samples due to contamination

originating from apoptotic tumour cells).We used the Seurat harmony

batch correction wrappers to reduce a visible sample effect. After

running principal component analysis, the first 25 components were

used for both graph-based clustering using the Seurat functions

FindNeighbours and FindClusters as well as dimension reduction ana-

lysis such asUMAP.Weuseddifferent resolutions in resolution steps of

0.1 for clustering and investigated the clustering hierarchy by plotting

a clustree47. Use of results of clustering at resolution 0.4 resulted in a

total of 12 clusters (numbered 0 through 11, Supplementary Fig. 2c and

Supplementary Data 2). Differential gene expression per cluster was

analysed using the FindAllMarkers function using MAST (version

1.20.0) testing (min.pct = 0.25, logfc.threshold = 0.25, two-sided); All

P values were adjusted using Bonferroni correction (p_val_adj). Due to

similar gene expression patterns, clusters 0 and 7 were unified as

mCAFs, and clusters 8 and 10 were unified as apCAFs. Cluster 1 was

assigned as iCAFs, cluster 2 as vCAFs, cluster 3 as pericytes, cluster 4 as

tCAFs, cluster 5 as heat-shock protein-high tCAFs, cluster 6 as ifnCAFs,

cluster 9 as rCAFs, and cluster 11 asdCAFs. Differential gene expression

analysis was repeated for all final CAF clusters (Supplementary Data 3).

The visual division between CAF types on the UMAP (Fig. 2b) was

analysed and as differential gene expression analysis (Supplementary
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Fig. 4) and feature plots (Fig. 2b) revealed that CAFs could be broadly

differentiated by their FAP expression level, we used the clustering

resolution of 0.1 and assigned clusters0, 2, 3 and4 as FAP+ and cluster 1

as FAP- (later splitting up into vCAFs, pericytes and rCAFs, Supple-

mentary Fig. 1c). Differential gene expression analysis was carried out

to compare these two groups (Supplementary Data 4). The data was

subclustered using only the final IMC panel genes to assess CAF type

recovery with a 41-plex antibody panel (Supplementary Fig. 8b).

Gene set enrichment analysis
We used the singleseq package (version 0.1.2.9000)29 to run gene set

enrichment analysis and compare the enrichment of hallmark

pathways28 between our defined CAF types (Supplementary Data 7).

Analysis of validation datasets
The HNSCC, colon cancer, and PDAC datasets were downloaded from

the NCBI Gene Expression omnibus (GSE103322, GSE132465,

GSE154778 and GSE212966, respectively). The fibroblast subsets were

then scaled and clustered as described above. For the HNSCC dataset,

theoriginalfibroblast identificationwasused. Theywere then clustered

and the resolution of 0.6 was used for fibroblasts resulting in 10 clus-

ters (0, vCAF; 1, vCAF; 2, iCAF; 3, tCAF; 4, Pericyte; 5, rCAF + apCAFs; 6,

tCAF; 7, Pericyte; 8, other). The colon cancer dataset was clustered and

cluster 6 at the resolution of 0.2 was identified as fibroblasts. Fibro-

blasts were then clustered at resolution 0.3 obtaining nine clusters (0,

iCAF; 1, mCAF; 2, iCAF; 3, mCAF; 4, Pericyte; 5, mCAF; 6, other; 7, tCAF;

8, rCAF). Cells identified as “other” were excluded from subsequent

analysis. For the lung cancer dataset, raw sequencing files (E-MTAB-

6149, E-MTAB-6653) were downloaded and analysed using the Cell-

Ranger pipeline (v6.0.0, refdata-gex-GRCh38-2020-A) to obtain gene-

by-cell matrices before being analysed in a Seurat object. Fibroblasts

were identified from both datasets (E-MTAB-6149, cluster 9 at resolu-

tion 0.2; E-MTAB-6653, cluster 12 at resolution 0.2) and merged into

one Seurat object. The final clustering of the lung cancer fibroblasts

was obtained at the resolution of 0.8 to yield 15 clusters (0, mCAF; 1,

tCAF; 2, mCAF; 3, rCAF; 4, iCAF; 5, other; 6, apCAF; 7, iCAF; 8, pericyte;

9, iCAF; 10, epithelial; 11, other; 12, vCAF; 13, iCAF; 14, mitochondrial

count high). The small PDAC dataset (GSE154778) all cells were clus-

tered, and fibroblasts were identified in clusters 1 and 6 at resolution

0.1. Fibroblasts were then clustered, and resolution of 0.4 was chosen

for the final cluster assignment resulting in a total of five clusters (0,

iCAF; 1, mCAF; 2, apCAF; 3, pericytes; 4, other). For the bigger PDAC

dataset (GSE212996) all cells were clustered, and fibroblasts were

identified as clusters 2 and 4 at the resolution of 0.1. For fibroblasts, a

clustering resolution of 0.6 was chosen, resulting in a total of 10 clus-

ters (0, mCAF; 1, mCAF; 2, iCAF; 3, tCAF; 4, vCAF; 5, apCAF; 6, other; 7,

pericyte; 8, iCAF; 9, other). All cells identified as other, epithelial, or

mitochondrial high were excluded from subsequent analyses. The

different clustering resolutions resulted from the varying sizes of the

datasets and our aim to also detect the smaller subclusters.

Dataset integration
All scRNA-seq datasets were integrated using the in-built SelectInte-

grationFeatures and FindIntegegrationAnchorsfunctions from the

Seurat package. Batch correction was run using the harmony wrapper

function for Seurat. Principle component analysis was performed, and

the first 15 components were used in UMAP analysis. The integrated

fibroblasts were analysed according to the steps previously described

in the analysis of the breast cancer dataset (see above). Clustering at

the resolution of 0.7 (Supplementary Data 5) resulted in 14 clusters (0,

iCAF; 1, mCAF; 2, mCAF; 3, pericyte; 4, dCAF; 5, vCAF + rCAF; 6, mCAF;

7, tCAF; 8, iCAF; 9, other; 10, other; 11, dCAF; 12, apCAF; 13, other),

differential gene expression for CAF types was repeated (Supplemen-

tary Data 6). When clustering the dataset using only the selected

marker genes, this resulted in a total of 16 clusters at resolution 0.8

(0, iCAF; 1, mCAF; 2, mCAF; 3, rCAF + pericyte; 4, pericyte; 5, tCAF; 6,

ifnCAF; 7, iCAF; 8, pericyte; 9, tCAF; 10, iCAF; 11, rCAF + pericyte; 12,

iCAF; 13, iCAF; 14, dCAF; 15, apCAF) (Supplementary Fig. 6d, e).

Tissue preparation and staining
Using a series of HistoClear and graded ethanol solutions, FFPE tissue

sections were deparaffinised and rehydrated before antigen-retrieval

in a decloaking chamber for 30min at 95 °CusingHIER buffer (pH 9.2).

Tissues were blockedwith 3% BSA for 45min before being stainedwith

the first metal-tagged antibody (anti-SMA, Supplementary Table 1) at

room temperature for 4 h. Afterwashing, the tissuewas incubatedwith

a fluorescently labelled anti-mouse (Abcam, AF 555, goat anti-mouse

(H + L), catalogue number A21422; RRID_AB_2535844, polyclonal) for

1 h at room temperature before another washing step and final incu-

bation with Hoechst (dilution 1:500) for 5min. Afterwards, tissue was

incubated with the remaining metal-tagged antibodies (Supplemen-

tary Table 1) at 4 °C overnight. After washing the next day, the samples

were stainedwith an iridiumDNA intercalator before being dried using

pressured air.

Immunofluorescence imaging
Whole slide scans were performed using a Zeiss AxioScan.Z1 with ×10

magnification. The resulting images were used to select between 6 and

8 stroma-rich areas, and, if present, TLS regions, of 1mm2 per patient

for IMC imaging analysis (Supplementary Fig. 8d).

Imaging mass cytometry
Brightfield scans of the slides were performed to detect the areas of

interest to bemeasured by IMC. For subsequent imaging, theHyperion

Imaging System, coupled to a Helios time-of-flightmass cytometer was

used at a laser intensity of 400Hz (resolution at 1 µm).A compensation

slide was also analysed to account for potential spill-over between the

metals. The machine was tuned daily to account for machine perfor-

mance variability. Allmarkerswere checked for their quality of staining

(Supplementary Fig. 9).

Analysis
Using the lab’s analysis pipeline (github.com/BodenmillerGroup/

ImcSegmentationPipeline [github.com/BodenmillerGroup/ImcSeg-

mentationPipeline]), tiff files were generated from the raw data. Ima-

geswere produced using histoCAT48. The tiff files were used for cellular

segmentation based on nuclear and membrane markers using the

ilastik software (version 1.3.3)49. First, fibroblasts were reduced to their

nuclear core to reduce cellular overlap and signal falsification (Sup-

plementary Fig. 10a, b). CellProfiler (v3.1.9)50was then used to generate

cell masks and to calculate mean intensities of each marker per cell.

Neighbourswithin a radius of 30 µmof each cell were also identified by

CellProfiler. The single-cell data were analysed using R (v4.0.4); raw

counts were censored, excluding the 99.99 percentile before being

arc-sinh transformed using cofactor 1.

Graph-based clustering was carried out using the Rphenoannoy-

clustering algorithm (version 0.1.0). In the first clustering step, the

dataset was divided into three compartments, tumour, immune, and

stromal cells (Supplementary Fig. 8a, c). Cells identified as immune or

stromal were then clustered individually, resulting in immune

and stromal cell subtypes). CAFs were clustered using FlowSOM (ver-

sion 2.2.0) clustering as integrated in the CATALYST (version 1.18.1)

package51. We excluded HLA-DR from the CAF clustering as it resulted

in too many false positive CAFs. This is due to the nature of HLA-DR

expression on myeloid cells which are often widespread in the stroma

and can thus cause falsepositive signal onother cell types. Thiswas the

only marker for which we observed this false positive signal.

CAFswere clustered using FlowSOMwith amax k of 50using SOM

50. vCAFs were identified as CD146+, CD31−/vWF−, FAP−, SMA+ cells,

iCAFs were identified as CD34+, FAP+, CD31−/vWF− cells CD146medium
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cells. The overlap of CD146 for iCAFs and vCAFs can be explained by

spill-over fromCD34− vCAFs. TCAFswere identifiedby their expression

of CD73+, CD10+, PDPN+, FAP+, hypoxic tCAFs were identified by their

positive expression of FAP, CD10 and CAIX. Heat-shock protein tCAFs

were not identifiable with our panel. rCAFs showed higher than aver-

age expression of CCL21. ifnCAFswere identifiedby their expression of

IDO. SMACAFs showed high expression of SMA together withmedium

expression of PDGFR-b and collagens and fibronectin but did not stain

positive for FAP. Lacking MMP11 as a marker for mCAFs, these were

identified through negative selection, showing positive staining of

FAP, SMA, Cadherin-11 (CDH-11), fibronectin and collagens as well as a

slightly higher than average expression of PDPN but no expression of

CD10, CD73, CD34 or CD146.The neighbourhood analysis was carried

out analysing the 15 nearest cells in a defined radius of 25 µm of each

cells’ centroid using imcRtools (version 1.3.7). Differential abundance

analysis was carried out using edgeR version 3.36.0 and diffcyt ver-

sion 1.14.0.

Image generation
Images shown in this study were generated using histoCAT-web and

cytomapper (version 1.6.0).

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
We provide the raw data for all figures as well as the scripts used to

generate all figures. IMC RAW data as well as single-cell objects of the

IMC data and clustered scRNA-seq data objects have been deposited

on zenodo under the following https://doi.org/10.5281/zenodo.

5769017 [https://zenodo.org/record/7540604])52. The breast cancer

RNA sequencing data are available with accession number E-MTAB-

10607 on the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/

arrayexpress). Publicly available datasets used in this study are avail-

able at the Gene Expression Omnibus with the following accession

numbers: GSE132465 (colon cancer), GSE154778 PDAC (small),

GSE212966 PDAC (big), GSE103322 (head-and-neck squamous cell

carcinoma) and in ArrayExpress at EMBL-EBI under the accession

numbers E-MTAB-6149 and E-MTAB-6653 (lung cancer).

Materials availability
There were no new reagents generated in this study.

Code availability
All analysis code is publicly available on Github (https://github.com/

BodenmillerGroup/CAFclassification) and ref. 53 https://doi.org/10.

5281/zenodo.7540622).
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