
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

enviRule: an end-to-end system for automatic extraction of reaction patterns from
environmental contaminant biotransformation pathways

Zhang, Kunyang ; Fenner, Kathrin

DOI: https://doi.org/10.1093/bioinformatics/btad407

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-256679
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Zhang, Kunyang; Fenner, Kathrin (2023). enviRule: an end-to-end system for automatic extraction of reaction
patterns from environmental contaminant biotransformation pathways. Bioinformatics, 39(7):btad407.
DOI: https://doi.org/10.1093/bioinformatics/btad407



Data and text mining

enviRule: an end-to-end system for automatic extraction of

reaction patterns from environmental contaminant

biotransformation pathways
Kunyang Zhang 1,2,* and Kathrin Fenner 1,2

1Department of Environmental Chemistry, Eawag, Dübendorf 8600, Switzerland
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Abstract

Motivation: Transformation products (TPs) of man-made chemicals, formed through microbially mediated transformation in the environment,
can have serious adverse environmental effects, yet the analytical identification of TPs is challenging. Rule-based prediction tools are successful
in predicting TPs, especially in environmental chemistry applications that typically have to rely on small datasets, by imparting the existing knowl-
edge on enzyme-mediated biotransformation reactions. However, the rules extracted from biotransformation reaction databases usually face the
issue of being over/under-generalized and are not flexible to be updated with new reactions.

Results: We developed an automatic rule extraction tool called enviRule. It clusters biotransformation reactions into different groups based on
the similarities of reaction fingerprints, and then automatically extracts and generalizes rules for each reaction group in SMARTS format. It opti-
mizes the genericity of automatic rules against the downstream TP prediction task. Models trained with automatic rules outperformed the mod-
els trained with manually curated rules by 30% in the area under curve (AUC) scores. Moreover, automatic rules can be easily updated with new
reactions, highlighting enviRule’s strengths for both automatic extraction of optimized reactions rules and automated updating thereof.

Availability and implementation: enviRule code is freely available at https://github.com/zhangky12/enviRule.

1 Introduction

Environmental biotransformation of a variety of organic con-
taminants plays an important role in chemical risk manage-
ment (Kern et al. 2010, Olvera-Vargas et al. 2016),
bioremediation of contaminated sites (de Lorenzo et al.
2008), and the development of green chemical alternatives
(Moermond et al. 2022). In most cases, the bioactivity of
transformation products (TPs) formed as part of the biotrans-
formation process is mitigated through the structural changes
introduced. However, examples have been reported where
TPs exhibit equal or even higher bioactivities due to the con-
servation or formation of toxicophore structures in TPs,
resulting in greater ecological risks compared to the parent
compounds (Cwiertny et al. 2014). For example, decreases in
the diversity and function of soil microorganisms were ob-
served in a soil treated with 3,5-dichloroaniline (3,5-DCA),
but not in the soil treated with its parent pesticide iprodione,
suggesting greater toxicity of 3,5-DCA to soil microorganisms
(Vasileiadis et al. 2018). Hence TPs should be included into
hazard and risk assessment to obtain a comprehensive metric
for the biological effects of contaminants. Yet, the identifica-
tion and structural characterization of TPs is challenging, es-
pecially in environmental samples (Hubert et al. 2017).
Typically, analysis by liquid chromatography-high resolution
mass spectrometry (LC-HRMS) suspect or nontarget

screening is required for the identification of formed TPs
(Helbling et al. 2010, Funke et al. 2016), which is time-
consuming and labor-intensive. Therefore, in silico models
that can accurately predict possible biotransformation TPs
are an essential tool for the comprehensive ecological risk as-
sessment of environmental contaminants.
Substantial efforts have been made to enable the in silico

prediction of TPs from contaminant biotransformation by en-
vironmental microbial communities, and a number of rule-
based systems have been developed, including enviPath
(Wicker et al. 2016), the chemical transformation simulator
by the US EPA (https://scholarsarchive.byu.edu/iemssconfer
ence/2016/Stream-A/19/), and Biotransformer (Djoumbou-
Feunang et al. 2019, Wishart et al. 2022). All of these in silico
prediction tools combine both domain knowledge and ma-
chine learning models to predict and prune biotransformation
pathways. Although rule-free models (i.e. sequence-based
models) have also been shown to achieve considerable success
in predicting the outcomes of chemical reactions (Schwaller
et al. 2019, 2021a, b), and sometimes even outperform rule-
based models, they require large amounts of data for their
training. This mostly prevents them from being applied on en-
vironmental biotransformation reactions, which only have
limited sizes of datasets, especially when the reactions are con-
fined to specific environmental matrices, such as soil, water,
sediments, and sludge (Satoh et al. 2023). Rules significantly

Received: April 5, 2023. Revised: June 2, 2023. Editorial Decision: June 20, 2023. Accepted: June 23, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(7), btad407
https://doi.org/10.1093/bioinformatics/btad407
Advance access publication 24 June 2023

Original Paper

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
9
/7

/b
ta

d
4
0
7
/7

2
0
6
8
8
3
 b

y
 U

n
iv

e
rs

ity
 L

ib
ra

ry
 Z

u
ric

h
 / Z

e
n
tra

lb
ib

lio
th

e
k
 Z

u
ric

h
 u

s
e
r o

n
 1

4
 F

e
b
ru

a
ry

 2
0
2
4



facilitate the training of models on small datasets by impart-
ing the existing knowledge on enzyme-mediated biotransfor-
mation reactions to models, making rule-based models the
currently most suitable approach for predicting TPs formed
through environmental biotransformation reactions.
The key challenge in developing rule-based models is the

extraction of reaction rules from reaction databases. An ex-
haustive comparison of rules extracted from enzymatic reac-
tions can be found in a previous report (Ni et al. 2021).
Among the rules that are currently available online, the ma-
jority of them were manually curated, e.g. EAWAG-PPS rules
(Gao et al. 2010), BNICE rules (Li et al. 2004), and MINE
rules (Jeffryes et al. 2015). Manually curated rules are
designed and examined by experts, and the rules can normally
explain the most common reactions. However, recent
improvements in techniques for elucidating biotransformation
reactions at trace contaminant levels, e.g. the increased acces-
sibility of LC-HRMS instruments and data analysis methods,
enable biotransformation reactions to be discovered at in-
creasing speed (Zimmermann et al. 2019), causing a surge in
the volume of datasets. In addition, efforts have been made
over the past five years to encode pathway information from
publicly available regulatory dossiers. In enviPath specifically,
the addition of the EAWAG-SOIL package, containing infor-
mation on pesticide degradation pathways in soil, to the leg-
acy EAWAG-BBD package has almost doubled the number of
available reactions (Latino et al. 2017). With the addition of
new pathway information, manually curated rules can be lim-
ited in representing the newly added reactions for two main
reasons. First, due to the expansion of the chemical space cov-
ered, new reaction patterns might be present in the new data-
sets that are not included in existing rules at all. In the other
case, similar reaction patterns are already included but not
generalized enough to account for enzyme promiscuity on
substrates in new reactions. At this point, with manually cu-
rated rules, it is very challenging to (i) sort new reactions into
one of these two categories, and (ii) find the optimal level of
generalization, also called genericity, for each rule.
Therefore, interest has shifted from manually curated rules

to automatically extracted rules. Indeed, systems like BNICE
and ATLASx, which once used manual rules, have been
updated to automatic rules in recent years (Ni et al. 2021,
MohammadiPeyhani et al. 2022). Tools for automatic extrac-
tion of rules, based on atom–atom mapping (AAM) for the
recognition of reaction centers, have been successfully devel-
oped (Duigou et al. 2019, Ding et al. 2020, Ni et al. 2021).
Relative to manual rule curation, automatic extraction of
rules from reactions can be very fast and the resulting set of
rules normally covers reaction patterns more comprehen-
sively. For instance, 4996 automatically extracted rules cover
20 942 biological reactions in Rhea (Ding et al. 2020). In ad-
dition, when new reactions are added and if it is found that
they cannot be covered by any of the existing rules, automatic
rule extraction should allow focusing on only those rules that
need to be adjusted or created. This can potentially streamline
the process of updating existing rules, relative to running
extractions again for the combined set of reactions and pro-
ducing a completely new set of rules. However, this possibility
has not yet been extensively explored.
Despite these obvious advantages of automatic rule extrac-

tion, the algorithms used are typically fully agnostic of
biochemical expert knowledge on enzymes’ substrate specific-
ities. Therefore, the main challenge faced by tools for

automatic rule extraction is defining the appropriate generic-
ity of rules (Sveshnikova et al. 2022). Although reaction rules
can be extracted at different genericity levels by using various
extension diameters of reaction centers as demonstrated in
RetroRules (Duigou et al. 2019), reaction centers are usually
not extended (Ni et al. 2021) or extended to include only im-
mediately neighboring atoms (Coley et al. 2017, Segler and
Waller 2017, Ding et al. 2020) in order to ensure sufficient
coverage. Rules extracted in this way can typically be general-
ized well to cover unknown reactions as they only specify few
neighboring atoms around reaction centers. For example, the
rule set with 1224 rules automatically extracted from
MetaCyc reactions, which only overlap with 58% of KEGG
reactions, can cover 85.2% of all KEGG reactions (Ni et al.
2021). However, while their coverage is high, such rules are
likely to be falsely triggered on many substrates, resulting in
combinatorial explosion when used in pathway predictions
(Ding et al. 2020). Developing algorithms to balance between
coverage and over-generalization in automatic rule extraction
is therefore of utmost importance.
Here, we exploit knowledge on observed contaminant bio-

transformation pathways to explore the possibility of optimiz-
ing rule genericity directly against the prediction task at hand.
More specifically, we developed an automatic rule generation
tool called enviRule that can automatically extract rules from
biotransformation reactions, efficiently update automatic
rules as new data is added, and determine the optimum
genericity of rules for the task of contaminant pathway pre-
diction using the enviPath pathway prediction system (Wicker
et al. 2016). To that end, we related rule genericity to the
pathway prediction performance of machine learning models
and determined the optimum rule genericity as yielding the
best model performance.
We tested enviRule on the biotransformation reactions con-

tained in the EAWAG-BBD package in enviPath and com-
pared the prediction performance of models trained with the
previously manually curated rules and the newly generated
automatic rules at both reaction and pathway levels. The au-
tomatic rules were then updated with the more recently added
reactions contained in the EAWAG-SOIL package to test the
applicability of enviRule to deal with the growing number of
new reactions.

2 System and methods

2.1 Biotransformation reaction dataset

Biotransformation reactions reported in the EAWAG-BBD
and EAWAG-SOIL packages in enviPath were used for auto-
matic rule generation and updating of rules, respectively.
EAWAG-BBD is a mirror data package of the University of
Minnesota Biocatalysis/Biodegradation Database (UM-BBD),
which was first developed in 1995 (Ellis et al. 1999). Over the
past two decades, the dataset has grown from 4 to 219 path-
ways with 1479 reactions (Ellis et al. 2006). Most of the data
in EAWAG-BBD derives from studies of pure or enrichment
cultures. In contrast, EAWAG-SOIL, a rather new data pack-
age, contains pesticide biotransformation pathways in soils
extracted from the draft assessment reports (DAR) used in
pesticide registration that are made publicly available through
the European Food Safety Authority (EFSA) (Latino et al.
2017). 317 pathways with 2447 reactions observed under
aerobic conditions have been extracted from DARs and docu-
mented in EAWAG-SOIL. Different from most studies

2 Zhang and Fenner

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
9
/7

/b
ta

d
4
0
7
/7

2
0
6
8
8
3
 b

y
 U

n
iv

e
rs

ity
 L

ib
ra

ry
 Z

u
ric

h
 / Z

e
n
tra

lb
ib

lio
th

e
k
 Z

u
ric

h
 u

s
e
r o

n
 1

4
 F

e
b
ru

a
ry

 2
0
2
4



reported in EAWAG-BBD, biotransformation studies
reported in EAWAG-SOIL were carried out using 14C-label-
ing, thus likely providing more complete pathways.

2.2 Design of enviRule

enviRule consists of three modules, namely reaction clusterer,
rule generator, and reaction adder, which work closely to-
gether to generate and update automatic rules. Reactions are
first clustered in reaction clusterer based on reaction centers,
then rule generator produces automatic rules for each reaction
cluster. When new reactions are added, reaction adder identi-
fies existing rules to be updated and new rules to be created.
A schematic overview of enviRule can be found in Fig. 1.
SMARTScompareViewer (Ehmki et al., 2019; Schmidt et al.,
2019) was used to visualize reactions and SMARTS.

2.2.1 Module 1: Reaction clusterer

Reaction clusterer was designed to avoid redundancy in gen-
erating automatic rules. Reactions with the same reaction cen-
ters are clustered into the same group with the goal of finding
one generalized rule for each group in the next step. Reaction
clusterer applies the Reaction Decoder Tool (RDT) for calcu-
lating AAM and bond changes (Rahman et al. 2016). The
algorithms have been previously reported in EC-BLAST and
are now available in RDT (Rahman et al. 2014). Adapted
from EC-BLAST, comprehensive reaction fingerprints are

created in reaction clusterer to measure reaction similarities.
Chemical bonds and atoms in the reaction centers of sub-
strates and products are encoded into multiple fingerprints: a
bond formation/cleavage fingerprint, a bond-change finger-
print, which contains all the bonds with changed orders, and
a set of reaction-center fingerprints, representing atoms in re-
action centers. The reaction centers defined in reaction clus-
terer include changed atoms and bonds, as well as whole
functional groups if any parts of a predefined set of functional
groups are involved in reactions. The list of functional groups
was adapted from a tool for predicting chemical reaction out-
comes with machine learning (Coley et al. 2017). Since the
Tanimoto coefficient has been widely accepted for calculating
the similarity of bit-strings (Holliday et al. 2002), it is used as
the indicator of reaction similarity in reaction clusterer. Only
if the Tanimoto coefficient of reaction fingerprints is 1.0, two
reactions are clustered into the same group. The reaction fin-
gerprints of each clustered group are stored for further com-
parison when new reactions are added through reaction
adder. In this project, only reaction groups with at least two
reactions were sent to rule generator for automatic rule
generation.

2.2.2 Module 2: Rule generator

In the rule generator, reaction centers are expanded by the
breadth first search (BFS) algorithm with adjustable diameters
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cluster_i

cluster_k

cluster_k
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Figure 1. Overview of enviRule. Reactions are first sent to the Reaction Clusterer to calculate reaction fingerprints, which are then used to cluster
reactions into different groups. The Rule Generator automatically extract rules from clustered groups. Clustered groups can also be expanded with new
reactions that have the same reaction fingerprints, and corresponding rules are updated.

enviRule 3
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to include neighboring bonds and atoms (i.e. substituents).

Rule generator was developed with RDT and CDK. It auto-

matically generates SMIRKS rules (http://www.daylight.com/
dayhtml/doc/theory/theory.smirks.html) for each of the reac-

tion groups. In the enviPath prediction system, each rule has a

classifier that requires training. To decrease the sparsity of the

training data of classifiers, classifiers are built for composite

rules. Each composite rule represents one reaction group and

may comprise of one or several simple rules extracted from
the reactions present in this group. Without a combination

strategy, the number of simple rules in a composite rule

should equal the number of reactions in the corresponding

group. Here, we aimed to minimize the number of simple

rules in each composite rule as follows to control redundancy.

To minimize the number of rules inside a composite rule we

use graph combination to integrate substrates of different
reactions without producing unobserved combinations of

substituents (i.e. Supplementary Fig. S2), thus avoiding over-

generalization of rules. After initializing each substrate as a

graph with its original reaction center as backbone and sub-

stituents as leaf nodes (Fig. 2), graphs are combined only (i.e.

Fig. 2a–c) when no connections are created between two sub-

stituents that do not co-exist in any reaction (e.g. substituent
S_A1 and substituent S_B2 in Fig. 2d). Graphs are translated

into SMARTS after combination.

2.2.2 Module 3: Reaction adder

When new reactions are available, similarly to reaction clus-

terer, reaction adder clusters them into different groups. In

addition, it compares the fingerprints of new reactions with

the previously stored fingerprints of reaction groups and adds

new reactions into existing reaction groups if the Tanimoto
coefficient of their fingerprints is 1.0, otherwise puts them

into new groups. Rule generator will be applied on those ex-

panded groups, with existing and new reactions, to produce

updated rules that are generalized to cover newly added reac-

tions. For new reactions that cannot be added into any of the

existing reaction groups, new rules will be generated by rule

generator.

2.3 Machine learning models for pathway

predictions

Pathway prediction was reduced to a multi-label classification

problem in enviPath. The goal is to iteratively predict which

rules (i.e. labels) are correctly triggered on a compound and

then on its predicted TPs. enviPath used to solve multi-label
classification with a binary relevance method (BM) by build-

ing independent classifiers for each rule (Wicker et al. 2010).

Later, BM was replaced by an ensemble chain classifier (ECC)

to take the correlation of these classifiers into consideration

(Read et al. 2011). ECC models are implemented with MEKA

(Read et al. 2016), which is a multi-label extension of the

WEKA machine learning tool (Witten and Frank 2002).
To prepare the training data for ECC models, each com-

pound is represented as a vector consisting of 192 MACCS

(Molecular ACCess System) structural fingerprints (Durant

et al. 2002) and rules that are encoded into a binary string.

For training the classifier of a rule, if this rule is triggered on a

compound and resulting products are observed in the bio-

transformation reactions in the dataset, this compound is

taken as a positive sample (PS). Conversely, if the rule is trig-
gered but products cannot be observed, this compound is a

negative sample (NS).

2.4 Performance evaluation
2.4.1 Genericity of automatic rules

The range of compounds a rule can be triggered on depends
on how specific this rule is. This characteristic of a rule is also

called genericity and is evaluated as follows:

Genericity ¼
NS

PS
(1)

where NS represents the number of negative samples used for

training the classifier of a rule, while PS stands for the number

of positive samples. Genericity, i.e. the ratio of negative to
positive samples, significantly affects the training of models

and their prediction performance. A specific genericity of a

rule can be achieved in rule generator by iteratively adjusting

the diameters for the extension of reaction centers or by add-

ing explicit hydrogens. To achieve a genericity target value, a

rule is iteratively adjusted and evaluated against all the train-

ing compounds to count the number of negative samples and
positive samples, until the ratio is as close as possible to the

target genericity. For example, if the current genericity of a

rule is greater than the target genericity, either extension

diameters will be increased or explicit hydrogens will be

added by the rule generator to generate a more specific ver-

sion of this rule, and vice versa.
The optimum genericity of rules in this project was deter-

mined for the task of contaminant pathway prediction using
the enviPath pathway prediction system. Specifically, predic-

tion models were trained on 80%of data with 6 sets of auto-

matic rules whose genericities were predefined at different

genericity levels of 0, 1, 5, 10, 20, and 50. The genericity cor-

responding to the model yielding the highest predicted proba-

bilities for the experimentally observed products in the
remaining 20% test reactions is selected as optimum generic-

ity. Once the optimum genericity is determined, extension

diameters and explicit hydrogens for each rule can be adjusted

as explained.

Figure 2. Schematic view of substrate combination. Solid annotated
circles are atoms in a reaction center, while dashed annotated circles are
substituents. This figure demonstrates the graph combination for a group
with two reactions. Four cases are distinguished (a–d) based on whether
substituents (S) attached to either atom in the reaction center are equal or
not. The left side shows the substrates of two simple rules extracted
from the two reactions, and the right side shows three plausible (i.e. a–c)
and one incorrect (i.e. d) combined forms of the substrates. Colored lines
(i.e. the red and blue lines) in (d) denote unobserved combinations of
substituents. In case d, the two reactions cannot be combined into one
rule (see also Supplementary Fig. S2 for another concrete example).
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2.4.2 Single-gen evaluation of pathway prediction

Single-gen evaluation was performed at reaction level to compare
the prediction performance of models trained with automatic
rules and manually curated rules. For performance evaluation,
we calculated precision and recall (Equations 2 and 3).

Precision ¼
TP

TPþ FP
(2)

Recall ¼
TP

TPþ FN
(3)

where TP and FP represent the numbers of correctly predicted
and falsely predicted transformation products, respectively. It
should be noted that FN only represents the transformation
products documented in the dataset that cannot be predicted
by models, which might be an underestimation relative to the
true situation due to limitations of the analytical method used
for transformation product detection. 80% of compounds
were chosen to train models, while the remaining 20% were
selected for testing. The evaluation was repeated 100 times
for an unbiased examination of how well the model can pre-
dict new data not included during training.

2.4.3 Multi-gen evaluation of pathway prediction

Multi-gen evaluation was proposed in a previous study (Tam
et al. 2021) and used to evaluate prediction performance for
whole pathways. In multi-gen evaluation, transformation
products emerging after several generations are assigned re-
duced weights when calculating precision and recall because
they have higher uncertainties. In addition, intermediate pre-
dicted transformation products that are not observed in the
dataset are not punished as false positives if they lead to cor-
rect downstream products. Different from the previously
reported version of multi-gen evaluation, in this study, unob-
served products created along with correct products from the
same reactions, e.g. in an oxidative cleavage or hydrolysis re-
action, were not punished as false positives. This modification
will result in higher precision values compared to the original
version of the multi-gen algorithm. Similar to single-gen eval-
uation, models were trained on 80% of compounds and
tested on the rest, which was repeated 100 times.

3 Results and discussion

3.1 Automatic rules

Figure 3 shows the averaged probabilities of test reactions
predicted by models trained with different sets of automatic
rules adjusted to predefined genericity levels. High averaged
probabilities indicate a high confidence of the thus trained
models for the test reactions. Since all test reactions were actu-
ally experimentally observed, the genericity yielding models
with highest averaged probabilities for test reactions is pre-
ferred. Among the six predefined genericities, the model
trained with automatic rules generated at a genericity level of
five resulted in the highest averaged probability. Hence, five
was determined as the optimum genericity level for automatic
rule generation and used in all the subsequent steps.
Using the optimized genericity level of 5, 143 automatic

rules were extracted using the reaction data provided in the
EAWAG-BBD package. They successfully covered 826 of
1132 target biotransformation reactions (73.0% coverage),
while the previously 208 manually designed rules used in

Eawag-BBD (Gao et al. 2010) and transferred into the
enviPath EAWAG-BBD package, known as btrules, covered
745 reactions (65.8% coverage). The reactions covered by the
two sets of rules showed a significant overlap. 641 reactions
can be concurrently covered by 96 automatic rules and 116
btrules, implying that more than 86% reactions covered by
btrules can also be covered by automatic rules. 86 out of 116
btrules share reactions with only one automatic rule, which is
a one-to-one relationship. Manual rules with a one-to-one re-
lationship can have almost the same form as their correspond-
ing automatic rule, which is, e.g. the case for the hydrolysis
rule for nitroesters, i.e. bt0058 and automatic rule-116
(Fig. 4). The only difference is the carbon connected to the ox-
ygen atom in the reaction center of rule-116 cannot be quater-
nary, while in bt0058 it can be any carbon. However, since
the genericities of manual rules are not explicitly regulated
but the genericities of automatic rules are adjusted to be close
to 5, btrules and corresponding automatic rules might differ
in their specification of neighboring groups, even though the
reaction centers are the same. As a result, btrules can have
higher or lower genericity than their corresponding automatic
rule in one-to-one relationships. The hydrolysis rule for phos-
phate/thiophosphate esters, i.e. bt0361 (genericity¼ 8.20), for
instance, has a higher genericity than the corresponding auto-
matic rule-87 (genericity¼ 5.20), while the rule for reduction
of nitro groups to amino groups, i.e. bt0080 (generi-
city¼ 2.25), has lower genericity than the corresponding au-
tomatic rule-44 (genericity¼ 5.11) (Fig. 4). In addition to
one-to-one relationships, several one-to-many relationships
are observed, where the reactions covered by one manual rule
are covered by several automatic rules, or the other way
around. The reductive dehalogenation rule bt0029, for in-
stance, which removes chloride, bromide, and iodine atoms
from aromatic or aliphatic carbons and replaces them with a
hydrogen atom, is associated with automatic rule-123, rule-
137, and rule-152, which handle the dechlorination of ali-
phatic carbons, the dechlorination of aromatic carbons, and
the debromination of aromatic carbons, respectively
(Supplementary Fig. S3). None of the automatic rules covers
the debromination of aliphatic carbons or deiodination in
general because such reactions are not present in the
EAWAG-BBD package. Conversely, reactions covered by sev-
eral manual rules can also be covered by only one automatic

Figure 3. Averaged predicted probabilities of test reactions for predefined
genericity levels used in automatic rule extraction. Error bars are
calculated with the results from five different train and test splits (see also
Supplementary Fig. S1).
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rule. The rule for oxidation of primary alcohols to aldehydes,
i.e. bt0001, for instance, and the rule for oxidation of second-
ary alcohols to ketone/esters, i.e. bt0002, are combined into
the automatic rule-19 (Supplementary Fig. S4) because the re-
action centers of these two rules are the same, both including
a C–O single bond and a C–H bond.
For automatic rule updates, firstly, the 143 automatic rules

extracted from the EAWAG-BBD reactions were applied to
the EAWAG-SOIL reactions. 1118 of 2447 EAWAG-SOIL
reactions could not be covered by any of the initial set of 143
automatic rules extracted from EAWAG-BBD and were there-
fore used for the rule updates. Automatic rules that had the
same reaction centers as one or several uncovered reactions
were automatically adapted to include the newly introduced
substituents. For example, the substructure [CH](-[C])-[CH3]
was added as a possible neighboring group of the carbon
atom in the reaction center of automatic rule-326 to cover the
reaction 0000154 in the EAWAG-SOIL package
(Supplementary Fig. S5). Upon rule updating, 38 out of the
143 original automatic rules were changed and 100 new rules
were created, resulting in an updated rule set including 243
automatic rules in total. With this updated set of rules, the
number of not covered EAWAG-SOIL reactions dropped
from 1118 to 542.

3.2 Evaluation of models with automatic rules
extracted from EAWAG-BBD

In Fig. 5a, results for single-gen evaluation for models gener-
ated with the original, manually extracted btrules and the
newly generated automatic rules are given. Automatic rules

cannot reach the same maximum precision as btrules at the

highest probability threshold, but their advantages in cover-

age become salient at lower thresholds. The area under the
curve (AUC) scores of the model trained with manual btrules

and the model trained with automatic rules are 0.30 and

0.39, respectively, suggesting a better overall performance at

reaction level for the model trained with the automatic rules,

primarily due to the gain in recall. Similar results can be ob-

served in models trained with more evenly split (i.e. 60%/
40% and 70%/30%) train/test data (Supplementary Fig. S7).
The results of multi-gen evaluation at pathway level are vi-

sualized in Fig. 5b. AUC values for multi-gen evaluation, i.e.

evaluation at pathway level, are generally lower than for

single-gen evaluation because downstream reactions will

never get a chance to be predicted if upstream reactions can-

not be predicted, making it more challenging to obtain a high

recall. Yet, similar to single-gen evaluation, the AUC score of
the model trained with manual btrules (0.19) is lower than of

the model trained with automatic rules (0.21), supporting the

superior performance of the automatic rules over the manu-

ally curated ones at pathway level. The increase in AUC is

also mainly caused by the high recall of automatic-rule-

trained models.

3.3 Evaluation of models with automatic rules

updated with EAWAG-SOIL

Both manual btrules and automatic rules extracted from the

EAWAG-BBD reactions failed to generalize well for the pre-

diction of the EAWAG-SOIL data. According to the single-

gen evaluation results shown in Fig. 6a, the AUC scores for

the models trained with btrules and automatic rules and eval-
uated on the EAWAG-SOIL reactions were 0.19 and 0.20, re-

spectively, which is substantially lower than the AUC scores

in the single-gen evaluation of the two models trained and

evaluated on the EAWAG-BBD reactions. After rule updating,

an AUC score of 0.35 was achieved by the model trained with

the updated automatic rules, suggesting a considerable im-
provement in the performance of the model with the set of

updated rules.
Results for multi-gen evaluation again agreed with results

for single-gen evaluation (Fig. 6b). The difference between the

AUC scores for the model trained with btrules (0.13) and the

model trained with automatic rules extracted from the

EAWAG-BBD reactions (0.12) was tiny when evaluated

against the EAWAG-SOIL data. Yet, as a consequence of the
good coverage of the EAWAG-SOIL reactions by updated au-

tomatic rules, the AUC score (0.20) for the model trained

with updated automatic rules improved, largely due to the in-

crease in recall.

Figure 5. Performance of models with the EAWAG-BBD reactions in (a)
single-gen evaluation and (b) multi-gen evaluation.

Figure 4. One-to-one relationships of manual btrules and automatic rules.
If the substituents of atoms in the reaction centers are similar, automatic
rules and manual btrules can have almost the same forms and
genericities (a). However, manual btrules can have higher genericities (b)
if the substituents are more diverse, or lower genericities (c) if their
substituents are less diverse, while the genericities of automatic rules
remain stable.
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3.4 Benchmarking against other automatic rules

To enable benchmarking the performance of our automatic
rules against external automatic rule sets, the single-gen evalu-
ation was implemented with RDKit and Meka wrapper in
Scikit-multilearn Python package. We compared the single-
gen evaluation results on the EAWAG-BBD package for the
models trained with automatic rules extracted from the
EAWAG-BBD reactions and the automatic rules extracted
from MetaCyc dataset (Ni et al. 2021). MetaCyc is a compre-
hensive database that contains metabolic pathways and
enzymes from various domains of life, including environmen-
tal bacteria like Nitrospirae and Planctomycetes (Caspi et al.
2018). Since all the biotransformation reactions in the
EAWAG-BBD package are decomposition reactions, i.e. one
substrate reacting to one or several products, only the 255 de-
composition rules were selected from the 2318 MetaCyc auto
rules for the comparison. Although MetaCyc auto rules
showed good generalization for KEGG and BRENDA reac-
tions (Ni et al. 2021), the 255 MetaCyc decomposition rules
could only cover 342 of 1132 EAWAG-BBD reactions
(30.2% coverage). This most likely is the main reason also for
the low AUC score of 0.11 of the prediction model trained
with MetaCyc auto rules (Supplementary Fig. S6).

4 Conclusion

enviRule is proposed as an efficient tool for automatic extrac-
tion of reaction rules, required for rule-based biotransforma-
tion pathway prediction systems, from biotransformation
reactions. In contrast to manual rules, automatic rules are
extracted in a more thorough, data-driven approach and
therefore no biotransformation reaction is overlooked. While
this approach achieves a higher coverage of reactions com-
pared to the previously used, manually curated rules, the
genericity of rules is well controlled, and the number of rules
is carefully minimized by a graph combination algorithm
without over-generalization. We demonstrated that the opti-
mum genericity of rules for the specific task of contaminant
pathway prediction could be determined by comparing the
predicted probabilities of test reactions from enviPath predic-
tion models trained with rule sets that have different generic-
ities. This optimum genericity of rules is expected to not
change significantly when reactions from a similar domain
are added (see, e.g. the predicted probabilities for the com-
bined set of EAWAG-BBD and EAWAG-SOIL reactions in
Supplementary Fig. S8). enviRule also allows streamlined,
computationally efficient rule adaption when new reaction in-
formation is obtained, focusing only on rules that need to be
updated and rules that need to be newly created, instead of

running rule extraction all over again for existing and new

reactions. The experimental results show that the improve-

ment in recall for the models trained with automatic rules
leads to a significant increase in the overall performance of

TP prediction, compared with the models trained with manu-

ally curated rules.
Despite the remarkable achievements of enviRule, the limi-

tations should also be noticed. Among the reaction groups

clustered by the rule clusterer module of enviRule, 722 of

them only have single instances. They are considered too

unique for rule extraction, and hence they are skipped in the
rule generator. However, some of them could contain impor-

tant rules, and, upon enrichment of our reaction datasets with

additional reactions, eventually more reactions might be clus-

tered into them. For example, we are missing a rule for reduc-

tive debromination of aliphatic carbons because there are not

enough examples of that type of reaction in EAWAG-BBD
and EAWAG-SOIL reaction databases. One option to popu-

late reaction clusters with additional reactions would be to

augment our reaction databases with reactions from enzyme

databases such as BRENDA and KEGG. However, it remains

unclear which of these reactions would be observed under en-

vironmentally relevant conditions, and therefore the meaning-

fulness of such an approach must be carefully evaluated.

Supplementary data

Supplementary data are available at Bioinformatics online.
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