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Gene-metabolite annotation with shortest
reactional distance enhances metabolite
genome-wide association studies results

Cantin Baron,1,2 Sarah Cherkaoui,2,3,4 Sandra Therrien-Laperriere,2 Yann Ilboudo,1,2 Raphaël Poujol,2

Pamela Mehanna,2 Melanie E. Garrett,5 Marilyn J. Telen,6 Allison E. Ashley-Koch,5 Pablo Bartolucci,7,8

John D. Rioux,1,2,9 Guillaume Lettre,2,9 Christine Des Rosiers,1,2,10 Matthieu Ruiz,2,10 and Julie G. Hussin2,9,11,*

SUMMARY

Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic
control of metabolite levels. However, interpreting these associations remains challenging due to a lack
of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance
threshold. Here, we introduce the shortest reactional distance (SRD)metric, drawing from the comprehen-
siveKEGGdatabase, to enhance thebiological interpretationofmGWASresults.Weapplied this approach
to three independentmGWAS, including a case studyon sickle cell diseasepatients.Our analysis reveals an
enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with
mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of
SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway
databases. Our findings highlight the SRDmetric as an objective, quantitative and easy-to-compute anno-
tation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.

INTRODUCTION

High throughput biotechnologies and analytic approaches applied to large human cohorts have recently revolutionized biomedical research,

allowing the quantification and characterization of biological molecules to generate ‘‘omics’’ datasets. Genomics, the characterization of an

individual’s DNA molecules, led to the identification of thousands of genetic variants associated with a trait, disease, or response to treat-

ments, through large-scale genome-wide association studies (GWAS).1 Although GWAS have resulted in a better understanding of disease

mechanisms, these approaches only consider genetic variation established at birth, and ignore the environment of an individual, influencing

its biological state. An alternative strategy to complement traditional GWAS and better understand human biology is to comprehensively

interrogate disease states at the molecular level using metabolomics, which offers a robust way to systematically measure thousands of

low-molecular-weight compounds, called metabolites. After tissue extraction or collection of biological samples (usually blood and urine),

metabolites can be detected, identified, and quantified using either mass spectrometry (MS) or nuclear magnetic resonance (NMR).2 As bio-

markers of the underlyingmolecular dysfunctions, metabolite levels correspond to intermediate phenotypes (or endophenotypes) represent-

ing natural or clinical heterogeneity. Storing and sharingmetabolomics knowledge is the focus of the HumanMetabolomeDatabase (HMDB),

which is one of the largest and comprehensive curated collection of human metabolite and human metabolism data in the world.3

Metabolomics can be seen as the study of the ultimate molecular response of an organism to genetic, environmental, and pathological

modifications, but elucidating specific molecular mechanisms from metabolomics alone is difficult since many metabolites are involved in

multiple biological processes. Linkingmetabolomics signals with genetics provides a promising approach to identify the implicated pathways

and, as such, metabolite genome-wide association studies (mGWAS) are key approaches to integratemetabolomics with genomics. mGWAS

report associations betweenmetabolites and genetic loci, referred to as metabolite quantitative trait loci (mQTL), making it possible to study
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associations betweenmillions of genetic variants and thousands of metabolites and to generate insightful hypotheses about uncharacterized

regulatory mechanisms.2 Although very powerful, interpretation of mGWAS results remains challenging. Indeed, millions of statistical tests

are generally performed between single nucleotide polymorphisms (SNPs) and metabolites, leading to a huge multiple testing burden.4

Furthermore, interpreting the biological meaning of an association between a given SNP and a metabolite requires interdisciplinary knowl-

edge. In this context, the simplest way of prioritizing hypotheses remains to apply a conservative correction for multiple testing such as

Bonferroni or Benjamini-Hochberg procedures.4 The consequence of this correction is that only associations with themost significant p values

are reported whereas biologically relevant associations with a suggestive p value may be missed.

With the increasing number of published mGWAS and their current limits, it is necessary to develop systematic methodologies to gain

better insight into the mGWAS results by exploiting the most up-to-date biological knowledge. There are multiple resources available

that aim at storing and describing known relationships between genes and phenotypes or endophenotypes (GWAS Catalog,5

PhenoScanner,6 OpenGWAS,7 Open Targets Genetics,8 PheLiGe,9 and DisGeNET10) as well as tools to annotate gene-metabolites pairs

based on the available resources but none of them have been specifically designed to address current mGWAS limitations.11,12 Only few

methods have been developed to gain insight into the biological interpretation of mGWAS data specifically,13,14 and none have been explic-

itly used to annotatemGWAS results based on well-curated biochemical knowledge, such as the Kyoto Encyclopedia of Genes andGenomes

(KEGG) database.15 KEGG is recognized for its high curation level ofmetabolic pathways formanymodel organisms, including humans, and is

a reference for the reporting of enzymatic reactions, which is needed to understand the functional importance of gene-metabolite pairs.

KEGG is a reference for the biochemical functions of genes with the descriptions of enzyme reactions, but a systematic and quantitative anno-

tation procedure using this database in the context of mGWAS results remains to be explored. In this regard, recent studies have highlighted

the applicability and utility of topological data analysis based on graph theory approaches,16 including the shortest path,17,18 in revealing

biological knowledge in the context of complex metabolic networks.13,17,18 For example, the shortest path was used to characterize the

impact of gene deletion on nearby metabolites within the metabolic network of E. coli.18 It was also used to analyze the relationship between

expression quantitative trait loci (eQTL) and metabolomic data, for example within the metabolic network of rat adipose tissues.17 Still, this

type of metric has not been applied to systematically annotate mGWAS results.

In this study, we assessed the utility of the shortest reactional distance (SRD) metric computed from KEGG database’s pathways to anno-

tate mGWAS results and to help extract biological insights from them. We developed PathQuant, an R package, to enable a robust and sys-

tematic computation of SRD values between any lists of gene-metabolite pairs mapped onto KEGG graphs, which represent metabolic path-

ways, while keeping the original, well-curated, topology of each queried pathway. Focusing on genes encoding for enzymes and their

associatedmetabolites, we applied the SRD annotation to two previously publishedmGWASdatasets in individuals fromdifferent ethnicities:

an mGWAS11 performed on 7,824 participants from the TwinsUK cohort19 and the Kooperative Gesundheitsforschung in der Region Augs-

burg (KORA) study,20 referred herein as the TK study, and an mGWAS21 performed on 614 Qatari participants from the HamadMedical Cor-

poration (HMC), referred herein as the HMC study. We explored results at varying levels of statistical significance. We found that the SRD

metric enables identification of associations that do not meet currently accepted cut-off of statistical significance (suggestive associations)

but which have high biological relevance. Finally, we performed an mGWAS on previously reported genetic and metabolomic data from a

sickle cell disease (SCD) cohort,22,23 referred herein as the SCD study, and show how the SRD metric can be used to prioritize novel hits,

including hits with a suggestive p value.

RESULTS

Overview of study pipeline

PathQuant is a tool that converts ametabolic pathwaymap into a graph of biochemical reactionswithmetabolites as nodes and genes as edges,

to compute the SRDpath between a givengene-metabolite pair (STARMethods, supplemental information, Figure S8). To explore the potential

of SRD values as an annotation metric to inform on the biological relevance of gene-metabolite pairs obtained from mGWAS, we developed a

pipeline, presented in Figure 1. First, we gather mGWAS summary statistics and perform standard quality-control filters on genetic variants

based onminor allele frequencies (MAF) and completeness. The second step of our pipeline only keeps biallelic SNPs at MAF >0.01 (to exclude

rare variants) and tested across all measured metabolites, but indels, tri-allelic SNPs and rare variants can be easily integrated, if present in

mGWAS summary statistics. Third, SNPs are mapped to their closest genes coding for an enzyme (within 10 kb upstream and downstream)

to obtain gene-metabolite pairs. As multiple SNPs will generally be linked with the same gene, only the minimum p value of all SNPs is kept

for a gene-metabolite pair, representing the strongest statistical signal for each pair within a study. These p values can be categorized as sig-

nificant, suggestive, or non-significant according to appropriate thresholds that depend on the dataset (STAR Methods). We then retrieve

KEGG IDs fromall pairs (STARMethods), andonly retain pairs for whichboth IDs couldbe found. Third, we run PathQuant R package to compute

the SRD value on all remaining pairs based on the KEGG overview graph (hsa01100). Note that other KEGG graph, or a combination of KEGG

graphs, canbe easily added at this step. SRD valuesobtained canbe numerical whenapath is found, canbegiven an infinite value (notedas ‘‘Inf’’)

when there is no pathbetween thegeneandmetabolite in thequeriedgraph, or an ‘‘NA’’ valuewhen the geneor themetabolite (or both) are not

found in the queried graph, despite having a valid KEGG ID. We can then perform several analyses of SRD values, as detailed in the following.

Stringent and suggestive associated pairs have shorter reactional distances

To test whether the SRD is a metric capable of capturing the biological relevance of a gene-metabolite pairs, we first explored the results of

the TK study, as it represents one of the largest mGWAS studies conducted to date. This mGWAS was done on a group of participants from
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European descent, andmany findings were replicated in follow-up studies, making it a well-validated dataset. Furthermore, it is considered a

reference study by the community, resulting in an ideal dataset to test the hypothesis that stringently associated pairs will have lower SRD

values. We started to explore this dataset by using the 74 gene-metabolite pairs with KEGG IDs passing the genome-wide significance

cut-off set by the original authors11 (Table 1). Among these, 40 gene-metabolite pairs were mapped onto KEGG overview graph. After

excluding the two pairs with infinite SRD values, the median SRD value for the remaining 38 pairs is 1, which indicates a close biological rela-

tionship between the genes and their associated metabolites (Figure 2). To assess how significant this result is, we used two strategies: we

compared the SRD values to (1) a null distribution (STAR Methods), built from all possible pairs of gene-metabolites that are present on the

KEGG overview graph (Figure 2A); (2) to a permuted set of gene-metabolite pairs (Figure 2B), built with the 33 metabolites and 27 genes

involved in the 40 significant gene-metabolite pairs (Figure 2C). There is a statistically significant difference between the TK pairs’ SRD values

and the null distribution (Welch test, p value < 3.483 10�16), confirming the close biological relationship between mGWAS gene-metabolite

pairs in the TK study. Similarly, themedian SRD value for the permuted pairs is 8, which is significantly higher than themedian SRD of 1 (empir-

ical p value = 0.035). These results confirm that closely connected genes andmetabolites are enriched in gene-metabolite pairs discovered in

mGWAS.

To visualize the relationship between all genes andmetabolites involved in the significant pairs reported in the TK study within KEGGover-

view graph, we used a heatmap representation of SRD values (Figure 2C), highlighting the reported significant pairs using thick black boxes.

Seventeen of these associations have an SRD of 0, implying that these gene-metabolite pairs are from a single enzymatic reaction. For

example, PSPH (phosphoserine phosphatase) is catalyzing the formation of L-serine and results in an SRD of 0. Interestingly, within the 40

associations with an SRD annotation, somegenes are closely connected tomultiplemetabolites, such asACADM andCPS1 that havemultiple

small SRD values. Moreover, some genes are isolated and appear to be part of disconnected subgraphs of the KEGGoverview graph, such as

GMPR (guanosinemonophosphate reductase),NAT2 (N-acetyltransferase 2) and TDO2 (tryptophan 2,3-dioxygenase), which obtained infinite

SRD values with most metabolites.

The most widely used approach to report mGWAS gene-metabolite pairs is based on genomic distances, but identifying the potential

causal gene behind an SNP association is highly challenging. We evaluated the validity of the distance criteria based on SRD. Using the

TK dataset, we evaluated the number of additional gene-metabolite pairs and the SRD distribution of pairs when increasing the interval

size (10 kb as baseline, 50 kb, 500 kb, 1 Mb) to map the gene (STAR Methods, Figure S3). At an mGWAS p value below 1 3 10�7, the

Retrieve minimum p-value per pair 

from mGWAS stats

Gene annotation with 10K bp

downstream & upstream

Variants Quality Control

(MAF, missingness, SNP only)

KEGG IDs obtention  for 

gene and metabolite

PathQuant on KEGG graphs

(e.g : hsa01100 )

Within a network of KEGG reactions 

(e.g : hsa01100)

(Substrate)

Met.I

(Product)

Met.II

2

Met.I

Shortest path between Gene A and each metabolite

Gene A

Figure 1. Overview of the Shortest Reactional Distance (SRD) annotation process

On the left panel, we show themain steps of the pipeline used to annotate mGWAS datasets. Boxes indicate input and outputs of processing steps described on

arrows. The right panel shows the meaning of an SRD annotation of Enzyme A’s pairs within a KEGG pathway, where genes are represented as edges and

metabolites as nodes. The SRD between Enzyme A and its main reactants, the substrate and the product, are of 0, everything running deeper adds 1 at each

step (dashed arrows): green metabolites are at SRD = 1 and the blue metabolite is at SRD = 2 from Enzyme A.
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10 kb baseline yielded a total of 76 pairs, and extended intervals incrementally introduced 8, 105, and 70 new pairs for 50 kb, 500 kb, and 1Mb,

respectively. The mean SRD for the 10 kb baseline pairs is 2.6, and 3.2, 7.7, and 9.5, respectively, for the extended intervals (Figure S3A). This

suggests that the relevance of inclusion of genes decreases as distance from themQTL increases. Furthermore, considering the complexity in

the regulation of gene expression, protein levels and metabolite levels, other studies have used eQTL annotations in mGWAS studies to

define gene-metabolite pairs.24 We thus further compared the 10 kb baseline approach to eQTL annotations taken from the eQTL Gen

consortium data.25 The eQTL annotations alone led to 48 pairs at a mGWAS p value below 1 3 10�7, with 28 pairs (58%) already captured

in the 10 kb intervals, and 20 new gene-metabolite pairs, involving 14 additional enzymes and 5 additional metabolites. Interestingly, the

mean SRD for all eQTL pairs is 7.4, which is comparable to the mean SRD obtained for pairs in the 500 kb interval. Additionally, for the

eQTL pairs overlapping the 10 kb and 50 kb intervals, the mean SRD is 4.3 and 5.2, respectively (Figure S3B), suggesting that the eQTL anno-

tation does not necessarily captures relationships in close proximitywithinmetabolic pathways, and supporting the use of both eQTL and SRD

annotations for mGWAS.

The design of mGWAS can be heterogeneous, with distinct genomic and metabolomic technologies and pre-processing steps used

across studies. To demonstrate the applicability of our annotation more broadly, it is important to use an independent study to replicate

the aforementioned observations. Furthermore, there is a widely recognized bias toward white Europeans in genetics studies, which often

makes results less generalizable in other ethnicities,26,27 highlighting a need for new bioinformatics solutions to be tested in underrepre-

sented populations. In line with these criteria, we further tested our approach in the HMC study, which has been performed in a different

ethnic group, onQatari individuals. In this mGWAS, the genomic data comes from the exome sequencing technology compared to genotyp-

ing data in the TK study, and the metabolomics data are generated using differing pre-processing steps (see STAR Methods). Furthermore,

the authors of this study identified SNP-metabolite pairs with suggestive p values, which were made available (Supplementary File number 7

of a study by Yousri et al21), allowing us to explore whether including the suggestive mGWAS association results replicated the observation

from the TK study. Of 68 gene-metabolite associations (Table 1) at a cut-off of p% 1.43 10�7, 42 were mapped to the KEGG overview graph

for which SRD values were computed. Four pairs had infinite SRD values (see Figure S1C), while the 38 gene-metabolite remaining pairs (Ta-

ble 1) had SRDs of 0 or 1 (Figure S1), meaning that we have associations that are either substrate-product associations or with one interme-

diate step. Thus, we replicated the observation seen in the TK study of a significant enrichment of low SRD values compared to the null

distribution in this second mGWAS (Welch test, p value < 7.91 3 10�60, Figure S1), even when considering a lower significant threshold

than standard genome-wide cut-offs.

SRD annotation can identify false negative hits

By using two different studies and different summary statistics cut-offs, we have determined that associations with stringent and suggestive p

values are enriched for low SRDs. We next explored more formally the relationship between the SRD values and the p values from the TK

study. We graphically defined the gene-metabolite significance cut-off at p < 3.16 3 10�4 of the TK study based on a QQplot (Figure S2B,

STAR Methods) and used it as a threshold for the minimum value to determine the relationship between SRDs and p values. We observed a

significant correlation between the mGWAS p values and SRD values (R = �0.2, p = 9.1 3 10�11, Figure 3A), meaning that the higher the

significance of an association between a metabolite and a gene is, the closer they are likely to be in the KEGG overview graph. We replicated

Table 1. Dataset description of used dataset for the TK, HMC, and SCD studies

Study name TK HMC SCD TK-None

Summary stats cut-off 1.03 3 10�10 1.79 3 10-7 None None

Sample size 7,824 614 651 7,824

SNP-Metabolite name pairs

(unique SNP - unique metabolites)

336

(218-186)

6 465

(3 192-100)

3 139 070 208

(24 523 986-128)

1 236 909 025

(2 617 408–486)

Enzyme Gene-Metabolite pairs with KEGG IDs:

PathQuant input

(unique genes - unique metabolites)[gene -

metabolite proportion mapped*]

74

(43–56)[20%–30%]

68

(32-20)[1–20%]

209 645 290

(3875-118)[16%–92%]

46 779 684

(3815-177)[0.14%–36%]

Pairs’ SRD annotations within KEGG Overview Graph

(unique genes - unique metabolites**)[gene -

metabolite proportion mapped*]

SRD: 38

Inf: 2

NA: 34

(27–33)[63%–59%]

SRD: 38

Inf: 4

NA: 26

(13 - 8)[40%–40%]

SRD: 82 145

Inf: 38 980

NA: 336 125

(1275 - 95)[33%–81%]

SRD: 86 219

Inf: 55 822

NA: 533 214

(1257 - 113)[33%–64%]

Line 1: Dataset label for TK, HMC, and SCD studies and the TK dataset without p values cut-off (TK-None). Line 2: Maximum p value cut-off. Line 3: Maximum

number of samples available for the mGWAS study. Line 4: Number of SNP-metabolites pairs. Line 5: Number of gene coding for enzyme-metabolite pairs for

which KEGG IDs have been obtained. Line 6: Number of SRD annotation within map hsa01100 (KEGG overview graph) categorized in three categories. Lines 4, 5,

and 6 have the count of unique genes and metabolites involved in pairs between parenthesis. *: the proportion of genes and metabolites mapped from the

previous line is indicated between brackets. **: the number of unique genes and metabolites are ignoring NA values. Abbreviations: ID = Identifier; SNP = Sin-

gle-nucleotide polymorphism; SRD = Shortest Reactional Distance; Inf = Infinite value; NA = Not available, a missing annotation.
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this correlation using different strategies to map gene-metabolite pairs: based on genomic distances (from 50 kb to 1 Mb, Figure S4), and

based on eQTL annotations (Figure S5). This negative correlation confirms the enrichment of biologically relevant pairs in significant associ-

ations, and suggests that combining p values and SRD may help prioritizing associations of high biological interest. Furthermore, the SRD

value could be used to select for further analysis pairs with small SRD having low p value that nevertheless do not pass stringent significance

cut-offs.

As a result of multiple testing burden between each variant and eachmetabolite level, only top hits are generally reported inmGWAS, but

it is well known that there could be false negative hits.28 Thereby, we tested the potential for the SRD metric to identify some of these false-

negative candidates in these published mGWAS. We define a false negative association, an association that was not reported as a hit in the

original mGWAS because the p value was above the significance threshold of single-variant p values but was subsequently reported as a hit in

external studies. In the TK study, we focused on the genes and metabolites involved in stringent associations (presented in the heatmap,

Figure 2C), which include 27 genes and 33 metabolites. We noticed gene-metabolite pairs annotated with a smaller SRD than the

initially reported association, such as the ALDH18A1 (aldehyde dehydrogenase 18 family member A1) and L-citrulline pair, which has an

SRD value of 2, whereas other pairs involving L-citrulline show smaller SRD values. For instance, the CPS1 (carbamoyl-phosphate synthase

1) and L-citrulline pair, which has an SRD = 1, but was not reported as a significant association in the TK study, despite a p value of

Welch test, p-value = 3.48e-16A B

C

Empirical p-value = 0.035

SRD
0

10
20
30

Figure 2. SRD of stringently associated gene-metabolite pairs in the TK study

(A) Comparison of SRD annotations for reported genome-wide significant associations from the TK study (orange) and the distribution of all SRD values within

KEGG overview graph (hsa01100).

(B) Distribution of SRD values computed from permuted gene-metabolite pairs from TK study, with a median SRD of 8 (black dotted line). The median SRD of 1

(orange dotted line) represents an empirical p value of p = 0.035.

(C) Heatmap representing all genes and metabolites included in reported genome-wide significant associations from the TK study. The 40 mapped gene-

metabolite associations are enclosed in black boxes on the heatmap (n = 40). Abbreviations: CoA = Coenzyme A.

* CoA metabolites are proxies for measured carnitines.
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1.749 3 10�8. The association between CPS1 and L-citrulline has however recently been described twice in the literature with a p value of

13 10�25 with SNP rs150982029 and 13 10�14 with SNP rs975530777,30 which exemplifies a situation where an association goes unreported

because of the stringent p value cut-offs. The SRD value of 1 reflects a sequence of reactions pertaining to the urea cycle catalyzed by CPS1 for

the formation carbamoyl phosphate from ammonia and bicarbonate and by the ornithine transcarbamylase (OTC) for the formation of

L-citrulline from carbamoyl phosphate and L-ornithine31

Using the same approach, we also identified an example within the HMC study of a gene-metabolite pair at SRD = 0, which was not re-

ported as a significant association because of a suggestive p value (p = 1.173 10�7). This association is between UMPS (uridine monophos-

phate synthetase) and orotate (Figure S1C, indicated in red). UMPS is a bifunctional enzyme that is part of the de novo pyrimidine biosynthetic

pathway; its orotate phosphoribosyltransferase subunit catalyses the addition of ribose-5-phosphate to orotate to form orotidinemonophos-

phate (KEGG reaction ID R01870). Given that a significant association has been previously reported between UMPS gene and orotate,32 we

could consider that this finding is replicated in the HMC study but only by adding information about its SRD value.

Taken altogether, the examples highlighted the opportunity to explore associations annotated with low SRD values in mGWAS, beyond

those with stringent significance cut-offs. Identifying these potential false negative hits illustrates how useful the SRD annotation can be in

discovering biologically relevant results which would be missed when only considering stringent p value cut-offs in mGWAS reporting.

Case study: mGWAS in sickle cell disease patients

To exemplify how the SRDmetric can be used to prioritize mGWAS results, we present a newmGWAS analysis performed in SCD patients of

African or African American ancestry.While the cause of SCD has been known for over a century, themolecular determinants of the severity of

Empirical p-value = 0

Empirical p-value = 0.008

R = - 0.1, p = 0.036

R = - 0.2, p = 9.1e-11

A B

C D

Figure 3. Relationship between p values and SRD values for TK and SCD studies

Correlation plot between the –log10(p values) and SRD values for gene-metabolite pairs in (A) the TK study (p value cutoff was 3.163 10�4, Figure S2B) and (C) the

SCD study (p value cutoff was 3.16 3 10�5, Figure S2D). Correlation computed on permuted data (N = 1000) to take into account the graph structure allowed

computation of empirical p values for TK (B) and SCD (C), with the true correlation coefficient presented (dotted red line).
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this blood disease remain unknown and are influenced by genetic variants unlinked to the beta-globin gene.33 AnmGWASwas performed in

651 SCD patients, quantifying a total of 128 metabolites, to identify metabolites associated with genetic markers. A total of 165 unique SNPs

(withMAF>1%) passed a genome-wide significance cut-off of p < 7.81253 10�10 (Figures S2 and 13 10�7/128metabolites) and an additional

unique 256 SNPs passed a suggestive cut-off of p < 13 10�7 (Figure S2C). We identified a total of eight loci associated with metabolite levels

(Figure S6), with five of them reported in previous studies (Table S2, containing significant associations from the SCD study). The three addi-

tional associations were not previously reported neither in the TK/HMC studies, nor in a large mGWAS of human blood metabolites.34 In all

three cases, the frequency of the top associated SNP is larger in individuals of African descent than in Europeans according to the gnomAD

Genomes database, but these hits were not found in the four largest mGWAS done in individuals of African ancestry to date.35–38 We recog-

nize that while interesting, these novel associations will need replication in an independent cohort.

We generated a QQplot based onminimump values for the gene-metabolite pairs extracted from the SCDmGWAS (STARMethods) and

defined the gene-metabolite significance cut-off at p < 3.163 10�5 (Figure S2D). We observed a significant correlation between themGWAS

p values and SRD values (R = �0.1, p = 0.036), replicating the result observed in the TK study, demonstrating that this relationship between

significance and SRD is reproducible in a disease cohort, where biological mechanisms can be altered (Figure 3C). Given these observations,

we investigated whether associations above the gene-metabolite significance cut-off of p < 3.163 10�5, but below genome-wide significant

cut-offs usually required to report associations, could be prioritized according to SRD values (candidate pairs below the plain line in Figure 4).

We split the associations into two suggestively significant categories, one that includes association p values between the genome-wide

significance cut-off and p < 13 10�7 (Figure S2C) and another that includes associations p values between p < 13 10�7 and the gene-metab-

olite significance cut-off of p < 3.16 3 10�5 (Figure S2D), which we labeled S+ and S-, respectively. To evaluate the potential of association

results in each significance categories, we aimed to compute the proportion of small SRD values. From the distribution of all SRD values

computedon theKEGGoverviewgraph (STARMethods), we observed that 25%of SRD values (first quartile) are lower or equal to 8 (Figure S7).

This graph-based measure has the advantage of being easily calculated on any KEGG graph available. The first quartile provides an inter-

esting range that captures the cascade of reactions involved in metabolic pathways, enhancing the potential for discovery, and as such

SRD type :

n=2

n=5

n=411

Figure 4. Identification of potential false negative hits for different p values cut-offs in the SCD study

The main panel represents -log10(p values) for gene-metabolite pairs for SNPs on each chromosome (x axis). Coloring represents the SRD annotation from 3

categories: SRD = Infinite or NA (white), numerical SRD % 8 (light gray), numerical SRD > 8 (dark gray). On the top right panel, the histogram represents the

frequencies of SRD %8 and >8 for each block. The frequency percentage is obtained by summing only the pairs with a numerical SRD value (n) within each

category according to different p value cut-offs: R: p < 7.8125 3 10�10, S+: 7.8125 3 10�10 < p < 1 3 10�7 and S-: 1 3 10�7 < p < 3.16 3 10�5.
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provided a valuable range of relatively small distances to detect false negative hits. Furthermore, based on our results, 90% of gene-metab-

olite significant pairs in thewell-powered TK andHMC studies have SRD%8 (Figures 2 and S1), and eQTLs supportedbymQTL evidence have

a mean SRD of 7.4 (Figure S3B). In SCD, out of the genome-wide significant associations with a numerical SRD value in this mGWAS (Block R,

Figure 4), two out of three have SRD%8. We thus used the SRD value%8 as a threshold for considering SRD values as ‘‘small’’, reflecting the

close biological relationships based on the KEGG overview graph topology.

Two (40%) out of five associations from the S+ category have small SRD values, and 116/411 for the S- category (28.22%). Next, wemanually

investigated the 118 suggestive associations with SRD%8 by searching the literature for these gene-metabolite pairs and found six previously

described associations (5%): PRODH (proline dehydrogenase 1) and L-proline,11,39,40 NT5C3A (50-nucleotidase, cytosolic IIIA) and orotate,32

GATM (glycine amidinotransferase) and creatine,41UPB1 (beta-ureidopropionase 1) and 3-ureidopropionate,34UGT2B17 (UDP glucuronosyl-

transferase family 2 member B17) and sn-glycerol 3-phosphate (previously described for total phosphoglycerides),42 DGKH (diacylglycerol

kinase eta) and tetradecanoyl-carnitine,43 implying that these are likely to be real associations in SCD patients (Table 2). We thus estimate

that at least 5% of associations in this category are false negative and that the SRD metric has added value in identifying them. It also dem-

onstrates the ability of the SRD metric to retain pairs that would not be otherwise reported, thus improving the mGWAS’ potential for

discovery.

DISCUSSION

The identification of an association between an SNP and a metabolite is usually supported solely by the p values of the statistical test without

consideration for the knownmetabolic pathways. Although the possibility of false positive hits is well understood amonggeneticists following

Table 2. Associations with SRD lower or equal to 8 for the SCD study, illustrating potential false negative hits discovered by manual verification

SNP(Chromosome_

Position_Allele1_

Allele2)

Gene symbol

(KEGG ID)

Metabolite common

name (KEGG ID) p value SRD

Comments – Publication ID

reporting the described association

22_18905964_C_T PRODH(hsa:5625) L-Proline (C00148) 4.774e-06 0 rs2904552,

PMID:24816252, 26068415, 25569235http://www.

phenoscanner.medschl.cam.ac.uk/?query=PRODH&

catalogue=mQTL&p=1e-5&proxies=None&r2=0.

8&build=37

7_33081514_A_G NT5C3A (hsa:51251) Orotate (C00295) 3.659e-08 2 rs4316067,

PMID: 23823483http://www.phenoscanner.medschl.cam.

ac.uk/?query=NT5C3A&catalogue=mQTL&p=1e-5&

proxies=None&r2=0.8&build=37

15_45682944_T_C GATM (hsa:2628) Creatine (C00300) 5.160e-06 1 rs536148271,

PMID: 34226706, http://www.phenoscanner.medschl.

cam.ac.uk/?query=GATM+&catalogue=mQTL&p=1e-5&

proxies=None&r2=0.8&build=37

22_24893867_G_A UPB1 (hsa:51733) 3-Ureidopropionate

(C02642)

1.149e-09 0 No rsID found,

PMID:28263315, http://www.phenoscanner.medschl.cam.

ac.uk/?query=UPB1&catalogue=mQTL&p=1e-5&

proxies=None&r2=0.8&build=37

4_69444550_C_A UGT2B17(hsa:7367) sn-Glycerol

3-phosphate(C00093)

2.93e-05 6 No rsID found,

PMID: 27005778 (Total phosphoglycerides)http://www.

phenoscanner.medschl.cam.ac.uk/?query=UGT2B17&

catalogue=mQTL&p=1e-5&proxies=None&r2=0.8&

build=37

13_42683873_C_T DGKH(hsa:160851) Tetradecanoyl-

CoA*(C02593)

2.72e-05 8 rs75732304

PMID: 21886157 (2-tetradecenoyl carnitine/gamma-

glutamylmethionine*)http://www.phenoscanner.medschl.

cam.ac.uk/?query=DGKH&catalogue=mQTL&p=1e-5&

proxies=None&r2=0.8&build=37

Column1: SNP information formattedasCHROMOSOME_POSITION_ALLELE1_ALLELE2 inhg19.Column2:Genesymbol found the in theKEGGIDentry.Column

3:Metabolite commonname found the in the KEGG IDentry. Column 4: p value of the association between the SNP and themetabolite. Column 5: SRDannotation

of the gene-metabolite pair using KEGG graph hsa01100. Column 6: Miscellaneous information for the association: rsID if available; PMID of the publications re-

porting association between the gene, or the SNP with the associated metabolite; link to the query used in Phenoscanner website. Abbreviations: ID = Identifier;

SNP = Single-nucleotide polymorphism; SRD = Shortest Reactional Distance, PMID = PubMed Identifier. * CoA are representatives of the measured carnitines.
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up on mGWAS results, the fact that reporting of gene-metabolite pairs using only statistical significance can lead to an incomplete list of

associations is less discussed. In this study, we demonstrate how a simple metric called shortest reactional distance (SRD) can be useful

for the reporting and the ad-hoc annotation of gene-metabolite pairs for several p values acceptance cut-offs. By using previously published

mGWAS, we have shown that the SRD is a metric capable of retrospectively identifying a number of false negatives. The datasets we used in

our study involved different genomics andmetabolomics protocols, different preprocessing strategies, different sets of genetic variants (gen-

otyped, imputed, and exclusive to exons) and of metabolites, different ethnicities (from European, African, and Middle Eastern ancestries),

disease-based and population cohorts, illustrating the wide range of contexts in which our annotation is applicable.

PathQuant, the package developed to compute the SRDmetric in this study, is not the only package available that computes the shortest

path metric between genes and metabolites. Similar to PathQuant, MetaboSignal13 is an R package based on the same mathematical crite-

rion of shortest path metric and also uses metabolic pathways from the KEGG database. There are, however, important differences between

these twomethods.MetaboSignal combines bothmetabolic and signaling pathwaymaps.While this can provide novel information about the

interaction between genes andmetabolites that goes beyond the known enzymatic reactions and pathways, it modifies the original topology

of the curated pathways (signaling andmetabolic). These changes are not necessarily supported by biological data, which is crucial to ensure

their validity, as emphasized by Dumas et al.17 Thus, for our assessment of the potential of SRD annotation in mGWAS, we favored a simpler

approach that focuses only on curatedmetabolic pathways, by converting a metabolic pathway map from KEGG into a graph of biochemical

reactions with metabolites as nodes and genes as edges. PathQuant computes SRD values from any given list of gene-metabolite pairs using

any given metabolic pathway graph in KGML format thus keeping the original and curated topology of the metabolic pathways reported by

KEGG. Of note, a direct comparison of the shortest path metrics calculated by PathQuant and MetaboSignal on the list of gene-metabolite

pairs of the mGWAS investigated here could not be performed, as the KEGG overview pathway graph we used with PathQuant is not

accepted as input by MetaboSignal. Indeed, MetaboSignal computes its shortest path metric using a custom graph that is built from a

pre-selected list of signaling and metabolic pathways.

The computation of the SRDmetric with PathQuant within KEGGgraphs leads to several possible values: numerical, infinite, or NA. Having

a numerical annotation to a pair which is based on known pathways leads to a better understanding of the underlying biology of an associ-

ation. Indeed, we have shown that SRD values decrease as statistical significance of gene-metabolite pairs increases: this negative correlation

between the level of significance and SRD values suggests an enrichment of biologically relevant pairs as the p value decreases, thus making

SRD a promising annotation metric to improve mGWAS reporting. We defined two categories for numerical values (short SRD: 0 < SRD% 8;

large SRD: SRD > 8), which have been derived from the topological properties of the KEGG overview graph (ID: hsa01100) as this graph con-

tains all curated human biological reactions. The annotation of a pair with a small SRD suggests that the gene, its expression levels or the

protein it codes for, may have a direct influence on the associated metabolite concentration. This is illustrated by the statistical difference

between the SRD values ofmGWASpairs and the null distribution of SRD values within the KEGGoverview graph and bymanual investigation

of specific pairs of interest, such as the CPS1 and L-citrulline finding (SRD = 1) in TK study, the UMPS and orotate example (SRD = 0) in HMC

study. Moreover, for the SCD study, multiple gene-metabolite pairs annotated with an SRD lower or equal to 8 (Table 2) had already been

reported in the literature, such as the DGKH and tetradecanoyl-CoA (SRD = 8) or UGT2B17 and sn-glycerol 3-phosphate (SRD = 6). Despite

the number of investigated associations being very small for the R and S+ categories, we observed a decreasing proportion of pairs with

values lower than 8 and an increasing frequency of pairs with values greater than 8, as p values increases, in line with the negative correlation

observed. These results demonstrate, across all different mGWAS datasets we used, the potential of using the SRD metric with a cut-off of

SRD%8 in order to identify false negatives hits and prioritize follow up studies and experiments.

Another interesting case is when the SRD value is large, but the p value is highly significant. In this case, a direct influence of the gene on the

associatedmetabolite is less clear. For example, we noticed a large SRD value for the association between the alkaline phosphate (ALPL) and

the phosphocreatine (SRD = 22; p value = 9.3563 10�10). One possibility is that this association could have been a false negative. However,

digging further into the literature, we found that phosphocreatine can, in fact, be the substrate of the enzyme encoded by theALPL gene.44,45

Thus, the true SRD value for ALPL-phosphocreatine pair should be 0, and the high SRD value computed is a consequence of the current state

of the publicly shared knowledge available on KEGG. This result highlights a limitation of our approach, which is the incompleteness of some

metabolic pathways in KEGG. Although the SRD metric leverages existing and known KEGG knowledge, our SRD annotation pipeline of

mGWAS results can help identify those cases and could be useful to detect gaps and errors in metabolic network databases. Other cases

of SRD >8 for highly significant association have been noted in our work, notably in TK study (Figures 2A, 2C, and 3A). When the path

computed in KEGG is accurate and the association is independently replicated, higher values of SRD can identify metabolic pathways

involvingmore indirect gene-metabolite relationships. By themselves, these cases are of interest as they illustrate a violation of the hypothesis

that biological proximity between a gene and a metabolite is needed to regulate its level.

An SRD annotation with an infinite or NA value means that there was no path between the gene and the metabolite within the chosen

graph, because they are not connected (infinite value) or because one of the two entities (or both) are missing from the queried graph

(NA value). Inmost cases, there likely exist no biological paths between these entities, but if the association is highly significant, it could reflect

actual gaps within the graph again. Investigation of enzymes or metabolites with an unusual number of infinite or NA valuesmay lead tomore

complete metabolic pathway databases. Beyond these potential gaps in KEGG, other limitations of this resource are the metabolic reactions

provided do not specify cofactors, enzymatic complexes required for the reaction to happen, and directionality, resulting in a decreasing level

of complexity and accuracy of the metabolic pathways. Of note, the KEGG overview graph primarily centers on enzymes, with 1,321 genes

encoding for enzymes out of the 1,351 genes implicated in pathway reactions (>97%). Enzymes stand out due to their marked substrate
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specificity, which distinguishes them from transporters and others type of encoding genes. Here, we focused our analysis on associations that

mirror the distinctive specificity within the cascade of enzymes and their associated metabolites, which is why we narrowed down our inves-

tigation to SNPs mapped to genes encoding for an enzyme. Thus, computing SRD on other resources for pathway mapping, such as

Recon3D, could improve our distance-based annotation pipeline. Indeed, this resource is considered the most complete reconstruction

of human metabolism so far.46,47 Furthermore, in contrast to KEGG, Recon3D has the advantage of including more genes encoding trans-

porters, which would allow to increase the breath of SRD computation beyond enzymatic reactions. It also includes information about cellular

compartments and the directionality of reactions is known, in contrast to KEGG graphs. Despite these advantages, the available file format

(sbml) used in Recon3D to represent metabolic pathways is incompatible with the graph structure we used for KEGG. Given that the goal of

this study was to establish if the SRD annotation is useful for mGWAS annotation, a simple representation of metabolic pathways is highly

appropriate and it is outside the scope of the present study to implement an SRD metric based on Recon3D. Future implementations on

alternative databases should consider two additional desirable characteristics of KEGG when comparing results: first, KEGG is the only data-

base for which pathway maps were built on known reactions from humans and others species, a clear advantage for non-human mGWAS

studies48,49; second, KEGG pathway maps are built with an explicit labeling of side compounds definition (such as ATP or H2O) from

KEGGRPAIRS,50making their removal from curated reactions possible, which eliminates shortcuts created by their over-representation within

the graph when computing SRD.51

A crucial step for the annotation of gene-metabolite pairs with SRD values is to obtain the KEGG IDs for the genes and metabolites.

Although gene names and IDs are highly standardized52 there is a lack of uniformed nomenclature for metabolites. In most cases, there

are multiple ways to refer to a metabolite, with different studies using different reporting conventions, which complicated the re-analysis

of published datasets. For HMC and SCD studies, HMDB IDs3 were provided by the authors, which could be easily converted to KEGG

IDs using the MetaboAnalyst Convert tool. In the case of the TK study, we performed a manual annotation of the common names to

KEGG IDs, but this process was time consuming and required having the relevant expertise. This manual work allowed us to include listed

metabolites that did not have KEGG IDs, such as acylcarnitines (seeMaterial and STARMethods). Thesemetabolites are measured in plasma

but arise from intracellular metabolism of their acyl-CoA counterparts, which in contrast to acylcarnitines do not cross the plasmamembrane.

Based on the known direct link between the acylcarnitines and the acyl-CoAs we have used the CoA counterparts to represent these metab-

olites, which do have KEGG IDs. The increasing quantity of released studies involving metabolomics in the literature encourages the

community to release new standards to refer metabolites, such as simplified molecular-input line entry system,53 coordination of standards

in metabolomics,54 and IUPAC international chemical identifier.55 These efforts for standardization of metabolites naming, and the reporting

improvements they allow, are leading to a promising leap for the field, as this will result into better links being made between novel findings

and already published data.

In practice, SRD annotations can be a great addition to bioinformatics pipelines in order to reduce the number of potential candidate pairs

to follow up on, by prioritizing hits based on curated biological information, as the number of releasedmGWAS grows. Moreover, PathQuant

provides an efficient and quantitative solution to extract information frommetabolic pathways and enables non-experts to efficiently leverage

their combined genomics and metabolomics data based on a straightforward metric. This fast and automated solution has the potential to

become a new standard metric within the mGWAS toolkit, and could help to systematically assess the proportion of false negatives in these

studies. Furthermore, this metric could be added within already available user-friendly resources such as mGWAS Explorer14 or the recently

developed Paired Omics Data Platform.56 SRD values could also play a role in designing targeted studies, in a context where extensive

mGWAS cannot be done or is not relevant, for example if the research question is about finding the genes or proteins that regulate the levels

of a specificmetabolite, or conversely, finding whichmetabolites are regulated by a specific enzyme. In this latter case, it wouldmake sense to

focus more specifically on the metabolites showing low SRD values with the targeted enzyme. In the future, we believe that extending the

implementation by using other appropriate resources for pathway mapping would likely improve coverage and enhance the value of the

SRD metric in mGWAS annotation pipelines.

Limitations of the study

Our usage of the SRDmetric here wasmeant to demonstrate its utility for annotatingmGWAS results, but there are limitations and alternative

considerations that need to be taken into account to improve this workflow. We fixed the cut-off to 8 for defining a small SRD value, but

depending on the study goals and context, different SRD thresholds could be used. By considering graph complexity, future users can derive

a relevant threshold suitable to their study specificities, as well as a pre-selection of pathways on which to compute their SRD values, based on

metabolites and disease investigated. We also recognize that identifying potential causal genes linked to SNPs, and thus the appropriate set

of gene-metabolite pairs, is a challenge extending beyond the scope of mGWAS alone. In the context of our study, we have used SNP-based

summary statistics to retrieve loci, but more sophisticated mapping approaches in mGWAS, such as gene-based association tests, hold the

promise of extracting a more precise set of gene-metabolite pairs, which will, in turn, contribute to a more comprehensive understanding of

the applicability of SRD in annotating mQTLs. Using the prevailing approach of associating SNPs to the nearest gene and testing different

genomic distance intervals, our analyses suggest that the 10 kb interval is a suitable interval to uncover close relationships in metabolic path-

ways, but extending the queried region to 50 kb led to the inclusion of relevant pairs with small SRD values and could be appropriate to

consider in future studies. We further extended our gene-metabolite mapping strategy to a mapping approach involving eQTLs to uncover

supplementary pairs, which had, intriguingly larger SRD in average than pairs found by mapping genes within 50 kb of the associated SNP.

Thismight suggest the limitations of eQTLdetection power in capturing closely associatedmQTLswithinmetabolic pathways. Alternatively, it
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may reflect the incomplete incorporation of novel eQTL-based relationships into current metabolic pathways, making SRD and eQTL anno-

tations complementary.

Conclusions

We consider this work as a proof of concept of the benefits of using shortest reactional distancemetrics for annotatingmGWAS results based

on amodel representation of the humanmetabolism provided by the KEGGdatabase. Thesemetrics can also be used as a tool for metabolic

databases in order to more easily identify gaps within current metabolic pathway graphs by using new information provided by mGWAS. In

this multi-omics era, we anticipate that large scale studies looking for associations between genomics, proteomics andmetabolomics signals

will soon become a new standard, as illustrated by recent studies inmice and humans,57–59 resulting in additional protein-metabolite pairs, for

which the computation of SRD values may add great value.
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Data and code availability

� Data: Source data statement. This paper analyzed existing, publicly available summary mGWAS data for the TK and HMC studies. The

SCD study data comes from genomic and metabolomics of two previously published studies. Raw data can be made available upon

request to GL. Summary statistics of SCD study will be be shared by the lead contact upon reasonable request. All additional files

necessary to reproduce the reported results of this paper are available at: www.github.com/HussinLab/PathQuant/Publication/

References.

� Code: PathQuant source code is available at www.github.com/HussinLab/PathQuant/.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Overview of the Metabolite genome-wide association studies datasets

In this study we used three different mGWAS datasets. The TK study refers to an mGWAS11 previously performed on 7,824 participants

(plasma or serum samples) from the TwinsUK cohort19 and the KORA study.20 The mGWAS was carried out on 2.1 million genotyped

SNPs and 529 metabolites (assessed by targeted and untargeted metabolomics). The authors reported 299 SNP-metabolite (or ratio of me-

tabolites) significant associations (at cut-off of p% 1.033 10�10 for metabolite concentrations and p% 5.083 10�13 for pairwise metabolite

ratios) involving 187 uniquemetabolites and 145 loci, annotated as 132 causal genes.11 The TK study alsomade availablemGWAS output files

from METAL software60 involving 486 metabolites without any p value cut-off [www.metabolomics.helmholtz-muenchen.de].

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TK https://doi.org/10.1038/ng.2982 https://static-content.springer.com/esm/art%3A10.

1038%2Fng.2982/MediaObjects/

41588_2014_BFng2982_MOESM50_ESM.xlsx

TK None https://doi.org/10.1038/ng.2982 Summary stats without p value cutoff: https://

metabolomics.helmholtz-muenchen.de/gwas/

HMC https://doi.org/10.1038/s41467-017-01972-9 Supplementary 7, https://static-content.springer.com/

esm/art%3A10.1038%2Fs41467-017-01972-9/

MediaObjects/41467_2017_1972_MOESM9_ESM.xlsx

SCD https://doi.org/10.3324/haematol.2022.281180

and https://doi.org/10.1016/j.bcmd.2020.102504

https://github.com/HussinLab/PathQuant/blob/main/

Publication/SCD_study_download_link.txt

eQTLGen Consortium https://doi.org/10.1038/s41588-021-00913-z https://www.eqtlgen.org/

Supplementary data To be submitted Available at www.github.com/HussinLab/PathQuant/

Publication/References DOI on Zenodo will be provided

upon acceptance.

Software and algorithms

PathQuant This study www.github.com/HussinLab/PathQuant/https://doi.org/

10.5281/zenodo.10023050

bedtools version v2.30.0 https://doi.org/10.1093/bioinformatics/btq033 www.github.com/arq5x/bedtools2/releases/tag/v2.30.0

R statistical software 3.4.4 R Foundation for Statistical Computing www.r-project.org/
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The HMC study refers to an mGWAS21 previously performed on 614 Qatari participants (plasma samples) from the Hamad Medical Cor-

poration. The mGWAS was carried out on 1.6 million imputed exome variants and 826 metabolites (assessed by targeted and untargeted

metabolomics) and reported 3,127 significant associations (at cut-off of p % 2.2 3 10�10 for both metabolite concentrations and pairwise

metabolite ratios) in 21 locus-metabolite pairs. The suggestive association results were also provided to the community, reporting all asso-

ciations with cut-off of p% 1.4 3 10�7 (Supplementary Data 7 in21), which include 6517 SNP-metabolite (or ratio of metabolites) pairs with

available p values.

In the SCD study, an mGWAS was performed here using genetics and metabolomics data published in different studies22,23 on a total of

651 SCD patients (plasma samples) including 401 individuals of African ancestry in the Genetic Modifier (GEN-MOD) cohort and 250 African-

American individuals from Southwest USA in the Duke University Outcome Modifying Genes (OMG) cohort. Metabolomics profiling was

performed at the Broad Institute, and appropriate statistical modelling was used to account for residual batch effects.61Briefly, for association

testing, 128 metabolites were profiled using a targeted approach in 651 plasma samples from SCD patients. Metabolites were inverse normal

transformed, adjusting for age and sex. We then generated summary statistics for each cohort individually in a linear regression model,

accounting for relatedness using a kinship matrix as implemented in rvtest (v. 20171009)62 in GEN-MOD. The software SNPTEST63 was em-

ployed in OMG to generate cohort-specific summary statistics. We then meta-analyzed the effect size estimates and standard errors from

GEN-MOD and OMG using METAL.60 After the pre-processing step, 6 million SNPs were kept.

For the TK study, we downloaded the file named ‘‘NIHMS58114-supplement-2.xlsx’’ from the supplementary section of the publication.

This first file contains only stringently associated pairs. We make a distinction between the TK and the ‘‘TK None’’ datasets as they do not

use the same files from the original publication. The TK None is referring to the GWAS summary stats, without any p value cut-off, directly

downloaded from here: https://metabolomics.helmholtz-muenchen.de/gwas/index.php?task=download. We downloaded and merge the

files named: shin_et_al.metal.out.tar.gz, shin_et_al.xeno.metal.out.tar.gz. As the positions were coming from NCBI Build 36, we performed

a lift over to hg19 in order to have same build across all different studies.

Mapping shortest reactional distances (SRD) onto KEGG

To compute the SRD metric, the R package PathQuant was developed [available at: www.github.com/HussinLab/PathQuant]. PathQuant

converts a metabolic pathway map into a graph of biochemical reactions with metabolites as nodes and genes as edges (Figure 1). Briefly,

PathQuant takes as input a list of gene-metabolite pairs as pairs of KEGG identifiers (IDs) and a list of metabolic pathways (e.g., ‘‘hsa01100’’,

referred herein as KEGG overview graph, a global concatenation of multiple distinct pathways). PathQuant then uses a KEGG XML file format

(KEGG Markup Language, KGML), downloaded using the KEGG API [www.kegg.jp/kegg/rest/keggapi.html] to build the most up-to-date

KEGG undirected graphs. Next, PathQuant computes the SRD path between a gene and a metabolite from a given pair. The SRD values

are obtained using the breadth-first searchDijkstra algorithm.64 PathQuant outputs a text file containing genes andmetabolites classification,

Enzyme Commission number (EC), KEGG Brite IDs, KEGG IDs of metabolic pathways for the SRD computation, and the SRD values for all

pairs. PathQuant also allows the visualization of SRD values annotation in a heatmap, leading to a better identification of potentially inter-

esting hits.

Extracting and annotating gene-metabolite pairs from mGWAS summary statistics

Using bedtools version v2.30.0,65 we annotated each SNP to genes with KEGG IDs, using a custom bed file: we downloaded gene

coordinates for human genome build GRCh37.p13 from NCBI (NCBI Homo sapiens Updated Annotation Release 105.2020/10/22, gff

format) and modified it to add 10kb upstream and downstream for each of the 26,105 genes with KEGG IDs, as well as broader in-

tervals of 50kb, 500kb and 1Mb. We also mapped additional gene-metabolite pairs using eQTL annotations from the eQTL Gen con-

sortium with a False Discovery Rate (FDR) threshold%5%. Because we focused on pairs involving genes encoding enzymes, which are

the most represented genes in the KEGG database, we only annotated SNPs with KEGG IDs classified as enzymes within the KEGG

Brite database by using the Brite enzyme code ‘‘BR:hsa01000’’, leading to a subset of 4,049 enzymes/26,105 genes. For metabolites,

if available, we used the provided IDs, either KEGG IDs directly or HMDB IDs. For metabolites with HMDB ID the list was queried to

Metaboanalyst66[www.metaboanalyst.ca/faces/upload/ConvertView.xhtml] to get the corresponding KEGG IDs. For metabolites

without KEGG or HMDB IDs provided, KEGG IDs retrieval was achieved automatically by parsing the common names into the

most standard KEGG name format, and then queried the metabolite names with new format to MetaboAnalyst. Additionally,

specific metabolites were manually treated: acylcarnitines without KEGG IDs were swapped to their acyl-CoA counterparts when

available in KEGG. For each gene-metabolite pair within a dataset (TK, HMC and SCD study), only one mGWAS p value was

kept, which is the minimum p value obtained for the association between any SNP annotated to the gene and that specific metab-

olite. Based on that p value, each pair is annotated as genome-wide significant, suggestive, or non-significant: genome-wide p value

cut-offs were derived from a standard GWAS Bonferroni correction approach (dividing by the number of tested metabolites).

Suggestive significance cut-offs, were obtained graphically from quantile-quantile plots (QQplots) of minimum p values for the var-

iants-metabolite pairs of corresponding study. Specifically, we determined the value on the QQplot’s x axis where the slope starts to

increase drastically. This threshold represents the point at which the expected p values deviate from the diagonal line, denoting a

departure from the null hypothesis. This departure indicates that p values are smaller than what would be expected by chance alone,

resulting in a selection of SNPs with an elevated probability of being associated with the measured metabolites.
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SRD null distribution and investigation of candidate gene-metabolite pairs

To obtain a null distribution of SRD values from the KEGGoverviewgraph (hsa01100), we gathered all different KEGG IDs for bothmetabolites

and genes found within the graph, and then ran PathQuant on all possible pairs (Supplementary File 1). The KEGG overview graph version

(KGML v0.7.2 file) includes 1,351 genes and 2,889 metabolites, generating a total of 3,903,039 pairs for which we computed the SRD values,

referred herein as the KEGG overview graph’s SRD null distribution. The first quartile of this distribution is used as the threshold to categorize

any pair with a close or far biological relationship label. This threshold was determined because 25% of the smallest values are below half of

the mean, leaving 75% as a representative sample of distant relationships between genes and metabolites. We also performed a manual

investigation of candidate gene-metabolite pairs (Tables 2 and S1 containing the investigation overview) by extracting the corresponding

rsID using dbSNP annotation of UCSCGenome Browser,67 searching for published associations of the metabolite with (1) the SNP rsID within

GWAS Catalogue and/or with (2) the gene symbol within PhenoScanner6 (with parameters: cut-off p value = 1e-5, cut-off r2 = 0.8, build = 37).

Running time of PathQuant package

The overview’s null SRD distribution is the largest distribution of tested gene-metabolite pairs in this study, involving millions of pairs (Fig-

ure S7). In order to compute the SRDs for the null distribution, as we recommend, we parallelized the query by generating different queries

of 20,000 pairs. Here to show the running time of PathQuant, influenced by the query size, we selected randomly: 1, 10, 100, 1000, 10000, and

20000 gene-metabolite pairs from the null distribution and ran PathQuant using the get.srd() function within the largest graph of the KEGG

database (‘‘overview’’, hsa01100). In all following experiments, to address the variability of the different running times we reproduced the

experiments 10 times, we used PathQuant on the Compute Canada servers, with a sbatch job allocation of 64Gmemory, and 1 CPU per task.

The Figure S8A shows the variability of the running time of PathQuant (in seconds) for different randomly selectedqueries of different sizes.

We show that the running time of PathQuant is fast enough for users interested in a few pairs but also fast enough for users that will need to

compute it for large queries with a running time close to one hour. In order to show the influence of PathQuant running time based on the

query size plus the complexity of the involved graph, we performed the get.srd() function with randomly selected queries of size 1, 10 and 100

only. The complexity of a graph can be defined by different metrics. Here, we used the ‘‘diameter’’ (D) metric as it involves the notion of short-

est distance. To find the diameter of a graph, we first find the shortest path between each pair of nodes, the largest value of any of these

shortest paths is the diameter of the graph. We selected three different graphs, involving a range of different diameters, the graphs

hsa01200, hsa00020, hsa01100 with D = 10, 20, 66 respectively. In the Figure S8B, we can observe per graph, the influence of the

PathQuant’ running time (in seconds) for different query sizes. Firstly, per graph, we can see the increasing running time for an increasing

query size. Finally, we can also observe the increasing running time for the same query size across the different graph complexities while still

being fast enough for the most complete KEGG graph and decent query sizes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical and data analyses were performedwith R. Statistical analyses details can be found in themethods section that describes the exper-

iment, or corresponding Results section.

ll
OPEN ACCESS

16 iScience 26, 108473, December 15, 2023

iScience
Article


	Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
	Introduction
	Results
	Overview of study pipeline
	Stringent and suggestive associated pairs have shorter reactional distances
	SRD annotation can identify false negative hits
	Case study: mGWAS in sickle cell disease patients

	Discussion
	Limitations of the study
	Conclusions

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Overview of the Metabolite genome-wide association studies datasets
	Mapping shortest reactional distances (SRD) onto KEGG
	Extracting and annotating gene-metabolite pairs from mGWAS summary statistics
	SRD null distribution and investigation of candidate gene-metabolite pairs
	Running time of PathQuant package

	Quantification and statistical analysis



