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Abstract

Background

Current guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a

minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation arti-

facts. Conversely, shorter acquisitions are still widely used in clinical practice and may,

sometimes, be sufficient to reliably estimate lesion volumes. We aim to devise an automatic

method that detects scans affected by truncation artifacts.

Methods

Shorter scan durations are simulated from the ISLES’18 dataset by consecutively removing

the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion

lesion volumes are quantified and used to label the series as unreliable if the lesion volumes

considerably deviate from the original untruncated ones. Afterwards, nine features from the

arterial input function (AIF) and the vascular output function (VOF) are derived and used to

fit machine-learning models with the goal of detecting unreliably truncated scans. Methods

are compared against a baseline classifier solely based on the scan duration, which is the

current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are mea-

sured in a 5-fold cross-validation setting.

Results

The best performing classifier obtained an ROC-AUC of 0.982, precision-recall AUC of

0.985 and F1-score of 0.938. The most important feature was the AIFcoverage, measured as

the time difference between the scan duration and the AIF peak. When using the AIFcoverage

to build a single feature classifier, an ROC-AUC of 0.981, precision-recall AUC of 0.984 and

F1-score of 0.932 were obtained. In comparison, the baseline classifier obtained an ROC-

AUC of 0.954, precision-recall AUC of 0.958 and F1-Score of 0.875.
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Conclusions

Machine learning models fed with AIF and VOF features accurately detected unreliable

stroke lesion measurements due to insufficient acquisition duration. The AIFcoveragewas the

most predictive feature of truncation and identified unreliable short scans almost as good as

machine learning. We conclude that AIF/VOF based classifiers are more accurate than the

scans’ duration for detecting truncation. These methods could be transferred to perfusion

analysis software in order to increase the interpretability of CTP outputs.

Introduction

Treatment decision making in acute ischemic stroke is mostly guided by computed tomogra-

phy (CT) imaging, as the technique allows to answer (at least) four crucial questions regarding

the patient brain’s condition: 1) Is there hemorrhage? 2) Is there any thrombus that could be

targeted? 3) Is there already irreversibly damaged tissue (a.k.a. core)? 4) Is there salvageable tis-

sue (a.k.a. penumbra, tissue at risk but potentially recoverable)? [1]. While the first two ques-

tions can be answered with non-contrast CT and CT angiography, respectively, the last two

questions are typically addressed through CT perfusion (CTP). CTP is of major importance

for neuroradiologists as it allows the identification of patients that could benefit from recanali-

zation therapies [2]. In this context, distinguishing potentially salvageable brain tissue from

already necrosed areas drive the therapheutical decision making.

In clinical routine, CTP post-processing software is used to estimate perfusion maps

and to quantify perfusion lesion volumes. The perfusion maps used in acute ischemic

stroke are derived from the CTP contrast attenuation curves and are cerebral blood vol-

ume, cerebral blood flow (CBF), mean transit time and time to the maximum of the residue

function (Tmax). There exist several different techniques implemented in clinical and/or

research software packages to estimate these perfusion metrics. Among the most widely

used are the Fourier transform and the delay-invariant singular value decomposition

deconvolution techniques using time-shift [3] or block-circulant approaches [4, 5]. Inde-

pendently of their functioning, the end goal of CTP software packages is the accurate quan-

tification of perfusion maps and, consequently, the reliable volumetric quantification of

the brain lesions. Despite the vast adoption of CT perfusion software in clinical routine,

there are well known and persistent pitfalls of these techniques that hamper the brain lesion

quantification and hence their interpretation, as described in [6–9]. This work focuses

on the so called truncation of the time attenuation curves, which could be defined as the

early ending of the CTP acquisition that precludes the entire capture of the tissue perfusion

phases [8].

CTP truncation artifacts have extensively been observed in previous works [10–17] and are

related to several sources: i) the type of deconvolution used to process the CTP images, ii) the

biological and physiological variability of the patients (e.g. patient size and the cardiac output

alter the contrast delivery through the brain [16]), iii) physiopathological conditions that pro-

long the contrast-agent passage through the affected tissue, which happens in the hypoper-

fused tissue due to the ischemic occlusion [10, 13] or in patients with severe intracranial

vascular narrowing or multiple intracranial emboli [6], and iv) the contrast injection and CTP

acquisition protocols (e.g. contrast injection rate, the pre-contrast scanning duration, synchro-

nization between contrast injection and acquisition, etc.).
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As described in practical acute stroke imaging recommendations, the CTP analysis

should include a quality control step that checks for complete acquisition of the perfusion

curves including both the contrast agent wash-in and wash-out phases [8, 9, 18]. Visual iden-

tification of truncated AIF/VOF and/or time attenuation curves has been conducted in

previous studies [14, 15]. Despite the fact that visual quality control could easily detect trun-

cated perfusion curves, it is not straightforward to understand the implications of such

curves truncations over the quantified lesion volumes. Thus, finding whether the truncation

effects are strong enough to considerably perturb the quantified perfusion volumes could

only be assessed through quantitative analyses. A major step in understanding the quantita-

tive impact of truncation artifacts over the perfusion maps was done in [16]. The work

showed that truncation artifacts depend on the truncation degree and affect the perfusion

metrics differently depending on the used deconvolution algorithm. Moreover, the CTP

truncation effects over the brain lesion volumes were studied in [17]. The authors found that

a 60 second scan duration is enough to avoid volumetric errors in 95% of their analyzed

scans. These results have later been adopted as a practical recommendation for the imple-

mentation of CTP in acute stroke [18]. In clinical routine, however, different centers or

scanner operators make use of post-processing software from different vendors (and with

diverse deconvolution algorithms), as well as different contrast injection and CTP acquisi-

tion protocols. Shorter acquisitions are frequently adopted by centers in order to reduce the

exposure of the patient to ionizing radiation under the ALARA (i.e. as low as reasonably

achievable) principle. Based on these considerations, it is possible that scans with shorter

than 60 second scan duration could reliably estimate lesion volumes while scans with differ-

ent characteristics could suffer from truncation errors even while having a 60–70 second

acquisition duration.

In this work we propose a tool for the automatic identification of unreliable perfusion

volumes due to insufficient scan duration. Our proposal makes use of simple and easy to

extract features derived from the vascular perfusion curves (i.e. the arterial input function,

AIF, and the vascular output function, VOF). Experiments on the public ISLES’18 dataset

show that truncation artifacts impact the perfusion-derived features, hence allowing their

identification with machine learning models. The proposed approach increases the

interpretability of acute ischemic stroke outputs obtained in clinical practice with CTP post-

processing software.

Materials andmethods

Data

The ISLES’18 dataset is used for our experiments [19, 20]. The database is multi-center and

multi-scanner and includes 156 CTP scans obtained from 103 acute stroke patients. For our

experiments, we have used the preprocessed scans from the ISLES 2018 challenge (http://

www.isles-challenge.org/). The CTP volumes have been motion corrected, coregistered and

spatio-temporally resampled (256 × 256 matrix, 1 volume per second). A full dataset descrip-

tion can be found in [19].

Simulating shorter CTP scans

We simulate shorter CTP scan durations by repeatedly discarding a 1 second timepoint from

the end of the series until reaching the 10 first seconds of it. Note that the number of truncated

simulated series varies from scan to scan, depending on its original total duration.
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CTP post-processing

Each truncated CTP series is analyzed using a research version of icobrain cva 1.4.1 (icome-

trix, Leuven, Belgium), an FDA-cleared and CE-marked software for acute stroke CTP post-

processing. Each truncated series is processed using experts’ manually annotated vascular

functions available in [21]. Please note that the manual AIF/VOF does not change location for

all shorter versions of a same scan. The vascular functions from each truncated scan are

retained for the subsequent experiments.

Perfusion maps (Tmax, CBF, cerebral blood volume and mean transit time) are obtained

through delay-invariant singular value decomposition deconvolution. Absolute and relative

CBF maps are computed, where the relative rCBF map is obtained after normalization of the

absolute one using mean control tissue values. Control tissue is defined by the software as

Tmax< 6s [22]. Quantification of the hypoperfused and core lesion volumes is automatically

obtained by the software using Tmax> 6s [22] and rCBF< 0.38 (within the hypoperfused tis-

sue area), respectively. The used rCBF cutoff (which is set in the software just for the purpose

of these experiments) has been identified as optimal for the ISLES’18 dataset [19].

Defining truncation artifacts

In order to label each shorter scan version as reliable or unreliable (i.e., considerably suffering

from truncation artifacts), we first check that the original unshortened scan does not already

suffer from truncation artifacts. As such, scans are labeled to be stable if truncation of the final

6 frames or less did not impact the computed volumes by more than 2.5 ml [17]; otherwise,

scans are labelled as unstable ones. For our experiments, all unstable scans have been discarded

from further analyses.

The truncated series from all stable scans are labelled as reliable if the corresponding hypo-

perfused and core volumes deviated< 10% or< 5 ml from the untruncated volume estimates.

Otherwise, the truncated scan (and all its shorter versions) are labelled as unreliable. Scans

with a stable hypoperfused lesion smaller than 5 ml are excluded from the analysis as their reli-

ability can not be trusted. Besides, for each CTP series, the optimal scan duration (OSD) is

defined as the shortest scan duration providing reliable volume estimates. Fig 1 shows a stable

CTP scan example with its corresponding reliability truncation labels.

Machine learning for CTP truncation detection

Machine learning algorithms have been widely used to assess the quality of medical images

[23–25]. We explore different machine learning models that could detect unreliably truncated

scans by solely using information extracted from the vascular functions. The benefits of using

the AIF and VOF to detect truncation artifacts are two-fold. First, the perfusion curves are

always available in this imaging modality. Second, as they cover the entire perfusion event

(note that these curves represent the contrast concentration inlet and outlet to the brain), they

contain rich information for the problem under study. Consequently, it is needed to extract

meaningful perfusion features that are impacted by an insufficient scan duration and that are,

also, predictive of the truncation artifacts. Those features should capture the perfusion phases

of the contrast-agent wash-in and wash-out and, ideally, they should be unaltered by the differ-

ent CTP protocols used in clinical routine.

Feature extraction. All the explored machine learning algorithms are fed with the follow-

ing 9 AIF/VOF derived features:

• Scan duration

• AIF/VOF time to the peak of the function (argmax{AIF}, argmax{VOF})
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• The AIF/VOF coverage, defined as the time difference between the peak of a signal and the

scan duration:

* AIFcoverage = scan duration—argmax{AIF}

* VOFcoverage = scan duration—argmax{VOF}

• AIF/VOF upward and downward contrast increase

* AIFUCI = AIFt=argmax{AIF}—AIFt=0

* AIFDCI = AIFt=argmax{AIF}—AIFt=scan duration

* VOFUCI = VOFt=argmax{VOF}—VOFt=0

* VOFDCI = VOFt=argmax{VOF}—VOFt=scan duration

All features are visually represented in Fig 2.

Classifiers & model fitting. We train six statistical/machine learning classifiers with the

aim of detecting reliable and unreliable truncated scans. The trained models make use of linear

or non-linear decision functions and are: i) random forests, ii) multivariate logistic-regression,

iii) support vector machines with linear kernel, iv) support vector machines with radial basis

kernel, v) Adaptive boosting (aka, Adaboost [26]) and vi) Gradient boosting [27]. In order to

find the optimal set of parameters to fit a model, a Bayesian search is conducted by sampling

over the parameter-space of each model and by evaluating its performance in a train set, 3-fold

Fig 1. Reliable/unreliable lesion volumes computed at various scan durations. The arterial input function (AIF) and the vascular output
function (VOF) are displayed as reference.

https://doi.org/10.1371/journal.pone.0283610.g001
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cross-validation setting. The final set of parameters chosen to parametrize the model is the one

maximizing the area under the precision-recall curve (PR-AUC). All models are trained and

optimized using the scikit-learn Python library [28].

Data augmentation. We augment the training sets by generating synthetic samples in

order to model different perfusion scenarios, such as the variable pre-contrast agent duration

and the variable contrast increases of the perfusion curves. Note that a different timing in the

contrast bolus arrival alters the CTP scan duration but does not alter the presence of trunca-

tion artifacts. Likewise, the AIF and VOF contrast increase depends on the contrast agent

iodine concentration. However, as the deconvolution algorithm is independent from the AIF/

VOF absolute amplitudes, a variable vascular contrast increase does not alter the presence of

truncation artifacts.

Simulation of contrast injection protocol variations is conducted by perfusion-specific data

augmentation as similarly done in [21, 29]. Uniform distributions are used to randomly mod-

ify the pre-contrast agent duration and vascular contrast increases. When simulating variable

pre-contrast duration, pre-contrast timing dependent features are increased or decreased by

the same random factor (argmax{AIF}, argmax{VOF} and scan duration). For modelling vari-

able contrast increases, the features AIFUCI, AIFDCI, VOFUCI and VOFDCI are scaled by a ran-

dom factor.

Experiments. We perform a 5-fold cross-validation experiment using an 80–20% train-

test data split. The data splitting is conducted at the scans level, assuring that i) all untruncated

and truncated versions of a same scan belong to the same fold and ii) the same data-splits are

used to fit all the considered models. Only the training data is used parametrise the models

and to select the classifiers’ operating point. Truncation predictions are later inferred over the

unseen test data.

Besides, we compare the machine learning models against a baseline classifier which solely

uses the scan duration as discriminant-rule. The classifier g operates as follows:

gðscan duration; yÞ ¼
reliable if scan duration >¼ y

unreliable if scan duration < y

(

ð1Þ

Fig 2. AIF and VOF derived features used to feed the machine learning algorithms. AIF: arterial input function; VOF: venous output function; HU:
Hounsfield units; UCI: upward contrast increase; DCI: downward contrast increase.

https://doi.org/10.1371/journal.pone.0283610.g002
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with θ a scan duration cutoff. This baseline is motivated by the CTP guidelines, which only

consider the duration of a scan to avoid truncation artifacts during CTP acquisition [18]. Spe-

cifically, these guidelines suggest a cutoff of θ = 60 seconds in Eq 1.

In order to understand the relevance of the AIF-VOF extracted features to discriminate reli-

ably and unreliably truncated scans, we conduct a bootstrapping experiment by resampling

100 times the original database. In each iteration, a sample was drawn with replacement and

was used to fit a classifier as described in Section Classifiers &Model Fitting. The relative fea-

ture importance is measured as defined in [27] for decision tree ensembles. Briefly, the feature

importance is calculated at the classifiers’ tree level as the impurity decay across all the nodes

where that feature was used to create a split [30]. The final feature importance is computed as

the average feature importance over all the considered trees. The mean and standard deviation

feature importance for all features are reported. The chosen classifier for this experiment is the

best performing one in terms of precision-recall AUC.

Performance evaluation. The mean, standard deviation, 5th-95th percentiles and mini-

mum and maximum of the scan duration and the optimal scan duration are reported for the

entire dataset. The different algorithms’ performance are evaluated by conducting ROC and

precision-recall (PR) analysis. The area under the ROC and precision-recall curves are used as

general classifier performance metrics. Besides, we measure the binary classification perfor-

mance at the operating point closest to an ideal classifier with precision = recall = 1. The oper-

ating point is chosen from the fitted classifier as argminf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðprecisiont � 1Þ
2
þ ðrecallt � 1Þ

2

q

g,

with t different classifier thresholds. Performance is measured in terms of precision ( TP
TPþFP

),

recall ( TP
TPþFN

) and F1-score ( 2∗TP
2∗TPþFPþFN), where acronyms represent TP: true positives, TN: true

negatives, FP: false positives and FN: false negatives. The same binary classification metrics are

reported for our baseline scan duration classifier, by making use of cutoffs θ = [30, 40, 50, 60]

s. For these defined metrics, an unreliable truncation sample is considered as positive and a

reliable truncation sample as negative.

Results & discussion

From the 156 analyzed scans, 123 scans (78.8%) are retained for further analysis. The remain-

ing scans are discarded since 18 (11.5%) are unstable, 14 (8.9%) have hypo-perfused

volumes< 5 ml or are free from CTP lesions, and 1 scan (0.6%) is corrupted by motion arti-

facts. A total of 4621 synthetically truncated scans are obtained from the retained stable cases,

from which 2353 (50.9%) are labelled as reliable and 2268 (49.1%) as unreliable.

Descriptive statistics about the optimal scan duration are summarized in Table 1. It can be

appreciated that* 40 s scan duration suffices to get accurate perfusion volumes in 95% of the

dataset and 43 s scan duration avoids truncation in the entire ISLES’18 dataset. At first sight

these OSD values might seem much shorter than the 60-second recommended duration in the

CTP guidelines [18]. However, the used ISLES’18 dataset has very short pre-contrast acquisi-

tions that does not always reach the guidelines’ recommended 5–10 s. Note that the median

Table 1. Descriptive statistics of the stable CTP scans. SD: Scan duration; OSD: Optimal scan duration. Std: standard
deviation; P: percentile. AIF: arterial input function. All metrics are reported in seconds.

SD OSD (OSD—argmax{AIF})

Mean (std) 46.6 (5.3) 28.4 (5.7) 12.9 (3.7)

(Min, Max) (31.0, 64.0) (19.0, 43.0) (8.0, 30.0)

(P5th, P95th) (43.0, 60.2) (20.0, 39.8) (10.0, 19.9)

https://doi.org/10.1371/journal.pone.0283610.t001
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AIF peak (i.e. argmax{AIF}) across all scans is 15.6 ± 4.5 s, with a minimum AIF peak at 5 s.

Thus, some ISLES’18 scans have no pre-contrast acquisition at all, as seen in S1 Fig. Therefore,

compensating for the short pre-contrast duration would increase the 95th percentile OSD

value of Table 1 to a* 45–50 s scan acquisition. This result is in line with earlier research: it

was shown that in scans with 10 s of pre-contrast duration a* 53 s acquisition is needed to

get reliable perfusion volumes in 90% of the scans [17].

The optimal scan duration reported in Table 1 depends on the pre-contrast scan duration,

which is not standardized in clinical practice. In order to have a more informative metric less

biased by the different CTP protocols, we compute the time difference between the OSD and

the AIF peak (argmax{AIF}). In Table 1 this metric is reported for our entire database. Results

show that on average our scans require* 13 s following the AIF peak to obtain reliable perfu-

sion volumes. In [17] the median OSD for scans with a 10 s baseline is* 33 s. Let’s assume an

average AIF peak of* 15–20 s in a standard CTP acquisition protocol. Then* 13–18 s fol-

lowing the AIF peak are needed in [17] to get reliable volumes in 50% of their scans. Thus,

these results are comparable to our finding of* 13 s on average following the AIF peak to get

reliable volumes.

These OSD analyses of ISLES’18 show that an acquisition protocol using 60–70 s scan dura-

tion, with 5–10 s of pre-contrast acquisition, avoids truncation errors in the whole analyzed

dataset. Thus, supporting the recommended scan duration of the CTP guidelines. Depending

on the patients’ physiology, the contrast injection and/or the CTP acquisition protocols, even

shorter acquisitions may, sometimes, reliably quantify CTP lesion volumes. However, from a

risk-benefit perspective it is strongly inadvisable to shorten CTP scan durations since i) it is

not possible to know a-priori the OSD needed for a particular patient/scan, and ii) the risk of

inaccurately estimating the lesion volumes due to a short acquisition is significantly larger

than exposing the patient to an additional radiation exposure. Thus, an unreliable estimation

of the core-penumbra mismatch may lead to a change in the treatment decision, which may

have a drastic impact on the patient’s outcome. In a different scenario, an insufficient CTP

acquisition may lead to the full re-scanning of the patient, thus significantly increasing the

exposure to ionizing radiation and to the iodine contrast and, ultimately, delaying the treat-

ment of the patient.

Effect of the AIF choice

In order to understand the impact of different AIFs over the computed optimal scan duration,

an inter-rater analysis is performed. In this experiment, we simulate truncation artifacts as

described in section Simulating Shorter CTP Scans but using vascular functions selected by a

different expert. The used annotations are the ones available in [21] and labelled in the work as

Rater #2.

In Fig 3 a histogram and a Bland-Altman plot of the inter-rater OSD values are shown (left

and right figures, respectively). The majority of the scans (n = 78,* 64%) show no time differ-

ences in the OSD obtained with vascular functions selected by the two raters. The 5th and 95th

percentiles of the absolute OSD differences are respectively 0 s and 2.30 s. The maximum OSD

difference between the raters is 8 s.

Truncation artifacts detection

Fig 4 shows the ROC and precision-recall curves obtained with the different classifiers when

differentiating reliable from unreliable truncated acquisitions. Overall it can be seen that classi-

fiers yielded a similar high performance for both the considered metrics. The gradient boost-

ing algorithm outperformed the remaining classifiers yielding an ROC-AUC of 0.982 and a
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precision-recall AUC of 0.985. When assessing the classifiers capability for detecting trunca-

tion artifacts at the chosen operating point, the results of Table 2 are obtained. The Gradient

boosting method obtained the highest performance for detecting unreliable perfusion volumes

(F1-Score = 0.938). All machine learning models have considerably outperformed the baseline

classifier g in terms of ROC-AUC, PR-AUC and F1-Score (Table 2).

For the baseline classifier g, the highest detection performance is obtained at the optimal

operating point θ = 27 s (F1-score = 0.875). When using the standard cutoff θ = 60 s, the base-

line classifier showed the maximal recall of 1.0 with a low precision of 0.493 and low F1-score

of 0.660. These results are expected as all the analyzed scans have OSD values much lower than

60 s (Table 1). The ROC and precision-recall operating points at θ = 60 s are shown in Fig 4. It

Fig 3. Optimal scan duration (OSD) inter-rater analysis. Left: Histogram of the OSD absolute differences between raters. Right: Bland-Altman plot of
the OSD values for the raters. R1: Rater #1. R2: Rater #2.

https://doi.org/10.1371/journal.pone.0283610.g003

Fig 4. Receiver operating characteristic (left) and precision-recall (right) curves. AUC: area under the curve; SVM_linear: support-vector machine
with linear kernel; SVM_rbf: support-vector machine with radial basis function kernel; RF: Random forests; LR: Logistic-regression; Adaboost:
Adaptive boosting; Gradboost: Gradient boosting.

https://doi.org/10.1371/journal.pone.0283610.g004
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can be appreciated that this operating point falls on the boundaries of the classifiers’ ROC and

precision-recall curves. These results suggest that using a 60 s scan duration is a safe and

needed recommendation for acquiring CTP images, but it is a poor criterion in order to iden-

tify truncation errors at CTP post-processing stages.

Effect of the data augmentation. We evaluated the impact of the perfusion specific data

augmentation strategy over the best performing machine learning model. For this experi-

ment, a Gradient boosting classifier is trained using the original, un-augmented dataset

as described in the section Classifiers & Model Fitting. While an ROC-AUC = 0.982,

PR-AUC = 0.985 and F1-Score = 0.938 are obtained when using data augmentation, an

ROC-AUC = 0.980, PR-AUC = 0.983 and F1-Score = 0.933 are obtained when training the

model without augmenting the dataset. Our results show that simulating different perfusion

scenarios (namely, variable contrast-increases and variable bolus arrival times) improves the

model’s performance.

Importance of the AIF and VOF features

Fig 5 summarizes the different features’ relevance obtained when fitting 100 Gradient boosting

classifiers in a resampling with replacement bootstrapping fashion. The AIFcoverage shows to be

the most crucial feature for detecting unreliable perfusion volumes due to truncated acquisi-

tions. Besides, the VOFDCI and the VOFcoverage also result to be important features for the

machine learning model. The large predictive value of the AIFcoverage and the VOFcoverage fea-

tures can be related to their robustness to variable pre-contrast agent duration. The scan dura-

tion feature, instead, is affected by the CTP acquisition protocols and as such, shows slightly

less relevance for the fitted models.

We also explore for each single AIF/VOF feature its discriminant power to detect trunca-

tion artifacts. To this end, we generate new classifiers g0 that operate as described in Eq 1 by

using the considered AIF/VOF feature instead of the scan duration feature. The selection of

the operating points and the validation of the classifiers are performed with the same criteria

described in section Performance evaluation for the machine-learning models. In Table 3 the

detection performance metrics achieved with the different feature classifiers g0 are summa-

rized. It is worth noting that the top-ranked features in the bootstrapping experiment (namely

Table 2. Classifiers’ performance for detecting truncation artifacts. The used operating points are θ = [27, 30, 40, 50, 60] s for the baseline classifier g. Note that 27 s is
the optimal operating point for g, defined as the closest point to the ideal classifier with precision = recall = 1. Reported metrics for the machine learning approaches are
obtained at the optimal operating points. Outperforming values for each metric are shown in bold. SVMLinear: support-vector machine with linear kernel; SVMRBF: sup-
port-vector machine with radial basis function kernel; RF: Random forests; LR: Logistic regression; Gradboost: Gradient boosting classifier. Baseline classifier: threshold
on scan duration.

Classifier ROC-AUC PR-AUC Recall Precision F1-Score

SVMLinear 0,975 0,982 0,929 0,942 0,9305

SVMRBF 0,971 0,979 0,918 0,942 0,930

RF 0,977 0,981 0,898 0,964 0,929

Adaboost 0,980 0,984 0,922 0,945 0,934

LR 0,979 0,983 0,926 0,936 0,931

Gradboost 0,982 0,985 0,930 0,946 0,938

Baseline classifier 0,954 0,958 [0,885 0,864 0,875]θ=27s

[0,926 0,813 0,866]θ=30s

[0,997 0,597 0,747]θ=40s

[1,000 0,503 0,670]θ=50s

[1,000 0,493 0,660]θ=60s

https://doi.org/10.1371/journal.pone.0283610.t002
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AIFcoverage, VOFDCI and, VOFcoverage, see Fig 6) are the ones achieving the highest discrimi-

nant performance for detecting truncation artifacts. The best classifier g0(AIFcoverage) yielded a

much better performance than the baseline classifier g(scan duration) (Tables 2 and 3). These

results evidence that AIFcoverage is a strong discriminant feature for detecting truncation arti-

facts. Similar to our results [17], has observed that the VOFcoverage is an important feature

Fig 5. Relative feature importance for 100 bootstraps with a Gradient boosting classifier. Bars (error-bars) represent mean (standard
deviation). AIF: arterial input function; VOF: venous output function; UCI: upward contrast increase; DCI: downward contrast increase.

https://doi.org/10.1371/journal.pone.0283610.g005

Table 3. Single features’ classification performance. The used cutoff is always the optimal operating point, defined as the closest point to the ideal classifier with
precision = recall = 1. AIF: arterial input function; VOF: venous output function; UCI: upward contrast increase; DCI: downward contrast increase; ROC: receiver operat-
ing characteristic curve; PR: precision-recall curve; AUC: area under the curve.

Feature ROC-AUC PR-AUC Precision Recall F1-score

AIFDCI 0.842 0.879 0.815 0.724 0.767

AIFUCI 0.597 0.631 0.571 0.465 0.513

argmax{AIF} 0.509 0.525 0.502 0.484 0.493

argmax{VOF} 0.693 0.752 0.649 0.592 0.619

AIFcoverage 0.981 0.984 0.936 0.928 0.932

VOFcoverage 0.956 0.962 0.874 0.880 0.877

VOFDCI 0.958 0.969 0.929 0.901 0.915

VOFUCI 0.765 0.816 0.765 0.597 0.671

https://doi.org/10.1371/journal.pone.0283610.t003
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impacted by truncation artifacts. Although AIFcoverage and VOFcoverage are strongly correlated

features, our experiments show that AIFcoverage carries more truncation predictability than

VOFcoverage (Table 3). The reason for this finding is that in severely truncated CTP series

where the scan acquisition does not reach the VOF peak but it does reach the AIF peak, only

the AIFcoverage can detect a truncation, as the VOFcoverage feature can not be reliably estimated.

However, in cases where the CTP acquisition reaches the VOF signal peak, both the AIFcoverage
and VOFcoverage carry similar truncation predictability. We have confirmed this statement

after discarding very short CTP scans (e.g. with scan durations lesser than 15 and 20 s) from

the database and after re-measuring the single features detection performance. The obtained

ROC-AUCs for the AIF and VOF coverages were, respectively, 0.972 and 0.962 when discard-

ing scans with durations shorter than 15 s, and 0.955 and 0.952 when discarding scans shorter

than 20 s. Our results showed that the performance agreement between AIFcoverage and VOF-

coverage increased while discarding short CTP series that did not cover the VOF signal peak. In

clinical routine, a short duration scan not covering the AIF peak would lead to completely

unreliable perfusion volumes and, as such, would hardly be used for treatment decision mak-

ing. However, in practice it is still common to find CTP scans where the VOF peak has not

been reached. Hence, we can conclude that both the AIFcoverage and VOFcoverage are features

with good overall truncation predictability, though the AIFcoverage is a more robust feature as it

works in a wider range of CTP truncation scenarios.

Scan duration, AIF coverage or machine-learning?

We compare the three classifiers outlined in this work: the baseline classifier g using the

scan duration, the classifier g0 based on the AIF coverage and the Gradient boosting classifier

which uses multiple AIF and VOF features. It is evident that both the AIF coverage g0 and the

Fig 6. Histograms showing the difference between optimal scan duration and the scan duration for each classifiers’ predicted samples. Correct
predictions comprises scans properly labelled as reliable or unreliable. Incorrect predictions comprises samples wrongly labelled as reliable or unreliable.
Inter-rater variability lines are drawn at the 95% inter-rater values (± 2.30 s).

https://doi.org/10.1371/journal.pone.0283610.g006
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Gradient-boosting classifier considerably outperform the baseline approach g based on the

scan duration. However, when comparing the Gradient boosting method with g0, a marginal

improvement in performance is found (as seen from Tables 2 and 3). Moreover, the study of

the feature’s importance has shown that the Gradient boosting method predicts outputs mostly

using the AIFcoverage feature, together with some other features as VOFDCI and VOFcoverage
(see Fig 2). Thus, it is valid asking whether there is any benefit of using machine learning over

a (simpler) classifier as g0.

In order to address this question we evaluate, for the three considered models, the distribu-

tion of the predicted samples in terms of their scan duration to optimal scan duration differ-

ence, as shown in Fig 6. While gmisclassifies samples in a [-15, 8] s vicinity of OSD, g0 and the

Gradient boosting classifier do it in a vicinity of [-19, 3] s and [-14, 8] s, respectively. Thus,

within these temporal windows the classifiers struggled the most to correctly detect reliable/

unreliable volumes and, outside this temporal window, the classifiers correctly predicted all

samples. At their optimal operating points, all the three models are more accurate predicting

truncation over very short scans (i.e. OSD>> scan duration) rather than over long duration

ones (OSD<< scan duration). Besides, the closer a scan duration is to its OSD, the harder for

the models is to correctly classify a sample. It is worth to point out that g0 and the Gradient

boosting classifier generate most of the mis-classifications within the inter-rater OSD variabil-

ity, a ‘gray zone’ interval where the reliable and unreliable labels suffer from larger uncertainty.

With the aim of measuring the method’s performance over AIF-choice unbiased samples, we

have quantified the classifiers’ error rates (100� # incorrect samples

# all samples
) outside the inter-rater variabil-

ity range ([-2.30, 2.30] s). While g yielded an error rate outside the inter-rater interval of 7.8%

(n = 314 misclassified samples), g0 and the Gradient boosting method yielded, respectively, a

2.5% (n = 102 misclassifications) and 2.4% (n = 98 misclassifications) error rates.

Our results show that both the Gradient boosting and the AIFcoverage based classifiers pro-

vide a good overall truncation predictability and consistently outperform the scan duration

based approach. These models could increase the interpretability of CTP post-processing soft-

ware by warning clinicians about potentially misleading and/or unreliable perfusion lesion

volumes (i.e., volumetric errors greater than 10% or greater than 5 ml), which should be taken

into account during treatment decision making. Additionally, such methods help identify reli-

able perfusion lesion measurements in scans not reaching the recommended 60–70 s acquisi-

tion. Considering their implementation in clinical routine CTP deconvolution packages, the

AIFcoverage classifier might be preferred as i) it is more robust to the variable scan quality than

the multi-feature machine learning (i.e., it requires measuring an always available and easy to

extract feature, the AIF peak) ii) its implementation is straightforward (the model is free from

hyper-parameters fitting) and iii) it has the advantage of being interpretable by radiologists

and neurointerventionalists.

Limitations and future directions

There are some considerations about this research that should be cautiously taken. Firstly,

there is no consistent definition for a scan to be reliable and, as such, its definition is somehow

arbitrary. In this work, in order to define reliability we have adopted a quantitative criterion

based on the perfusion volumes as similarly done in [17]. Alternative definitions of scan reli-

ability could be based on changes on the treatment eligibility criteria used in the DAWN or

DEFUSE-3 trials [31, 32]. An advantage of using a volumetry based criterion over a treatment

eligibility one is the capability to identify subtle lesion changes due to inaccurate perfusion

measurements that may not impact the treatment decision (e.g. in patients with a large perfu-

sion lesion mismatch).
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Secondly, it is worth to mention that our conclusions only hold for CTP analysis using

time-invariant singular value decomposition deconvolution. Other techniques used for perfu-

sion analysis might behave differently under truncation scenarios. Still, the delay-invariant sin-

gular value decomposition deconvolution is the most widespread and used algorithm in

software packages [8, 33, 34]. Readers interested in the effect of CTP truncation over different

parameter map estimation methods are referred to the work of [16], as such inter-algorithm

comparisons are out of the scope of this research. It is worth saying that while the devised

models only hold for the ISLES’18 database characteristics and for the deconvolution algo-

rithm used in this study, the extracted features are generalizable and allow the adaptation of

these models to other deconvolution algorithms or imaging modalities (as perfusion MRI).

Thirdly, the deployment of a truncation artifacts detection method in automatic CTP evalu-

ation software is limited to the AIF/VOF selection performance. In this work, all the experi-

ments have been conducted using manually annotated vascular functions. As such, failures in

the CTP curves selection could produce a misleading truncation analysis using our proposed

methodology. Nonetheless, recent approaches using dedicated artificial intelligence methods

show efficacy and robustness to select vascular functions even under low quality CTP scenarios

[21, 35].

Finally, future directions for this work might involve the machine-learning prediction of

missing CTP time-points at the end of the series. As such, reconstructing the ending perfusion

phase of the vascular functions could help improve the detection of truncation artifacts.

Conclusion

We observe that acquiring 60 s CTP scans is sufficient to avoid truncation artifacts in the entire

multi-center/scanner ISLES’18 dataset. However, at CTP post-processing stages, using the

scans’ duration to detect truncation errors is sub-optimal. Depending on the patients’ physiol-

ogy, the contrast injection and/or the CTP acquisition protocols, even shorter acquisitions

may sometimes provide reliable lesion volumes. In order to identify unreliable short scans we

extract AIF and VOF features that are impacted by truncation errors. These features are sim-

ple, robust to extract even in low quality acquisitions and are independent from the contrast

injection and CTP acquisition protocols. The AIFcoverage proves to be the most predictive fea-

ture of truncation. Furthermore, when training classifiers with AIF/VOF derived features a

high truncation detection performance is obtained. We conclude that these methods could

be transferred to perfusion analysis software and may increase the interpretability of CTP

outputs.

Supporting information

S1 Fig. Example case of an ISLES’18 scan with no pre-contrast acquisition. AIF: Arterial

input function; VOF: Venous output function.
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of clinical brain tumor MR spectra judged by humans and machine learning tools. Magnetic resonance
in medicine. 2018; 79(5):2500–2510. https://doi.org/10.1002/mrm.26948 PMID: 28994492

25. Wei L, Rosen B, Vallières M, Chotchutipan T, MierzwaM, Eisbruch A, et al. Automatic recognition and
analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys-
ics and imaging in radiation oncology. 2019; 10:49–54. https://doi.org/10.1016/j.phro.2019.05.001
PMID: 33458268

26. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences. 1997; 55(1):119–139. https://doi.org/10.1006/jcss.
1997.1504

27. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;
p. 1189–1232.

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-
ing in Python. the Journal of machine Learning research. 2011; 12:2825–2830.

29. Robben D, Suetens P. Perfusion parameter estimation using neural networks and data augmentation.
In: International MICCAI BrainlesionWorkshop. Springer; 2018. p. 439–446.

PLOS ONE Detecting CTP truncation artifacts in acute stroke imaging

PLOSONE | https://doi.org/10.1371/journal.pone.0283610 March 30, 2023 16 / 17

https://doi.org/10.3174/ajnr.A2809
http://www.ncbi.nlm.nih.gov/pubmed/22194372
https://doi.org/10.1007/s10072-015-2244-8
http://www.ncbi.nlm.nih.gov/pubmed/25981225
https://doi.org/10.1007/s00330-015-3602-x
https://doi.org/10.1007/s00330-015-3602-x
http://www.ncbi.nlm.nih.gov/pubmed/25894005
https://doi.org/10.1371/journal.pone.0141571
http://www.ncbi.nlm.nih.gov/pubmed/26536226
https://doi.org/10.1371/journal.pone.0119409
https://doi.org/10.1371/journal.pone.0119409
http://www.ncbi.nlm.nih.gov/pubmed/25789631
https://doi.org/10.3174/ajnr.A4186
http://www.ncbi.nlm.nih.gov/pubmed/25500309
https://doi.org/10.1161/STROKEAHA.116.014177
http://www.ncbi.nlm.nih.gov/pubmed/27895299
https://doi.org/10.1177/0271678X18805590
https://doi.org/10.1177/0271678X18805590
http://www.ncbi.nlm.nih.gov/pubmed/30346227
https://doi.org/10.1177/0271678X15610586
https://doi.org/10.1177/0271678X15610586
http://www.ncbi.nlm.nih.gov/pubmed/26661203
https://doi.org/10.1161/STROKEAHA.120.030696
http://www.ncbi.nlm.nih.gov/pubmed/33957774
https://doi.org/10.1016/j.media.2021.102211
https://doi.org/10.1016/j.media.2021.102211
http://www.ncbi.nlm.nih.gov/pubmed/34425318
https://doi.org/10.1148/radiol.2015150319
https://doi.org/10.1148/radiol.2015150319
http://www.ncbi.nlm.nih.gov/pubmed/26785041
https://doi.org/10.1002/mrm.21519
http://www.ncbi.nlm.nih.gov/pubmed/18421692
https://doi.org/10.1002/mrm.26948
http://www.ncbi.nlm.nih.gov/pubmed/28994492
https://doi.org/10.1016/j.phro.2019.05.001
http://www.ncbi.nlm.nih.gov/pubmed/33458268
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1371/journal.pone.0283610


30. Kazemitabar J, Amini A, Bloniarz A, Talwalkar AS. Variable importance using decision trees. Advances
in neural information processing systems. 2017;30.

31. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24
hours after stroke with a mismatch between deficit and infarct. New England Journal of Medicine. 2018;
378(1):11–21. https://doi.org/10.1056/NEJMoa1706442 PMID: 29129157

32. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for
stroke at 6 to 16 hours with selection by perfusion imaging. New England Journal of Medicine. 2018;
378(8):708–718. https://doi.org/10.1056/NEJMoa1713973 PMID: 29364767

33. Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-based CT and MR
brain perfusion measurement: theoretical model revisited and practical implementation details. Journal
of Biomedical Imaging. 2011; 2011:14.

34. Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, et al. Differences in CT perfu-
sion maps generated by different commercial software: quantitative analysis by using identical source
data of acute stroke patients. Radiology. 2010; 254(1):200–209. https://doi.org/10.1148/radiol.
254082000 PMID: 20032153

35. Winder A, d’Esterre CD, Menon BK, Fiehler J, Forkert ND. Automatic arterial input function selection
in CT and MR perfusion datasets using deep convolutional neural networks. Medical Physics. 2020.
https://doi.org/10.1002/mp.14351 PMID: 32583617

PLOS ONE Detecting CTP truncation artifacts in acute stroke imaging

PLOSONE | https://doi.org/10.1371/journal.pone.0283610 March 30, 2023 17 / 17

https://doi.org/10.1056/NEJMoa1706442
http://www.ncbi.nlm.nih.gov/pubmed/29129157
https://doi.org/10.1056/NEJMoa1713973
http://www.ncbi.nlm.nih.gov/pubmed/29364767
https://doi.org/10.1148/radiol.254082000
https://doi.org/10.1148/radiol.254082000
http://www.ncbi.nlm.nih.gov/pubmed/20032153
https://doi.org/10.1002/mp.14351
http://www.ncbi.nlm.nih.gov/pubmed/32583617
https://doi.org/10.1371/journal.pone.0283610

