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A B S T R A C T

Objectives: In this study, we examined the practicability of deep learning-based 2D keypoint detection applied to

regular skiing and injury situations (i.e., out-of-balance situations and fall situations) on an alpine ski racing track.

Methods: We therefore created a regular skiing- and injury situation-specific dataset (hereinafter called "Injury Ski

Dataset"), on which the state-of-the-art keypoint detection algorithms OpenPose, Mask-R-CNN, AlphaPose and

DCPose were compared. The performance of each keypoint detector was evaluated by calculating the mean per

joint position error (MPJPE) and the percentage of correct keypoints (PCK). Failure cases and common error

patterns were further investigated by a visual analysis.

Results: We observed the best results for regular skiing, with 81%–92% of all keypoints detected correctly at an

MPJPE of 9 (2) to 14 (3) pixels. In injury situations, self-occlusions and rare poses became more likely, similar to

occlusions due to snow spray and motion blur. As a result, the performance in out-of-balance situations decreased

to 68%–80% (PCK), while in fall situations, only 35%–54% of all keypoints were detected correctly, with mean

errors of 26–36 pixels. Among all algorithms, AlphaPose was the most robust and achieved the best results.

Conclusions: PCK and MPJPE for regular skiing were in the range of manual annotation errors and can be

considered low enough for further biomechanical analysis. For fall situations, keypoint detection should be

further improved. Regarding the development of a deep learning tool for injury analysis in alpine skiing in the

future, we propose to fine-tune a well-performing keypoint detector, such as AlphaPose, on a ski- and injury-

specific dataset, such as ours.

1. Introduction

Alpine ski racing is considered an extreme sport, exposing its athletes

to a very high risk of injury [1–4]. While previous studies found every

thirdWorld Cup athlete to be injured in one season, every seventh athlete

suffers from a severe injury, leading to at least 28 days of absence in

training and competition [2,5]. In addition, a recent study showed an

increase in severe injuries among Austrian World Cup and European Cup

athletes from approximately 11 in 1997 to 23 in 2019, with approxi-

mately one more injured athlete among 100 athletes every two seasons

[1]. Among these injuries, the knee was found to be the most frequently

injured body part [2,5–7], with rupture of the anterior cruciate ligament

(ACL) being the most frequent diagnosis, accounting for half of all severe

injuries [1].

Working towards effective prevention measures, further scientific

efforts are necessary to gain a deeper understanding of risk factors and

injury mechanisms in alpine ski racing. For many such research projects,

reliable kinematic data of real injury events are essential. On the one

hand, having a full kinematic description can help to better understand

the injury mechanisms and identify the events leading to an injury-prone

situation [8,9]. On the other hand, they may serve as input for biome-

chanical simulations, such as finite element [10] or musculoskeletal
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simulations [11], which provide additional information such as the un-

derlying muscle tension or the loadings of the ACL. However, operating

in an outdoor environment, it is very challenging to collect reliable ki-

nematic data for regular alpine skiing turns [12–15] and injury situations

in particular [8,9]. Current methods primarily make use of systems with

multiple synchronized video cameras, i.e., video-based stereo-

photogrammetry [13,16–19], wearable measurement technologies [8,

12,20–23] or biomechanical simulations [11,24–26].

As real injury events cannot be reproduced under experimental con-

ditions, the abovementioned methods are unfeasible for capturing such

events unless an accidental injury occurs during a regular experiment [8].

In most cases, the only data available are video recordings provided by

television broadcasters or trainers. This means that an injury situation is

usually recorded from only a single perspective, with an unknown

camera position and no calibration. Under these circumstances, the re-

covery of kinematic data is very challenging and has thus far only been

accomplished by time-consuming manual matching techniques [27].

Applying such a manual matching procedure, Bere et al. [27,28] were

able to reconstruct the kinematics of 2 ACL injury cases. However, the

annotations required weeks to months, which obviously limits the use of

this method to the analysis of a small number of very short and specific

video sequences.

Deep learning-based human pose estimation may overcome the lim-

itations mentioned above, as it can be applied to reconstruct kinematic

features incredibly fast given a single-view video only. These algorithms

are designed to locate human body parts within an image or video (2D

keypoint detection) and subsequently reconstruct a three-dimensional

representation from these detections (3D human pose estimation). As

they require no sensory data other than videos or a sequence of single

images, they are already used in a wide range of applications, including

human–computer interaction, motion analysis, augmented reality, and

video surveillance [29]. While 3D human pose estimation still faces many

challenges, such as depth ambiguities and a lack of 3D training data for

rare and complex motions [29], state-of-the-art 2D keypoint detection

algorithms [30–33] are already capable of estimating human joint loca-

tions in real time with impressive accuracy [29].

In particular, this applies to standard motions, where large amounts

of training data are available. Activities that greatly differ from such

standard motions and for which ground truth data are hard to collect,

e.g., alpine skiing or fall situations, remain challenging [29,34]. For

alpine ski racing, only two relevant public datasets exist. The publicly

available ski 2DPose dataset created by Bachmann et al. [35] covers

approximately 2.5k video frames of alpine ski racers in various disci-

plines and weather conditions, plus their corresponding 2D poses. Sec-

ond, Sp€orri et al. [36] created a ski-specific 3D dataset containing 20k

images and their respective 3D poses, including skis and poles, all

recorded on a single giant slalom course in a capture volume of 3

subsequent turns. Rhodin et al. [34] were the first to assess a skier's 3D

pose from a single view camera using a neural network. Building on this

work, Ostrek et al. [37] showed that the performance of a deep

learning-based approach can be viable for detecting relevant kinematic

differences in the context of alpine skiing [37]. Bachmann et al. [35]

implemented a 3D bundle adjustment pipeline to reconstruct a skier

pose in a multicamera setting. As part of their pipeline, they trained a

keypoint detection algorithm on their ski-specific 2D dataset [31].

However, to date, it remains unclear how well state-of-the-art keypoint

detection algorithms work in injury-related out-of-balance and fall

situations.

The main objectives of this research were to create an injury-specific

test dataset (hereinafter called "Injury Ski Dataset") and to evaluate the

performance of state-of-the-art keypoint detection algorithms applied to

regular skiing and injury situations, including out-of-balance situations

and fall situations. We further aimed to identify and understand diffi-

culties and error patterns to improve keypoint detection within the scope

of developing a deep learning-based human motion capture pipeline for

injury situations in alpine ski racing.

2. Methods

2.1. Injury Ski Dataset

As poses and motions in an injury situation may differ greatly from

regular skiing turns, an injury-specific 2D dataset was created within the

scope of this research. Over the last twenty years, we were able to gather

a large collection of injury recordings in alpine ski racing. This very

diverse collection covers over 150 videos of male and female ski athletes

in all disciplines, with video qualities ranging from very poor to high

definition. To evaluate the performance of the different 2D keypoint

detectors, seven injury recordings were selected. Providing an adequate

representation of all available injury videos, each of the alpine skiing

disciplines, slalom (SL), giant slalom (GS), super-g (SG) and downhill

(DH), as well as male and female athletes, are represented in this selec-

tion. Additionally, a wide range of video qualities, spanning from low to

very high, and skier sizes were included in the study. The skier sizes

varied from approximately 100 to over 600 pixels, considering a standard

resolution of 1280x720 pixels. Only videos with extremely low quality

that could not be annotated manually in a meaningful way were

excluded. Depending on the length and frame rate of each injury

recording, 50 to 100 frames per video were sampled in equidistant time

steps and annotated manually using a custom LabVIEW script for digi-

talizing video frames. To facilitate and speed up the digitalization pro-

cess, each joint was annotated for all frames per video, while images were

automatically centered around the position of the previous joint co-

ordinates. Making it easier to focus on the respective joint, this method

obviously increases the annotation accuracy. However, manual annota-

tion still comes with high uncertainty that greatly depends on the image

quality, the skier's resolution, and occlusions. While some joints, such as

the elbow, wrist, knee, or ankle, are relatively easy to determine, also in

high-quality images, it is very challenging to provide high accuracy when

dealing with joints such as the hip or neck. As a rule of thumb, the neck

joint was identified as the intersection point of the shoulder axis and the

cervical spine, while the hip joints were defined by the intersection

points of the hip axis and the femur. Following the skier model of [35]

(Fig. 1), 24 keypoints were annotated per frame, including 14 body

joints, both skis (8 keypoints), and poles (2 keypoints). Table 1 shows an

overview of the annotated video sequences. In total, 533 frames were

annotated. This Injury Ski Dataset was made publicly available for

Fig. 1. Skier model with 24 keypoints, including 16 body joints, 8 ski and two

pole keypoints, as used by Bachmann et al. [35].
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further research and can be downloaded here at https://sport1.uibk.ac.at

/mz/cv.

Keypoint detection algorithms should perform well on frames where

the pose and training samples are similar, e.g., motions where the person

is mostly upright [30,31]. In fall situations, however, skiers’ poses and

training samples differ greatly. To check the performance of the models

for different skiing situations, the frames of each selected video were split

into regular skiing, out-of-balance and fall situations. As shown in Fig. 2,

regular skiing situations contain all situations where the skier shows

controlled skiing. Out-of-balance situations cover situations where the

skier is out of control but still on his skis, trying to regain his balance.

Finally, fall situations that contain all frames where the skier is already

hitting the ground or having no ground contact at all. A visual analysis as

well as a quantitative evaluation of performance was conducted

regarding this categorization, as described in the following section.

2.2. Selection of keypoint detection algorithms

We compared four state-of-the-art keypoint detection algorithms on

our injury-specific test dataset. The detection algorithms OpenPose [31],

Mask-R-CNN [32], DCPose [30] and AlphaPose [33] were chosen. All

algorithms as well as corresponding pretrained models are publicly

available online. OpenPose and Mask-R-CNN are probably the most

widely used state-of-the-art keypoint detection algorithms. AlphaPose

was chosen because it achieved impressive results on benchmark datasets

and was constantly improved after publication [38]. DCPose tackles

some of the challenges that arise when dealing with video recordings by

taking temporal information across a series of neighboring video frames

into account and was pretrained on the video-based Posetrack dataset.

2.3. Evaluation of keypoint detection algorithms

All experiments were run on a desktop computer housing an Nvidia

RTX2060 graphics card. After setting up a virtual Anaconda environment

for each keypoint detector and downloading the respective GitHub re-

positories, installation was completed following the installation manuals.

The videos of our injury dataset, as described above, were processed by

all four networks. Mean per joint position errors (MPJPE) as well as the

percentage of correct keypoints (PCK) were evaluated using custom

Python3 scripts regarding the three distinguished categories regular

skiing, out-of-balance situations, and falls. To calculate the MPJPE, all

per joint position errors (PJPE), defined as the Euclidean distance be-

tween the predicted and true joint locations in pixels, were calculated for

all visible keypoints. Taking the mean over a respective set of frames

gives the MPJPE. The PCK was obtained by dividing the number of

keypoints with the PJPE under a certain threshold by the total number of

(visible) keypoints. In our case, the threshold was set as 0.2 times the

maximal distance between the hip and shoulder joints. To compare the

results visually, the predicted keypoints were overlaid with each corre-

sponding input frame. By going through all single frames individually,

the strengths and weaknesses of the different models were observed.

3. Results

As shown in Tables 2 and 3, all keypoint detection algorithms

investigated in this study show a high performance for regular skiing,

with 81%–92% of all keypoints detected correctly. While in out-of-

balance situations, PCK dropped to 68%–80%, only one-third to half of

all keypoints in fall situations were detected correctly. Across all cate-

gories, AlphaPose performed best, with an overall PCK of 81%, followed

by DCPose and Mask-R-CNN. OpenPose could only detect 70% of all

keypoints correctly. Accordingly, we found the lowest MPJPE for all

keypoint detection algorithms for regular skiing situations, with mean

errors ranging from 9 to 14 pixels. At an average skier size of about 280

pixels, this allows a rough estimate of the real-world error to be just

under 5 cm. The MPJPE values roughly doubled for out-of-balance sit-

uations and peaked in fall situations with 36 pixels (OpenPose) to 27

pixels (AlphaPose) of mean error. Across all categories, AlphaPose again

showed the lowest MPJPE (16 pixels), closely followed by DCPose (17

pixels), Mask-R-CNN (19 pixels) and OpenPose (21 pixels).

To obtain an estimate of the annotation accuracy for this particular

dataset, we digitized a small subset of 100 frames twice by two different

annotators and calculated the MPJPE between these two annotated sets.

We thereby found a mean deviation of 5 pixels.

Looking at all cases where a large deviation between prediction and

annotation was observed, carefully, we identified three major error

patterns. An example of each error pattern is shown in Fig. 3. Most

failures were attributed to occlusions, which occurredwhen the skier was

hidden from view by external objects such as gates, trees, or the terrain.

Furthermore, we found many body parts hidden due to snow spray, and

Table 1

Overview of all seven selected injury recordings. Frames were annotated equi-

distantly. The number of annotated frames NA depended on the total number of

frames NF and frame rate. In total, 533 frames were annotated.

Subject Sex Discipline NA NF Skier Size

(pixel)

Resolution

Subject 1 m SL 75 150 116 Low/medium

Subject 2 w SL 50 100 109 Low

Subject 3 m GS 50 250 239 High

Subject 4 m DH 100 300 248 Medium/high

Subject 5 m GS 100 300 145 Medium/high

Subject 6 w GS 62 125 629 High

Subject 7 m SG 96 480 438 High

Fig. 2. Examples of (a) regular skiing, (b) out-of-balance and (c) fall situations. The detected 2D pose is visualized as a skeleton overlay with detected limbs colored.

Table 2

Mean per joint position error (MPJPE) in pixels regarding each model and

category as well as across all categories. The standard error is given in

parentheses.

Model/Situation Regular skiing Out-of-balance Falls All

OpenPose 14 (3) 21 (4) 36 (10) 21 (4)

Mask-R-CNN 11 (2) 20 (3) 33 (7) 19 (3)

DCPose 9 (1) 17 (2) 31 (5) 17 (2)

AlphaPose 9 (2) 17 (3) 27 (8) 16 (3)
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depending on camera angle and pose, some occlusions were caused by

the skier itself (self-occlusion). Especially in out-of-balance and fall sit-

uations, as the skier became twisted and crunched, self-occlusion and

occlusions due to snow spray became increasingly popular. However, in

some frames, poses were detected incorrectly, even if the skier was

completely visible. In most of these cases, the skiers’ poses were rather

unusual, e.g., when he/she was inverted or horizontal during a fall or the

pose got twisted, crunched, or crossed limbs. Additionally, recordings

with poor image quality (low resolution, small skier size or motion blur)

were a major challenge for all keypoint detection algorithms.

4. Discussion

The main findings of the study were as follows: (1) State-of-the-art

keypoint detection algorithms performed very well on high-quality

videos of regular skiing. (2) Their performance decreased towards out-

of-balance situations and dropped in fall situations. In these conditions,

occlusions and rare poses were found to become more frequent. (3)

Among all four keypoint detection algorithms investigated in this study,

AlphaPose performed best.

The datasets on which neural networks are trained are of great

importance. These datasets are a large collection of images depicting

humans, paired with the corresponding keypoints, i.e., shoulder, hip,

knee, etc., of each visible person. While only a few large motion capture

datasets exist that cover all kinds of human motions in the wild [38–40],

there is only one publicly available 2D dataset of alpine ski racers. This

dataset created by Bachmann et al. [35] contains 2.5k video frames of

alpine ski racers in various disciplines and weather conditions. However,

all these samples show regular skiing situations and no out-of-balance or

even fall images. As poses and motions in an injury situation may differ

greatly from regular skiing turns, a major contribution of this study was

the collection of the first injury-related 2D dataset for alpine ski racing.

The Injury Ski Dataset was made publicly available for further research.

In this first step, the dataset was used to evaluate the performance of

state-of-the-art keypoint detection algorithms.

Visual and quantitative analyses revealed good results for regular

skiing, while the network performance decreased in out-of-balance sit-

uations, and most predictions failed in fall situations. With a PCK be-

tween 81% and 92% and MPJPEs of 9–14 pixels, our results for regular

skiing can be considered high enough for further biomechanical research.

In particular, the MPJPE values for DCPose and AlphaPose in this

category were on average just four pixels above manual annotation ac-

curacy, which was determined by annotating a small subset of our dataset

twice. Furthermore, MPJPE results for OpenPose during regular skiing

are in good agreement with the findings of Bachmann et al. [35].

Depending on the training configuration, they reported MPJPE errors

down to 11 pixels at a higher PCK of up to 98%. The difference in PCK

might be explained by the use of a different PCK metric, which does not

use 20% of the torso diameter but 5% of the full body diagonal as a

threshold. In out-of-balance situations, the algorithms still performed

quite well, showing a PCK between 68% and 80%. Visual analysis

revealed that most poses in this scenario resemble training samples, and

occlusions due to snow spray are less frequent than in fall situations.

Many injuries, in particular ACL injuries, occur in this phase and may

therefore be well analysed with present keypoint detectors. However, in

fall situations, athletes can become inverted and crunched, and therefore,

self-occlusions and unusual poses become more frequent, similar to oc-

clusions due to snow spray and motion blur. Such fall situations pose a

major challenge for keypoint detection algorithms, leading to a drop in

PCK (35%–54%) and an increase in MPJPE up to 36 pixels.

Similarly, other authors [30,31] identified occlusions, rare pose ap-

pearances in the training datasets and high-speed motions as the main

difficulties in 2D keypoint detection. To analyse ski injuries that

accompany a fall, further improvement in keypoint detection is needed.

Comparing all four algorithms, AlphaPose performed best in PCK, fol-

lowed by DCPose. Regarding the MPJPE metric, AlphaPose and DCPose

performed similarly for regular skiing and out-of-balance situations,

while AlphaPose again takes the lead in fall situations. This result was

initially surprising as DC Pose was the only one of the examined algo-

rithms that took temporal constraints into account, and thus should have

provided better results, especially in difficult and complex cases. How-

ever, additional methods [41] have been developed that exploit the

temporal continuity of movements to provide better keypoint estimates,

particularly in falling situations. With these methods, a reduction in error

of up to 30% has been achieved in fall situations.

The impact of 2D keypoint detection on biomechanical analysis is

manifold. 2D keypoint detectors can be directly applied to address

biomechanical problems that can be analyzed in one plane. In alpine

skiing, this includes motions such as jump landings or take-off behavior.

For instance, in the sagittal plane, one can analyze parameters such as

jump height, distance, joint angles or forward/backward lean, while in

the frontal plane, asymmetrical landing positions can be measured. For

more complex movements that require a consideration beyond a single

plane, 3D kinematics are necessary. In this regard, 2D keypoint detection

algorithms can assist in accelerating biomechanical analysis in two

different ways. First, automatic keypoint detection can be combined with

classical reconstruction methods such as Direct Linear Transformation

(DLT) to automate the detection of joints in these procedures. Second, it

serves as an essential initial step in many fully computer vision-based

pipelines, significantly influencing the overall method's error. Our re-

sults indicate that particularly for less complex movements and high-

Table 3

Percentage of correct keypoints (PCK) and standard error regarding each model

and category. The standard error is given in parentheses.

Model/Situation Regular skiing Out-of-balance Falls All

OpenPose 0,81 (8) 0,68 (8) 0,35 (9) 0,70 (8)

Mask-R-CNN 0,87 (5) 0,75 (4) 0,42 (6) 0,75 (6)

DCPose 0,89 (4) 0,80 (5) 0,44 (7) 0,78 (6)

AlphaPose 0,92 (2) 0,77 (5) 0,54 (8) 0,81 (4)

Fig. 3. Most common error patterns across all keypoint detectors due to occlusions, unusual poses, and low-quality video recordings.
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quality videos, a similar error can be expected as with manual digitiza-

tion, but with a substantial gain in time and potential applications.

A major limitation of this study was the small size of our injury

dataset. With only 533 frames in total and only a fraction of these frames

in each category (regular skiing, out-of-balance, and falls), the selection

of videos has a great impact on the results. Choosing different injury

recordings, e.g., showing more/fewer occlusions or more/fewer complex

poses, would greatly change the overall performance as well as the per-

formance in each category. Furthermore, only pretrained models pro-

vided by the authors were used in this study. Knowing the performance

using pretrained models might be useful. However, it would also be very

interesting to train all algorithms on ski-specific data first and compare

them afterwards.

5. Conclusion

Based on the findings of this study, we conclude that state-of-the-art

keypoint detection algorithms provide viable 2D kinematics for regular

skiing situations, particularly if the video quality is high. This already

opens many applications, such as performance or even injury analysis, as

many injuries (e.g., knee injuries) arise, while the skier is still skiing

regularly or just slightly out-of-balance. Injuries that occur in a fall sit-

uation, e.g., fractures, concussions, or head injuries, however, cannot be

captured by standard keypoint detection algorithms in their pretrained

configuration. For these scenarios, we propose to fine-tune a well-

performing keypoint detector, such as AlphaPose and DCPose, on a ski-

and injury-specific dataset. Our injury-specific dataset can make an

important contribution here. Additionally, independent postprocessing,

as described by [41], was shown to improve keypoint detection in diffi-

cult frames and fall situations. The development of a deep learning-based

motion capture tool for injury analysis in alpine ski racing will enable us

to collect a large amount of injury kinematics and will therefore be a key

step for injury prevention in alpine ski racing.
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