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Archival Report

Connectome-wide Mega-analysis Reveals
Robust Patterns of Atypical Functional
Connectivity in Autism

Iva Ilioska, Marianne Oldehinkel, Alberto Llera, Sidhant Chopra, Tristan Looden,
Roselyne Chauvin, Daan Van Rooij, Dorothea L. Floris, Julian Tillmann, Carolin Moessnang,
Tobias Banaschewski, Rosemary J. Holt, Eva Loth, Tony Charman, Declan G.M. Murphy,
Christine Ecker, Maarten Mennes, Christian F. Beckmann, Alex Fornito, and Jan K. Buitelaar

ABSTRACT

BACKGROUND: Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small

sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals

with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age

and/or sex dependent.

METHODS: The study included resting-state functional magnetic resonance imaging and clinical data from the EU-

AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain

Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5–58 years.

Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were

investigated through canonical correlation analysis.

RESULTS: Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity pre-

dominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive

and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default

mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly

associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were

not statistically significant.

CONCLUSIONS: The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and

attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not

appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and re-

petitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity

alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.

https://doi.org/10.1016/j.biopsych.2022.12.018

Autism spectrum condition (henceforth autism) is a lifelong

early-onset neurodevelopmental condition characterized by

social communication difficulties, restricted and repetitive be-

haviors (RRBs), and atypical sensory processing (1). The

prevalence of autism is high, with 1%–2% of all people

worldwide affected (2). The absence of effective treatments

underscores the need to better understand the neural un-

derpinnings of the condition. Over the last 2 decades, the

research community has shifted its view from considering

autism as a condition of isolated brain regions to investigating

the hypothesis that autism is associated with atypical in-

teractions across distributed brain networks (3,4).

Through advances in different network mapping techniques

(5–8), recent years have seen an increasing focus on trying to

understand how distinct aspects of brain connectivity are

altered in individuals with autism. Early work in 2004 examining

functional connectivity (FC) in autism reported decreased FC

(hypoconnectivity) in individuals with autism relative to neuro-

typical (NT) control subjects during the performance of a

sentence comprehension task (9). Several subsequent resting-

state functional magnetic resonance imaging (rs-fMRI) studies

also found decreased FC in autism (10–12). In contrast, other

rs-fMRI studies have reported increased FC (hyper-

connectivity) in autism, including FC between primary sensory

and subcortical networks (13), and within the primary motor

cortex (14), ventral attention, default mode network (DMN), and

visual networks (15). Later studies, published from 2013 to

2019, put forward an even more complex picture, reporting

both hyperconnectivity and hypoconnectivity, within and be-

tween various brain networks (15–18).
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Some of the atypical FC patterns reported in the literature

have been interpreted in different ways. For example, many

studies of FC in autism focus on the DMN, although the find-

ings have been mixed (19). Since the DMN has been associ-

ated with social cognition and theory of mind (20), altered

connectivity within and between the DMN would be consistent

with the view that social cognitive deficits represent some of

the most fundamental characteristics of autism (21,22). Moving

beyond the DMN, evidence for more diffuse changes in FC that

span multiple brain systems has been linked to the weak

central coherence theory (23), which proposes that people with

autism are biased toward processing details as opposed to

extracting contextual meaning and seeing the big picture (24).

Accordingly, while many rs-fMRI studies have reported

altered FC in autism, these findings are inconsistent with

respect to the specific networks implicated and whether these

networks show, relative to NTs, increased FC, decreased FC,

or a combination of both (25).

Several factors may have contributed to these in-

consistencies. First, most studies have relied on small sample

sizes, typically ,70 per group (25), which can inflate effect

sizes and decrease the reproducibility of results (26). Multisite

consortia such as the ABIDE (Autism Brain Imaging Data Ex-

change) (18), EU-AIMS LEAP (European Autism Interventions

Longitudinal European Autism Project) (27), and ENIGMA

(Enhancing Neuro Imaging Genetics through Meta Analysis)

(28) have been established to overcome such sample size

limitations. Second, many studies differ in terms of whether

and how they account for head motion (29–31). Increased head

motion can lead to artifactual findings of decreased long-

distance FC and increased short-distance FC (32,33), a

pattern that has also been hypothesized in autism (34). Third,

inconsistent results may also be driven by the different network

mapping techniques used. Many studies either use seed-

based connectivity, which only allows for investigating a

limited number of brain regions (25), or spatial independent

component analysis, which has a limited capacity to identify

the specific connections between brain regions that may be

altered. Finally, the age range of studied samples shows

considerable variation, which may affect the results. For

example, Uddin et al. (35) identified a pattern of hyper-

connectivity in children and hypoconnectivity in adolescents

and adults across several studies.

In this study, we aim to overcome these limitations by

combining data from 3 of the largest initiatives to date: LEAP

(27), ABIDE 1, and ABIDE 2 (18). Following rigorous quality

control and consideration of motion-related contamination, we

combine mega-analytic (i.e., data pooling) methods with

comprehensive whole-brain network mapping and analysis

techniques analogous to cluster-based inference in fMRI (36)

to generate connectome-wide maps of altered FC across

75,855 different connections linking 390 brain regions.

Importantly, our total sample spans ages 5–58 years, allowing

us to investigate the age dependence of any autism-related

changes in FC. We use canonical correlation analysis (CCA)

to relate FC alterations in autism to distinct dimensions of

clinical symptomatology. Critically, we replicate the results

obtained with the whole data in the LEAP and ABIDE 1 and 2

datasets independently.

Our primary goal was to test the hypothesis that autism is

associated with both hypo- and hyperconnectivity and to

characterize relationships between FC alterations and clinical

scores covering the 3 main symptom domains of autism;

namely, social difficulties, restricted interests and repetitive

behavior, and sensory processing. Our unique approach thus

allowed us to comprehensively evaluate the network specificity

and polarity of FC alterations in autism, their age dependence,

and their clinical correlates.

METHODS AND MATERIALS

Participants

We combined data from 3 large datasets: LEAP (27) (https://

www.eu-aims.eu/ and https://www.aims-2-trials.eu/) and

ABIDE 1 and ABIDE 2 (18) (http://fcon_1000.projects.nitrc.org/

indi/abide/) (see Supplement Section 1).

Our final sample for analysis included 796 individuals with

autism (141 females; age range: 5–58 years) and 1028 NT in-

dividuals (256 females; age range: 5–56 years). Details about

our exclusion criteria are provided in Supplement Section 2.

The clinical and demographic characteristics of included par-

ticipants are listed in Table 1. For age distribution, see

Figure S11.

Clinical Diagnosis

Individuals with autism in the LEAP dataset had an existing

clinical diagnosis of autism according to the criteria of DSM-IV,

DSM-5, or ICD-10, with the majority also meeting the autism

criteria on Autism Diagnostic Interview (ADI)-Revised (37) and/

or Autism Diagnostic Observation Schedule 2 (ADOS 2) (38)

[see Charman, et al. 2017 (39)]. Each site within ABIDE fol-

lowed their individual diagnostic procedures for establishing an

autism diagnosis, although the majority of the sites used the

ADOS (40) and/or ADI-Revised (37). NT control subjects were

individuals that reported no psychiatric diagnosis.

MRI Acquisition and Preprocessing

rs-fMRI and structural scans were obtained using 3T MRI

scanners at 32 scanning sites (Supplement Section 3). The

Supplement also contains details on denoising efficacy

(Supplement Section 4) and the sensitivity of our findings to

different preprocessing procedures (Supplement Section 5).

Mapping FC

To investigate autism-related FC alterations across the brain, we

applied the well-validated Schaefer parcellation to divide the

cortex of each participant into 400 functional regions of interest

(ROIs) (41) combined with 15 subcortical ROIs from the Harvard-

Oxford subcortical atlas (42). We extracted the mean time series

from each ROI and computed the Pearson correlation between

every pair of time series. The values within each participant’s FC

matrix were normalized using Gaussian-gamma mixture

modeling (43) (Supplement Section 6). ComBat (44) was used on

the FC matrices to remove the confounding effects of scanning

site from the fMRI data (Supplement Section 7).

Connectome-wide Robust Patterns of Atypical FC in ASD
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Analysis of Group Differences

Through a mega-analytic approach (the pooling of raw data

acquired at multiple sites), we mapped connectome-wide dif-

ferences between individuals with autism and NT individuals

using the Network-Based Statistic (NBS) (36) (software avail-

able at http://www.nitrc.org/projects/nbs/). The NBS ad-

dresses the multiple comparison problem inherent in

connectome-wide analyses by performing statistical infer-

ence at the level of connected components, which are sets of

nodes that can be linked by a path of edges. The approach

thus accounts for topological relations between affected sets

of edges, rather than treating each edge individually, offering

considerable gains in statistical power at the expense of

restricting inferences to the level of edge components rather

than individual connections (36). For details about the NBS

procedure, see Supplement Section 8. For comparison, we

additionally performed an edge-level analysis corrected using

false discovery rate with q , .05. To assess FC group differ-

ences, a general linear model was fitted to each edge,

including diagnosis, age, sex, and mean framewise displace-

ment as covariates. We examined interactions between diag-

nosis and age and diagnosis and sex and additionally

considered nonlinear age and age interaction effects (see

Supplement Section 9). We report results at a stringent

component-wide threshold, familywise error corrected (FWE)

for 6 comparisons to pFWE , .001, following the application of

primary component thresholds corresponding to p , .05, .01,

and .001 (45).

We used the Yeo 7-network parcellation to assign cortical

ROIs to well-known resting-state networks (46). These as-

signments allowed us to quantify the number of edges iden-

tified by the NBS as showing an effect of interest within and

between each of the networks (Nraw). As the number of ROIs

and potential connections within and between networks dif-

fers, we also calculated the proportion of altered edges cor-

rected by the total amount of possible edges within or between

the particular networks (Nnorm). Thus, raw counts allow us to

identify networks that contribute strongly to group differences

in absolute terms; normalized counts allow us to identify strong

contributions relative to network size. We also calculated the

degree of each region, defined as the number of connections

attached to each node in the NBS subnetwork, thus identifying

specific regions heavily involved in connectivity differences. To

further demonstrate the robustness and replicability of our

findings, we conducted full FC mapping and analysis of group

differences in the 2 fully independent datasets of the LEAP and

ABIDE 1 and 2 initiatives separately. To examine the consis-

tency of our main findings with those obtained following

different validation and sensitivity analyses, we used the Dice

similarity coefficient (DSC) (47) to quantify the edgewise con-

sistency of the affected networks (i.e., the binary, NBS-derived

connectivity alterations matrices) and Pearson correlations of

the weighted edge-level matrices and network-level edge-

count matrices (Supplement Section 9 and Table S9).

Brain-Behavior Correlations

We used CCA to relate autism-related FC connectivity to

symptom severity. In our analyses, one set of variables

included measures of behavior and symptom severity, and the

other set of measures included principal components (PCs) of

the FC estimates for edges identified as showing atypical

connectivity in our NBS analysis. We interpreted the results by

directly correlating the edge-level measures with the canonical

variates (CVs) identified by the CCA, allowing us to determine

the contribution of each edge to the CV, providing a clearly

interpretable brain-behavior relationship.

We conducted two CCA analyses. In the first CCA, we

investigated associations with a diverse set of behavioral

variables, including the ADOS social affect (SA), ADOS RRB,

ADI RRB, ADI communication, ADI social, Social Respon-

siveness Scale-2, and Vineland Adaptive Behavior Scale daily

living skills, Vineland Adaptive Behavior Scale communication,

and Vineland Adaptive Behavior Scale social relationships.

These measures were collected across the 3 datasets for a

subsample of 232 individuals with autism. Given that the Short

Sensory Profile (SSP) scores were available for a smaller

sample of 125 individuals with autism and 78 control subjects

from the LEAP cohort, we conducted a separate CCA exam-

ining FC relationships with the subscales of the SSP (48). The

behavioral measures are detailed in Supplement Section 10.

We further validated our CCA findings using leave-one-site-out

cross-validation as explained in Supplement Section 11.

RESULTS

Atypical FC in Autism

At the primary component-forming threshold of p , .01, the

autism , NT contrast revealed hypoconnectivity in autism that

encompassed 8102 edges (10.6% of the total number of

edges) linking 343 brain regions (pFWE , .001) (Figure 1A–C).

The autism . NT contrast revealed hyperconnectivity in

autism, including 10,774 edges (14.2% of the total number of

edges; pFWE , .001) and linking all 390 brain regions

(Figure 1D–F). Thus, nearly all brain regions were implicated in

both the hyper- and hypoconnectivity findings in autism.

The highest proportion of hypoconnected edges was pre-

sent within the somatomotor network (Nnorm = 0.25; Nraw =

1474), followed by between-network connectivity of the

somatomotor with the visual network (Nnorm = 0.25; Nraw =

1182), and between-network connectivity of the somatomotor

and the lateral temporal regions of the DMN (Nnorm = 0.12;

Nraw = 821), the dorsal attention (Nnorm = 0.23; Nraw = 807), and

the salience (Nnorm = 0.14; Nraw = 534) systems (Figure 1A, B).

Accounting for the differences in network size further impli-

cated connectivity between the amygdala and the somato-

motor networks (Nnorm = 0.3; Nraw = 94) (Figure 1A, C).

Atypical hyperconnectivity was predominantly found be-

tween the DMN and the rest of the brain, particularly

the frontoparietal network (Nnorm = 0.34; Nraw = 1533)

(Figure 1D, E). When accounting for differences in network

size, atypical FC between the thalamus and the rest of the

brain, and between medial temporal areas and thalamus and

striatum, also featured prominently (Figure 1D–F).

At the primary component-forming thresholds of p , .05

and p , .001, the affected networks were denser and sparser

respectively, but a similar pattern of both hypoconnectivity and

hyperconnectivity was evident (Figure S3). Results were similar

when using global signal regression and when including IQ as

Connectome-wide Robust Patterns of Atypical FC in ASD
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Table 1. Demographic and Clinical Information of Included Participants

Characteristics

All EU-AIMS LEAP ABIDE 1 ABIDE 2

Autism, n = 796 NT, n = 1028

Test Value,

p Value Autism, n = 222 NT, n = 200

Test Value,

p Value Autism, n = 369 NT, n = 481

Test Value,

p Value Autism, n = 205 NT, n = 347

Test Value,

p Value

Female/Male, n 141/655 256/772 13.2, .0002a 64/158 69/131 1.31, .251 48/321 91/390 4.9, .026a 29/176 96/251 12.68, .0003a

Age, Years, Mean 6 SD 16.2 6 7.0 15.95 6 6.9 1.7, .1 18.1 6 5.7 18.3 6 5.8 20.4, .7 17.0 6 7.8 17.1 6 7.3 20.3, .8 14.0 6 7.0 13.0 6 5.7 1.931, .0539

Full Scale IQ, Mean 6

SD, n

106.1 6 15.8, 777 112.2 6 12.8, 994 28.97, ,.0001a 105.5 6 15.2, 221 108.5 6 12.6, 199 22.2, .028a 106.4 6 16.3, 361 111.4 6 12.4, 464 25.0, ,.0001a 106.1 6 15.7, 195 115.4 6 12.7, 331 27.4, ,.0001a

Head Motion FD, mm,

Mean 6 SD

0.079 6 0.037 0.072 6 0.033 4.18, ,.0001a 0.076 6 0.043 0.069 6 0.035 1.933, .054 0.081 6 0.034 0.071 6 0.031 4.41, ,.0001a 0.077 6 0.035 0.075 6 0.033 0.9, .365

Handedness, Total,

Right/Left/

Ambidextrous, n

627, 523/73/31 834, 754/56/24 NA 190, 158/26/6 163, 144/15/4 NA 243, 207/30/6 331, 300/25/6 NA 194, 158/17/19 340, 310/16/14 NA

Current Medication

Use, n

207 21 NA 84 12 NA 85 2 38 7 NA

ADOS Total, Mean 6

SD, n

6.1 6 2.5, 503 NA NA 5.0 6 2.6, 217 NA NA 7.0 6 2.1, 181 NA NA 6.9 6 2.0, 105 NA NA

ADI Social, Mean 6

SD, n

18.0 6 6.1, 584 NA NA 15.7 6 6.6, 212 NA NA 19.8 6 5.3, 255 NA NA 18.4 6 5.3, 117 NA NA

ADI Communication,

Mean 6 SD, n

14.6 6 5.1, 584 NA NA 12.9 6 5.6, 212 NA NA 15.9 6 4.5, 256 NA NA 14.8 6 4.5, 116 NA NA

ADI RRB, Mean 6 SD, n 5.1 6 2.6, 585 NA NA 3.9 6 2.5, 212 NA NA 6.0 6 2.5, 256 NA NA 5.3 6 2.3, 117 NA NA

SRS T Score, Mean 6

SD, n

87.5 6 30.3, 508 20.6 6 15.4, 535 45.33, ,.0001a 85.2 6 30.2, 178 19.9 6 14.3, 93 19.74, ,.0001a 91.0 6 30.3, 160 21.9 6 16.8, 165 25.5, ,.0001a 86.6 6 30.21, 170 20.0 6 15.0, 277 31.0, ,.0001a

VABS Adaptive

Behavior Composite,

Mean 6 SD, n

143.0 6 96.5, 298 247.7 6 113.4, 107 29.17, ,.0001a 73.6 6 12.2, 187 102.8 6 10.3, 38 213.78,,.0001a 237.5 6 39.2, 66 326.6 6 37.3, 43 211.8, ,.0001a 293.1 6 55.5, 45 329 6 50.5, 26 22.7, ,.008a

VABS Daily Living Skills,

Mean 6 SD, n

79.3 6 14.9, 298 101.7 6 11.7, 107 214.0, ,.0001a 75.7 6 15.0, 187 100.3 6 10.8, 38 29.58, ,.0001a 83.3 6 14.5, 66 104.4 6 12.7, 43 27.77, ,.0001a 87.9 6 9.8, 45 99.4 6 10.9, 26 24.58, ,.0001a

VABS Socialization,

Mean 6 SD, n

75.5 6 15.2, 298 108.8 6 12.0, 107 220.46,,.0001a 73.7 6 14.9, 187 108.2 6 11.3, 38 213.46,,.0001a 74.7 6 15.5, 66 111.7 6 11.7, 43 213.35,,.0001a 83.9 6 13.3, 45 104.8 6 12.7, 26 26.46, ,.0001a

VABS Communication,

Mean 6 SD, n

79.4 6 15.1, 298 105.7 6 12.6, 107 216.1, ,.0001a 78.0 6 15.0, 187 102.9 6 12.4, 38 29.59, ,.0001a 78.4 6 14.9, 66 108.2 6 12.8, 43 210.79,,.0001a 86.6 6 14.3, 45 105.6 6 12.1, 26 25.69, ,.0001a

ABIDE, Autism Brain Imaging Data Exchange; ADI, Autism Diagnostic Interview; ADOS, Autism Diagnostic Observation Schedule; EU-AIMS LEAP, European Autism Interventions

Longitudinal European Autism Project; FD, framewise displacement; NA, not applicable; NT, neurotypical; RRB, restrictive interests and repetitive behavior; SRS, Social Responsiveness

Scale; VABS, Vineland Adaptive Behavior Scale.
aStatistically significant difference.
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a covariate (Supplement Sections 5 and 9), supporting the

robustness of our findings. Our conclusions remain unchanged

in light of the edge-level false discovery rate–corrected ana-

lyses (Figure S16) and sensitivity analyses for sex, medication,

and comorbidity with attention-deficit/hyperactivity disorder

and the inclusion of participants with IQ , 70. These findings

can be found in Supplement Section 9. See Table S9 for a

quantitative summary of the results consistency with the main

findings across additional analyses.

Age- and Sex-Dependent FC Changes in Autism

We identified marginal evidence for an age-by-diagnosis

interaction for the autism . NT contrast (pFWE = .08) at the

primary threshold of p , .05 (Supplement Section 12). No

significant sex-by-diagnosis interactions were identified.

Split-Sample Analysis

To further demonstrate the robustness and replicability of our

findings, we conducted the full FC mapping and analysis of

group differences separately in the LEAP and ABIDE 1 and 2

data.

Our results of an atypical pattern of hyper- and hypo-

connectivity were largely consistent when analyzing the LEAP

and ABIDE 1 and 2 datasets separately (Figure S15), with the

network counts of the two results being highly correlated with

our primary findings shown in Figure 1 (LEAP: rnetwork_hypo =

0.92 and rnetwork_hyper = 0.89; ABIDE rnetwork_hypo = 0.95 and

rnetwork_hyper = 0.98). The results obtained at the level of indi-

vidual edges were also consistent, being particularly strong for

the ABIDE sample (redge_hypo = 0.95; DSChypo = 0.75;

redge_hyper = 0.94; DSChyper = 0.76) but somewhat weaker for

the LEAP data (redge_hypo = 0.72; DSChypo = 0.36; redge_hyper =

0.72; DSChyper = 0.37). Collectively, these results suggest that

while different samples may lead to some discrepancies in the

specific edges identified as altered, the pattern of differences

observed at the level of canonical networks is highly consis-

tent. Further details can be found in the Supplement Section

13, Figure S15.

Brain-Behavior Correlations

We next used CCA to evaluate brain-behavior correlations

between 10 behavioral measures and 48 PCs, explaining 50%

of the FC variance. This analysis revealed 2 significant CVs

(CV1: r = 0.72, p , .0001; CV2: r = 0.65, p , .0001) (see

Figure 2A, E).

The first CV exhibited a very strong association with the

restricted interests and repetitive behavior scale of the ADOS

(ADOS RRB; loading = 0.82) (Figure 2B). Analysis of the FC

loadings revealed that higher RRB scores were associated with

lower FC within the somatomotor network and between this

network and the dorsal and ventral attention systems

(Figure 2C); higher FC between the DMN and visual network;

and higher FC between the DMN and dorsal attention and

frontoparietal networks (Figure 2D). Normalized proportions

additionally revealed a contribution of lower striatal connec-

tivity with nearly all other systems (Figure 2C) when accounting

for network size. Regional degree analysis identified the left

nucleus accumbens and the somatomotor cortex as regions

with many connections where lower FC was associated with

RRBs (Figure 2C), and posterior cingulate and medial frontal

cortex as regions where higher FC was associated with RRBs

in autism (Figure 2D).

The second CV exhibited a strong association with the

ADOS SA score (loading = 0.82) (see Figure 2F). Higher ADOS

SA scores were associated with lower connectivity mainly

within the somatomotor network and between the somato-

motor network and higher-order attentional networks and be-

tween the thalamus and somatomotor and attentional

networks (Figure 2G). Greater social difficulties were also

associated with higher FC between the DMN and the rest of

the brain, particularly the visual network (Figure 2H). Higher FC

of the cuneus, lingual gyrus, and posterior cingulate cortex

was implicated in this relationship (Figure 2H).

In our second CCA analysis, we evaluated brain-behavior

correlations between the 6 SSP subscale scores and 44

PCs, explaining 50% of the variance across both control

subjects and individuals with autism. This analysis revealed

one significant CV (CV1: r = 0.63, p , .0001) (see Figure 3A).

The loadings of CV1 revealed a significant association with

sensation seeking (loading = 0.85), visual/auditory sensitivity

(loading = 0.72), and movement sensitivity (loading = 0.74)

(Figure 3B). Greater sensory sensitivities were associated with

lower FC between the visual and somatomotor network and

between the amygdala and somatomotor network (Figure 3C),

higher FC between the somatomotor and frontoparietal

network, and higher FC between the DMN and nearly all other

networks, especially the ventral attention and frontoparietal

networks. Higher within-network connectivity of the DMN was

also associated with atypical sensory processing. Normalized

proportions revealed that sensory sensitivities were related to

higher FC between the thalamus and the rest of the brain

(Figure 3D).

We additionally conducted leave-one-site-out validation

analyses, which yielded consistent findings (Figures S12, S13;

Tables S12, S13).

DISCUSSION

Using a comprehensive connectome-wide mega-analysis, we

report that autism is associated with complex, widely distrib-

uted differences in FC that encompass the entire brain. We

demonstrated the robustness of these findings through various

sensitivity analyses, including successful network-level repli-

cation in separate analyses of the LEAP and ABIDE 1 and 2

datasets. Reduced FC is predominantly found within the

somatomotor network and between the sensory-motor pro-

cessing networks and higher-order attentional systems.

Increased FC is predominantly found between the DMN,

subcortex, and the rest of the brain. These patterns show

strong associations with sensory processing difficulties and

distinct associations with clinical variables, such that lower

connectivity of sensorimotor and attentional networks is

associated with social difficulties and restricted interests, and

repetitive behaviors, whereas higher FC between the DMN and

other systems is mainly associated with social impairments.

We found marginal evidence for age-dependent FC changes

and no interaction between diagnosis and sex. Our findings

thus indicate that autism is characterized by a relatively stable
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pattern of widely distributed increases and decreases in FC

that are related to clinical symptoms of the condition.

Hypoconnectivity in Autism

Our results indicate that hypoconnectivity in autism is most

prevalent for functional connections within the somatomotor

network and connections linking the visual and somatomotor

network to each other and to attentional networks. Several

studies have previously reported atypical sensory processing

and visual-motor integration in autism (14,49–53). Our finding

of hypoconnectivity between the visual and somatomotor

network is furthermore consistent with recent work (16)

showing lower connectivity among visual association, so-

matosensory, and motor networks in autism.

The CCA revealed that while lower connectivity within the

somatomotor network and between the somatomotor

network and the attentional networks is related to RRBs and

social difficulties, lower connectivity between the somato-

motor network and the visual network is related to 3 sub-

scales of the SSP. The link between altered sensory

processing and social impairments and RRBs in autism is

supported by the previous literature (54–56). Lower con-

nectivity of the somatomotor cortex has been associated

with atypical primary sensory processing, which might

potentially hamper the ability to filter relevant information

and recruit a suitable motor response, leading to reduced

integration of the somatomotor networks with the salience

and dorsal attention networks (54). RRBs have been sug-

gested to provide a way to manage atypically regulated

sensory stimulation by means of reducing overstimulation or

creating stimulation in cases of stimulation seeking (54).

Hyperconnectivity in Autism

Our results further revealed prominent hyperconnectivity within

the DMN and between the DMN and the rest of the brain,

particularly with the frontoparietal and visual networks in in-

dividuals with autism. Thalamocortical connectivity and con-

nectivity between medial temporal and striato-thalamic

systems also showed prominent connectivity increases rela-

tive to network size. The CCA indicated that the observed

pattern of hyperconnectivity, particularly the between-network

connectivity of the DMN, was linked to sensory processing

difficulties and social impairments (ADOS-SA). FC between the

DMN and the visual network was also strongly associated with

restrictive and repetitive behaviors and social impairments,

whereas FC within the DMN, between the DMN and the ventral

attention and frontoparietal networks, was strongly linked to

atypical sensory processing.

Figure 1. Networks of altered functional connectivity in autism. (A) Matrix indicating the number of decreased connections (hypoconnectivity in autism)

between and within networks at the primary threshold corresponding to p , .01. As indicated in the legend, the upper triangle of the matrix shows the

proportion of decreased connections falling within and between each of the networks, normalized by the total number of possible connections within or

between the corresponding networks; the lower triangle shows the raw count of edges. The values in these matrices represent the number of edges in the

network-based statistic component that falls within each network and between each pair of networks. (B) Anatomical projection of the edges showing sig-

nificant hypoconnectivity in autism. (C) Cortical and subcortical maps showing the degree of each region within the network-based statistic-identified

hypoconnectivity network in autism. (D) Matrix indicating the number of increased connections (hyperconnectivity in autism) between and within networks at

the primary threshold corresponding to p , .01. As indicated in the legend, the upper triangle of the matrix shows the proportion of increased connections

falling within and between each of the networks, normalized by the total number of possible connections within or between the corresponding networks; the

lower triangle shows the raw count of edges. (E) Anatomical projection of the edges showing significant hyperconnectivity in autism. (F) Cortical and

subcortical maps showing the degree of each region within the network-based statistic-identified hyperconnectivity network in autism. Amyg., amygdala;

Hippoc., hippocampus.
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Figure 2. Brain-behavior correlations with respect to the restrictive and repetitive behavior (RRB), adaptive behavior, and IQ scales. (A) Correlation of the

first pair of canonical variates (CV1: r = 0.72, p , .0001) resulting from the canonical correlation analysis linking the behavioral scores to the principal

components accounting for 50% of the variance in edges with atypical functional connectivity (FC). (B) Structural coefficients, also known as loadings of the

behavioral scores with the first CV. (C) Significant negative correlations of FC with CV1: p , .05, characterized at the edge, network and region level. (D)

Significant positive correlations of FC with CV1: p , .05, characterized at the edge, network and region level. (E) Correlation of the second pair of canonical

variates (CV2: r = 0.65, p , .0001). (F) Structural coefficients, also known as loadings of the behavioral scores with the second CV. (G) Significant negative

correlations of FC with CV2: p , .05, characterized at the edge, network and region level. (H) Significant positive correlations of FC with CV2: p , .05,

characterized at the edge, network and region level. ADI, Autism Diagnostic Interview; ADOS, Autism Diagnostic Observation Schedule; Amyg., amygdala;

Hippoc., hippocampus; SRS, Social Responsiveness Scale.
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Our findings accord with many prior rs-fMRI studies impli-

cating disrupted connectivity of the DMN (15,19,57) and dis-

rupted connectivity between the DMN, frontoparietal, and

other networks in autism (58,59). Our findings are also

consistent with previous work showing increased subcortical-

cortical connectivity in autism (13,18,60). Increased connec-

tivity of the frontoparietal network with the DMN and hippo-

campus might be associated with working memory deficits

observed in autism (61–64). The observed associations with

social impairments suggest that the general pattern of hyper-

connectivity in autism may limit dynamic interactions between

networks, potentially leading to decreased behavioral flexibility

and thus difficulties in navigating dynamic real-world social

situations (15).

The Effects of Age and Sex

We found marginal evidence of an interaction between age

and diagnosis, but this result did not survive our significance

criteria. Therefore, we did not replicate previously reported

findings suggesting developmental effects in autism (35). This

may be the result of heterogeneous developmental trajec-

tories in the group of individuals with autism and demon-

strates an absence of a robust general developmental

trajectory distinguishing the autistic from NT development

after the age of 6. We did not observe a significant sex-by-

diagnosis interaction, suggesting limited evidence of sexu-

ally distinct patterns of altered FC that have been previously

observed in autism (65–68). Adequate recruitment of women

and girls with autism remains a challenge for the field, and our

results require replication in samples with a more balanced

male-to-female ratio.

Limitations

Our analysis did not include the cerebellum due to poor scan

coverage in many participants. Although our mega-analysis

allowed us to examine participants across a relatively broad

age range, most participants were under 25 years of age. This

is consistent with a general trend in the literature to focus on

younger samples. As such, it is still unclear how autism affects

the brain beyond the third and fourth decades of life. Our

sample sex ratio was imbalanced between the autism and

control groups, reflecting the higher proportion of males than

females diagnosed with autism in the general population. An

important way forward for the field will be to target individuals

with autism who are female and particularly those over 30

years of age. Only a small portion of the available subjects had

IQ , 70. Further work in such individuals is required to

determine whether our results generalize to individuals with

autism who are at the lower end of the IQ spectrum. Finally,

even though our study shows many significant case-control

differences in FC at the group level, these results should be

viewed in light of the considerable heterogeneity present

across individuals with autism. As such, future work could

focus on characterizing heterogeneity in autism and defining

autism connectivity subtypes.

Figure 3. Brain-behavior correlations with respect to the Short Sensory Profile subscales. (A) Correlation of the first pair of canonical variates (CV1: r = 0.63,

p, .0001) resulting from the canonical correlation analysis linking the behavioral Short Sensory Profile scores to the principal components accounting for 50%

of the variance in edges with atypical functional connectivity (FC). (B) Structural coefficients, also known as loadings of the behavioral scores with the first CV.

(C) Significant negative correlations of FC with CV1: p, .05, characterized at the edge, network and region level. (D) Significant positive correlations of FC with

CV1: p , .05, characterized at the edge, network, and region level. Amyg., amygdala; Hippoc., hippocampus.
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Conclusions

Our connectome-wide mega-analysis identified a widespread

and robust pattern of altered FC in autism, characterized by

prominent hypoconnectivity within sensory processing net-

works, and between these sensory networks and attentional

systems, in addition to hyperconnectivity of the DMN and

thalamus, with the rest of the brain. These connectivity differ-

ences were associated with distinct clinical dimensions and

show limited evidence of age or sex dependence, suggesting

that they are stable, trait-like features of autism. Additionally,

our network-level findings replicate in 2 independent sub-

samples. These findings not only reveal a robust pattern of

connectivity alterations, but also confirm the importance of

both the DMN and sensorimotor systems in the pathophysi-

ology of autism, and highlight their clinical relevance for un-

derstanding the symptoms of autism. This work paves the way

for further work on discovering connectivity biomarkers and

subtypes of autism that will inform clinical practice.
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