Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER THESIS

University of

=' S 4 UZH
< Zurich

Design and Prototypical
Implementation of the Node
Selection Strategy in Federated
learning

Chenfei Ma
Zurich
Student ID: 21-740-816

Supervisor: Alberto Huertas,Chao Feng
Date of Submission: Sept 27, 2023

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Master Thesis

Communication Systems Group (CSQG)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

ML (Machine Learning) Technologien entwickeln sich rasch weiter und werden fiir ver-
schiedene Anwendungen immer breiter angenommen. Anders als beim traditionellen Mo-
delltraining, bei dem alle Benutzerdaten auf zentralisierten Servern gespeichert werden
miissen, hat sich FL (Federated Learning) wegen seiner F#higkeit, Daten verteilt zu spei-
chern, groler Beliebtheit erfreut. Mit FL trainieren dezentrale Geréte ihr Modell lokal mit
ihren Datensétzen und aggregieren das lokal trainierte Modell mit dem globalen Modell.
Wiéhrend des FL-Prozesses ist das Modelltraining und die Konvergenzrate eng mit dem
Zustand der Geréte verbunden, die am Training teilnehmen. Daher untersucht diese Ar-
beit Strategien zur Knotenauswahl im FL und konzentriert sich dabei sowohl auf zentrale
(CFL) als auch auf dezentrale (DFL) Umgebungen.

In Anlehnung an bestehende Forschungen und die Beitriage von Che[1] und Sultana|2] wird
ein neuer Algorithmus vorgestellt. Dieser Algorithmus quantifiziert dynamische Knoten-
merkmale wie Rechenleistung, Latenz und Knotenalter und erstellt fiir jeden Knoten eine
spezifische Bewertung. Durch das Zusammenfiithren dieser Bewertungen mit einem pro-
babilistischen Auswahlverfahren wird jedem Knoten, unabhéngig von seinen Merkmalen,
eine Chance zur Auswahl garantiert. Eine solche Strategie fordert nicht nur die Gleich-
stellung der Knoten, sondern beschleunigt auch die Konvergenz im FL.”

Machine learning (ML) technologies are rapidly advancing and being widely adopted for
various applications. Unlike traditional model training, which needs to store all user data
in centralized servers, federated learning (FL) has become popular due to its ability to
store data in a distributed manner. With FL, decentralized devices train their model
locally over their datasets and aggregate the trained local model with the global model.
During federated learning process, the model training and convergence rate is closely
related with the devices condition which participant in training. Therefore, this thesis
investigates node selection strategies in federated learning, focusing on both centralized
(CFL) and decentralized (DFL) environments.

Drawing inspiration from existing research and the contributions of Che[l] and Sultana[2],
a novel algorithm is introduced. This algorithm quantifies dynamic node features such as
computational power, latency, and node age, producing a specific score for each node. By
merging these scores with a probabilistic selection approach, every node, regardless of its
attributes, is ensured a chance for selection. Such a strategy not only promotes equity
among nodes but also encourages faster convergence in federated learning.

1

Contents

Abstract

1 Introduction
1.1 Motivation
1.2 Description of Work
1.3 Thesis Outline

2 Related Work

2.1
2.2

2.3

3 Main
3.1

3.2

3.3
3.4

3.5

Background
Node selection in recent works L.

Limitation and challenges

Priority selection o
Integration into Fedstellar platform
3.2.1 Feature extraction
3.2.2 Feature messaging oo
3.2.3 Algorithm implementation
3.2.4 Integration into Fedstellar workflow
Random selection and default selection
Random virtual constrains oL

Front-end implementation 00

iii

15

17

iv CONTENTS

4 Evaluation 55
4.1 Scenario deployment 55
4.2 Experiment setupo 58
4.3 Result comparison 60

5 Summary and Future work 75
5.1 Conclusion 75
5.2 Future worko 76

Bibliography 79

List of Figures 82

List of Tables 85

Chapter 1

Introduction

1.1 Motivation

The rise of Artificial Intelligence (AI) and Machine Learning (ML) is a significant milestone
in the development of computing power, affecting various industries. These technologies
are increasingly critical in today’s big data environment, where the amount of information
we generate is doubling roughly every two years. Projections show that data from Internet-
of-Things (IoT) devices will significantly increase in the future. Therefore, it is important
to effectively utilize this data for machine learning applications. However, there are several
challenges involved in this task. The data from IoT devices is often spread across multiple
locations or nodes, which complicates matters due to limited communication bandwidth
and concerns over data privacy. Additionally, regulations in different countries make it
difficult to centralize the data for traditional machine learning approaches.

Traditional machine learning methods usually pull all their data into one central location
for easy access during training. But as the world is moving more towards a distributed
or decentralized approach, this central way of gathering data is becoming less practical.
It’s not just costly in terms of communication; It also poses risks such as single points
of failure, where the entire system could either fail or experience slowdowns. Plus, this
centralized approach often overlooks new, stricter laws about data privacy and where data
can be sent or stored across countries. In 2016, a new method called Federated Learning
came along to help solve many of these problems[3]. It lets multiple clients or nodes work
together to train models without sending all their data to one place. This avoids the
issues with centralizing data and makes better use of data that’s spread out all over the
world, while keeping that data more secure and lowering communication costs. The basic
steps of federated learning is shown as Fig.1.3.

2 CHAPTER 1. INTRODUCTION

7N
\

== (@

Figure 1.1: Federated learning example

Federated Learning itself has two primary variants—Centralized Federated Learning (CFL)
and Decentralized Federated Learning (DFL). The example graph is shown as Fig. 1.2.
[4] CFL is the more common approach, involves a central server and only for the pur-
pose of model aggregation rather than data collection. While this preserves client data
privacy, it it does come with some drawbacks, such as single points of failure and bot-
tlenecks that can adversely affect the scalability and robustness of the federated learning
system. Recognizing these challenges, the concept of Decentralized Federated Learning
(DFL) emerged in 2018 as an evolution of CFL.[5] DFL eliminates the need for a cen-
tral server altogether, instead allowing for decentralized aggregation of model parameters
directly between neighboring participants [6]. This method uses local computer power
more efficiently and makes the whole system more robust by allowing learning to happen
locally and through direct exchanges between participants.

Client 2 ::a -

{_ Local Training

sz\ o A,
Clieni T (= o 3@@’
‘ommunicatio

{_Local Training

Client3 = o
-
Central Server \ 2~ Local Training

Exchange

(a) Centralized Federated Learning

(b) Decentralized Federated Learning
(CFL) (DFL)

Figure 1.2: Illustration of Structure for CFL and DFL

Despite the advantages offered by DFL over CFL, one big question that hasn’t been fully
answered is how to best choose the clients that participate in each round of training. Cur-
rently, many systems just pick clients randomly or selecting all the clients of participant.
These approaches often overlook key factors that could make the learning process more
efficient. For example, how much computing power does each client have? Are they reli-
able? What is the quality of their data? Even scheduled tasks that could interfere with
a client’s computing abilities or how busy their network is at the moment could make a
difference. It is important to note that in a DFL network, it could have a mix of powerful

1.2. DESCRIPTION OF WORK 3

N & @
AN AN

Qodod LUOLd QO0d0

Server select node
Push the global model t Each node computes the The nodes send local
ush the global model to gradients to the server.

the local nodes. local gradient.

The server receives the
local gradients

Construct a global gradient
Update the global model.

Figure 1.3: Basic steps in federated learning

data centers and smaller, less capable devices like Internet-of-Things (IoT) devices. So,
picking the right clients for each round becomes even more critical.

This research gap is the driving force behind this study. This study aim to develop better
methods for choosing clients in DFL training rounds, taking into account important factors
like computing power, data traffic, and the model performed. The end goal is to make
each training round work better, improving both the system’s overall performance and
its robustness. This study considers that making smarter client selections will speed up
DFL and make it more reliable. This will help DFL be more useful in real-world scenarios
compare to traditional CFL selection method.

Another key motivators for this research is the need for an empirically-validated approach
to node selection in Federated Learning, specifically in both Centralized Federated Learn-
ing (CFL) and Decentralized Federated Learning (DFL). While various theoretical strate-
gies for client selection have been proposed,[7] [8] there is few in practical applications
that rigorously test these strategies. To address this, this study goes beyond theoretical
models by incorporating node selection into an framework. This allows us to directly
evaluate the effectiveness of different client selection algorithms. Furthermore, we aim
to make the selection process more interactive and user-friendly, thus facilitating broader
adoption and testing.

In summary, this work seeks to contribute to the field by offering a comprehensive guide

and a hands-on tool for smarter, empirically-tested node selection across different Feder-
ated Learning approaches and node selection strategy.

1.2 Description of Work

This Master’s Thesis focuses on addressing the complexities of CFL and DFL, specifically
in node selection. The scope includes multiple related phases.

4 CHAPTER 1. INTRODUCTION

In the first phase, this work conducted a comprehensive review of the current state-of-
the-art in CFL and DFL. This review is essential for gaining a thorough understanding
of the existing landscape, including its logic, algorithms, and solutions utilizing CFL
and DFL. In addition to comprehending the fundamental mechanisms that facilitate FL,
particular emphasis was placed on exploring literature discussing methods for dynamically
and flexibly selecting nodes within a federated learning. The primary objective of this
initial step is to thoroughly examine existing approaches for node selection in Federated
Learning. By identifying factors considered by these approaches and uncovering any
unresolved issues or limitations, this study can then set the stage for subsequent stages
of the research by determining which aspects need to be addressed.

In the second phase, the work aims to create a comprehensive taxonomy for node selection
mechanisms in federated learning (FL). This include both centralized and decentralized
methods. While there is existing literature on centralized FL, this work extend those find-
ings to the context of decentralized FL. the goal is not just to adapt existing taxonomies
but to develop a new strategy that specifically addresses the conditions and requirements

for both CFL and DFL.

After completing the taxonomy, the third phase focuses on designing a solution that ef-
fectively monitors and combines selected aspects for node selection in federations. The
criteria for selecting these aspects was based on the developed taxonomy. This design pro-
cess primarily involves making decisions about what aspects to monitor, how to monitor
them, and how frequently they should be updated. It is crucial to note that the proposed
solution aims to be dynamic and adaptable to changes in both the federation environment
and participant behaviors.

Entering the fourth stage, the work focuses on the practical aspects—implementation
and deployment. Specifically, the node selection solution designed in the third phase is
intended to be integrated into the Fedstellar DFL framework [9]. Furthermore, a suitable
use case and dataset are identified to validate the performance and appropriateness of
the designed solution. It is crucial for this validation phase to incorporate a dynamic
federation scenario where nodes are chosen based on their real-time status. Additionally,
this stage involve choosing metrics that are aligned with the goals of the research to
compare the proposed solution against existing strategy.

At the end of this project, the study aims to produce a working example that fulfills
all the initially set goals. In addition, this study provides detailed documentation that
explains each decision made during the design and setup process.

In summary, this Master’s Thesis trying to bridge the gaps in existing research on DFL
by focusing on optimized node selection. This work aims to contribute to the field of
node selection in DFL by conducting a rigorous literature review, creating a taxonomy,
designing and implementing solutions, and validating them. Each stage builds on the last
to develop a solid understanding of node selection. By so doing, this work aims to make
contribution to the field, providing insights and tools that could be invaluable for future
research and practical applications.

1.3. THESIS OUTLINE)

1.3 Thesis Outline

The thesis consists of five parts: introduction, related work, main chapter, evaluation,
and summary /conclusion.

1. Introduction: This section describes the motivation for the study and provides an
overview of the thesis structure and work arrangement.

2. Related work: In this section, first thing is to introduce the background about the
federate learning and the place of node selection strategy in federate learning. Later,
the recent works on CFL, DFL, and node selection strategies in federated learning are
introduced. These works focus on different aspects such as effectiveness or adaptiveness
of the strategy.

3. Main chapter: The priority selection algorithm is introduced along with its rationale.
The integration steps of this strategy into the Fedstellar framework are explained in
detail. Additionally, two other selection strategies to be used for later evaluation are
listed, along with information about customized configuration and frontend modification
implementation.

4. Evaluation: This section explains how decisions were made to build the testing group
for evaluation purposes. It also presents a comparison of results from experiments and
attempts to explain their significance in demonstrating the effectiveness and efficiency of
the proposed strategy.

5. Summary/Conclusion: A comprehensive statement is provided summarizing all com-
pleted work and achieved results thus far. Finally, suggestions for future improvements
that could enhance this study are presented.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 Background

Machine Learning (ML), a subset of Artificial Intelligence (Al), stands to gain significantly
from the data explosion anticipated in the near future. Yet, in many settings like smart
city sensor [10] and health monitors [11], those data from countless IoT devices are usually
distributed across various locations. Constraints such as limited bandwidth, data privacy
concerns, and national laws make it difficult or even counterproductive to gather this data
in one central location, as is commonly done in traditional ML methods.

Federated Learning is an innovative approach to machine learning that addresses the
challenges of data privacy, distributed storage, and communication overhead inherent in
our data world. Emerging as a breakthrough in 2016 [3], Federated Learning enables a
network of decentralized nodes to collaboratively train machine learning models without
requiring raw data to be sent to a central server. By keeping data localized, Federated
Learning not only minimizes data transmission costs but also enhances data security and
privacy, complying with increasingly stringent regulations. It allows the network to learn
from valuable, possibly sensitive, distributed data, without moving them to a central
server.

Federated Learning can be categorized into two main types: Centralized Federated Learn-
ing (CFL) and Decentralized Federated Learning (DFL). In CFL, a central server is em-
ployed for model aggregation. This server initiates the global model, distributes it to
all participating nodes, and is in charge of aggregating the updated local models. These
local models are derived from data at each node, and their collective knowledge refines the
global model on the central server. The centralized approach offers advantages such as
streamlined communication and easy management, as well as efficient resource allocation,
enhancing computational efficiency. However, it also presents challenges, including a sin-
gle point of failure and increased vulnerability to cyber-attacks, which could compromise
data privacy.

DFL, introduced in 2018, [6], [12] enables decentralized aggregation of model parameters
without a central server. In this approach, nodes collaborate through local computation

7

8 CHAPTER 2. RELATED WORK

and by exchanging model parameters among themselves. DFL offers its own set of ad-
vantages compared to CFL. Firstly, it is self-scaling; newly joined nodes communicate
with their neighbors in the same way as existing nodes, maintaining the network’s overall
structure. Secondly, the lack of a need for central server infrastructure means that all
computations are performed locally on each node, eliminating some of the vulnerabilities
associated with CFL.

Despite the promising benefits, Federated Learning still faces numerous challenges such
as efficient node selection and ensuring quality of service for ongoing research and devel-
opment.

In the realm of Federated Learning, there are two primary categories for consideration:
Centralized Federated Learning (CFL) and Decentralized Federated Learning (DFL). Each
has its own approach to node selection, which is a key aspect for determining the quality
of the global learning model.

In CFL, a central server takes the lead in selecting nodes for each round of model train-
ing. There are several common strategies for doing this. One popular method is random
sampling, where the central server selects nodes at random for each training round. This
approach is computationally efficient, making it easier to manage from a resources stand-
point. However, its downside lies in the potential for creating an imbalanced or less
accurate global model because the selection is random. Another method is comprehen-
sive, or ’all’ sampling, where every available node is selected for each training round.
While this may yield a more balanced and accurate global model, it comes at the cost of
using more computational resources and bandwidth. This could result in inefficient data
aggregation and increased network overhead.

In DFL, node selection is more complex due to its decentralized nature. In this setup,
each node independently selects its neighboring nodes for data aggregation and model
training. Because each node has autonomy in making this choice, the criteria for selection
can differ from one node to another. This demands a selection strategy that is adaptive
to each node’s specific circumstances.

Both CFL and DFL face their own set of challenges when it comes to node selection. The
central question is how to scale the selection process efficiently, especially as the number
of participating nodes increases, without compromising the performance and accuracy of
the global model.

To sum up, node selection is a crucial element in both Centralized and Decentralized Fed-
erated Learning. It influences not just the computational efficiency of the learning process
but also the quality of the global model that is produced. While each has its advantages
and disadvantages, choosing the right strategy for node selection can significantly impact
the success of a Federated Learning project.

2.2 Node selection in recent works

The subject of node selection in Federated Learning has garnered increasing attention
in recent years from 2019. Understanding the role and strategy behind node selection is

2.2. NODE SELECTION IN RECENT WORKS 9

crucial for optimizing the Federated Learning system’s robustness, performance, and fair-
ness. For instance, robustness ensures the system’s resilience against network disruptions,
while performance strategies aim at computational efficiency and speed of the learning
process. On the other hand, fairness ensures that nodes with varying capabilities have an
equitable opportunity to contribute to the global model.

In 2019, Nishio purposed a CFL protocol FedCS [8] that considers the time constraints
of the framework. The key idea is to set a certain deadline for clients to communicate
with the server and aggregate as many clients as possible in the given time. There is a
two-step client selection, the first step is performed by the clients to update the resources
information to the server such as bandwidth condition, computational power and data
size. The second step is the client selection step which is performed by the server. In
the client selection step, the server will estimate the time needed for clients to complete
the iteration and determine which clients will be selected to join this iteration. After
setting a deadline, the server can optimize the client selection by maximizing the number
of selected clients based on resource information while keeping the iteration time within
a time constraint.

A similar feature that is closely related to the time constraint is the bandwidth. Tang [13],
Amiri [14], Ren [15], Yu [16], Chen [17], Sultana [2], and Tang [18] all consider bandwidth
as an optimizing feature in federated learning. Tang2020 introduced an adaptive client
selection algorithm that optimizes bandwidth usage. The algorithm’s server coordinates
client information and training processes, but it does not act as a central server in cen-
tralized federated learning that involves parameter aggregation. They use the modified
gossip algorithm to generate a gossip matrix based on the communication speed. By only
choosing the one peer that has the better bandwidth, the clients only connect with a single
peer and save on communication costs. In 2023 Tang [18] purposed a DFL framework
that implements the algorithm above. The author state that always choosing the best
connection with clients will result in fixed peers. Therefore, randomly selecting another
peer with better bandwidth is better for convergence.

Amiri [14] focuses on both the bandwidth and local updates during client selection. Since
the bandwidth is limited and more connected clients will result in fewer communication
resources. The goal of this paper is to select the clients to reach the best performance
within the bandwidth limit. The significance of local updates is measured by the 12-norm.
A higher 12-norm indicates a greater importance for labelling the client. They compare
four methods based on different priorities: bandwidth only, local updates importance
only, bandwidth with higher priority and local updates importance with lower priority,
and local updates importance with higher priority and bandwidth with lower priority. The
last method gives the best performance during the experiment which means considering
both the bandwidth and local updates are necessary and local updates are having a greater
impact on the convergence.

Ren [15] purposed a scheduling algorithm which has a similar focus to Amiri. They are
focusing on data size, bandwidth, local updates, and unbiasedness with an extra feature
which is the probabilistic selection. The importance of local updates is measured as
gradient divergence in this paper. They proved that with probabilistic scheduling, the
gradient would be unbiased if all the clients have a non-zero chance to be selected. In

10 CHAPTER 2. RELATED WORK

their framework, the larger data size and larger gradient divergence in a client mean
greater importance of the client to the global model. With a higher probability toward
the clients which has larger data size, larger gradient divergence and better bandwidth, a
faster convergence rate will achieve.

Cho [19] focuses on local updates and biased selection in a similar approach. Their
approach is to select the clients with higher local loss to speed the convergence rate. The
selection is in three steps. First, the server samples a subset of all clients with the Power-
of-Choice strategy. Then the server sent the global model to clients and gets the local loss
back. Last, the server selects the clients with the highest local loss. The paper proved
that this selection algorithm increases the convergence rate compared to unbiased client
selection. Ribeto [20] also focuses on the local update, while the clients have to choose
whether to connect to the server based on the threshold server sent and the local update
norm of the client. The server receives updates from clients who choose to send them.
For clients that do not send updates, the server relies on the Ornstein-Uhlenbeck process
to predict their local updates. By adaptively selecting the threshold, the algorithm can
reduce the communication cost during the training period.

Chen [21] and Chen [17] both consider the local update and use a probabilistic approach
for the client selection algorithm. Chen [21] takes a similar approach as others’. Using
the importance of local updates as the key feature to label the selection probability of
the clients and every client are having a non-zero chance to be selected. To further
optimize the convergence time, they implement an artificial neural network to estimate
the local parameters of those clients which is not being selected. Chen [17] similarly uses
the probabilistic selection to prioritize the clients with more contributions to the global
model while keeping the communication cost within limits. The nodes first calculates
their model update and upload the updates to the central controller. Then the central
controller determines the connection probability by updates of the nodes and distance
between nodes and controller.

Onoszko [22] focuses on dealing with non-iid(non-independent and identically distributed)
data. They purposed an algorithm in DFL called Performance-Based Neighbor Selec-
tion(PENS) by considering the data distribution in clients and selecting the peer clients
with similar data distribution. The idea of this algorithm is first, the clients randomly
communicate in the network. Then the clients will send the model to their peers. By
examining the training loss of the sent model from the clients, the clients will be able
to find peers with similar data distribution since the peers with similar data distribution
will have a lower loss than peers with the dissimilar distribution. After having a group
of peers selected from the previous step, the clients will take the top peers to be the
selected peers to communicate and learn the model which is more suitable for the local
data distribution.

Wu [7] also designed a probabilistic client selection algorithm to improve the convergence
rate with non-iid data. They focus on finding clients with a local gradient that helps the
convergence of the global gradient and exclude the clients that have an adverse effect on
global updates. By iteratively removing the local updates of the clients, the server would
identify the clients which adverse local updates and label the clients with a contribution
expectation value. Since the expected global gradient would be higher if the server in-

2.2. NODE SELECTION IN RECENT WORKS 11

cludes the adverse clients and vice versa. Within the included clients, the algorithm can
further adaptively select the clients with higher contributions in each iteration using the
probabilistic selection based on the expectation value.

Chen [23] considers privacy while utilizing probabilistic client selection and prioritizing
local updates. The importance of the clients is defined by the norm of local updates which
is similar to other studies. After calculating the updates in the clients, clients send the
updates’ norm to the server. The server calculates the aggregated norm of clients’ updates
and distributes it to them. Then, based on their local norm and probability matrix (which
they calculated), the clients perform the client selection step. In addition, they focus on
the privacy of the framework. By using the greedy algorithm from Wangni [24] the norm
of the client updates secured aggregated in the server and the server can use only the
aggregated norm to keeps the privacy nature of federated learning.

Che [1]purposed a algorithm which uses two opposite selection strategy with the same
scoring system. The scoring system determines the honesty level based on the euclidean
distance between the local node gradient and peer node gradient. Honest nodes receive a
higher score because their gradients are closer, while one honest node and one malicious
node receive a lower score that can affect node selection behavior. The selection strategies
differ in their robustness. Two strategies are proposed for selecting peer nodes to aggregate
the global gradient. The first strategy selects nodes with higher scores, which makes the
aggregation process more robust and mitigates the impact of Byzantine attacks. However,
this also makes it more difficult to learn the global data. The second strategy selects
nodes with lower scores, which allows for faster convergence of global gradients and better
understanding of global data. However, this strategy may result in a less robust model
that is vulnerable to Byzantine attacks.

Researchers such as Yang [25], Yang [26], and Shi [27] have focused on previously over-
looked features including signal-to-noise ratio(SNR), frequency of participation, and la-
tency. Yang [25] conducted an experiment to compare three node selection algorithms:
random scheduling, round robin(RR), and proportional fair(PF). The results indicate
that the PF algorithm is more efficient when the signal-to-noise ratio threshold is high,
while RR performs better under low signal-to-noise ratio conditions. The PF algorithm
is achieved by selection nodes with the highest value of instantaneous SNR over average
SNR.

Yang [26] focused on the frequency of participation feature in node selection. Their
approach was to prioritize nodes that have been recently updated by assigning an "age”
value to each node based on its participation frequency. During each iteration, if a node
is not selected by the server, its age value increases. The selection algorithm aims to
minimize the sum of all age values among nodes under all other constrains like iteration
time limit or transmission power.

Shi [27] aims to reduce the training delay by minimizing the latency per iteration in the
training process. This is achieved through a scheduling policy that considers both compu-
tation and communication latencies. The algorithm involves setting a latency threshold,
after which the server adds up node latencies from least to most until the sum reaches the
threshold. Nodes whose latencies are included in this process are selected for participation.

12 CHAPTER 2. RELATED WORK

In 2020, Sultana [2] proposed the Eiffel algorithm which considers various features such
as local updates, data size, computational power and frequency of participation. The
algorithm selects nodes based on a specific process. Firstly, the server distributes the
global model to all nodes. Secondly, after completing their local training step, each node
uploads its resource information and local updates to the server. Thirdly, using this
information provided by each node, the server calculates an overall score for every node
by considering all aforementioned features. Finally, based on these scores in descending
order (highest to lowest), the server determines which nodes will be selected for subsequent
training and aggregation iterations. In general terms; higher loss values or larger data
sizes along with more computational power and longer "age” are ranked higher in this
scoring system.

Fairness plays a significant role in node selection strategies. A fair algorithm should values
positive input more than negative inputs and rewards the nodes with positive inputs a
more accuracy model. Researchers such as Kang [28], Lyu [29], Rehman [30], and Yu [16]
have explored various approaches to address this issue.

In 2019, Kang [28] proposed a node selection algorithm that uses a reputation mechanism.
The algorithm starts by calculating the reputation scores for each node based on three
factors: interaction frequency, interaction timeline, and interaction effects. Interaction
frequency refers to the number of interactions between nodes and the server. Interaction
timeline represents how quickly the reputation score declines over time; recent interactions
have a higher weight in determining scores. Interaction effects are determined by whether
an interaction has a positive effect on the global model; if so, it increases the reputation
score. By monitoring these three factors and calculating an overall reputation score,
servers can select nodes from highest to lowest rank.

Lyu [29] proposes a different approach to applying the reputation mechanism in node selec-
tion algorithms. In this paper, nodes receive distributed models based on their reputation
scores, which are calculated as follows: first, the accuracy of each node is determined
by calculating its contribution to the global model using uploaded local weight updates.
Next, all accuracies are normalized by the server. Finally, a sinh function is applied to
these accuracies to obtain the reputation score for each node. The server then distributes
more updates to nodes with higher reputation scores and fewer updates to those with
lower scores. This ensures that each node receives a unique model and that its accuracy
reflects its contribution to the global model.

Rehman [30] employs a distinct punishment approach for low reputation nodes. The
method involves identifying adversarial nodes among all the nodes and rejecting updates
from them. Adversarial nodes are detected using the local model’s accuracy as a feature.
Nodes upload their local models to the server, which then calculates their accuracy. After
computing the mean and variation of all node accuracies, those with outlier values are
excluded from global model aggregation.

The following tables are the summary of recent node selection approach and the corre-
sponding simplified algorithms.

The abbr. are listed here to clarify the equations used in the simplified algorithms.

2.2. NODE SELECTION IN RECENT WORKS

13

Recent Node Selection Approaches

Papers Year || Area Features Focus
Nishio [8] 2019 || CFL Bandwidth, Computational power, | Robust, Performance
Data size, Time constrain
Kang [28] | 2019 || CFL Reputation, Security Robust, Fairness
Yang [25] | 2019 || CFL Signal to noise ratio Performance
Yang [26] 2019 || CFL Frequency of participation Robust
Shi [27] 2019 || CFL Latency Robust, Performance
Tang [13] 2020 || CFL Bandwidth, Gossip Robust,Performance
Amiri [14] | 2020 || CFL Local updates, Bandwidth Robust,Performance
Ren [15] 2020 || CFL Local updates Bandwidth Robust,Performance
Probabilistic, Data size
Cho [19] 2020 || CFL Local updates, Biased Robust,Performance
Ribero [20] | 2020 || D/CFL| Local updates Robust,Performance
Lyu [29] 2020 || CFL Reputation Fairness
Rehman [30] | 2020 || D/CFL| Local updates Robust,Fairness
Chen [21] | 2021 || CFL Local updates, Probabilistic Robust, Performance
Chen [17] | 2021 || CFL Local updates, Bandwidth Robust, Performance
Probabilistic
Omnoszko [22] | 2021 || DFL Non-IID, Gossip, Local updates Robust, Performance
Wu [7] 2022 || CFL Non-IID, Probabilistic Robust, Performance
Chen [23] 2022 || CFL Local updates, Probabilistic Privacy | Robust, Performance
Fairness
Sultana [2] | 2022 || CFL Local updates, Data size Robust, Performance
Computational power Fairness
Frequency of participant
Che [1] 2022 || DFL Local updates, Security Robust, Performance
Tang [18] | 2023 || DFL Bandwidth, Gossip Robust, Performance
This work | 2023 || D/CFL| Local updates,Data size, Latency Robust, Performance
Computational power Fairness
Availability, Bytes
Frequency of participation

Table 2.1: Recent Node Selection Approaches

14 CHAPTER 2. RELATED WORK
Recent Node Selection Approaches
Papers Simplified Algorithm Dynamic Static
Nishio [8] i = arg min;eg = i + é—i cp, B; ds
Kang [28] Frequency+Time+Effect F,TE
Yang [25] i = arg max Z%%::t’f ,ieN SNR
Yang [26] i = argmin 3" age; age
Shi [27] i = arg;c y min{ Lat;""" + Lat{o™m"} Lat
Tang [13] 1= {mm(BZ],Bﬂ)]BU > Bthreshold} B;
Amiri [14] Lomazx| Aw; |2 W B;
2.Bjest = Bay — B,
Ren [15] P, =ds; || g |l ﬁtl g, Lat; ds
Cho [19] i = arg max;ck ¢; l;
Ribero [20] i :H AWZ ||2> AVvthreshold Wi Wihreshold
Lyu [29] rep = sinh(Acc(w + Awy)) L
Rehman [30] mean, var < acc(wj) Wi
Chen [21] P, = HlNiINA”\l’VZ w;
Aw; istance;
Chen [17] Pl - Hiil A‘\‘zvi Zi1 f}listancei Wi
Onoszko [22] 1. ¢;; = Loss(w;,input) W
2. i = arg; max({,; ;)
Wu [7] L. dremove = (AW, AW gopar) < 0,7 € N w;
o p.— _lAwi
: g Zi\il AWZ
Chen [23] P = || Aw; [|/SN, Aw, w
Sultana [2] | ¢ = max{{; + ds; + cp;/resource demand + age;} Ui, age; cp;, ds;
Che [1] Score; = m w
Tang [18] Similar to Tang [13] B,
This work scorel = ZHNAWAM > w;, cp;, Lat; ds;
i=12W;
P! = (ascorel + Bept 4+ vds;+ age;, aval;
dLatt + ABytes; + pagel)avall Buytes;

Table 2.2: Recent Node Selection algorithms

c¢p = computational power

ds = data size

B = bandwidth

w = local updates

g = local gradient divergence
Lat = latency

¢ = local loss

SN R = signal to noise

age = frequency of participation

In summary, the domain of node selection in Federated Learning has seen an increase
of robust research since 2019, each contributing unique perspectives and methodologies.
These studies can broadly be categorized based on the features they consider essential for

2.3. LIMITATION AND CHALLENGES 15

optimizing node selection, such as time constraints, bandwidth, local updates, data size,
frequency of participation, and fairness. While some researchers like Nishio and Tang
have proposed time-efficient frameworks that optimize the selection based on deadlines
or bandwidth, others like Amiri and Ren have focused on the importance of local up-
dates and bandwidth in achieving faster convergence rates. More algorithms proposed
by researchers like Wu and Onoszko aim to tackle the challenges posed by non-iid data
where non-independent and identically distributed data are more easily slowing down the
convergence rate and the algorithm purposed by them could improve such convergence
rate. Recent contributions also incorporate critical concerns such as privacy and fairness
into the federated learning areas.

2.3 Limitation and challenges

In terms of limitations, existing research on node selection in federated learning often
falls short in offering comprehensive models. Many of the current frameworks prioritize
one or two performance metrics, such as loss efficiency or bandwidth optimization. While
these are important factors, the absence of a more holistic approach limits these models’
effectiveness in real-world applications where multiple constraints are at play.

Additionally, a large portion of the existing research has been conducted in controlled
environments, making it difficult to generalize these findings to more unpredictable, real-
world settings. Devices in real-world settings face variable conditions, such as fluctuating
battery life and competing computational tasks. This variability can undermine the effi-
cacy of existing node selection strategies, which are often not designed to adapt to such
unpredictability.

There is also an emerging but still insufficient focus on considerations such as fairness and
bias in node selection. Most of the current models are not adequately designed to ensure
that all participating nodes, particularly those from underrepresented or minority groups,
have an equitable influence on the global model.

When we turn the attention to challenges for new node selection strategies, a few key
areas emerge. Firstly, there is an immediate need for a more comprehensive approach to
optimization. Purposed work should aim to balance a range of variables, from efficiency
and bandwidth to fairness and computational power, tailored to the specific needs of
the application at hand. Moreover, it is essential for upcoming research to move beyond
the scope of well-controlled environments to evaluate the resilience and efficacy of node
selection strategies in real-world conditions. Fairness considerations, especially ensuring
minimizing bias, should be integrated into the design and evaluation of new node selection
algorithms. Scalability is another pressing concern; as federated networks grow in size and
complexity, the algorithms guiding node selection must be designed to scale efficiently.
Finally, as data privacy concerns continue to escalate, new node selection strategies must
navigate the challenging trade-off between optimizing the utility of the global model and
preserving the privacy of local data.

16 CHAPTER 2. RELATED WORK
In summary, while the current landscape of node selection research has made important
groundwork, there is a distinct need for more holistic, real-world applicable strategy that
are scalable and adaptively adjust according to surrounding nodes..

Chapter 3

Main

In this main chapter, a detailed explanation of the purposed node selection is present
within the context of Federated Learning, focusing on both Centralized Federated Learn-
ing (CFL) and Decentralized Federated Learning (DFL) modes. The chapter provides a
comprehensive overview of the feature selection process for nodes, laying out criteria and
methodologies for feature extraction, which serve as essential preliminary steps in design
a robust node selection strategy. It further explains the underlying logic that drives node
selection in both CFL and DFL modes. As part of this exploration, the following chapter
is explain in detail how the proposed node selection strategy can be seamlessly integrated
into the Fedstellar framework, [9] a comprehensive platform in federated computing. The
integration process is described in detail for both CFL and DFL modes, ensuring that the
purposed strategy is not just theoretical but also practically actionable.

3.1 Priority selection

In order to effectively implement a node selection strategy, both centralized federated
learning (CFL) servers and nodes in decentralized federated learning (DFL) must as-
certain the condition of their neighboring nodes. The process becomes redundant if all
nodes exhibit similar conditions; hence, distinct features of each node become vital for a
meaningful selection. Furthermore, it is imperative to consider inherent limitations and
challenges, such as robustness and efficiency, when devising a node selection strategy.

Robustness, in this context, could be interpreted as the strategy’s ability to adapt to the
fluctuating conditions of the nodes. Previous research has considered various features to
describe node conditions but often neglects the dynamic nature of these features. Given
that the condition of edge devices can change over time, an adaptive node selection model
should not only focus on convergence rates but also on capturing the fluctuating conditions
of each node.

Firstly, computational power stands as a key feature, influencing the training time during
learning iterations. The computational capabilities of a node are a cornerstone in deter-
mining its efficiency in federated learning tasks. A node with higher computational power

17

18 CHAPTER 3. MAIN

can complete training iterations more rapidly, reducing the overall time required for model
convergence. However, computational power is not static; it can fluctuate based on other
processes running on the node. Therefore, an adaptive node selection model should con-
stantly evaluate each node’s available computational resources to provide a more accurate
estimate of iteration time.

Another crucial metric to consider is the communication latency between nodes or between
the server and nodes. Higher latency during data transmission extending the time it takes
to receive updates from other nodes, consequently extending the iteration period. This
can result in inefficient aggregation and distribution of model updates. Therefore, an ideal
node selection strategy should prioritize nodes with lower latency to optimize the overall
efficiency of the learning process.

The size of data traffic sent and received by a node is a key parameter, particularly
during model gossiping and aggregation phases. Nodes that can handle larger data traffic
are likely to contribute more meaningful information to the global model, potentially
accelerating the rate of model convergence. As a result, the size of data traffic should be
factored into the selection process.

The loss metric, which quantifies a model’s performance at each iteration, is another
feature that can guide the selection strategy. Nodes with higher loss values indicate greater
divergence between local and global models, suggesting that their data can significantly
influence the global model. Therefore, nodes with higher loss should be given preference
in the selection process to expedite convergence.

The volume of local data held by a node is often directly proportional to its contribution
to the global model. Larger data sets usually result in more robust learning and faster
convergence. Hence, nodes with larger data sets should be given preference during the
selection process.

The age of a node in the network, measured by how long it has been since last selected for
training, can also be a consideration. Nodes that have not been selected for an extended
period, for example due to high latency, might possess unique or diverse data that could
be beneficial for the global model. Older, unselected nodes should thus be weighted more
heavily in the selection algorithm to ensure their data is also incorporated into the global
model.

Last but not least, the availability of a node for training is pivotal. Nodes might pause for
various reasons, such as low power or maintenance, which should be taken into account
during the selection process. A record of each node’s availability status helps in making
a more informed selection.

In summary, the process of node selection invovles a multi-aspect approach, taking into
account a variety of features such as computational power, communication latency, data
traffic size, loss metrics, volume of local data, node age, and availability. These features are
not static but rather dynamic, subject to change over time. Therefore, an effective node
selection strategy must be inherently adaptive, capable of reassessing and prioritizing
nodes based on these fluctuating conditions. The aim is to balance robustness with

3.1. PRIORITY SELECTION 19

efficiency, ensuring not only faster convergence rates but also a more resilient and equitable
learning process.

With in mind of the comprehensive features outlined in preceding sections, the subsequent
phase is the development of the node selection algorithm designed for both CFL and
DFL environments. To effectively implement this mechanism, it is critically important to
differentiate between individual nodes based on a evaluative criteria.

The concept of node ranking based on assigned scores were in existing academic literature.
Specifically, the work of Che [1] and Sultana[2] provides a valuable theoretical framework,
proposing the assignment of numerical scores to each node, based upon their current
conditions. These scores serve as indices for a ranking system, which guides the selection
process in both Centralized and Decentralized Federated Learning.

Our algorithm not only identifies key features for node evaluation but also quantifies
these features to compute unique scores for each individual node. Each node’s current
operational state is represented as a vector of these features, enabling a multi-dimensional
assessment of the node’s capabilities and limitations.

We propose an algorithm that builds on Sultana’s additive model to aggregate multi-
dimensional feature vectors. by having a coefficient in front of each features from the
node and a final availability score. the algorithm can compute the score for each of the
node and use as a guide for node selection.

Distinct from Sultana’s top-down selection methodology, our approach employs proba-
bilistic selection for each node. The probability of selecting a given node is proportional
to its score relative to the total score pool. This probabilistic selection serves a key pur-
pose: it allows every node to have non-zero chance to be selected in the selection process
thereby facilitating the convergence time[21].

In general, each node is assigned a composite score based on its feature vectors and
adjusted by coefficients. And the score times the availability number would be the final
score for the node. The probability selection process take the score as the probability and
use this to select the nodes. This scoring mechanism ensures that each node’s current
state is accurately represented. The probability selection mechanism are used to make
each node have a chance to be selected. The resulting nodes are the selected nodes,
improving the training and convergence process in Federated Learning. The following is
the formula 3.1 used to calculate the scores of the node 7 in iteration ¢ where loss = loss,
computational power = cp, data size = ds, latency = Lat, Data traffic size = Bytes, age
= age and availability = aval.

score; = (aloss + Bept + vds; + dLatt + € Bytes; + Cage!)aval} (3.1)

In the context of the coefficients assigned to each feature, these mathematical factors hold
significant weight, as they are coupled with the feature values to generate a composite
score for each node. The calibration of these coefficients is a non-trivial task and needs
careful consideration. Details on the methodology employed to determine these coefficients
are discussed in the implementation section of this study. Importantly, these coefficients

20 CHAPTER 3. MAIN

are designed to be flexible, providing a framework that can be tailored to accommodate
different federated learning scenarios or to optimize various performance metrics in future
research endeavors.

t
' score;

Y score;
—1 Score;

(3.2)

After the scores for each node have been calculated, the algorithm moves into a subsequent
phase that involves a probabilistic node selection mechanism. Specifically, this selection
process is governed by Equation 3.2, which calculates the probability of selecting each
node based on its composite score relative to the sum of all nodes’ scores. By integrating
these carefully-calibrated coefficients and probabilistic selection methodologies, the algo-
rithm offers a robust and adaptable solution for node selection in both Centralized and
Decentralized Federated Learning settings.

3.2 Integration into Fedstellar platform

Fedstellar[9] is a versatile platform for Federated Learning that enables training of Ma-
chine Learning models on physical and virtual devices across different federation modes.
Designed to operate in centralized, semi-decentralized, and decentralized settings, It effec-
tively addresses challenges in Decentralized Federated Learning, such as communication
bottlenecks and heterogeneous network topologies. Empirically, the platform has demon-
strated its efficacy through deployments in cyberattack detection and benchmark datasets
like MNIST and CIFAR-10. With proven performance and adaptability metrics, Fedstel-
lar presents an excellent framework to extend and test our node selection algorithm. This
section dive deep into the mechanics of integrating our node selection algorithm into Fed-
stellar’s architecture. The aim is to enrich Fedstellar’s existing capabilities by leveraging
our algorithm’s dynamic, real-time selection of nodes, thereby potentially improving the
platform’s efficiency and convergence rates.

Following the introduction to the versatile and robust Fedstellar framework, it is crucial
to outline the steps required for the seamless integration of our proposed node selection
algorithm. The process involves several pivotal steps, each serving a unique function in
ensuring a smooth fusion with Fedstellar’s existing architecture.

1. Identification and Extraction of Features: The first crucial step involves the identifi-
cation and extraction of relevant features from each node within the federation. These
features form the foundation for our algorithm’s scoring and ranking system. It is essen-
tial to work closely with Fedstellar’s existing data structures and functionalities to extract
these features efficiently without compromising the integrity of the broader system.

2. Algorithmic Implementation: Subsequent to feature extraction, the focus shifts to the
actual implementation of our node selection algorithm within the Fedstellar framework.
This involves embedding the algorithm in such a manner that it functions coherently

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 21

within Fedstellar’s existing operational flow. The implementation phase require atten-
tion to algorithmic details, including variables, functions and calculation steps, to ensure
performance.

3. Integrate the Selection Process with the Original Framework: The final pivotal step is
the merging of our node selection algorithm with Fedstellar’s existing aggregation mecha-
nisms. This involves establishing a robust connection between the two, ensuring that the
newly implemented algorithm not only supplements but helps the efficiency of Fedstellar’s
original structure.

Each of these steps is expounded upon in the subsequent sections, offering details for the
algorithm’s integration into the Fedstellar framework. This multi-step procedure aims to
improve Fedstellar’s node selection capabilities substantially, thereby contributing to the
optimization of both Centralized and Decentralized Federated Learning paradigms within
the framework.

3.2.1 Feature extraction

The Fedstellar framework employs Docker containers to simulate the nodes in the fed-
erated learning network, a design choice that considerably eases the process of feature
extraction. Within this context, node features can be broadly divided into two categories:
Physical Conditions and Learning Conditions. For the extraction of features related to
Physical Conditions—such as computational power and data traffic size—the Python
package psutil’ proves to be invaluable.The Python package "psutil’ is an incredibly ver-
satile utility that offers an expansive suite of methods for system monitoring. Designed
to be cross-platform, it allows for the acquisition of a wide range of system statistics
and metrics, including, but not limited to, CPU statistics, memory usage, disk activity,
network status, and even details about individual running processes[31]. This compre-
hensive set of capabilities makes 'psutil’ a highly attractive choice for feature extraction,
especially within the scope of this study where precise metrics are necessary for informed
node selection.

By incorporating the "psutil’ package into each Docker-simulated virtual node, we can
readily obtain crucial metrics like computational power and data traffic size. In the
context of federated learning, the selection of appropriate metrics for computational power
is important for the effective functioning of the algorithm. After careful consideration,
CPU utilization, represented by the ’cpu_percent’ attribute in 'psutil,” was chosen as the
indicator for computational power for several reasons. Firstly, CPU utilization serves as
a proxy for the computational burden being placed on a given node at any given time,
offering real-time insights into the system’s current capabilities and workload. Secondly,
it is a readily available metric, thereby minimizing the computational overhead associated
with the feature extraction process itself. Lastly, CPU utilization is a well-understood and
widely-used metric, making it a reliable and interpretable choice for other researchers.
By using 'cpu_percent’ as the computational power indicator, we aim to capture the
instantaneous computational status of each node, thereby enabling a more nuanced and
dynamic node selection process within the federated learning environment. For monitoring
data traffic size, the "psutil” package conveniently offers a ready-to-use attribute called

22 CHAPTER 3. MAIN

"net_io_counters.” Listing 3.1 provides the code snippet employed within the simulated
virtual node to capture both computational power and data traffic size.

Listing 3.1: physical feature extraction

self . cpu_percent = psutil.cpu_percent ()
net_io_counters = psutil.net_io_counters()

self .bytes_received = net_io_counters.bytes_recv
self .bytes_send = net_io_counters.bytes_sent

Before diving into the specifics of learning feature extraction, it is essential to introduce
the PyTorch Lightning package, a significant part in the fedstellar framework’s machine
learning process. PyTorch Lightning is a lightweight PyTorch wrapper designed to de-
couple the science code from engineering code. It enables more organized, modular, and
reusable code and simplifies complex network training tasks into straightforward, high-
level abstractions. For example, with PyTorch Lightning, training loops, and callbacks
are abstracted in a way that allows us to focus on the model logic rather than plain code.
It not only brings structure to our code but also makes it easier to extract performance
metrics, such as loss.

Regarding learning conditions, two features must be extracted: loss and data size. Thanks
to PyTorch Lightning, these metrics can be easily acquired. The loss is accessible through
the ‘callback_metrics’ method of the ‘LightninglLearner‘’s trainer module, as illustrated by
the code listing 3.2. In each training process, the trainer execute this callback method, ob-
tain the training loss from the trainer, and save it to the node for later selection. Similarly,
data size is straightforward to extract from the ‘LightninglLearner‘’s data module. The
code snippet self.data_size = len(self.data.train_dataloader() .dataset) re-
trieves the length of the dataset, giving us an easy way to determine data size.

Listing 3.2: partial feature extraction

self.loss = float (self.__trainer.callback_metrics|[Train/Loss’])
self.data_size = len(self.data.train_dataloader (). dataset)

In this implementation of node selection, the metrics of availability, latency, and age are
extracted using diverse methods tailored to each. Starting with availability,” for the pur-
pose of simulation, we uniformly set this metric to 1 across all nodes. This serves as a
general, neutral coefficient that affects all other attributes of the nodes. This standard
setting helps maintain a controlled environment for testing. However, when moving from
the simulated world into real-world applications, availability would likely be variable and
could be linked to several factors like battery status, network availability, or even ge-
ographic location. Each of these factors can play a critical role in a node’s ability to
participate in Federated Learning tasks. As for ’latency,” the methodology is a bit more
involved. Instead of each client node measuring its own latency, this task falls on the
receiving node. In a Centralized Federated Learning (CFL) scenario, the central server is
the receiver. It collects data from various client nodes and, in the process, calculates the
latency for each one. On the other hand, in a Decentralized Federated Learning (DFL)
system, each node acts as an aggregator and calculates latency based on interactions with
its neighbors. This information is stored and used for node selection, as detailed in Code

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 23

Listing 3.3. Here, whether in a CFL or DFL setup, the receiving entities regularly ob-
tain ’feature messages’ from their neighbors and employ specific algorithms to compute
the latency between them and their corresponding neighbors. Lastly is the ’age,” a less
straightforward but equally important metric. Unlike availability and latency, age is not
directly extracted from the nodes themselves. Instead, it is managed at the level of the
'selector,” which exists either on the central server in CFL or individually within each
node in a DFL context. Initially, when federated learning kicks off, every neighboring
node is assigned an age value of 1. As learning progresses and nodes participate in dif-
ferent training rounds, their age metric evolves. Specifically, if a neighboring node isn’t
chosen for a particular training iteration, its age increases by 1. Conversely, the age of
a selected node remains constant, offering a dynamic yet consistent means of evaluating
long-term participation and reliability.

Listing 3.3: partial feature extraction

def get_latency(self, h, p):

s = socket.socket (socket .AF_INET, socket.SOCK.STREAM)
start = time.time ()

s.connect ((h, p))

s.close ()

latency = ((time.time()—start)*1000)

return latency

3.2.2 Feature messaging

The feature messaging have a template to follow which is the heartbeat module in the
framework. The Heartbeater module in the Fedstellar platform serves as a real-time mon-
itor and communicator between nodes involved in Federated Learning. It has four main
functions, the first one is to send heartbeats. It sends out regular "heartbeat” messages to
check if neighboring nodes are active. Secondly it maintaining node list. It keeps track of
active and non-responsive nodes, removing any that don’t respond within a certain time-
frame. Third it Periodically updates both the node’s role and its status to a centralized
controller for oversight. the Heartbeater acts as the pulse monitor and communicator
for nodes, ensuring everything is functioning as expected. By leveraging this pre-existing
structure, we can easily adapt the Heartbeater module to include triggering feature mes-
saging. This extension would involve periodic notifications to nodes for sharing feature
data, ensuring smooth information flow and enhancing node selection effectiveness in
Federated Learning scenarios. The implementation of this can be seen in code listing 3.4,
which includes an extra method to adjust the time interval between each triggering event.
This allows for a customize frequent occurrence, in this case a less frequent event than
the default frequency, reducing network overhead caused by feature messaging events.

Listing 3.4: Heartbeater triggering feature events

24 CHAPTER 3. MAIN

self.__send_event_with_interval(
Events .SEND_FEATURES_EVENT, self . __count , beat_interval =8)

def __send_event_with_interval(
self ,event , count ,beat_interval ,obj=None):

if count % beat_interval = 0:
self .notify (event, obj)

Following the initiation of the "SEND FEATURE EVENT,” each node activates its cor-
responding feature-sending method as shown in code listing 3.5. This activation entails
a multi-step process. First, the node extracts the features according to the procedures
outlined in the prior section, encompassing elements such as computational power, data
traffic size, availability, and learning conditions like loss and data size.

The next step is to build the feature message demonstrated in code listing 3.6, a crucial
task that adheres to the existing communication protocol within the Fedstellar framework.
This message comprises several parts. The initial segment specifies the message type,
which, in this context, is "FEATURE.” Subsequent sections of the message are dedicated
to conveying the actual feature data. Notably, the feature message includes the name of
the node which sending the message, along with other extracted features, omitting only
the “age” and “latency” attribute.

Upon successfully building the message, the node proceeds to broadcast this feature mes-
sage to its neighboring nodes. This is accomplished by leveraging a pre-existing broad-
casting method within the framework. The robustness of this setup ensures not only the
coherent assembly of feature information but also its efficient and reliable broadcasting
among nodes.

Listing 3.5: Sending feature events

elif event = Events.SEND_FEATURES_EVENT:
self.__feature_extraction ()
self.broadcast (CommunicationProtocol. build_feature_msg (
self.get_name(),
self .loss ,
self.cpu_percent ,
self.data_size ,
self.bytes_received ,
self.bytes_send
self . latency ,
self . availability

)

Listing 3.6: Building feature message

@staticmethod
def build_feature_msg(node, loss, cpu_percent,
data_size , bytes_received , bytes_send, latency, avaliability):

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM

NNy

25

Static method that builds a feature message.
CommunicationProtocol . FEATURE + node + feature

Returns:

An encoded feature message.

NNy

return (CommunicationProtocol .FEATURES

b} 7
—

node

7 2
(-]

str (loss)

7 7
—

” 2
(-]

7 2
—

b} 7

7 2

e e S

str (cpu_percent)
str (data_size)

str (bytes_received)
str (bytes_send)

str(avaliability)
"\n”).encode (" utf—8")

The sending mechanism is just one half of the equation; the receiving end plays an equally
important role in making the feature messaging system robust and functional. To facil-
itate this, a specific message-receiving routine is integrated into the existing communi-
cation protocol of the Fedstellar framework. In technical terms, this is achieved by ex-
tending the communication protocol with an additional ’elif’ condition. This conditional
statement serves as the framework’s way to recognize incoming messages that carry the
"FEATURES” header. Upon such identification, the protocol then delegates the body of
the message to a designated command method. The simplified code snippet ins shown
in code listing 3.7. This method, in turn, triggers a "WEATURE RECEIVED EVENT”
notification for the receiving node while also forwarding the feature data encapsulated in

the message.

Listing 3.7: Identifying feature message

elif message[0] = CommunicationProtocol .FEATURES:

if self.__exec(

CommunicationProtocol .FEATURES,
message [1]

float (message [2]
float (message 3]
float (message [4]
float (message [5]

26 CHAPTER 3. MAIN

float (message[6]) ,
float (message[7]) ,
):
message = message [8:]

What happens after the receiving node is notified of a new feature message? The node’s
next steps are determined by the logic scripted under the "FEATURE RECEIVED EVENT”,
which is also showed in code listing 3.8. firstly, the node fetches the address of the sending
node from the received message. Following this, it calculates the latency associated with
that particular node, employing methods previously mentioned. Last, these freshly re-
ceived feature data are stored within the node’s selector component for future utilization,
be it for node selection or other operational considerations.

Listing 3.8: Receiving feature message

elif event = Events.FEATURES RECEIVED_EVENT:
h, p = obj[0].split(”:")
lat = self.get_latency (str(h), int(p))
self.selector.add_node_features(obj[0], obj[l:], lat)

By carefully coordinating the sending and receiving mechanisms for feature messages, the
system ensures a seamless and efficient exchange of critical information between nodes.
This functionality is essential for optimizing Federated Learning processes by enabling
better node selection and enhancing overall network efficiency.

3.2.3 Algorithm implementation

Upon successfully establishing a feature messaging mechanism, where sender and receiver
nodes can effectively exchange features, the next critical phase emerges: the implemen-
tation of the node selection algorithm. This step make use of these features. Thus, the
transition from feature extraction and message communication to algorithmic execution
for node selection is both a logical and necessary progression in the node selection devel-
opment.

To utilize these features and manage the age of nodes, one approach is to create a new
module within the node called "Selector”. The Selector module handle all tasks related to
node selection and management of variables associated with node selection. The imple-
mentation of the Selector can be seen in code listing 3.9, which begins by initializing a list
of neighboring nodes, an empty dictionary for storing features, and an empty dictionary
for storing neighbors’ ages. When triggered by the "WEATURE RECEIVED EVENT”,
the Selector uses the method “add_node_features” to store seven features into a dictionary
using the node’s name as key and feature content as value. The other methods within the
Selector class offer additional utility: ’set_neighbors’ and ’add_neighbor’ allow dynamic
modification of the neighbors list, while 'node_selection’ serves as a placeholder for the ac-
tual node selection algorithm. Furthermore, the clear_selector_features” method offers the
ability to reset the features dictionary, providing a clean slate for updated feature data.

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 27

Another noteworthy method is ’init_age’, which initializes the age of each neighboring
node to 1, providing a foundational step in node age management.

Listing 3.9: Selector module in Node

class Selector ():

def

def

def

def

def

def

def

def

__init__(self , node_name="unknown”, config=None):

self .node_name = node_name

self.config = config

self .role = self.config.participant ["device_args”|[”role”]

self . neighbors_list = []
self.features = {}
self.age_list = {}

add_node_features(self , node, features, latency):
self . features|[node] = {}

self.features |[node|[”loss”]| = features[0]
self.features |[node|[”cpu_percent”] = features|[1]
self . features [node|[”data_size”]| = features [2]

self . features[node][”"bytes_received”] = features [3]
self.features [node|[”bytes_send”]| = features [4]
self . features [node|[”availability”] = features [5]
self . features [node|[”latency”]| = latency

set_neighbors(self , neighbors_list):
self . neighbors_list = neighbors_list

get_neighbors(self):
return self.neighbors_list

add_neighbor (self , neighbor):
self . neighbors_list.append(neighbor)

node_selection (self):
pass

clear_selector_features(self):
self.features = {}

init_age (self):
for i in self.neighbors_list:
self.age_list[i] =1

Building upon the foundational elements of the Selector module, a Priority Selection Algo-
rithm can be seamlessly integrated, primarily by overriding the ‘node_selection‘ method.
This algorithm functions by employing various node features to generate a list of nodes

28 CHAPTER 3. MAIN

selected for model aggregation or model training, among the neighboring nodes. the
detailed code implementation is shown in the code listing 3.10 and the following is the
step-wise explanation for building and implementing the algorithm.

To commence this process, the algorithm starts by creating a duplicate list of all neighbor-
ing nodes. This ensures that any changes made during selection do not interfere with the
original list. A crucial parameter set at this stage is the range for the number of nodes to
be selected. Given that selecting zero nodes could lead to potential errors in subsequent
operations, the minimum number of nodes to be selected is set to one. Meanwhile, the
maximum is established at 80% of the total number of neighboring nodes, rounded down
to the nearest integer. For instance, if there are eight neighboring nodes, the maximum
number of nodes selected under this criterion would be six. Importantly, this ceiling can
be adjusted depending on the condition of the nodes—should a large number of nodes be
in poor condition, fewer may be selected to maintain system performance. Next, a multi-
dimensional feature array is constructed, where each column corresponds to a specific
neighboring node and each row represents a particular feature (e.g., 'loss,” 'cpu_percent,’
etc.). This array is populated using the feature values stored in the Selector’s ‘features’
dictionary. One critical consideration is the timing of the first node selection relative to
the start of training among the neighboring nodes.

The ’loss’ value can serve as a useful indicator; however, there are instances when this
value may not be accurately reported, such as when a node has not yet started train-
ing. In such scenarios, the algorithm assigns a ’loss’ value of 100 as a placeholder. This
high value automatically positions such nodes as less favorable for selection, ensuring that
nodes which have begun training are prioritized. Additionally, some feature values need
to be transformed before they can be used for selection. Specifically, the 'cpu_percent’ and
latency’ features require computing their reciprocal numbers. A higher CPU utilization
percentage usually signifies a more efficient system under the same workload, thus justi-
fying its inversion. Similarly, lower latency is generally preferable, making its reciprocal
a suitable measure for selection.

Listing 3.10: Priority Selector algorithm implementation

def node_selection (self , node):
neighbors = self.neighbors_list.copy ()
if len(neighbors) = 0:
return node
num_selected = max(1,int (len(neighbors)*0.8//1))
availabililty = []
feature_array = np.empty ((7, 0))

for node in neighbors:

feature_list = list ((self.features|[node|[”loss”],
self.features [node][”cpu_percent”],
self . features [node|[”data_size”],
self.features [node][”bytes_received”],
self.features [node][”bytes_send”],

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 29

self.features [node|[”"latency”],
self.age_list [node]))
if loss mot available , set loss to 100
if feature_list [0] = —1:
feature_list [0] = 100

availabililty .append(self.features[node][”availability”])
feature = np.array(feature_list).reshape(—1, 1)
.astype (np. float64)

feature_array = np.append(feature_array , feature, axis=1)

1 / cpu_percent

feature_array[1, :] = 1/feature_array[l, :]
1 / latency
feature_array[5, :] = 1/feature_array[5, :]

Normalized features
feature_array_normed = normalize (feature_array , axis=1, norm="11")

Add weight to features

Loss, cpu, data size, data rec, data send, latency, age

weight = [10.0, 1.0, 1.0, 0.5, 0.5, 10.0, 3.0]

weight = np.array (weight).reshape(—1, 1)

feature_array_weighted = np.multiply (feature_array_normed , weight)

Before availability
scores = np.sum(feature_array_weighted , axis=0)

Add availability

final_scores = np.multiply(scores, np.array(availabililty))

Probability selection
p = normalize ([final_scores], axis=1, norm="11")
selected_nodes = np.random. choice (

neighbors, num_selected, replace=False, p=p[0]). tolist ()

selected_nodes .append(self.node_name)
Update age dict
for node in neighbors:

if node not in selected_nodes:

self.age_list [node] = self.age_list[node] + 1

return selected_nodes

After ensuring that all feature values are accurately placed within the multi-dimensional

30 CHAPTER 3. MAIN

feature array, the algorithm proceeds to normalize these values for each feature. This
normalization is a preparatory step for subsequent computations. Once normalized, each
feature is then multiplied by a specific coefficient to adjust its weight in the final selection
process. For example, if the user considers the 'loss’ feature to be of critical importance
compared to all other features, they could set its coefficient to 100 while leaving the
coefficients for other features at 1.

Subsequent to this weighting, an aggregate score for each node is calculated by summing
up the weighted feature values. This aggregate score is further refined by multiplying it
with an ’availability’ value, thereby producing a final score for each neighboring node.
It is important to note that the algorithm employs Python’s NumPy library, specifically
the 'random choice’ module, to generate a list of node indices based on the final scores’
probabilities.

Furthermore, the selector is configured for self-selection by default. The rationale behind
this is that the node’s own data best reflects local conditions and is exempt from network
latency or other types of interference. This makes self-selection a reliable default behavior
in the implemented algorithm.

The last operational step updates the age list. The algorithm iterates through the keys
in the age dictionary. If a key corresponds to a node in the selected list, its age value
remains the same. Otherwise, the age value is incremented by 1. This feature allows the
algorithm to dynamically adapt to changes in the network’s conditions over time.

Ultimately, the algorithm outputs a list of selected neighboring nodes.

3.2.4 Integration into Fedstellar workflow

After successfully developing the Selector module, integrating it seamlessly into the ex-
isting FedStellar framework is the next step. But before the proceeding with this, it
is imperative to understand the default workflow of the FedStellar framework to ensure
compatibility and functional coherence.

In the default workflow, the process is initiated at the framework’s controller level. The
controller receives a trigger from the web interface to launch the learning process and starts
a Docker image for each participating node. Each node subsequently initializes its core
communication modules: the gossip and heartbeater modules. These modules establish
basic network functionality and facilitate communication with neighboring nodes.

After initialization, each node enters the learning phase, starting by identifying its neigh-
bors and initializing its learners. Within this phase, the role each node plays has a
significant impact on its logic.

In a CFL setup, nodes assume one of two roles: either as a trainer or as a server. Trainers
are primarily responsible for receiving model updates from server nodes and submitting
their own trained models back to these servers. On the other hand, server nodes act as
aggregation points, receiving models from all connected trainers. They aggregate these
models and disseminate the updated model back to the trainer nodes. In contrast, in a

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 31

DFL architecture, each node functions as an aggregator. Here, every node is responsible
for training its own model and sharing it with neighboring nodes via a gossip mechanism.
Once a node receives models from its neighbors, it aggregates them to compute an average
model, which then becomes its new updated model.

To integrate the nodes selection into the existing framework, this study began by focusing
on the common elements shared between CFL and DFL. One of the most critical compo-
nents for the Selector module is the initialization of an age list, which serves as a record
to monitor one of the features of each neighboring node. The age list is initialized at the
beginning of the federated learning process during the "start learning” phase. This ensures
that all neighboring nodes are properly recorded before the learning iteration begins. By
integrating this step early on, the Selector module can immediately access information
about neighboring nodes, which is crucial for subsequent node selection algorithms.

Listing 3.11: Age Initiation
for n in self.__initial_neighbors:
if n.get_name() not in self.selector.get_neighbors():
self.selector.add_neighbor(n.get_name/())
Add self if not already in the mneighbors list
self.selector.add_neighbor(self.get_name()) if self.get_name/()
not in self.selector.get_neighbors() else None
Initialize the age list
self.selector.init_age ()
Update the Selector’s neighbors list for consistency
self.selector.set_neighbors(self.get_neighbors_names|())

In the code snippet provided in code listing 3.11, the Selector module fetches information
about the node’s initial set of neighbors to populate the age list. It iterates through
each neighbor in self._initial_neighbors. If a neighbor is not already in the Selector’s
neighbor list, it is added using self.selector.add_neighbor(n.get_name()). Additionally,
the node adds itself to the neighbor list if it is not already present. After populat-
ing the neighbors, the method self.selector.init_age() is called to initialize the age at-
tributes of all listed nodes to a default value (typically set to 1). Finally, the method
self.selector.set_neighbors(self.get_neighbors_names()) is set to ensure that the Selector’s
internal list of neighbors is synchronized with the node’s list of neighbors.

CFL integration

The next step is to integrate node selection into the training loop. However, it is worth
noting that CFL’s training loop behaves differently from DFL. Therefore, the immediate
focus is on implementing node selection within the server-side logic of the CFL framework.
By default, the server in a CFL environment follows a specific sequence of actions: it
initiates an evaluation phase, proceeds to aggregate models received from the trainer
nodes, and then gossip the updated global model through gossip communication. The
loop then resets for the next iteration.

32 CHAPTER 3. MAIN

The inclusion of node selection can potentially facilitate this process in multiple ways.
One immediate strategy is to place the node selection algorithm right before the model
aggregation step. This would allow the server to consider only high score models for
aggregation, which can accelerate convergence. However, implementing node selection
solely at the server level would not mitigate resource utilization at the trainer nodes. Each
trainer node would still execute its training cycle and communicate its local model to the
server at every iteration, irrespective of its selection status. This leads to unnecessary
computational resource consumption and potentially prolongs the time to convergence.
Therefore, a more comprehensive strategy is proposed: node selection occurs both at the
server and the trainer nodes. Here’s how it works. The server, after running its node
selection algorithm, sends a list of selected nodes to all trainer nodes. A trainer node,
upon receiving this list, evaluates its own inclusion. If it is part of the selected nodes,
it proceeds with its training cycle; otherwise, it skips training for that iteration. This
approach provides a dual benefit. First, it allows for resource conservation at the trainer
nodes by making the training conditional based on the selection. Second, it reduces the
computational burden on the server by narrowing down the pool of models it needs to
aggregate.

Following the broadcasting of the selected nodes list, the server undertakes a second round
of selection to identify which received models should be integrated into the aggregated
global model. This two-step selection process serves dual purposes: it minimizes compu-
tational resource expenditure and expedites the overall convergence rate of the federated
learning model.

Listing 3.12: Selected Node Broadcasting

#broadcast the selected node list

self .selected_nodes = self.selector.node_selection (
self.get_name|())
self.__train_set = self.selected_nodes

self . broadcast (
CommunicationProtocol. build_select_node_msg (
str ("—".join(self.selected_nodes))))

#build select node msg
@staticmethod
def build_select_node_msg (nodes):
msg = (CommunicationProtocol .SELECTED_NODES
" 77|_‘77
+ nodes
+ "\n”).encode (" utf-8”)
return msg

SELECTED_RECEIVED_EVENT

elif event = Events.SELECTED_RECEIVED_EVENT:
selected_nodes_list = obj.split (7—7)
self.check_in_selected_list (selected_nodes_list)

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 33

To implement the outlined approach, additional functionalities need to be added within
the framework. The main task is to inform neighboring trainer nodes about the selected
nodes. This can be done by adopting an approach similar to that used for broadcasting
feature events. As shown in code listing 3.12, the server first calls the node_selection()
method from the Selector class to generate a list of selected nodes. Subsequently, this
list is transformed into a delimited string, making it more manageable for the subsequent
broadcasting stage.

This string is then broadcast to all neighboring nodes using the build_select_node_msg
methods, part of the CommunicationProtocol class, that constructs the appropriate mes-
sage format.Upon receiving the message at the other end, the communication protocol
identifies it as a SELECTED NODES message. This triggers the SELECTED RECEIVED
EVENT event, which prompts the Trainer node to split the incoming selected node string
into a list using the ‘split(™")* function. The Trainer node then executes a subsequent
check called check_in_selected_list to determine if it exists in this newly-formed list of
selected nodes.

Before starting the training phase, the Trainer checks if it is included in the list of selected
nodes. If it is, then it proceeds with the training process. Otherwise, it skips the training
stage and moves on to the next steps in the workflow. This optimizes resource usage
and reduces unnecessary computational loads, which aligns with the initial goals of node
selection.

DFL integration

After carefully outlining the integration of the node selection mechanism into the CFL
framework workflow, it is important to consider its applicability in a broader context. The
complexity of ensuring efficient convergence and resource utilization in CFL raises similar
concerns for DFL. In a DFL setting, where all nodes serve as aggregators, introducing
node selection could offer benefits such as optimized resource utilization and faster model
convergence. However, it is clearly noted that DFL operates differently from CFL, with
every node acting as an aggregator. Therefore, integrating node selection into the DFL
framework requires some adaptations in the workflow. Now the next step is to explore
how the integration of node selection into the DFL framework using principles established
in the CFL context.

Building on the insights from the CFL setting of the framework, integrating node selection
into the DFL setting comes with its own set of challenges and benefits. However, since age
initiation, node selection algorithms, and the broadcasting of selected nodes have already
been developed, the integration into DFL is somewhat convenient. The DFL setting of
the framework applies just one role—Aggregator—which simplifies the implementation.

Similar to the approach in CFL, the node selection process takes place after the model
evaluation phase. The major distinction lies in the decision-making process for the Ag-
gregator regarding training commencement. In a DFL framework, each Aggregator re-
ceives multiple selected node lists from its neighboring nodes, complicating the decision
on whether to proceed with training. To resolve this, a specific method, captured in the
code under the function _selected_decision, is required.

34 CHAPTER 3. MAIN

Listing 3.13: Selection decision

def __selected_decision (self):

waiting_time = 0
time . sleep (2)

if self.config.participant[”device_args”|[”role”]
=— Role .AGGREGATOR:
while self.total_selected_msg_received
=— (0 and waiting_time < 10
time . sleep (2)
waiting_time 4= 2

if self.total_selected_msg_received = 0:
return True

if self.my_node_selected_msg_received /
self . total_selected_msg_received >= 0.5:
return True

else:
return False

The _selected_decision function in code listing 3.13 serves the purpose of making the
training decision for an Aggregator. The function begins by introducing a waiting_time
variable, initiating it at zero, and allowing a brief sleep time of 2 seconds. This sleep period
is likely necessary to ensure that all messages from neighboring nodes have been received.
It then checks if the role is that of an Aggregator. If no selected node messages have been
received within a 10-second window, the function returns ‘True‘, allowing the Aggregator
to proceed with training, on the assumption that it has been selected by default. This is
set to account for situations with poor connections between nodes, where one node may
become disconnected from the network. By defaulting the value to true, it allows training
to continue even when a node is isolated.

Subsequently, another decision is made. If the proportion of messages received that include
the Aggregator in the selected node list is greater than or equal to 0.5, the function also
returns ‘True‘, authorizing training. Otherwise, the function returns ‘False‘, suggesting
that the Aggregator should avoid from training in that iteration.

This _selected_decision function thus serves as a critical component in the DFL node
selection, ensuring not only efficient utilization of resources but also more smooth and
effective training processes. This fills the gap in DFL by offering a method to decide
dynamically whether an Aggregator should engage in the training for a given iteration or
not, based on the received selected node lists.

In summary, the comprehensive workflow of the framework after the integration of the
node selection feature is depicted in Fig. 3.1. The process initiates with the node ex-

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM

Selection
Node process

node_start

>

feature extraction

broadcast feature msg

learning J

alt/ Server or :l
Aggregator evaluate

|—
A

node selection

selected node list

R e

|: selected node event
selected node event [’]

training decisiol

alt/ Aggregator/ |j
n.

alt/ selected /

train l:[

|—

node selection

selected node list
PRyt ugny i

set aggregate node list

aggregation add model
—

alt/ Server /

gossip model diffusion
EEE—

alt/ Aggregator/

gossip model aggregation
EEEE—

{ H }

alt/ Trainer /

set aggregate node list

selected node event

alt/ Selected /
train

alt/ Non-Selected /

l_r
aggregation add model
—

|: gossip model aggregation

Figure 3.1: Sequence diagram of node selection

36 CHAPTER 3. MAIN

tracting features from its local virtual environment. This node then spontaneously sends
feature messages to neighboring nodes, using the default broadcasting method established
within the framework. These preliminary steps serve as the groundwork for the node se-
lection mechanism, as the heartbeater module continually notifies the nodes to update
features and share them with their neighbors.

Subsequent to this initial phase, the framework steps to the core learning section, the
behavior of which varies depending on both the federation settings and the specific role
of each node.

In the CFL setting, a node can serve as either a Trainer or a Server. If acting as a Trainer,
the node initially sets the aggregated node list to solely include the Server at the beginning
of each iteration. It then awaits the list of selected nodes from the Server, which the Server
broadcasts after completing the first round of node selection. At this point, the Trainer
faces two scenarios: if selected by the Server, it proceeds to the training phase, utilizing
computational resources to develop a locally-trained model. Conversely, if the Trainer is
not selected, it skips the training phase altogether. Regardless of the selection outcome,
all Trainers then involved in the model aggregation stage, integrating their local models
into a global model that is subsequently disseminated across the network.

Conversely, if the node is a Server within the CFL framework, it stars with an evaluation
phase consistent with the default workflow. Following evaluation, the Server conducts
the first round of node selection, based on the features obtained from neighboring nodes.
This results in a list of selected nodes, which the Server then broadcasts to the Trainers.
Since the Server is not involved in training in the CFL setup, it moves directly to the
second round of selection, identifying nodes whose models contributes to the ensuing
aggregation.Then, the Server performs the aggregation using the models from the selected
Trainer and output an aggregated global model. Finally, the newly aggregated global
model is diffused to neighboring Trainer nodes, following standard process within the
framework.

In the DFL framework, nodes have only one role: Aggregator. Mirroring the duties of the
Server in the CFL setup, an Aggregator initiates the learning process with a model evalu-
ation, followed by a first-round node selection. After selection, the Aggregator broadcasts
the list of chosen nodes to its neighbors. Simultaneously, it receives selection lists from
neighboring Aggregators, storing these for subsequent decision-making. Based on these
aggregated lists, the node decides whether to proceed with training. If the decision is affir-
mative, the Aggregator continues on the training phase, contrasting with the non-training
role of the Server in CFL. If the decision is negative, the Aggregator will skip training and
move on to the next stage. Similar to the CFL Server, the Aggregator then engages in a
second round of node selection, determining which nodes” models will be involved in the
model aggregation. After this, the Aggregator will perform the aggregation calculation
and have a aggregated model as output. Finally, this aggregated model is distributed
among the network’s other Aggregators.

The flow diagram in Figure 3.2 presents a simplified outline of all the key steps in the
learning section, following the framework’s integration with the node selection strategy.
At the top of the flow diagram, there are two options: CFL and DFL. In CFL, the
primary distinction lies in the role of the node, which can either be a Server or a Trainer.

3.2. INTEGRATION INTO FEDSTELLAR PLATFORM 37

Start training

A
Y
Y Y [J
Aggregator
Server Trainer 99reg
A
N
4

A A

) . broadcast selection
First round selection
) i broadcast selection Received selection msg
First round selection /

msg msg

A

P
Received selection . -
Train decision
msg
v 4 J

Second round Train decision
selection v

Second round

v selection
" ! S —
. Aggregation
Aggregation v
Aggregation
e —
Y Y \ 4

'

0
Gossip Gossip Gossip
e —

Figure 3.2: Flow diagram of node selection

38 CHAPTER 3. MAIN

The Server performs the first-round selection and broadcasts this selection message to the
Trainers, followed by a second-round selection. After these two steps, the round concludes
with model aggregation, and the aggregated model is disseminated to neighboring nodes.
The Trainer, on the other hand, first receives the node selection message and makes a
training decision based on it. Then it proceeds with local model aggregation and shares
this model with the Server. In DFL, all nodes start without any role options. The
Aggregator is the only role here. They all perform a first-round selection, broadcast the
selection message, and receive selection messages from other nodes. Once all the selection
messages are received, each node makes a training decision, opting to either proceed or skip
the training section. Following the training, all nodes engage in a second-round selection
to determine which nodes” models is included in the aggregation process. Finally, they
perform the aggregation and gossip the models throughout the network.

3.3 Random selection and default selection

To transition to the next section, it is important to expand the investigation into node
selection algorithms. While the preceding section focused on a specialized, feature-based
approach for selecting nodes, this section now dives into two other algorithms: the "All Se-
lection” and the "Default Selection.” The All Selection algorithm is fairly straightforward,
opting to include all neighboring nodes in the aggregation process. On the other hand, the
Default Selection utilizes the same algorithm that the original framework employs, serving
as a control strategy for comparative purposes. The rationale behind implementing these
two additional algorithms is to establish baseline metrics. These baselines facilitates a
more comprehensive evaluation in later sections, allowing us to measure the effectiveness
and efficiency of the feature-based node selection strategy in a more convincing manner.

The first alternative algorithm introduced is the "Random Selection.” Same as its name,
this algorithm takes a straightforward approach by randomly choosing neighboring nodes
to participate in both the aggregation process and the training sessions. Building upon
the foundational methods already available in the Selector class, the implementation of
the random selection becomes relatively simple, essentially presenting a simplified version
of the priority selection mechanism. Unlike the priority-based strategy, this algorithm
doesn’t rely on the reception of features from nodes. Instead, it simply requires a list
of neighboring nodes. From this list, it selects a subset randomly and returns the result.
The design choice mandates that the selection encompasss approximately 80% of the total
neighboring nodes, with a strict minimum of one node. This minimum is set to prevent
potential errors from arising due to empty selection.

The detailed code is shown as code listing 3.14. The RandomSelector class extends the
primary Selector class. Upon initialization, it configures itself based on the provided
settings, capturing the role of the node within the context. The node_selection method
first creates a copy of the current neighbors list. If this list is empty, it returns 'None’
indicating no selection. However, in cases with available neighbors, it determines the
number of nodes to be selected, ensuring that it is at least one or 80% of the total
neighbors. By using the numpy library, it randomly chooses the requisite nodes without

3.3. RANDOM SELECTION AND DEFAULT SELECTION 39

repetition. To this list of selected nodes, the name of the current node is also appended.
The final list is then returned, completing the selection process.

Listing 3.14: Random selection

class RandomSelector(Selector):

def __init__(self, node_name="unknown”, config=None):
super (). __init__ (node_name, config)
self.config = config
self .role = self.config.participant |[”device_args”|[”role”]

def node_selection (self , node):
neighbors = self.neighbors_list.copy ()
if len(neighbors) = 0:
return None
num_selected = max(1,int (len(neighbors)*0.8//1))

selected_nodes = np.random. choice (
neighbors , num_selected , replace=False). tolist ()
selected_nodes .append(self.node_name)

return selected_nodes

Another strategy to add in the framework is the "Default Selection”. The "Default Selec-
tion” serves a control group to the other algorithms. This selection strategy is specifically
designed to provide a baseline, facilitating comparison of experimental results obtained
before and after the integration of the priority selection. Its main objective is to emulate
the original framework’s behavior as though no modifications were ever made, thereby
conserving computational resources and reducing network overhead.

To ensure this default behavior, the default selection strategically skips certain methods
and events that are initiated by the selector module. Drawing from the workflow detailed
in the priority selection implementation, one of the first aspects that need to bypass is
the "send feature event.” Within the Heartbeater module, bypassing this event is achieved
by introducing a conditional check. This check examines the node’s configurations using
the config.participant attributes. If the selection_algorithm attribute is set to "no,” the
Heartbeater avoids triggering the "send feature event” to prevent unnecessary network
communication.

Goes into the framework’s workflow, the node selection integrated Node module has cer-
tain steps which are add-ons compared to the original framework. One such step is the
initialization of age’ at the beginning of the learning section. To avoid this, a conditional
check is placed before the initialization process. The initialization only proceeds if a se-
lection algorithm is active. This selective initiation logic is repeated in both the CFL
and DFL settings during the first and second round selections. Regardless of whether a
node is functioning as a Server or an Aggregator, the selection process is omitted unless
both ‘round’ and ‘selector’ are defined. For nodes operating as Aggregators, the default
selection also need to skip the training decision. The original framework’s behavior is

40 CHAPTER 3. MAIN

simulated, which aways results in model training. The final adjustment is to set the list
of nodes that contribute to aggregation. In a default scenario, the node incorporates all
its neighbors for model aggregation. If a selection strategy is in play, only the selected
nodes are considered for aggregation.

Listing 3.15: Send feature event skipping

if self.config.participant|[”scenario_args”]
[”selection_algorithm”] != "no”:
self.__send_event_with_interval (
Events.SEND_FEATURES EVENT,

self.__count ,
beat_interval=8)

Listing 3.16: Age initialization skipping

age initialization skipping

if self.selector is not None:
for n in self.__initial_neighbors:

if n.get_name() not in self.selector.get_neighbors():
self.selector.add_neighbor(n.get_name/())

self.selector.add_neighbor(self.get_name())if self.get_name
) not in self.selector.get_neighbors() else None
self.selector.init_age ()
self.selector.set_neighbors(self.get_neighbors_names|())

Here shows the detailed implementation in the code. To skipping the send feature event,
unless the selection algorithm is set to "no,” the node broadcasts its features at regular
intervals as code listing 3.15.

In code listing 3.16, age initialization is only undertaken if a selection algorithm is active,
allowing nodes to maintain their neighbor list and age metadata.

Listing 3.17: Node selection skipping

node selection skipping
if self.round is not None and self.selector is not None:

self .selected_nodes = self.selector.node_selection (
self.get_name())
selt . __train_set = self.selected_nodes

self.broadcast (
CommunicationProtocol. build_select_node_msg (
str ("—".join(self.selected_nodes))))

training decision skipping
if self.selector is mnot None:
if self.__selected_decision ():

3.4. RANDOM VIRTUAL CONSTRAINS 41

self.__train ()
else:
self.__train ()

In code listing 3.17, node selection only execute if the current round and selector are
defined. Selected nodes are then broadcasted to the network. And the training always
takes place under default settings. If a selector exists, it checks the training decision
before initiating training.

Listing 3.18: Set model aggregation node

set model aggregation node
if self.selector is not None:

self.__train_set = self.selected_nodes

self . aggregator.set_nodes_to_aggregate(self.selected_nodes)
else:

self . aggregator.set_nodes_to_aggregate(self.__train_set)

In code listing 3.18, the final aggregator setting determines which nodes are included
in the aggregation process. By default, all neighbors are considered, but if a selection
strategy is active, only the selected nodes are taken into account.

3.4 Random virtual constrains

As progress, all the comparison algorithms are ready for use. However, a important con-
sideration arises regarding the physical conditions of the nodes. In this federated learning
framework, nodes are simulated using Docker containers. By default, these nodes have
similar conditions due to uniform Docker configurations. Docker containers are essentially
isolated environments that can run software independently. While this isolation provides
consistency and reliability, it also means that, under default Docker configurations, these
nodes exhibit similar conditions in terms of computational resources, memory allocation,
and network condition. Such uniformity presents a challenge for node selection. When
the node selection strategy is implemented, it considers various node features such as
computational power, available memory, network latency, and other performance metrics.
In a simulated environment where these metrics are nearly identical for each node, dis-
tinguishing between them becomes difficult. In real-world applications, nodes represent
physical devices, each with its unique set of conditions and attributes. Such diversity
allows the node selection algorithm to function more effectively. To recreate this realistic
scenario within our virtual framework, it becomes inevitable to simulate various node con-
ditions using virtual constraints. By doing so, the framework can emulate the variability
of real-world physical devices, enhancing the robustness and validity of the comparisons.

In the federated learning framework, during the feature extraction phase, there have
identified a set of seven key features that play important roles in the node performance
and node-selecting process. These features were chosen based on a combination of their
representing conditions to real-world scenarios and their potential impact on learning out-
comes. While all seven hold significance, for the purpose of simulating virtual constraints,

42 CHAPTER 3. MAIN

two features particularly stand out due to their direct correlation with a node’s physical
condition: computational consumption and latency.

Computational consumption is primarily a reflection of the CPU’s workload. It is repre-
sented in terms of the percentage of CPU usage. In real-world scenarios, this consumption
can vary widely based on the CPU model. For instance, a high-end device running mini-
mal applications has lower computational consumption compared to an older device with
multiple background processes. On the other hand, latency is an indicator of the delay
in data transmission, primarily affected by the network’s condition. Various real-world
factors can lead to different latency experiences. For example, a device connected to a
high-speed Wi-Fi has lower latency compared to a device relying on a weaker cellular sig-
nal or one faced with physical obstructions or network congestion. In a federated learning
environment, varied latency among nodes can introduce challenges.

To simulate the real-world condition of nodes in this virtual environment, choosing the
two features could be a good representation of the random device condition. Simulating
these constraints ensures that the framework is robust and adaptive, capable of handling
various physical condition of the node device. By focusing on computational consumption
and latency, the random virtual constrains aim to mimic the node conditions as seen in
real-world framework, thereby testing node selection strategies under realistic conditions.

When the framework is initiated through the frontend interface, it primarily uses the
controller module to retrieve and process configurations. These configurations are then
used to initiate nodes. The framework utilizes Docker Compose to arrange and run these
nodes concurrently with similar configurations.

Docker Compose is a tool in the Docker ecosystem that simplifies the creation and man-
agement of multi-container applications. In this framework, the multi-container is used
as the nodes in the federated learning network. Instead of manually launching individual
containers, users can define their application setup using a docker-compose.yml file. This
file specifies the services, networks, and volumes needed for the application, allowing for
easy management of complex setups with interdependent containers. It is especially useful
in scenarios like this framework where simultaneous operations are required.

The default setup of the docker compose file is shown in code listing 3.19. The image tag
specifies the Docker image to be used, in this case, 'fedstellar’. The restart policy is set to
‘always’, ensuring that the container restarts automatically if it stops. The volumes maps
the specified directory to the ’/fedstellar’ path inside the container. With extra_hosts,
an entry for ’host.docker.internal’ is added to the container’s /etc/hosts file. The ipc
configuration set to "host’ allows processes within the container to communicate. The
privileged status provides the container with elevated privileges, allowing it more access
to the host system.

The command section defines the series of commands to be executed when the container
starts. This includes checking the container’s network configuration, adding an entry to
the host file, and then starting the node with the python script node_start.py. Further-
more, they all connect on a specified network ’fedstellar-net’, with a fixed ‘ipv4_address’.

3.4. RANDOM VIRTUAL CONSTRAINS 43

Listing 3.19: Docker compose default setup

image: fedstellar
restart: always
volumes:
— {}:/fedstellar
extra_hosts:
— "host.docker.internal : host—gateway”

ipc: host
privileged: true
command :
— /bin/bash
— —c¢

ifconfig && echo ’{}_host.docker.internal’ >>
/etc/hosts && python3.8
/fedstellar /fedstellar /node_start.py {}
depends_on:
— participant{}
networks:
fedstellar —net:

ipvd_address: {}

participant_template . format (index ,
os.environ ["FEDSTELLAR_ROOT” | ,

self .network_gateway ,

path |
idx_start_node ,
node ['network_args’|["ip 7]

)

To set the constrains to the computational consumption, a straightforward way is to
set the percentage of the CPU that can be used in the Docker container. By default,
Docker containers have unlimited access to the host CPU. However, in federated learning
frameworks where different physical node conditions need to be mimicked, it becomes
necessary to limit this access. Docker Compose simplifies this control by allowing users
to specify settings under the deploy section of the compose file. One powerful attribute
provided by Docker Compose is the resources attribute. This attribute enables users to set
physical resource constraints for containers operating on the host machine. For example,
using the cpus field under resources, users can determine how much of the available CPU
cores a container can use. Setting a value of 0.5 for cpus means that only half a core of
the host machine’s CPU is used by that container.

Listing 3.20: CPU constraints

CPU constraints

44 CHAPTER 3. MAIN

deploy:
resources:
limits :
cpus: '{}’

Introducing latency between different nodes is a bit more complicated compared to CPU
constraint configuration. One effective solution to this is the utilization of a package known
as tcconfig.[32] This Python package is capable of configuring network traffic control
settings such as bandwidth, latency, and more.

To integrate tcconfig within the Docker environment, it needs to take several steps. Firstly,
Install the iproute2 package by adding the line “RUN apt-get install -y iproute2” to the
Docker build file (Dockerfile). This ensures that all dependencies for tcconfig are in place.
Subsequently, adding tcconfig to the requirements.txt file ensures that when the Docker
image is being built, the package is also installed. Upon successful installation of tcconfig,
setting up the desired latency becomes relatively straightforward. As illustrated in code
listing 3.21, the command “tcset ethO —delay ” can be executed. Here, the placeholder “
is substituted with the desired latency value in milliseconds. By executing this command,
the specified latency is introduced to the network interface, allowing for a more realistic
simulation of various node conditions in federated learning scenarios.

Listing 3.21: Latency constraints

Latency constraints
command :
— /bin/bash
— —¢C
— |
tcset ethO0 —delay {} && ifconfig &&
echo ’{}_host.docker.internal’ >>
/etc/hosts && python3.8
/fedstellar /fedstellar /node_start.py {}

3.5 Front-end implementation

The framework has almost completed the implementation of virtual constraints for nodes.
This allows the framework to limit CPU resources and introduce latency between nodes,
simulating complex device and network conditions in real-world scenarios. However, man-
ually adjusting constraints for each node is time consuming and not representative of
actual deployment scenarios, especially when there are more than ten nodes in a net-
work during testing. Additionally, determining ideal constraint values requires careful
consideration to ensure they align with the intended simulation conditions. In this work,
we plan a random virtual constraint in a certain scale for setting CPU and latency con-
straints. CPU constraints is ranged from 0.3 to 1 core, simulating environments ranging
from low-end computational devices with slower processing times during training to more

3.5. FRONT-END IMPLEMENTATION 45

efficient systems that don’t affect computational speed. Latency varies between 1ms and
50ms, replicating optimal network conditions (near-zero latency at 1ms) as well as com-
mon but less ideal conditions where data transmission delays occur at 50ms. By making
these adjustments, the framework aims to create a realistic simulation environment that
accurately reflects real-world scenarios.

Scenario Deployment

Deployment of scenarios using Fedstellar

o Scenario Information B Number of participants: 3 LEGEND

Selected Node's

Scenario title ® Aggregator @ Trainer ® Server 0 T [] e

Scenario description

o Deployment &

© Virtual participants
Real devices
External datacenter

o Federation architecture
DFL v @

o Network Topology ¢h

© Custom topology
Predefined topology

<
Z
(%4}
=
a4»

User mode Advanced mode Run Fedstellar

=
[
o
<>

o Aggregation [

Aggregation algorithm

FedAvg s

Figure 3.3: The default deployment page

To achieve the generation of random value into the constraints during network deployment,
the next step is directed towards refining the frontend configuration. This refinement in-
cludes several modifications. First, incorporating constraints for specific features. Second

46 CHAPTER 3. MAIN

is the random value generation. Third is the node selection strategy option.

In the default setting, the left panel is for all the configurations, and the right panel shows a
visual representation of the network topology (Fig. 3.3). Clicking on the ’advanced’ button
reveals additional configurations, which are shown in Fig. 3.4. Notably, section number
8 provides detailed information about each node’s IP address and port number. Given
this existing framework, the plan is to add in additional functionalities. This integration
ensures that users have all the tools and access to not only the newly implemented node
selection strategy but also the simulation of real-world scenario during experiment.

3.5. FRONT-END IMPLEMENTATION 47

o Participants $g¢

Number of rounds

10 5
Logging

Only alerts

am

Individual participants

D Participant 0 + INFO D Participant 1 + INFO D Participant 2 + INFO
Start Start Start

o Advanced Deployment &

Accelerator definition

CPU usage

«

@ Advanced Topology &

Distance between participants

— 50 3

0 Advanced Communications &
Network address

192.168.50.1/24
Network gateway

192.168.50.1

@ Advanced Training &

Number of Epochs

3 z

@ Robustness ¥
Attack Type

No Attack

«

Percent of nodes been attacked
0 z
Percent of sample in each node been attacked
0 z
Percent of poisoned noise

0 z

Figure 3.4: The advanced setting at deployment page before modification

Starting from the easy task. The first step is to provide users with options for node
selection strategies. This allows them to choose a strategy that best aligns with their
experimental requirements. To achieve this, the solution involves using a simple code
snippet that incorporates an HTML div element designed for form input as shown in code

48 CHAPTER 3. MAIN

listing 3.22. This helps the user to select the desired node selection strategy by adding an
drop-down menu.

Listing 3.22: Selection Option

<div class="form—group_row”’>
<h4 ...>Node Selector<.../h4>
<div ...>
<select class="form—control” id="selector” ...>
<option value="new”>Priority Selection</option>
<option value="random”>Random Selection</option>
<option value="all”>All Selection</option>
<option value="no”>Default Selection</option>
</select>
</div>
</div>

After implementing such modification, the dropdown menu looks like the Fig 3.5. Users
can choose from three selection strategies: priority selection, random selection, and default
selection.

Node Selector &

Priority Selection

4»

Figure 3.5: Node selection option

Taking the implementation forward, the objective was to incorporate the virtual con-
straints directly into each node’s detailed information panel. Within the default interface,
as can be seen in Figure 3.6, pressing the “+INFO” button next to a participant shows a
detailed information panel of that specific node. Here, users can easily find parameters
like IP address and port number, both of which can be customized as needed. According
to previous planned, the virtual constraints value such as the CPU limit and latency for
individual nodes is placed at the same section here. To make this modification, two new
input fields were introduced: one for setting the CPU limit and another for defining the
latency.

3.5. FRONT-END IMPLEMENTATION

Participant 1

IP

192.168.50.3
Port

45001

Neighbors: 1
Role: aggregator
Start: false

Figure 3.6: The network detail of participant before modification

49

In the code listing 3.23, a label with the text "CPU limit” is created. This is followed
by an input field where users can enter specific values. A text explanation is provided to
clarify the meaning of the CPU limit and guide users when filling in the values. And a
similar pattern is followed for the latency configuration, where a label and input field are
created. Both the "CPU limit” and "Latency” configurations are then added to a modal,
which serves as the detailed information panel for participants. After this, a default value

for cpu limit equals 0.5 and latency value equals 1ms is added.

Listing 3.23: Virtual constraints

const cpulimitLabel = document.createElement (”label”);
cpulimitLabel.setAttribute(”for”, ”participant—" 4+ i + "—cpu_limit”);
cpulimitLabel .innerHTML = ”CPU_limit”;

const cpulimitlnput = document.createElement (”input”);
cpulimitInput.id = ”participant—" + i 4+ 7—cpu_limit”;
cpulimitInput.type = "text”;

cpulimitInput.defaultValue = participant.cpu_limit;

const infoText = document.createElement (”small”);

infoText.textContent = ”_(limit_for_number_of_cores_of_ this_participant_can_use.)”;

document . getElementByld (” participant —modal—content”). appendChild (cpulimitLabel);

document . getElementByld (” participant —modal—content”).appendChild (infoText);

document . getElementByld (” participant —modal—content”).appendChild (document.createElement (”br”));
document . getElementByld (” participant —modal—content”). appendChild (cpulimitIinput);

document . getElementByld (” participant —modal—content”).appendChild (document.createElement ("br”));

const latencyLabel = document.createElement (”label”);

latencyLabel .setAttribute (”for”, "participant—" + i 4+ "—latency”);
latencyLabel .innerHTML = ”Latency”;

const latencylnput = document.createElement (”input”);
latencyInput.id = ”participant—" 4+ i + ”"—latency”;
latencyInput.type = 7text”;

latencyInput.defaultValue = participant.latency;

appendChild (latencyLabel);
appendChild (document.createElement (”br”));
appendChild (latencyInput);
appendChild (document.createElement (”br”));

document . getElementByld (”participant —modal—content”
document . getElementByld (”participant —modal—content”
document . getElementByld (” participant —modal—content’
document . getElementByld (” participant —modal—content”

).
).
Y.
).

With these in place, users can now manually define how much computational power each
node can utilize and what sort of network delay it would experience just like the Fig.3.6 .

50 CHAPTER 3. MAIN

Participant 1

IP

192.168.50.3
Port

45001

CPU Llimit (limit for number of cores of this participant can use.)

0.5
Latency

1ms

Neighbors: 1
Role: aggregator
Start: false

Figure 3.7: The network detail of participant after modification

The final step in the frontend implementation involves integrating a feature that auto-
generates random values for both CPU limit and latency for each node within previously
defined scale. . As illustrated in code listing 3.24, the function is implemented within a
JavaScript script tag. A brief description for users is provided in the form of a popover.
This popover explains the constraints for random generation, specifying that the CPU
limit values is ranged between 0.3 to 1 and latency values between 1ms to 50ms. The
code initiates by setting up the 'popover’ interface through the jQuery function and this
popover is triggered on hover and shows a brief overview of the constraints for the CPU
limit and latency. Next, two specific functions are set to generate these random values.
The generateRandomCpuLimit function is designed to output values within the 0.3 to
1 range for the CPU limit, ensuring the result is a floating-point number rounded to
one decimal place. Similarly, the generateRandomLatency function is straightforward;
it returns an integer value between 1ms to 50ms. The event listener attached to the
"random-constrains” button element. Upon activation the function iterates through all
nodes and employs the earlier defined functions to produce random CPU limit and latency
values for each node in the network.

Listing 3.24: Default selection

<script>

randonconstrainHelp = ’\n’ +
'<1i>CPU limit: generated between 0.3 — 1\n’ +
'Latency: generated between lms — 50ms\n’ +
'’

$("#randomconstrainHelpIcon 7). popover ({
title: ’Generate random constrain values for the virtual participant ’,
html: true,
placement: ’right ’,
content: randonconstrainHelp ,
trigger: ’“hover’,
container: ’body’,

3.5. FRONT-END IMPLEMENTATION 51

delay: {show: 500, hide: 100},
1)

//generate cpu limit

function generateRandomCpuLimit(min, max) {
const randomValue = Math.random () * (max — min) + min;
return parseFloat (randomValue.toFixed (1));

}

//generate latency between 1 and 50 ms
function generateRandomLatency (min, max) {
return Math. floor (Math.random () * (50 — 1 + 1)) + 1 + "ms”;
}

document . getElementByld ("random—constrains”)
.addEventListener (”click”, function () {

for (let i = 0; i < getNumberOfNodes (); i++) {

const participant = Graph.graphData ().nodes[1i];
participant.cpu_limit = generateRandomCpuLimit (0.3, 1);
participant.latency = generateRandomLatency ();
//Graph.graphData (Graph. graphData ());

)

</script>

The finished frontend is displayed as shown in Figure 3.7. It includes a button located at
the end of section 8. The info icon at the right side of the button displays the explanation
text for its functionality. When the button is clicked, both the CPU limit and latency
values for each participant is randomly generated within a predefined range.

+ IlrlFO Start - -

Generate random constrain values for the virtual participant

Random constrains e CPU limit: generated between 0.3 -1
« Latency: generated between 1ms - 50ms

0 Advanced Deploy.

Figure 3.8: The random constraints button

Once the frontend adjustments are complete, corresponding modifications need to be
made to the backend. Specifically, after users set their configurations on the deployment
page, this data should be reflected and stored in each participant’s configuration file. This
file serves as the source of configurations for each node and is created from a pre-defined
template.

To begin, it needs to update the configuration template to include new attributes. Entries
like "selection_algorithm”:"new”, "cpu_limit™:0.5”, and "latency”: "1ms” should be inserted
as placeholders for real values that users may input. This ensures a default setup and

52 CHAPTER 3. MAIN

guarantees that the frontend’s configuration decisions are recorded in the backend config-
uration files.

The next important step is capturing this data as it is passed from the frontend to the
backend. Code listing 3.25 shows how the web server’s receiving end intercepts these con-
figuration values and updates the associated participant’s configuration file with them.
Upon making configurations on the frontend, the settings are communicated to the back-
end in the form of JSON data. The backend then processes this data, diving into each
specific node from the received data set. For every node, a default configuration file is
loaded and then updated based on the frontend settings. After these updates are made,
the configurations are saved and can be used later.

Listing 3.25: Update configration

data = request.get_json ()
nodes = data[’'nodes’|

for node in nodes:
node_config = nodes[node]
participant_file = os.path.join (’
with open(participant_file) as f:
participant_config = json.load(f)

....json")

participant_config[”device_args”|[”cpu_limit”]

= node_config[”cpu_limit”]
participant_config[”network_args”|[”latency”]

= node_config[”latency”]
participant_config [’scenario_args’][selection_algorithm ’]

= data[’selector’]

Y

with open(participant_file, ’w’) as f:

json .dump(..)

In summary, there are series of modifications made to the frontend, the user interface was
significantly enhanced to improve usability and accommodate the new functions. Initially,
a dropdown menu was incorporated to provide users with a selection of node strategies,
enhancing their control over the learning process. After that, the detailed information
panel introduced manual configuration capabilities for CPU limits and latency for each
node, giving users the control over virtual constraints. To enhance the experience, a
random value generator was integrated. This generator, at the click of a button, randomly
assigns CPU limits and latency values within pre-defined scales to each node, mimicking
the various conditions of a real-world scenario. The final product of the deployment page
is shown as the Fig. 3.8.

e Participants &

Number of rounds
10

Logging
Only alerts

Individual participants

Q Participant 0 + INFO
Start

Random constrains
e Advanced Deployment &
Accelerator definition

CPU usage

@ Advanced Topology &
Distance between participants

3.5. FRONT-END IMPLEMENTATION

<

G Participant 1 + INFO
Start

m Advanced Communications =
Network address

192.168.50.1/24
Network gateway

192.168.50.1

@ Advanced Training €
Number of Epochs

3

@ Robustness ©
Attack Type
No Attack
Percent of nodes been attacked

]

50 @

@

Percent of sample in each node been attacked

[
Percent of poisoned noise

]

m Node Selector &

Priority Selection

D Participant 2 + INFO
Start

Figure 3.9: Advanced setting after modification

23

o4

CHAPTER 3. MAIN

Chapter 4

Evaluation

4.1 Scenario deployment

After modifying the framework, it is time to run the experiment and evaluate the results.
This involves measuring the effectiveness and efficiency of the newly implemented node
selection strategy and functionalities using metrics, methodologies, and scenarios.

To begin, we need to go through the deployment process and determine which configura-
tions will be used in the experiment. After logging into the framework, users can access
the scenario management page (Fig. 4.1) where they can click on "Deploy a scenario” to
reach the scenario settings page (Fig. 3.3).

Fedstellar & Scenario Management & Documentation </> Source Code & ADMIN ~
Scenario Management
Deploy, analyze and monitor scenarios

There are no deployed scenarios

Deploy a scenario Compare scenarios

Figure 4.1: Scenario management page

In this deployment page, several configurations must be considered for conducting the
experiment: federation architecture, dataset, training model, virtual constraints, and node

Title Description Network Subnet Status Action
CPL:defaultnolimit 192.168.50.1/24 [Pivote [wontor] Retime st | vownlosd | etoss | |
CFL-10-RANDOM-NOL... LR TRV YRR vving [l 7rote [onor] estrime ot | bownlosd | stpscenrio

Figure 4.2: Scenario list

95

o6 CHAPTER 4. EVALUATION

selection strategy. The following section will analyze how different configurations impact
the experiment and evaluation setup.

The real-time statistics are shown in Figures 4.3 and 4.4. These figures display key features
and metrics of resources, as well as important results such as accuracy and F1 score during
testing, training, and validation.

In Figure 4.3, the plots include traffic size received and sent, CPU percentage, RAM
percentage of the node over time. Figure 4.4 displays metrics such as accuracy, F1 score,
loss precision, and recall for nodes in the train, test or validation sets. These metrics are
crucial for comparing different node selection strategies.

Documentation & ADMIN ~

Fedstellar

Scenario Management

TIME SERIES SCALARS IMAGES GRAPHS INACTIVE

i Cn

Q fedstellar_CFL_24_09_2023_15_5 Q £ Settings

Run

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_5

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_2

fedstellar_CFL_24_09

2023_15_56_41/metrics

Iparticipant_4

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_3

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_1

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_6

fedstellar_CFL_24_09

2023_15_56_41/metrics

Iparticipant_8

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_9

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_7

fedstellar_CFL_24_09_
2023_15_56_41/metrics
Iparticipant_0

@

* Pinned

Resources 9 cards
Resources/Bytes_recv

1046

5e+5

1,000 1,5

Resources/CPU_temp

0 500 1,000 15

Resou... /Packets_sent

3000
2000

1000

1,000 1,5

Round

Test 5 cards

Figure 4.3:

Resources/Bytes_sent I

8e+6

6e+6

de+6

2046

0

500 1,000

Resour.../Disk_percent I

100

500 1,000

Resou... /RAM_percent n

Resources

500 1,000

metrics

Resou... /CPU_percent

500

Resou... /Packets_recv

3000

2000

1000

1,000

15

Resources/Uptime

3e+9

2e+9

1e+9

1,000

1,000

4.1. SCENARIO DEPLOYMENT 57

Fedstellar Scenario Management Documentation & ADMIN ~
TIME SERIES SCALARS IMAGES GRAPHS INACTIVE v n & 0
Q_ fedstellar_CFL_24_09_2023_15_5 Q £ Settings

Run @ Resources 9 cards ~

fedstellar_CFL_24_09_

2023_15_56_41/metrics 1000 e teso

Iparticipant_5 o

fedstellar_CFL_24_09_ 0

2023_15_56_41/metrics @ 14

/participant_2 0 500 1,000 15 0 500 1,000 1,5 0 500 1,000 1,5

fedstellar_CFL_24_09_
2023_15_56_41/metrics @
Iparticipant_4

Round v
fedstellar_CFL_24_09_
2023_15_56_41/metrics @ o
Jparticipant_3 Test 5 cards
fedstellar_CFL_24_09.

_CFL_24 09_ 14 v

2023 15 56_41/metrics @ TestEpoch 14 cards
Iparticipant_1 .

Train 5 cards v
fedstellar_CFL_24_09_
2023_15_56_41/metrics @ TrainEpoch 13 cards o
Iparticipant_6
fedstellar_CFL_24_09_ Validation 5 cards ~
2023_15_56_41/metrics @
Iparticipant_8
fedstellar_CFL_24_09_ Validation/Accuracy H : Validation/F1Score T oo : Validation/Loss oo

2023_15_56_41/metrics
Iparticipant_9
fedstellar_CFL_24_09

2023_15_56_41/metrics @

Iparticipant_7 09

fedstellar_CFL_24_09_
2023_15_56_41/metrics @
Iparticipant_0 0.88

200 400 600 800 1,000 1,20 200 400 600 800 1,000 1,20 200 400 600 800 1,000 1,20

Validation/Precision L | Validation/Recall

. 7
0.88 0.88
0.86 0.86
200 400 600 800 1,000 1,20 200 400 600 800 1,000 1,20

Figure 4.4: Validation metrics

To effectively evaluate different node selection strategies in federated learning, it is impor-
tant to analyze specific metrics that capture the essence of a model’s performance, with
accuracy being one of the most crucial ones. Accuracy serves as a direct measure of how
well a model performs against a given dataset. In general, a higher accuracy means that
a model is more adept at fitting the dataset. In federated learning, comparing two models
shows that the one with higher accuracy is more robust and has a better understanding
of the data distribution across the network.

However, solely focusing on accuracy may not provide a complete understanding of the
model’s efficiency. Time is an important factor to consider in this context. When de-
signing our node selection strategy, we aimed for adaptability, robustness, and efficiency.
Adaptability is achieved by continuously monitoring node conditions. Robustness refers
to the model’s ability to achieve high validation accuracy

o8 CHAPTER 4. EVALUATION

Efficiency in federated learning is not only determined by training speed. It also includes
the framework’s capability to achieve comparable or better accuracy levels within a shorter
timeframe compared to other frameworks. If two strategies yield similar accuracies, but
one achieves it faster, it demonstrates greater efficiency. Therefore, when evaluating our
node selection strategy, an important measure of success will be comparing the time taken
by different strategies to reach specific accuracy benchmarks.

In summary, the evaluation rationale for node selection strategy is based on optimizing
the balance between accuracy and time. We analyze these parameters to determine the
effectiveness of a node selection strategy in a federated learning environment.

4.2 Experiment setup

To design an impactful experiment, it is crucial to carefully identify the dependent out-
comes and manipulate the independent variables. In this investigation, we are primarily
interested in examining how federated learning performs in terms of time and accuracy
under specific network configurations.

A critical determinant in federated learning is the dataset. The framework provides three
options: MNIST, CIFAR10, and SYSCALL. However, practical trials exposed certain is-
sues. The SYSCALL dataset encounters errors related to its settings and downloading
process while running the framework. Since it is not commonly used in other federated
learning studies, we have excluded it from our experiment. When using the CIFAR10
dataset with a CNN model, most nodes perform well. However, some nodes experience
spontaneous socket connection drops during training. This issue does not occur consis-
tently across all nodes or specific ones. Since the error is not happening in every node
and can not be precisely located, the CIFAR10 dataset is also exclude for the experiment.
Fortunately, the MNIST dataset with an MLP model runs smoothly without any problems
encountered by the other two datasets. Therefore, for our experiment purposes, we have
chosen to use the MNIST dataset with an MLLP model as it provides reliable performance
without any known issues.

With the dataset chosen, the focus shifted to the node selection strategy. The main ob-
jective of this study is to compare a newly proposed priority selection strategy with the
default strategy. To provide a comprehensive comparison, we also included a random
selection strategy. Since the priority selection algorithm picks 80% of neighboring nodes
using a unique algorithm, contrasting it with random selection helps highlight the effec-
tiveness of the priority algorithm without considering the less number of node selected.

Additionally, the experimental design considered both constrained and unconstrained con-
ditions. This distinction is important as it demonstrates the adaptability of the priority
selection in realistic scenarios where random constraints may be present. By testing in
both states, we can evaluate the priority selection strategy comprehensively.

Furthermore, last configuration in the framework would be the federated mode. It is
intuitive that both CFL and DFL setting need to be included in the experiment for a
more comprehensive result. We also took into account the number of devices involved

4.2. EXPERIMENT SETUP 29

in this exploration and set a threshold at ten devices for CFL and 5 devices for DFL.
This number places a balance between computational power for the host machine and
providing more comprehensive results compared to just three or four nodes.

Having determined all the configurations, the experiment’s design systematically pairs
each configuration option with every other option. This approach can be visualized as
a matrix where each configuration intersects with every other, ensuring comprehensive
coverage of potential settings. This extensive pairing allows us to understand how differ-
ent configurations might interact and influence outcomes in federated learning scenarios.
This study have tabulated these pairings in Table 4.1 for a clearer representation of the
combinations. In total, there are 12 distinct experimental groups that will be evaluated.

In the CFL mode with no constraints, groups 1 to 3 distinct in different selector modes.
Group 1, which uses the default selection, establishes a baseline by capturing performance
metrics in the default configuration. Comparing results between groups 1 and 3 will high-
light the effectiveness of the priority selection strategy. By comparing groups 2 and 3, we
can determine how much impact the priority selection strategy has on overall performance
compared to when no specific strategy is used.

When introducing random constraints in the CFL mode, we have groups 4 through 6.
Here, group 4, employing the default selector under constraints, offers insights into how
the system performs when faced with variable conditions but without any particular node
selection strategy. Comparing the outcomes of groups 5 and 6 can provide insights into
the robustness and efficiency of the priority selection strategy, particularly in an uncertain
environments similar to real-world scenario.

Transitioning to the DFL mode without constraints, groups 7 to 9 provide a perspective
on a fully connected topology. Group 7, once again, serves as our benchmark, giving us
the basic DFL behavior. Differences between groups 8 and 9 will indicate the efficacy of
the priority selection strategy within a DFL setting, ensuring that the observed trends in
CFL are not mode-specific.

Finally, in groups 10 to 12, we will introduce random constraints within the DFL mode.
The analyses in this section will serve two purposes: first, to examine the performance
of a fully connected network under resources constraints; and second, to assess the value
added by the priority selection strategy in these constrained conditions.

To summarize, this comprehensive set of experiments ensures a broad coverage across
different selector strategy, federate mode, and constraints. Through a systematic com-
parison, this work aim to provide a comprehensive result for the performance of purposed
node selection strategy for federated learning.

60 CHAPTER 4. EVALUATION
Federate . o .
Grou ode Topology Devices | Selector mode Artificial constrains Dataset
1 | CFL Star 10 Default No constrains MNIST
2 | CFL Star 10 Random No constrains MNIST
3 | CFL Star 10 Priority No constrains MNIST
4 | CFL Star 10 Default Random constrains MNIST
5 | CFL Star 10 Random Random constrains MNIST
6 | CFL Star 10 Priority Random constrains MNIST
7 | DFL Fully 10 Default No constrains MNIST
8 | DFL Fully 10 Random No constrains MNIST
9 | DFL Fully 10 Priority No constrains MNIST
10 | DFL Fully 10 Default Random constrains MNIST
11 | DFL Fully 10 Random Random constrains MNIST
12 | DFL Fully 10 Priority Random constrains MNIST

Table 4.1: Experiment group set up

4.3 Result comparison

Within each experimental scenario, there are ten participants. To simplify the results and
facilitate clear comparative analysis, the displayed results will extract data from three
nodes in each group.

In the comparative visuals presented later, the result will depict a total of six nodes -
three from each group being compared. To enhance clarity and ease of interpretation,
nodes within the same group will share the same color coding.

The x-axis of these visuals represents time during the federated learning process, while the
y-axis shows node accuracy at any given time. It is important to note that data collection
spans six minutes for each. The reason chose this timeframe is because after six minutes,
accuracy values show minimal fluctuations. The initial six minutes are considered the
most dynamic and revealing phase of the federated learning process and therefore most
relevant to the analysis.

4.3. RESULT COMPARISON 61

- Group1-3 - Group1-1 -- Group1-2
- Group3-1 -- Group3-2 — Group3-3

0.9300 .

0.9100

0.8900

0.8700

Accuracy

0.8500 :

Omin 1min 2min 3min 4min 5min 6min
Time

Figure 4.5: Accuracy result from group 1 and group 3

Upon reflecting on the experiments conducted, it is important to highlight certain chal-
lenges and considerations. One key point is the nature of using the MNIST dataset with
the MLP model. This combination tends to converge rapidly compared to other dataset-
model pairings. While fast convergence is generally advantageous, it presents challenges
for our experiments. The experiment have to use the MNIST dataset due to unexpected
technical difficulties integrating node selection strategy and federated learning with other
datasets. As a result, MNIST became the only viable option for experimentation. How-

62 CHAPTER 4. EVALUATION

ever, this decision led to a brief training duration of just 6 minutes. This limited timeframe
may not be sufficient to fully explore and demonstrate differences in convergence efficien-
cies across various node selection strategies. Additionally, the simplicity of the MNIST
dataset poses limitations as well. It is primarily designed for handwritten digit recognition
and already starts with high accuracy levels during training. This initial advantage leaves
little room for improvement or refinement by the federated learning model. Consequently,
the dataset’s simplicity might not fully capture how different node selection strategies
could benefit more complex scenarios.

The first set of results compares group 1 and group 3 in the CFL setting with a total
of 10 participants. Group 1 represents the scenario without artificial constraints using
the default selection strategy, while Group 3 represents the scenario with no artificial
constraints using the priority selection strategy. In Figure 4.6, it is shown that the priority
selection strategy performs similarly to the default settings in CFL. There are several
possible reasons for these results: 1. The priority selection strategy may not have any
significant positive or negative effect on CFL efficiency. 2. The computational overhead
and network overhead associated with implementing the priority selection strategy could
diminish its benefits within the framework. 3. Although node selection strategies can
bring benefits to centralized federated learning, limitations in dataset and timeframe may
prevent these benefits from being demonstrated in this particular result. 4. It is possible
that both reasons two and three contribute to this result, resulting in similar performance
between the priority selection strategy and default selection strategy.

4.3. RESULT COMPARISON 63

- Group2-1 == Group2-2 — Group2-3
- Group3-1 -- Group3-2 — Group3-3
0.9300
0.9000 '
>
Q :
g :
3 0.8700
<
0.8400 '
0.8100 °

Omin 1min 2min 3min 4min 5min 6min

Time

Figure 4.6: accuracy result from group 2 and group 3

To examine the hypothesis of similar performance as shown in Figure 4.6, we can use
the results from Figures 4.7 for group 2 and group 3. Group 2 represents an experiment
where the random selection strategy is used, while all other variables remain the same
compared to groups 1 and 3. In Figure 4.7, it is evident that the priority selection strategy
performs better than the random selection strategy in terms of accuracy at equivalent
timepoints. This suggests that priority selection has a higher convergence rate compared
to random selection. Since both group 2 and group 3 have identical implementations in

64 CHAPTER 4. EVALUATION

terms of framework, computational overhead, and network overhead differences are not
factors influencing these results. Therefore, it can be concluded that priority selection
does have a positive effect on convergence rate. These findings also provide explanations
for some previous hypotheses. Firstly, this result contradicts the first hypothesis for
the first comparison because there is a difference in efficiency between priority selection
and random selection strategies in federated learning; with priority selection showing
superior performance. Secondly, it supports the possibility of the second hypothesis in
the first comparison since both group 2 and group 3 have additional implementation steps
compared to group 1 which lacks this implementation step. Thus, overhead differences
could be one reason why priority selection did not show performance differences when
compared to default settings. Lastly, considering that there are subtle differences observed
between comparisons, it is plausible that various factors influence these slight variations
without any evidence suggesting that dataset limits or timeframe limits do not affect
convergence rates.

4.3. RESULT COMPARISON 65

- Group4-1 -- Group4-2 — Group4-3
+ Group6-1 -- Group6-2 - Group6-3

0.9500 .

0.9150

0.8100 * - : : - - :
Omin 1min 2min 3min 4min 5min 6min
Time

Figure 4.7: accuracy result from group 4 and group 6

The second set of results compared the performance between Group 4 and Group 6. Both
groups had 10 participants and were tested in a CFL setting. Group 4 used the default
selection strategy with random artificial constraints, while Group 6 also had the same
random constraints but switched to a priority selection strategy. The results showed
that Group 4 performed slightly better than Group 6. There are several explanations
for this result. Firstly, using the priority strategy with random constraints may have
made a difference as it can outperform the default selection strategy. Since both groups
had random artificial constraints, the node conditions may not have been as favorable
as in the first set of experiments. Therefore, the benefits of choosing priority selection
were more evident in this setting. Secondly, during these random constraint settings,
the default selection strategy performed poorly due to limitations in computational power

66 CHAPTER 4. EVALUATION

and latency which slowed down convergence speed. Additionally, including all neighboring
nodes in the default selection strategy further exacerbated issues related to latency and
computational resources. It is possible that these factors combined contributed to the
performance difference observed between Groups 4 and 6. In simpler terms, when node
conditions are complex and non-uniform (closer to real-world scenarios), the selective
nature of priority selection may lead to better performance compared to default selection
strategies.

4.3. RESULT COMPARISON 67

+ Group6-1 -- Group6-2 — Group6-3
- Group5-1 -- Group5-2 — Group5-3

0.9500 .

0.9150

Accuracy
o
(0]
[02]
o
o

0.8100 ° : : : : : '
Omin imin 2min 3min 4min 5min 6min

Time

Figure 4.8: accuracy result from group 5 and group 6

Now, when shifting the attention to the results from Groups 5 and 6, an obvious pattern
emerges. The priority selection in Group 6 manages to surpass the random selection in
Group 5, despite both groups dealing with the same random constraints. This suggests
that the priority selection does possess selection advantages. Not only is it more efficient

68 CHAPTER 4. EVALUATION

with quicker convergence rates, but it also shows a strategic edge by cherry-picking nodes
that helps convergence times. This is in contrast to the random selection strategy, which
relies on only limiting the selected node number but have no effect on the convergence
performance rather than intentionally selecting the nodes which helps in speed up the
convergence time.

+ Group9-1 -- Group9-2 — Group9-3
+ Group7-1 -+ Group7-2 = Group7-3

0.9500 .

0.9300 |

0.9100 i

Accuracy

0.8900

Omin 1min 2min 3min 4min 5min 6min
Time

Figure 4.9: accuracy result from group 7 and group 9

The third set of results compares Group 7 and Group 9 in the DFL setting with a total
of 10 participants. Group 7 represents the scenario without artificial constraints using
the default selection strategy, while Group 9 represents the scenario with no artificial
constraints using the priority selection strategy. In Figure 4.10, it is shown that the
priority selection strategy performs almost the same as the default node selection strategy

4.3. RESULT COMPARISON 69

in DFL. Similar to the result in CFL setting, there are also several possible reasons for it:

- Group9-1 == Group9-2 — Group9-3
+ Group8-1 == Group8-2 — Group8-3

0.9500

0.9300

0.9100

Accuracy

]

0.8900 {
o

Omin 1min 2min 3min 4min 5min 6min
Time

Figure 4.10: accuracy result from group 8 and group 9

1. The priority selection strategy did not improve federated learning efficiency in the DFL
setting. 2. In DFL, every node acts as an Aggregator and performs node selection, which
leads to higher computational consumption compared to CFL. The improved efficiency
due to the priority selection is compromised by the extra computational consumption in
DFL. Therefore, the convergence rate did not shown much difference between priority
selection and default selection strategy. 3. Similar to CFL, decentralized federated learn-
ing is limited by dataset and timeframe when it comes to benefiting from priority node
selection strategies. 4. It is possible that both reasons two and three contribute to this

70 CHAPTER 4. EVALUATION

result, resulting in similar performance between the priority selection strategy and default
selection strategy:.

In summary, although DFL provides a distributed approach to federated learning, the de-
centralization also brings computational demands that can limit the benefits of strategies
like priority selection. This situation involves various factors that interact and affect the
outcome.

An analysis of the results comparing Group 8 with Group 9 provides insights into the result
in DFL setting. Group 8 used a random selection strategy and the result comparing Group
8 and 9 showed that implementing the algorithm increased computational load, leading to
a subtle decrease in convergence rate. However, when compared to the priority selection
strategy of Group 9, the difference was not significant. Several factors contribute to this
outcome.

One key factor is the all-connected topology inherent in DFL, where every Aggregator
utilizes a global model derived from neighboring nodes instead of working in CFL set-
ting. This enables faster convergence compared to CFL settings where nodes rely on a
centralized server. The collaborative approach promotes better accuracy achievement.
Additionally, considering the MNIST dataset for its quick convergence properties. When
deploying it in a DFL scenario with an all-connected structure, it is already an efficient
environment for convergence.

Consequently, there is minimal room for improvement regardless of whether node selection
algorithms are random or priority-based; They have limited potential to enhance already
speed up convergence further. This likely explains why efficiency levels across Groups
7, 8, and 9 appear closely aligned. The combination of DFL environment and MNIST
dataset creates a ceiling effect where differences between selection strategies are barely
noticeable.

4.3. RESULT COMPARISON 71

== Group12-1 © Group12-2 = Group12-3
== Group10-1 - Group10-2 — Group10-3

0.9550 .

Accuracy

0.8600 ° : : : : : '
Omin 1min 2min 3min 4min 5min 6min

Time

Figure 4.11: accuracy result from group 10 and group 12

The last set of results compares Group 10 and Group 12 in the DFL setting with a total
of 10 participants. Group 10 represents the scenario with random artificial constraints
using the default selection strategy, while Group 12 represents the scenario with random
artificial constraints using the priority selection strategy. Figure 4.11 shows that the
priority selection strategy outperforms the default node selection strategy.

This result indicates that, during the DFL setting, random artificial constraints can limit
the performance of the default selection strategy and negatively impact convergence rate
due to non-ideal device conditions. By choosing the priority selection strategy under
such non-ideal conditions, participants can exclude neighbors that would greatly affect
convergence rate and improve efficiency in federated learning.

72 CHAPTER 4. EVALUATION

== Group12-1 -+ Group12-2 — Group12-3
++ Group11-1 == Group11-2 = Groupi1-3

0.9550

09338 |

09125 !

Accuracy

0.8913

Omin 1min 2min 3min 4min 5min 6min
Time

Figure 4.12: accuracy result from group 11 and group 12

Comparing this result to when Group 10 is compared to Group 11, it is observed that
there is no significant increase in convergence rate when using a random selection strategy
compared to using a default selection strategy. This similarity between results from both
strategies further supports that the priority selection strategy has a positive effect on
efficiency in DFL.

In summary, the evaluation part is aimed to investigate how federated learning performs
under different network conditions with particular node selection strategy. We initially
considered three datasets but ultimately chose the MNIST dataset paired with the MLP
model due to its reliability. To provide a comprehensive comparison, we evaluated it
against both the default and random selection methods.

4.3. RESULT COMPARISON 73

In the initial findings using centralized federated learning (CFL), the result showed that
priority selection performed similarly to the default method. It appeared that the ad-
ditional computations required by the priority method might be offsetting its potential
benefits. However, when introducing random variables or challenges, the priority method
demonstrated its advantage in the conditions which similar to real-world settings. Tran-
sitioning to decentralized federated learning (DFL), the result is not the same as the
CFL setting. Decentralization is more computationally demanding by nature.The re-
sult comparison showed the priority method maintained its advantage, particularly when
faced with random constraints. Comparing priority selection to random selection in DFL
revealed the efficiency but not significant differences. The fully connected topology con-
figuration of DFL and quick convergence capabilities of MNIST limited the performance
variations among node selection strategy. In summary, the findings indicate that while
the priority selection method has some benefits, its efficiency depends on specific environ-
mental factors. The complex scenarios may benefit from this method as an advantageous
tool; however controlled environments may not yield as pronounced advantages.

74

CHAPTER 4. EVALUATION

Chapter 5

Summary and Future work

5.1 Conclusion

This thesis provides a comprehensive review of federated learning, with a specific focus
on node selection strategies. After evaluating the current node selection strategy and
identifying its limitations, this study proposes a novel priority selection. The priority
selection approach utilizes the features of the node, which are continuously monitors.
These features are then employed to determine the priority probability for choosing the
node for model aggregation. The proposed strategy is implemented in the Fedstellar
framework, which is then evaluated against default and random selection strategies.

The evaluation section begins by discussing the choice of dataset for experiments. Initially
considering MNIST, CIFAR10, and SYSCALL datasets, we ultimately settled on using
MNIST paired with an MLP model due to stability issues and consistency requirements.

The main investigation compares the performance of the priority selection strategy with
default and random strategies in CFL environments. Initially, our results showed that
the priority method performed similarly to the default method but raised concerns about
computational overheads and real-world applicability. However, as the experiment in-
troduced constraints and random variables into our experiments, such as limiting the
CPU computational power and adding latency between nodes for simulating a bad net-
work environment, it became evident that the priority selection method exhibited greater
resilience and adaptability under changing conditions.

Transitioning to DFL setups where each node communicates with every other presented
new challenges. In ideal conditions without any constraints applied to devices, there was
no clear benefit observed from choosing the priority selection strategy. However, when
applying random values for CPU limit and latency as constraints to devices during exper-
imentation, slight improvements were seen in efficiency and convergence rates compared
to other methods used.

To conclude the findings, when devices are in non-uniform conditions and their physi-
cal condition is not ideal for federated learning, priority selection yields better results
compared to when devices are in ideal and identical conditions.

75

76 CHAPTER 5. SUMMARY AND FUTURE WORK

5.2 Future work

While this thesis provides some insights into federated learning and node selection strate-
gies, there is still much more to explore. Additionally, upon reflecting on the thesis, there
are some areas that can be enhanced and refined in future studies. Here are some potential
directions for future research:

The first one is to explore other datasets. While MNIST with the MLLP model was the final
choice, it would be insightful to rectify the issues faced with CIFAR10 and SYSCALL and
use them in similar experiments. The convergence rate of the CIFAR10 and SYSCALL
datasets is slower compared to the MNIST dataset. As a result, running federated learning
with these datasets can lead to more significant changes in accuracy. Additionally, it may
be necessary to extend the timeframe in order to accurately reflect the impact of changing
node selection strategies.

One improvement is to enhance the expandability and configurability of the feature ex-
traction and selection module. Currently, this module is inflexible in terms of adding new
features. When additional features need to be extracted, modifications must be made
across various aspects such as feature transmission, storage, and probability calculation
in the selection algorithm. To address this issue, it would be beneficial to refine the code
so that the workflow can easily adapt to a wider range of features.

Besides the refinement in implementation part of the work, there are some aspect on the
algorithm which could be explored more in the future works. The current study uses
priority selection based on seven device features. However, this is just the beginning of
exploring feature-based node selection. To fully utilize this approach, a more thorough
exploration of features is necessary.

The works in the future could expand this to a more variety aspect of features of devices.
For example, data distribution patterns can provide valuable insights into how data is
spread across devices and how it affects the efficiency of the learning process. The size
of RAM can have a significant impact on a device’s ability to handle larger models or
datasets. Device temperature, which often reflects computational load, can be used as
an indicator of a device’s current operational state. Additionally, factors like battery life,
network strength, and geographical location may introduce interesting dimensions that
could influence priority decision-making in during node selection.

The second aspect is the weight that is added to the features when calculating the selection
probability could be studied more extensively. Since using static or arbitrary weights can
be limiting, and the weight of the feature will greatly affects priority selection behavior,
so it is important to carefully design its value. For example, if the network is highly
sensitive to latency and even a slight increase in latency negatively impacts convergence
rate, the weight assigned to latency should be increased. Future research could also focus
on adaptive weighting mechanisms, such as employing an algorithm to adjust weights
based on real-time performance feedback. This dynamic recalibration allows the system
to continuously refine its strategy and optimize for current conditions.

In conclusion, this thesis provides a foundational understanding of federated learning.
However, there is still much to explore in the area of node selection based on device

5.2. FUTURE WORK 7

features. The proposed directions aim to deepen our understanding of selection strategy
in federated learning and the future works could help maximize the benefits of the priority

selection.

78

CHAPTER 5. SUMMARY AND FUTURE WORK

Bibliography

1]

C. Che, X. Li, C. Chen, X. He, and Z. Zheng, “A decentralized federated learning
framework via committee mechanism with convergence guarantee”, IEEE Transac-
tions on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4783-4800, Dec. 1,
2022, 1SSN: 1045-9219, 1558-2183, 2161-9883. DOI1: 10.1109/TPDS. 2022 .3202887.
[Online]. Available: https://ieeexplore.ieee.org/document/9870745/ (visited
on 05/12/2023).

A. Sultana, M. M. Haque, L. Chen, F. Xu, and X. Yuan, “FEiffel : Efficient and
fair scheduling in adaptive federated learning”, IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 4282-4294, Dec. 1, 2022, 1SSN: 1045-9219,
1558-2183, 2161-9883. por: 10. 1109/ TPDS . 2022 . 3187365. [Online]. Available:
https://ieeexplore.ieee.org/document/9810502/ (visited on 05/11/2023).

J. Koneény, H. B. McMahan, D. Ramage, and P. Richtarik, Federated optimization:
Distributed machine learning for on-device intelligence, Oct. 8, 2016. arXiv: 1610.
02527 [cs]. [Online|. Available: http://arxiv.org/abs/1610.02527 (visited on
05/11/2023).

D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. Vincent
Poor, “Federated learning for internet of things: A comprehensive survey”, I[EFEE
Communications Surveys € Tutorials, vol. 23, no. 3, pp. 1622-1658, 2021, 1SSN:
1553-877X, 2373-745X. DOI: 10.1109/COMST. 2021 . 3075439. [Online]. Available:
https://ieeexplore.ieee.org/document/9415623/ (visited on 09/25/2023).

T. Wang, Y. Liu, X. Zheng, H.-N. Dai, W. Jia, and M. Xie, “Edge-based com-
munication optimization for distributed federated learning”, IEEE Transactions on
Network Science and Engineering, vol. 9, no. 4, pp. 2015-2024, Jul. 1, 2022, 1SSN:
2327-4697, 2334-329X. DOI: 10.1109/TNSE . 2021 . 3083263. [Online|. Available:
https://ieeexplore.ieee.org/document/9446648/ (visited on 03/23/2023).

E. T. M. Beltran, M. Q. Pérez, P. M. S. Sanchez, et al., Decentralized federated learn-
ing: Fundamentals, state-of-the-art, frameworks, trends, and challenges, Apr. 24,
2023. arXiv: 2211.08413[cs]. [Online]. Available: http://arxiv.org/abs/2211.
08413 (visited on 05/11/2023).

H. Wu and P. Wang, Node selection toward faster convergence for federated learning
on non-11D data, Feb. 2, 2022. arXiv: 2105.07066 [cs]. [Online]. Available: http:
//arxiv.org/abs/2105.07066 (visited on 04/09/2023).

79

80

8]

[9]

[10]

[11]

[14]

[16]

[17]

BIBLIOGRAPHY

T. Nishio and R. Yonetani, Client selection for federated learning with heterogeneous
resources in mobile edge, May 2019. DOI: 10.1109/ICC.2019.8761315. arXiv:
1804.08333[cs]. [Online|. Available: http://arxiv.org/abs/1804.08333 (visited
on 04/23/2023).

E. T. M. Beltran, A. L. P Gomez, C. Feng, et al., “Fedstellar: A platform for
decentralized federated learning”, 2023, Publisher: arXiv Version Number: 1. DOI:
10 . 48550/ ARXIV . 2306 . 09750. [Online]. Available: https://arxiv. org/abs/
2306.09750 (visited on 09/10/2023).

G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “Towards a de-
centralized data marketplace for smart cities”, in 2018 IEEE International Smart
Cities Conference (ISC2), Kansas City, MO, USA: IEEE, Sep. 2018, pp. 1-8, ISBN:
978-1-5386-5959-5. DOI: 10.1109/I8C2.2018.8656952. [Online|. Available: https:
//ieeexplore.ieee.org/document/8656952/ (visited on 09/11/2023).

Z. Lian, Q. Yang, W. Wang, et al., “DEEP-FEL: Decentralized, efficient and privacy-
enhanced federated edge learning for healthcare cyber physical systems”, [EEE
Transactions on Network Science and Engineering, vol. 9, no. 5, pp. 3558-3569,
Sep. 1, 2022, 1SSN: 2327-4697, 2334-329X. DOI: 10.1109/TNSE.2022.3175945. [On-
line]. Available: https://ieeexplore.ieee.org/document/9779505/ (visited on
09/11/2023).

L. He, A. Bian, and M. Jaggi, “COLA: Decentralized linear learning”,

Z. Tang, S. Shi, and X. Chu, Communication-efficient decentralized learning with
sparsification and adaptive peer selection, Feb. 22, 2020. arXiv: 2002 .09692[cs,
stat]. [Online]. Available: http://arxiv . org/abs /2002 . 09692 (visited on
05/11/2023).

M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, Convergence of update
aware device scheduling for federated learning at the wireless edge, May 8, 2020.
arXiv: 2001.10402[cs,math]. [Online]. Available: http://arxiv.org/abs/2001.
10402 (visited on 04/23/2023).

J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, Scheduling for cellular
federated edge learning with importance and channel awareness, Jun. 23, 2020. arXiv:
2004.00490 [cs,math]. [Online]. Available: http://arxiv.org/abs/2004.00490
(visited on 04/23/2023).

H. Yu, Z. Liu, Y. Liu, et al., “A fairness-aware incentive scheme for federated learn-
ing”, in Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society, New
York NY USA: ACM, Feb. 7, 2020, pp. 393-399, 1SBN: 978-1-4503-7110-0. DOTI:
10.1145/3375627 . 3375840. [Online]. Available: https://dl.acm.org/doi/10.
1145/3375627 . 3375840 (visited on 05/12/2023).

C. Chen, H. Xu, W. Wang, et al., “Communication-efficient federated learning with
adaptive parameter freezing”, in 2021 IFEFE 41st International Conference on Dis-
tributed Computing Systems (ICDCS), DC, USA: IEEE, Jul. 2021, pp. 1-11, 1SBN:
978-1-66544-513-9. DOI: 10.1109/1ICDCS51616.2021 .00010. [Online]. Available:
https://ieeexplore.ieee.org/document/9546506/ (visited on 03/09/2023).

BIBLIOGRAPHY 81

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[27]

[28]

[29]

7. Tang, S. Shi, B. Li, and X. Chu, “GossipFL: A decentralized federated learn-
ing framework with sparsified and adaptive communication”, IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 3, pp. 909-922, Mar. 1, 2023,
ISSN: 1045-9219, 1558-2183, 2161-9883. DOI: 10.1109/TPDS. 2022 . 3230938. [On—
line]. Available: https://ieeexplore.ieee.org/document/9996127/ (visited on

04,/08/2023).

Y. J. Cho, J. Wang, and G. Joshi, Client selection in federated learning: Conver-
gence analysis and power-of-choice selection strategies, Oct. 2, 2020. arXiv: 2010.
01243[cs, stat]. [Online]. Available: http://arxiv.org/abs/2010.01243 (visited
on 04/23/2023).

M. Ribero and H. Vikalo, Communication-efficient federated learning via optimal
client sampling, Oct. 14, 2020. arXiv: 2007 .15197 [cs, stat]. [Online|. Available:
http://arxiv.org/abs/2007.15197 (visited on 05/07/2023).

M. Chen, H. V. Poor, W. Saad, and S. Cui, Convergence time optimization for
federated learning over wireless networks, Mar. 26, 2021. arXiv: 2001.07845[cs,
math, stat]. [Online|. Available: http://arxiv.org/abs/2001.07845 (visited on
04/23/2023).

N. Onoszko, G. Karlsson, O. Mogren, and E. L. Zec, Decentralized federated learning
of deep neural networks on non-iid data, Jul. 20, 2021. arXiv: 2107 . 08517 [cs].
[Online|. Available: http://arxiv.org/abs/2107.08517 (visited on 05/12/2023).

W. Chen, S. Horvath, and P. Richtarik, Optimal client sampling for federated learn-
ing, Aug. 22, 2022. arXiv: 2010.13723[cs]. [Online|. Available: http://arxiv.
org/abs/2010.13723 (visited on 04/23/2023).

J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-
efficient distributed optimization”, 2017, Publisher: arXiv Version Number: 1. DOI:
10 .48550/ARXIV. 1710 .09854. [Online]. Available: https://arxiv.org/abs/
1710.09854 (visited on 05/31/2023).

H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, Scheduling policies for federated
learning in wireless networks, Oct. 9, 2019. arXiv: 1908 .06287 [cs, eess, math].
[Online]. Available: http://arxiv.org/abs/1908.06287 (visited on 05/07/2023).

H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, Age-based scheduling policy for
federated learning in mobile edge networks, Oct. 31, 2019. arXiv: 1910.14648[cs,
eess,math]. [Online]. Available: http://arxiv.org/abs/1910.14648 (visited on
05/11/2023).

W. Shi, S. Zhou, and Z. Niu, Device scheduling with fast convergence for wireless
federated learning, Nov. 3, 2019. arXiv: 1911.00856 [cs,math]. [Online|. Available:
http://arxiv.org/abs/1911.00856 (visited on 05/11/2023).

J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, Reliable feder-
ated learning for mobile networks, Oct. 14, 2019. arXiv: 1910.06837 [cs]. [Online].
Available: http://arxiv.org/abs/1910.06837 (visited on 04/09/2023).

L. Lyu, X. Xu, and Q. Wang, Collaborative fairness in federated learning, Aug. 27,
2020. arXiv: 2008.12161 [cs, stat]. [Online|. Available: http://arxiv.org/abs/
2008.12161 (visited on 05/12/2023).

82 BIBLIOGRAPHY

[30] M. Habib Ur Rehman, A. Mukhtar Dirir, K. Salah, and D. Svetinovic, “FairFed:
Cross-device fair federated learning”, in 2020 IEEE Applied Imagery Pattern Recog-
nition Workshop (AIPR), Washington DC, DC, USA: IEEE, Oct. 13, 2020, pp. 1-
7, ISBN: 978-1-72818-243-8. poI: 10.1109/AIPR50011 . 2020 . 9425266. [Online].
Available: https : // ieeexplore . ieee . org/ document / 9425266/ (visited on
05/12/2023).

[31] Giampaolo Rodola, Psutil, version 5.9.5. [Online|. Available: https://github.com/
giampaolo/psutil.

[32] thombashi, Tcconfig, version 0.28.0. [Online|. Available: https://github . com/
thombashi/tcconfig.

List of Figures

1.1

1.2

1.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Federated learning example oo 2
[Mlustration of Structure for CFL and DFL 2
Basic steps in federated learning 3
Sequence diagram of node selection 35
Flow diagram of node selection 37
The default deployment page 45
The advanced setting at deployment page before modification 47
Node selection option 48
The network detail of participant before modification 49
The network detail of participant after modification 50
The random constraints button 0000 51
Advanced setting after modification 0L 53
Scenario management page 55
Scenario list 55
Resources metrics 56
Validation metrics Lo 57
Accuracy result from group 1 and group 3 L. 61
accuracy result from group 2 and group 3. 63
accuracy result from group 4 and group 6. 65
accuracy result from group 5 and group 6. L. 67

83

84

LIST OF FIGURES
4.9 accuracy result from group 7and group 9. 68
4.10 accuracy result from group 8 and group 9.o 69
4.11 accuracy result from group 10 and group 12 71

4.12 accuracy result from group 11 and group 12 72

Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

physical feature extraction oo Lo 22
partial feature extraction 22
partial feature extraction oL 23
Heartbeater triggering feature events 23
Sending feature events 24
Building feature message oL o 24
Identifying feature message 25
Receiving feature message oL 26
Selector module in Node 27
Priority Selector algorithm implementation 28
Age Initiationo 31
Selected Node Broadcasting, 32
Selection decision Lo 34
Random selection 39
Send feature event skippingo 40
Age initialization skipping oL 40
Node selection skipping Lo 40
Set model aggregationnode Lo L 41
Docker compose default setup L 42
CPU constraints 43
Latency constraints Lo 44
Selection Option 48
Virtual constraints Lo o 49
Default selection o 50
Update configrationo 52

85

86

LISTINGS

List of Tables

2.1 Recent Node Selection Approaches

2.2 Recent Node Selection algorithms

4.1 Experiment group set up

87

