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Abstract 

Objective The potential of magnetization transfer imaging (MTI) and diffusion tensor imaging (DTI) for the detection and 

evolution of new multiple sclerosis (MS) lesions was analyzed.

Methods Nineteen patients with MS obtained conventional MRI, MTI, and DTI examinations bimonthly for 12 months 

and again after 24 months at 1.5 T MRI. MTI was acquired with balanced steady-state free precession (bSSFP) in 10 min  

(1.3 mm3 isotropic resolution) yielding both magnetization transfer ratio (MTR) and quantitative magnetization transfer 

(qMT) parameters (pool size ratio (F), exchange rate (kf), and relaxation times (T1/T2)). DTI provided fractional anisotropy 

(FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).

Results At the time of their appearance on MRI, the 21 newly detected MS lesions showed significantly reduced MTR/F/

kf and prolonged T1/T2 parameters, as well as significantly reduced FA and increased AD/MD/RD. Significant differences 

were already observed for MTR 4 months and for qMT parameters 2 months prior to lesions’ detection on MRI. DTI did not 

show any significant pre-lesional differences. Slightly reversed trends were observed for most lesions up to 8 months after 

their detection for qMT and less pronounced for MTR and three diffusion parameters, while appearing unchanged on MRI.

Conclusions MTI provides more information than DTI in MS lesions and detects tissue changes 2 to 4 months prior to their 

appearance on MRI. After lesions’ detection, qMT parameter changes promise to be more sensitive than MTR for the lesions’ 

evolutional assessment. Overall, bSSFP-based MTI adumbrates to be more sensitive than MRI and DTI for the early detec-

tion and follow-up assessment of MS lesions.

Clinical relevance statement When additionally acquired in routine MRI, fast bSSFP-based MTI can complement the MRI/

DTI longitudinal lesion assessment by detecting MS lesions 2–4 months earlier than with MRI, which could implicate earlier 

clinical decisions and better follow-up/treatment assessment in MS patients.

Key Points 

• Magnetization transfer imaging provides more information than DTI in multiple sclerosis lesions and can detect tissue  

   changes 2 to 4 months prior to their appearance on MRI.

• After lesions’ detection, quantitative magnetization transfer changes are more pronounced than magnetization transfer  

   ratio changes and therefore promise to be more sensitive for the lesions’ evolutional assessment.
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• Balanced steady-state free precession–based magnetization transfer imaging is more sensitive than MRI and DTI for the  

   early detection and follow-up assessment of multiple sclerosis lesions.

Keywords Multiple sclerosis · Balanced steady-state free precession · Quantitative magnetization transfer · Magnetization 

transfer ratio · Diffusion tensor imaging

ratio (MTR) assessment [9–11], a semi-quantitative parameter 

depending on various sequence parameters and comprising 

mixed information from various quantitative MT (qMT) param-

eters. Information from qMT imaging, including the relative 

amount of the restricted protons (F), exchange rate between the 

free and restricted proton pools (kf), and longitudinal and trans-

verse relaxation times of the free pool (T1, T2), requires a com-

plex data analysis and longer acquisition time (TA) [6–8, 12, 13].

Diffusion imaging assesses movement of water molecules 

[4]. DTI provides more information due to a high number 

of diffusion-weighted images. DTI parameters include the 

fractional anisotropy (FA), mean diffusivity (MD), axial dif-

fusivity (AD), and radial diffusivity (RD) [4].

Previous studies assessing new MS lesions with MTI/DTI 

show inconsistent results. The normal-appearing white mat-

ter (NAWM) and dirty white matter (DWM) in MS patients 

differ from normal white matter (NWM) in healthy subjects 

[10–14]. Magnetization transfer (MT) parameters have been 

claimed to be more altered in the pre-lesional NAWM than 

in the NAWM in which no lesions will develop [10, 11, 15], 

and MS lesions seem not to be associated with the DWM in 

which no lesions seem to arise [12, 13].

This study investigates the efficacy of DTI and high-resolu-

tion balanced steady-state free precession (bSSFP)–based MTI 

assessing both MTR and qMT parameters longitudinally, with 

emphasis on the appearance and evolution of new MS lesions.

Contrary to most previous publications, the presented 

MT-bSSFP technique, in combination with its inherently 

higher MT sensitivity and higher signal-to-noise ratio 

(SNR), enables assessment of both MTR and qMTI param-

eters in an TA of less than 10 min [16, 17].

Materials and methods

Patients

Twenty-two MS patients (age range 21–54 years) under dis-

ease-modifying therapy (MDT; Table 1), with (sub-)clinically 

active relapsing–remitting MS (RRMS) or secondary progres-

sive MS (SPMS) with ongoing relapses, independently of the 

respective EDSS scores, were recruited. Clinical activity was 

defined as “at least two relapses in the last two years (with at 

least one relapse in the previous twelve months) or one relapse 

of cerebral origin as indicated by an MRI performed immedi-

ately before the first/baseline-MRI.” Subclinical activity was 

Abbreviations

AD  Axial diffusivity

bSSFP  Balanced steady-state free precession

CE  Contrast-enhancing

CI  Confidence interval

cMRI  Conventional MRI

DMT  Disease-modifying therapy

DTI  Diffusion tensor imaging

DWI  Diffusion-weighted imaging

DWM  Dirty white matter

EDSS  Expanded disability status scale

F  Pool size ratio

FA  Fractional anisotropy

FLAIR  Fluid-attenuated inversion recovery

IQR  Interquartile range

kf  Exchange rate

MD  Mean diffusivity

MPRAGE  Magnetization-prepared rapid gradient-echo

MS  Multiple sclerosis

MT  Magnetization transfer

MTI  Magnetization transfer imaging

MTR  Magnetization transfer ratio

NAWM  Normal-appearing white matter

NWM  Normal white matter

PDw  Proton density–weighted

QMT  Quantitative magnetization transfer

RD  Radial diffusivity

RF  Radiofrequency

RRMS  Relapsing-remitting MS

SD  Standard deviation

SPMS  Secondary progressive MS

T1/T2  Relaxation parameters

TA  Acquisition time

Introduction

Advanced MRI [1, 2], e.g., diffusion-weighted imaging 

(DWI) [3], diffusion tensor imaging (DTI) [1, 4, 5], and 

magnetization transfer imaging (MTI) [6–8], are comple-

mentary to conventional MRI (cMRI) [1, 2] for tissue char-

acterization in multiple sclerosis (MS).

Information about protons bound to macromolecules, “invis-

ible” on cMRI, is obtained via magnetization exchange between 

“bound” and “free” protons. The simplest method to yield evi-

dence from the bound protons is by magnetization transfer 
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defined as “evidence of at least one new or markedly enlarg-

ing T2w lesion or at least one contrast-enhancing (CE) lesion 

within one year before the first/baseline-MRI.”

Considering three patient dropouts, 19 patients (five 

males, 14 females, mean age 39.2 years, SD 9.9 years) com-

pleted the study.

The study protocol was reviewed and approved by the 

Institutional Review Board. Written consent was obtained 

from all patients.

Magnetic resonance imaging

Patients received eight MRI examinations during the study. 

For 1 year, they were scanned every 2 months with seven 

MRI scans (months 0 (baseline), 2, 4, 6, 8, 10, and 12). 

After a following 1-year break, a last MRI was performed 

24 months after baseline MRI (month 24).

MRI examinations were performed at 1.5 T (Avanto, 

Siemens) with cMRI, MTI, and DTI. Conventional MRI 

included (1) transversal proton density-weighted (PDw)/

T2-weighted (T2w) imaging: TR 5300 ms, TE 24/96 ms, 

voxel size 1.1 × 0.9 × 3.0 mm; (2) 3D-fluid attenuated inver-

sion recovery (FLAIR) imaging: TR/TE 6000/352  ms, 

voxel size 1.0 × 1.0 × 1.0  mm3; (3) sagittal T2w imaging: 

TR/TE 3400/331 ms, voxel size 1.0 × 1.0 × 1.0  mm3; and 

(4) 3D-T1w (T1-weighted) magnetization-prepared rapid 

gradient-echo (MPRAGE) imaging ± contrast: TR/TE 

2700/5.03 ms, voxel size 1.0 × 1.0 × 1.0  mm3.

MTI (MTR/qMT) comprised a B1 map with a flip angle of 

30°, two radiofrequency (RF) spoiled gradient-echo (SPGR) 

sequences with variable flip angles (3°/17°) for T1 deter-

mination, two bSSFP sequences with variable flip angles 

(15°/35°) for T2 determination, five bSSFP scans with variable 

RF pulse durations (0.12–1.5 ms) at a flip angle of 35° (TR 

2.55–3.93 ms), and five bSSFP scans with variable flip angles 

(5°–35°) and constant RF pulse duration (0.12 ms). MT-bSSFP 

imaging was acquired within 10 min (144 slices, in-plane reso-

lution 192, voxel size of 1.3 × 1.3 × 1.3  mm3).

For DTI, 30 non-collinear diffusion-weighting gradients 

were used (b = 900 s/mm2, 10 b = 0 acquisitions, 2 averages, 

55 slices, in-plane resolution 128, voxel size 2 × 2 × 2  mm3, 

TE/TR 95/8900 ms, TA 10.5 min).

Within the first study year, there was a total of six missed 

MRIs by four patients and in six patients the DTI examina-

tion was not performed at one timepoint.

Data processing

Softwares FSL [18] and AFNI [19] were used for brain 

extraction and registration of all images (cMRI/MTI/DTI 

and lesions’ masks) to one bSSFP image of the first MR 

examination. Effective flip angles were calculated on a 

Table 1  Overview of the disease duration and the course of the disease-modifying therapy (DMT) of each individual patient. Please note that 

patient 22 was not under DMT neither at the timepoint of inclusion nor at the end of the study, however for some time during the study

Pt Sex Disease duration  

(years)

DMT at baseline DMT change  

during the study

DMT at the end  

of the study

3 M 17 Interferon-beta-1a i.m Yes Fingolimod

4 M 8 Natalizumab Yes Fingolimod

5 F 16 Interferon-beta-1b s.c No Interferon-beta-1b s.c

6 F 10 Fingolimod No Fingolimod

7 F 9 Fingolimod No Fingolimod

8 M 19 Rituximab No Rituximab

9 F 25 Fingolimod No Fingolimod

10 M 4 Fingolimod No Fingolimod

11 F 5 Glatiramer acetate No Glatiramer acetate

12 F 21 Interferon-beta-1a i.m Yes Natalizumab

13 F 10 Glatiramer acetate No Glatiramer acetate

14 F 29 Glatiramer acetate No Glatiramer acetate

15 F 1 Natalizumab Yes Fingolimod

16 F 22 Fingolimod Yes Rituximab

17 F 6 Natalizumab No Natalizumab

18 F 8 Fingolimod No Fingolimod

19 M 5 Fingolimod No Fingolimod

20 F 3 Interferon-beta-1b s.c. Yes Dymethyl fumarate

22 F 7 None Yes, dimethyl fumarate and  

teriflunomide during the study

None
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pixel-by-pixel base after B1 image registration. T1/T2 

relaxation times of the free proton pool were calculated 

with DESPOT1/DESPOT2 [20, 21]. The two-pool model 

parameters F and kf were estimated from a pixel-wise non-

linear least-squares fit to the bSSFP images [13]. MTR 

maps were calculated from an MT-weighted and a non-

MT-weighted bSSFP scan [9].

3D parameter maps for T1/T2/F/kf and MTR were 

extracted for each examination timepoint.

Diffusion-weighted images were motion-corrected, the 

diffusion tensor was fitted using FSL [18], and acquired 

DWI maps (FA/MD/AD/RD) were aligned to one bSSFP 

image of the first MR examination.

For lesions’ detection, PDw/T2w and 3D-FLAIR 

sequences were revised. For initial co-registration, all 

newly detected MS lesions were manually drawn as masks 

on PDw images with the software tool ITK-SNAP [22] 

by a resident in neurology and verified/corrected by an 

experienced consultant neuroradiologist. For every new 

lesion, a corresponding reference mask of approximately 

the same size was drawn in the contralateral NAWM. All 

new lesion masks were drawn slightly smaller than the 

visible lesions’ size to avoid partial volume contamination 

from adjacent tissue and guarantee a safe lesion margin. 

Very small lesions and lesions not clearly separable from 

preexisting lesions were not considered.

The new lesions and corresponding contralateral/reference 

NAWM masks were drawn at the timepoint where the lesions 

appeared smallest and superimposed onto the individual MT/

DTI parameter maps (Figs. 1 and 2) of all previous and fol-

lowing MRI scans. Lesions’ registration was performed and 

confirmed by an experienced MR physicist. In cases of inac-

curacy, the latter was repeated and manually corrected.

The median across all lesional and corresponding NAWM 

voxel values was calculated for all maps (MTR, 4 qMT 

parameters, 4 DTI parameters). The relative intensity dif-

ference to the NAWM was calculated for every new lesion 

at each timepoint for each parameter. The mean and standard 

error of the relative intensity difference to the NAWM were 

plotted for each timepoint across all lesions. Paired-sample 

t-tests with Bonferroni correction served for comparison 

between pre-lesional and contralateral NAWM tissue at the 

timepoints before lesions’ detection on cMRI.

Results

EDSS

The mean disease duration (time between first symptoms and 

first MRI within the study) of all 19 patients was 11.7 years, 

SD = 8.2 years (range 2 months–29 years).

The patients’ median expanded disability status scale 

(EDSS) score remained quite stable during the first study 

year with 2.5 at the 1st MRI (month 0, IQR 2.0) and 7th 

MRI (month 12, IQR 1.5). There was a slight increase of 

the EDSS score at the end of the study (month 24, 8th MRI) 

with 3.0 (IQR 1.9).

Fig. 1  MT parameter maps. An exemplary MS lesion was manually segmented on a PD-weighted image, marked by an arrow. The lesion mask 

was superimposed onto the individual MT parameter maps to derive median values for each lesion at every timepoint
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EDSS scores were obtained on the same day of the 

respective MRI examination except for one patient at month 

10 and for five patients at month 24 with EDSS scores 

assessed some days/weeks prior/later.

New lesions

The total number of MS lesions markedly exceeded the 

amount of 500 at the baseline MRI (a precise lesion number 

cannot be provided as some patients showed partially largely 

confluent lesions).

Seven out of 19 patients developed a total of 21 new 

lesions (one to nine lesions per patient, all female, age 

range 25–54 years) (mean 37.7 years, SD = 10.8 years) with 

a mean disease duration of 8.6 years (SD = 3.7 years, range 

2 months–16 years) and a median EDSS of 2 (IQR = 0.5, 

range 1–3.5) at the beginning, of 2.25 (IQR = 0.9, range 

1–3.5) at month 12, and of 2 (IQR = 1.0, range 1.5–3.5) at 

month 24 of the study, respectively.

Three of the 21 new lesions showed CE properties when 

detected. Figure 3A shows the timepoints of brain tissue 

observations in the ROIs of the newly appearing lesions as 

analyzed with qMT. They were centered up at the timepoint 

of their appearance. The corresponding histogram in Fig. 3B 

depicts the maximum number of brain tissue observations in 

the ROI of the newly appearing lesions analyzed with qMT 

at each timepoint relative to the timepoint of their appear-

ance. The lesion volumes as segmented with qMT ranged 

from 12 to 201  mm3 (mean 71 ± 60  mm3).

DTI was analyzed in the same 21 new lesions. Corre-

spondingly, Fig. 4A illustrates the timepoints of brain tissue 

observations in the ROIs of the newly appearing lesions as 

analyzed with DTI. They were centered up at the timepoint 

of their appearance. The corresponding histogram in Fig. 4B 

reflects the maximum number of brain tissue observations in 

the ROI of the newly appearing lesions analyzed with DTI at 

each timepoint relative to the timepoint of their appearance. 

The lesion volumes as segmented with DTI ranged from 21 

to 262  mm3 (mean 100 ± 72  mm3).

MTI and DTI before the lesions’ detection 
on conventional MRI

Ten to 4 months prior to lesions’ detection, the values for 

the differences (mean and 95% CI) for MT parameters rela-

tive to contralateral NAWM (representing 0%) are shown in 

Fig. 2  DTI maps. Exemplary DTI maps of the same slice as shown in Fig. 1. The lesion mask, marked by an arrow, was superimposed onto the 

FA, MD, AD, and RD maps to calculate median values for each lesion at every timepoint
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Table 2 with reduced F/kf/MTR and increased T1/T2 val-

ues of lesions compared to contralateral WM. The MTR 

decrease of − 2.3% was already significant 4 months before 

lesions’ detection (p < 0.05), (Fig. 5; Tables 2 and 3).

Two months before lesions’ detection, the relative intensity 

differences of the “pre-lesional” tissue were more pronounced 

with significances (p < 0.002) for all MT values with F/kf/

MTR showing reduced and T1/T2 showing increased values 

compared to contralateral NAWM (Fig. 5; Tables 2 and 3).

Ten to 2 months before lesions’ detection, DTI param-

eters did not show any significant changes (p > 0.05) in the 

“pre-lesional” tissue compared to contralateral NAWM, with 

a decreased FA value and increased MD/AD/RD values 

(Fig. 6; Tables 4 and 5).

Fig. 4  New MS lesions analyzed with DTI. Shown are the timepoints 

of brain tissue observations in the ROI of the 21 newly appearing 

lesions detected in 19 MS patients. The observations analyzed with 

DTI are numbered consecutively (1 to 21) and displayed as red bars. 

The interruptions of the bars represent missed MR examinations. The 

lesions were temporally centered on their appearance (month 0) (A). 

Because of the centering on month 0 and the fact that DTI was not 

always performed, less than 21 tissue observations are present at 

the other individual timepoints (A). Summing over the red bars in (A) 

results in the histogram of the number of brain tissue observations in 

the ROI of newly appearing lesions analyzed with DTI at each time-

point relative to the timepoint of their appearance (B)

Fig. 3  New MS lesions analyzed with MTI. Shown are the timepoints 

of brain tissue observations in the ROIs of the 21 newly appearing 

lesions detected in 19 MS patients. The observations analyzed with MTI 

(qMT and MTR) are numbered consecutively (1 to 21) and displayed as 

red bars. The interruptions of the bars represent missed MR examina-

tions. The lesions are numbered from 1 to 21 and temporally centered 

on their appearance (month 0), so that 21 measured lesions are present 

at month 0. Because of the centering on month 0, less than 21 tissue 

observations are present at the other timepoints (A). Summing over the 

red bars in (A) results in the histogram of the number of brain tissue 

observations in the ROI of newly appearing lesions analyzed with qMT 

at each timepoint relative to the timepoint of their appearance (B)
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MTI and DTI at the time of the lesions’ detection 
on conventional MRI

At the timepoint of the lesions’ detection, average differ-

ences of all individual MT parameters and also of all DTI 

parameters (mean and 95% CI) between lesions and con-

tralateral NAWM were highly significant (p < 0.05) with 

relative differences for MT parameters as given in Table 2 

and Fig.  5. As expected, F/kf/MTR values were mark-

edly reduced and T1/T2 values were markedly increased. 

For DTI parameters, MS lesions showed significantly 

reduced FA and significantly increased MD/AD/RD values 

(p < 0.05) (Fig. 6; Table 4).

MTI and DTI after the lesions’ appearance 
on conventional MRI

Two to 8 months after lesions’ detection, MTI parameters of 

MS lesions showed a tendency to normalization compared to 

contralateral NAWM-ROIs as shown in Table 2. Ten months 

after lesions’ detection, MTI parameters showed a slightly 

reversed tendency with quite stable parameters at 24 months 

(Fig. 5).

For DTI, a slight normalization tendency up to 8 months 

after lesions’ detection was observed for FA/RD/MD 

whereas AD stayed largely unchanged (Table  4). The 

assessed DTI parameters became slightly worse for MD/RD/

AD 10 months and for all four DTI parameters 24 months 

after lesions’ appearance. No MTI/DTI parameter reached its 

respective value prior to lesions’ detection (Fig. 6).

Discussion

Various methods, including MTR, normalized T2 inten-

sity, DWI, and MR spectroscopy, have shown differences 

between the pre-lesional NAWM and the non-pre-lesional 

NAWM in MS patients [15, 23–25].

Studies on MTI changes in MS lesions prior to their identi-

fication on cMRI report no relevant changes [9, 26] to statisti-

cally significant changes ranging from 3 months to 2 years 

before their appearance [10, 11, 27]. Fazekas et al observed 

a significant reduction in MTR/kf 4 months and a significant 

increase in T1 3 months, and Goodkin et al described MTR/

T2 changes several months before lesions’ detection [27, 28].

In our study, all four qMT parameters were significantly 

altered in the pre-lesional NAWM 2  months and MTR 

4 months before lesions’ detection.

These inconsistencies may be attributed to technical 

differences [29]. Previous studies mainly relied on MTR 

assessment only or on qMT-based gradient-echo sequences 

with rather low resolution, low SNR, and long TA [9–11, 

27]. This study is the first one tracking the evolution of 

MS lesions with MTR and four qMT parameters retro- and 

prospectively using fast 3D-bSSFP.

Our study was quite consistent with two previous stud-

ies describing an MTR reduction 3 to 4 months before 

lesions’ appearance [10, 28] and with two qMT studies 

using lower resolution [27, 28].

Only three new lesions showed CE properties when 

detected, i.e., most new lesions had already lost their CE 

properties during the preceding 2-month imaging interval.

Table 2  MTI parameters before, at the timepoint, and after lesions’ detection on conventional MRI

Shown are the differences or ranges of differences (mean and 95% CI) for the single MTI parameters (MTR and qMT) relative to the contralat-

eral NAWM (representing 0%). Significances are marked with a star

10–4 months prior to lesions’ 

detection

2 months before lesions’  

detection

Timepoint of lesions’  

detection

2–8 months after lesions’  

detection

F  − 1.2% (CI: − 3.7%, 

1.4%) and − 12.3% 

(CI: − 20.0%, − 4.6%)

 − 14.7% (CI: − 19.5%, − 9.9%)

(p < 0.002) *

 − 70.2% (CI: − 74.9%, − 65.5%)

(p < 0.05)*

 − 55.9% (CI: − 64.1%, − 47.8%)

kf  − 3.7% (CI: − 16.5%, 

9.1%) and − 12.7% 

(CI: − 18.2%, − 7.2%)

 − 15.3% (CI: − 20.6%, − 10.0%)

(p < 0.002) *

 − 73.1% (CI: − 77.3%, − 68.8%)

(p < 0.05)*

 − 59.1% (CI: − 64.8%, − 53.3%)

T1  + 1.9% (CI: − 6.1%, 9.8%) 

and + 6.7 (CI: 1.7%, 11.7%)

 + 10.3% (CI: 6.2%, 14.4%)

(p < 0.002) *

 + 74.5% (CI: 53.7%, 95.3%) 

(p < 0.05)*

 + 42.9% (CI: 30.1%, 55.7%)

T2  − 1.1% (CI: − 6.3%, 4.0%) 

and + 6.6% (CI: 1.3%, 11.9%)

 + 9.9% (CI: 5.9%, 13.9%)

(p < 0.002) *

 + 122.5% (CI: 74.9%, 170.1%)

(p < 0.05)*

 + 60% (CI: 41.6%, 78.3%)

MTR  + 0.1% (CI: − 2.8%, 

2.9%) and − 3.0% 

(CI: − 4.3%, − 1.6%), sig-

nificant 4 months prior to 

lesions detection with − 2.3% 

(CI: − 3.4%, − 1.2%)

(p < 0.05)*

 − 3.0% (CI: − 4.2%, − 1.9%)

(p < 0.002) *

 − 27.7% (CI: − 31.4%, − 24.0%)

(p < 0.05)*

 − 19.1% (CI: − 22.9%, − 15.4%)
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Greatest  MTR/qMT changes were observed at the 

timepoint of the lesions’ detection [6, 11, 17, 30]. The 

T1 increase has been attributed to edema and reported 

to attenuate MTR changes [30]. Ropele et al [12], how-

ever, found similar MTR values in edematous and T1w 

isointense tissue, and Levesque et al [6] reported that in 

Fig. 5  Temporal evolution of new MS lesions assessed by MTI param-

eters (F, kf, MTR, and relaxation times T1 and T2). The mean value and 

95% confidence interval for the ROI of newly appearing lesions of 19 

MS patients are shown. The last follow-up was 24 months after the first 

acquisition and has a temporal distribution resulting from the centering 

on lesion appearance

Table 3  t-tests comparing 

MTI parameters (qMT and 

MTR) of pre-lesional tissue 

and contralateral tissue across 

patients at each individual 

timepoint before lesions’ 

appearance

The significance level for the whole test is α = 0.05. The Bonferroni-corrected significance level for each of 

the 25 hypotheses is α* = 0.002 and significant p-values are marked with a star

Rel. time Number of MTI brain 

tissue observations

F kf T1 T2 MTR

[months] No. p-value p-value p-value p-value p-value

 − 10 4 0.435 0.567 0.073 0.022 0.986

 − 8 6 0.763 0.105 0.652 0.712 0.065

 − 6 9 0.013 0.003 0.029 0.037 0.003

 − 4 14 0.04 0.022 0.101 0.176 0.001*

 − 2 19 2.33E − 05* 4.06E − 05* 6.80E − 05* 5.40E − 05* 7.03E − 05*
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chronic black holes the T1 increase correlated stronger 

with a decline in F than with edema, altogether illustrating 

the textural complexity of MS lesions [31, 32].

From 2 to 8 months after lesions’ detection, a recov-

ery tendency could be observed for all MT parameters, 

more pronounced for qMT, and by + 12 months, the MT 

parameter values were still distant from their pre-lesional 

baseline.

A partial MTR recovery has also been observed in new 

and repeat lesions [33], and Levesque et al observed a 

partial recovery for qMT parameters but not for myelin 

water estimates in CE lesions [6]. In MS patients, qMT 

revealed a better correlation of NAWM, gray matter 

(GM), and MS lesions with clinical scores than MTR 

[34]. These observations, together with findings from 

previous studies using bSSFP-based MTI [17, 35], sug-

gest the superiority of qMT over MTR, not excluding an 

ongoing recovery from previous inflammation years after 

lesions’ detection [6].

The interpretation of reduced MT in WM demy-

elination has been shown in animal models [36–38] 

demonstrating an increased distance between axons due 

to a dilution of the axonal and myelin concentration. In 

unfixed brain slices of MS patients, the MT pool size 

fractions strongly correlated with myelin staining and 

axonal concentration [37]. The implied high MTI sen-

sitivity for myelin might explain the earlier detection of 

structural changes with MTI compared to cMRI. More 

qMT studies are required for a better translation of these 

cellular processes into the level of MRI [38].

Multiple studies with DWI/DTI [1–4] in MS largely agree 

on the DWI/DTI parameter changes [39, 40].

Studies assessing MS lesions before their detection are 

also scarce for DWI/DTI showing inconsistencies [4, 5], pos-

sibly due to methodical differences.

An FA reduction and MD/AD/RD increase were 

observed prior to lesions’ detection, without signifi-

cance. In consensus with previous studies, significant 

DTI parameter changes were observed at the timepoint 

of lesions’ identification, and a slightly recidivous ten-

dency was observed for three parameters 10 months and 

for all four assessed parameters 24 months after lesions’ 

detection. The partially expected divergent results 

between MTI and DTI can be explained by the inher-

ently different techniques themselves and the complex 

Fig. 6  Temporal evolution of new MS lesions assessed by 

DTI parameters (FA, MD, AD, and RD). The mean value and 95% 

confidence interval for the newly appearing lesions of 19 MS patients 

are shown. The last follow-up was 24 months after the first acquisi-

tion and has a temporal distribution resulting from the centering on 

lesion appearance

Table 4  DTI parameters before, at the timepoint, and after lesions’ detection on conventional MRI

Shown are the differences (mean and 95% CI) for the single DTI parameters relative to the contralateral NAWM (representing 0%). Significances 

are marked with a star

10–2 months prior to lesions’ detection Timepoint of lesions’ detection 2–8 months after lesions’ detection

FA  − 9.3% (CI: − 22.8%, 4.1%)  − 38.5% (CI: − 45.3%, − 31.8%)

(p < 0.05)*

 − 27.7% (CI: − 34.7%, − 20.6%)

MD 6.8% (CI: 0.0%, 13.7%)  + 37.5% (CI: 28.8%, 46.1%)

(p < 0.05)*

 + 29.6% (CI: 24.0%, 35.3%)

AD 3.6% (CI: − 1.4%, 8.7%) 18.4% (CI: 10.7%, 26.1%)

(p < 0.05)*

 + 17.8% (CI: 10.6%, 24.9%)

RD 10.6% (CI: 1.7%, 19.5%)  + 60.6% (CI: 47.6%, 73.5%)

(p < 0.05)*

 + 45.6% (CI: 39.0%, 52.1%),

Table 5  t-tests comparing DTI parameters of pre-lesional tissue and 

contralateral tissue across patients at each individual timepoint before 

lesions’ appearance

The significance level for the whole test is α = 0.05. The Bonfer-

roni-corrected significance level for each of the 16 hypotheses is 

α* = 0.003 and significant p-values are marked with a star

Rel. time Number of DTI brain 

tissue observations

FA MD AD RD

[months] No. p-value p-value p-value p-value

 − 8 6 0.566 0.279 0.434 0.638

 − 6 9 0.573 0.326 0.206 0.904

 − 4 11 0.508 0.070 0.081 0.176

 − 2 13 0.156 0.318 0.393 0.300
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pathophysiological process behind MS lesions. Nonethe-

less, standard DTI may be less sensitive for structural 

changes in MS lesions compared to MTI.

More advanced techniques derived on diffusion, e.g., 

assessment of the full tensor itself, myelin water fraction, 

and myelin water imaging, or  T★2 and quantitative suscep-

tibility mapping are promising for providing pathophysi-

ological information from MS lesions [6, 7, 32, 41–45]. 

With diffusion basis spectrum imaging consistent results 

with histological findings regarding the differentiation and 

quantification of inflammation, demyelination and axonal 

injury/loss in MS have been shown [46]. However, the few 

publications available on these techniques hamper firm con-

clusions on which technique might be the most promising 

one in the clinical setting [32].

One explanation for the MTI/DTI inconsistencies in MS 

between studies might be, apart from differences in imag-

ing parameters and techniques, the a priori altered NAWM 

hampering a veritable differentiation of pre-lesional NAWM 

from non-pre-lesional NAWM and/or DWM [6, 10–13, 32]. 

The NAWM/DWM probably differs between patients, e.g., 

depending on the stage of the disease. Our study shows a 

rather large disease duration, probably partially affecting the 

results. However, the aim of this study was not to investigate 

the NAWM/DWM per se. Being aware that the NAWM in 

MS patients is not “normal,” it nevertheless served as a ref-

erence as the aim of this study was to longitudinally assess 

new MS lesions based on a standardized reference.

Further limitations include the slightly accentuated data 

dispersion of qMT parameters, even if MT-bSSFP has proven 

to be a stable technique. Its stability could be strengthened by 

longer TAs. The 2-month time interval between examinations 

might affect data homogeneity, too.

The unexpectedly unfavorably rather low new lesion 

number could not be influenced by its natural course. 

This prevented lesions’ subdivision into subtypes based 

on previous observations showing divergent dynamics 

of different lesion types or the determination of future 

lesions relying on different pre-lesional measures 

[47–49].

The patients were not in the same treatment (pre)condi-

tions. To include only patients with the same or without 

treatment is an unswayable limitation of the study.

Fast whole-brain bSSFP-based MTI (< 10 min) can be 

additionally acquired in routine MRI assessment. Con-

trary to DTI, with MTI, MS lesions could be detected 2 to 

4 months earlier than with cMRI. QMT changes were more 

pronounced than MTR changes after lesions’ appearance, 

indicating its superiority regarding assessment of potential 

reparative processes.

To what extent the “earlier” detection of MS lesions 

with the presented MTI technique could implicate an ear-

lier treatment initiation and better follow-up/treatment 

assessment [30] remains to be assessed by more studies 

in this field.
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