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Clinical Epigenetics

DNA hypermethylation driven by DNMT1 
and DNMT3A favors tumor immune 
escape contributing to the aggressiveness 
of adrenocortical carcinoma
Gwenneg Kerdivel1, Floriane Amrouche1, Marie‑Ange Calmejane1, Floriane Carallis2, Juliette Hamroune1, 

Constanze Hantel3,4, Jérôme Bertherat1, Guillaume Assié1 and Valentina Boeva1,5,6* 

Abstract 

Background Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within 

adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) 

has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, 

the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays 

elusive.

Results Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyl‑

transferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we 

demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be 

at least partially reversed by treatment with the demethylating agent 5‑azacytidine.

Conclusions In sum, our findings suggest that co‑treatment with demethylating agents might enhance the efficacy 

of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical 

carcinoma.

Keywords DNA methylation, CIMP, DNA methyltransferases, DNMTs, Demethylating agents, 5‑azacytidine, 

Adrenocortical carcinoma, Immune escape

Introduction
Adrenocortical carcinoma (ACC) is an endocrine cancer 

of the adrenal gland with an annual incidence of approx-

imately 1 per million [1]. Albeit rare, ACC is extremely 

aggressive characterized by inter-patient heterogeneity 

and 16–44% five-year survival rate [2, 3]. Complete surgi-

cal removal of localized tumors represents the only cura-

tive option; nevertheless, the recurrence rate remains 

high (30–75%) [1, 4]. Alternatively, unresectable or meta-

static ACCs receive mainly palliative treatments includ-

ing the adrenolytic drug mitotane, chemotherapy, and 

radiotherapy [5].
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Substantial recent efforts focused on obtaining a com-

prehensive genomic characterization of ACC, including 

The Cancer Genome Atlas (TCGA) Research Network 

[6] and the European Network for the Study of Adrenal 

Tumors (ENSAT) [7], have provided integrated analy-

sis of multidimensional genomic data to better predict 

patient outcomes and help develop new therapeutic 

approaches. Genes identified as potential drivers of ACC 

tumorigenesis include insulin-like growth factor 2 (highly 

expressed in approximately 80% of ACC), as well as 

β-catenin, TP53, ZNRF3, CDKN2A, RB1, MEN1, DAXX, 

MED12 and TERT (mutated in, respectively, 16, 16, 21, 

11, 7, 7, 6, 5, and 6% of ACC) [6, 7]. However, about 30% 

of ACC cases lack such mutations [7]. Additional factors 

associated with increased mortality include copy number 

alterations, gene expression changes, and aberrant DNA 

methylation; specifically, the CpG island methylator phe-

notype (CIMP).

CIMP, first described in colorectal carcinoma [8], is 

characterized by hypermethylation of hundreds of CpG 

islands surrounding gene promoter regions. CIMP is 

observed in numerous cancer types [8–11] with differ-

ing effects on prognosis. In various cancers, but not in 

ACC, the contribution of DNA hypermethylation to can-

cer progression and aggressiveness has been linked to 

the immune escape [12–15]. Specifically, treatment with 

demethylating agents has been shown to improve the 

survival of the patients with such cancers, and to increase 

the efficiency of immunotherapy [16]. However, despite 

the fact that CIMP status is used as a biomarker of 

aggressiveness in ACC, we still do not know what drives 

the poor survival of CIMP patients and whether their 

poor survival is connected to the immune escape in this 

particular cancer type.

Moreover, the mechanisms underlying CIMP establish-

ment in ACC are unclear [17]. Particularly, no association 

of CIMP with any specific mutation has been observed 

neither in the ENSAT cohort nor in the TCGA cohort [6, 

7].

In this study, we identified potential molecular driv-

ers of DNA hypermethylation in ACC and demonstrated 

its importance in ACC progression and outcome. Our 

results provide new insights into the role of DNA meth-

ylation in ACC tumorigenicity and suggest that DNA 

demethylating agents may be beneficial for patients with 

CIMP, particularly in association with immunotherapy.

Results
CIMP in ACC is associated with increased DNMT1 

and DNMT3A expression

To determine factors that are associated with and might 

contribute to the establishment of CIMP in ACC, we 

analyzed publicly available microarray and RNA-Seq 

data from ENSAT and TCGA [6, 7]. We focused on the 

expression levels of genes coding for factors involved in 

DNA methylation or demethylation, which were derived 

from the EpiFactors database [18], as a function of the 

CIMP status (Additional file  2: Table  S1). ACC samples 

were characterized as low, intermediate, or high CIMP 

(lCIMP, iCIMP, hCIMP) as described in Assié et  al. [7] 

and Zheng et  al. [6] for ENSAT and TCGA cohorts, 

respectively. Among all genes known to be positively 

related to DNA methylation [18], only DNA methyltrans-

ferases DNMT1 and DNMT3A exhibited significantly 

higher expression in hCIMP than lCIMP cases in both 

TCGA and ENSAT datasets with minimal expression fold 

change above 1.4 (Fig. 1a, Additional file 1: Fig. S1, Addi-

tional file  2: Table  S1, TCGA cohort p values 9.23e−07, 

7.28e−06 and ENSAT cohort p values 1.62e−04 and 

1.23e−02 for DNMT1 and DNMT3A expression changes, 

respectively). This suggested that increased expression 

of these two factors may contribute to the establish-

ment of the CIMP phenotype. In line, high expression 

of these factors was also associated with a poor overall 

survival (TCGA dataset: DNMT1 Bonferroni adjusted 

p value < 5.16 ×  10−5 and DNMT3A p value < 6 ×  10−5; 

ENSAT dataset: DNMT1 p value < 1.22 ×  10−5 and 

DNMT3A p value < 0.146; Fig.  1b, Additional file  1: Fig. 

S1). Additionally, expression of TET1 and to a lesser 

extent TET3, which code for enzymes involved in DNA 

demethylation, was also increased in hCIMP compared 

to lCIMP tumors. However, the expression level of these 

genes remained low compared to that of DNMT1 and 

DNMT3A (Fig. 1a, Additional file 1: Fig. S1).

Copy number aberrations and increased proliferation 

together contribute to higher DNMT expression in ACC 

To clarify the causes underlying DNMT1 and DNMT3A 

overexpression in ACC, we analyzed copy number 

alterations in the DNMT loci (Fig.  1c). The frequen-

cies of gains in DNMT1 and DNMT3A were increased 

in hCIMP tumors compared to those in lCIMP, whereas 

fewer DNMT3B gains were observed in hCIMP. Further, 

DNMT1 and DNMT3A expression levels significantly 

correlated with copy number alterations, the Pearson 

correlation coefficients (R) were 0.25 and 0.42, respec-

tively (Fig.  1d). However, as it could be seen from the 

correlations, copy number status did not fully explain the 

augmented expression of DNMTs, which made us search 

for further drivers of increased DNMT expression in the 

hCIMP ACC tumors.

We hypothesized that increased cell proliferation 

observed in aggressive ACC tumors presenting CIMP 

[6] can contribute to the augmented expression of DNA 

methyltransferases, independently from the gene copy 

number status (Pearson’s correlation on TCGA ACC 
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samples between the CIMP score and proliferation 

score: R = 0.51, p = 1.5e−06; between the CIMP score and 

mitoses per 50 high-power field: R = 0.58, p = 3.84e−06). 

Indeed, DNMT1 and DNMT3A expression is elevated 

during S phase in order to prepare the reproduction of 

the methylation profile in the daughter cells [19]. Also, 

in prostate cancer and acute myeloid leukemia, DNA 

hypermethylation has been shown to be a consequence 

of hyperproliferation [20, 21]. To check this hypothesis 

in ACC, we compared sample DNMT1 and DNMT3A 

expression levels with the proliferative status. Because 

the mitotic rate was not available for all tumors, we 

computed a proliferative score using ROMA [22]. The 

correlation between proliferation score and mitotic 

rate was high and significant (Spearman ρ = 0.522, p 

value < 5.24e−5, n = 54); the deviation from perfect cor-

relation is likely to be explained by facts that the mitotic 

rate was counted manually and a proliferation score 

based on RNA-seq measurements was calculated from a 

slightly different part of the tumor.

Expression levels of DNMT1 and DNMT3A were, 

respectively, highly and moderately correlated with 

Fig. 1 DNMT1 and DNMT3A expression levels are augmented in hCIMP ACC and associated with increased copy numbers. a Expression levels 

of DNMT1, DNMT3A, DNMT3B, TET1, TET2, and TET3 in TCGA patients exhibiting lCIMP (n = 32), iCIMP (n = 26), and hCIMP (n = 21) (two‑sided t test, 

***p < 0.005). b Kaplan–Meier estimates of overall survival for ACC patients, as a function of DNMT1 or DNMT3A expression (divided as high, medium 

and low) for the TCGA dataset. c Pattern of copy number alterations in hCIMP and lCIMP ACC in chromosomes containing DNMT1, DNMT3A, 

and DNMT3B genes. d Expression levels of DNMT1 and DNMT3A in TCGA patients according to copy number status of the genes
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proliferation (Fig. 2a, b, Additional file 1: Fig. S2), corrob-

orating the hypothesis that proliferation could also con-

tribute to the increased expression of DNMT in hCIMP 

ACC tumors. As seen from the analysis of partial cor-

relations, the association between cell proliferation and 

DNMT expression was statistically independent from 

the effect of copy number aberrations documented above 

(Fig. 2c, Additional file 3: Table S2), suggesting increased 

proliferation as a putatively independent cause of DNMT 

overexpression. Indeed, as mentioned earlier, hypermeth-

ylation has already been described or suggested to be a 

consequence of increased proliferation in prostate can-

cer [20] and acute myeloid leukemia [21]. The authors of 

the later paper suggested that this mechanism would be 

mediated by DNMT3A. In our model, we hypothesized 

that, as the DNMTs are regulated during the S phase 

[19], the hyperproliferation of ACC cells could drive an 

anarchic overexpression of these enzymes which would 

be found in excess in cells, inducing the methylation of 

portions of the genome that were not methylated in the 

parent cells.

To confirm that DNMT expression can be governed 

by increased cell proliferation, we treated hCIMP H295R 

and lCIMP MUC-1 ACC cell lines with an inhibitor of 

cell proliferation, AZD-5438, downregulating CDK1/2/9. 

The CIMP status of the ACC cell lines was established 

using the reduced representation bisulfite sequencing 

(RRBS) (see Methods). The AZD-5438 treatment nega-

tively affected DNMT3A and DNMT3B expression in the 

hCIMP H295R cells; however, no decrease of DNMT1 

expression was observed (Fig.  2d, e). In contrast, no 

decrease of any DNMT expression following anti-pro-

liferation treatment was observed in the lCIMP MUC-1 

cells.

Mathematical modeling (see Methods) also corrobo-

rated our hypothesis that in ACC, DNA hypermethyla-

tion is driven by increased proliferation via augmented 

expression of DNMT1 and DNMT3A (Fig.  2f ). Indeed, 

partial correlations of the CIMP score and expres-

sion of the DNMT genes were significantly strong even 

when controlling for the cell proliferation status (corre-

sponding partial correlation coefficients R and p-values: 

RDNMT1 = 0.29, p = 0.01; RDNMT3A = 0.46, p = 3.08e−05) 

(Additional file  3: Table  S2). Moreover, partial correla-

tion of proliferation and CIMP score was not significant 

when controlling for the expression values of DNMT1 

Fig. 2 Increased cell proliferation in hCIMP ACC tumors is a likely second driver of augmented DNMT1 and DNMT3A expression, along with copy 

number aberrations in the DNMT genes. a and b Correlation between DNMT1 (a) or DNMT3A (b) expression and cell proliferation; hCIMP samples 

(n = 21, orange), iCIMP (n = 26, yellow), and lCIMP (n = 32, blue). c Modeling of inter‑dependencies between genomic copy number status of DNMT 

genes, cell proliferation and gene expression using partial correlations for the TCGA data set. Rpartial stands for the Pearson partial correlation 

coefficient calculated when controlling for the third factor. d and e Effect of a 48 h treatment with the proliferation inhibitor AZD‑5438 (Azd) 

at 1 or 5 µM on the expression of DNMT1, DNMT3A, DNMT3B, and the proliferation marker MKI67 in the hCIMP and lCIMP ACC cell lines H295R 

(d) and MUC‑1 (e). DMSO was used as the vehicle. Data represent the means from at least four independent experiments ± SEM (Wilcoxon test, 

*p < 0.05, **p < 0.01)
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and DNMT3A (R = 0.11, p = 0.35); of note, without condi-

tioning for the DNMT expression values, the CIMP score 

was highly correlated with the cell proliferation scores 

(R = 0.51, p = 1.5e−06). The observation of such a low 

partial correlation excluded the hypothesis that cell pro-

liferation can directly drive hypermethylation without the 

intermediation of over-expressed DNMTs and confirmed 

our thesis that DNTMs are direct drivers of CIMP.

High and low CIMP tumors exhibit differences 

in proliferation and immune response gene expression 

signatures

Consistent with several earlier studies highlighting the 

aggressiveness of hCIMP ACC tumors [6, 7, 17], we 

observed strong associations of the CIMP score with 

metastasis (R = 0.29, p = 0.011), stemness score (R = 0.26, 

p = 0.02), and overall higher Weiss score (R = 0.30, 

p = 0.019) in the TCGA dataset. However, it was unclear 

whether these associations were direct and/or causal, or 

whether they were simply induced by the manifestation 

of CIMP in aggressive, highly proliferative cells (R = 0.51, 

p = 1.5e−06). Indeed, when controlling for the cell prolif-

eration scores of the ACC tumors, these associations no 

longer held statistical significance (partial correlation of 

CIMP scores with metastasis R = 0.19, p = 0.10; stemness 

score R = 0.21, p = 0.07; Weiss score R = 0.07, p = 0.59).

To identify specific molecular processes and signal-

ing pathways associated with CIMP in ACC, hCIMP 

tumors were compared to lCIMP tumors using Gene 

Set Enrichment Analysis (GSEA) [23]. Most of the gene 

sets enriched in hCIMP tumors were related to prolifera-

tion and/or cell survival, in line with our previous results 

(Additional file  1: Fig. S3 and Table  1). Notably, a large 

proportion of gene sets detected by GSEA as depleted 

in hCIMP compared to lCIMP tumors was associated 

with the immune system and immune response (50% of 

Table 1 Gene set enrichment analysis (GSEA) results for comparison of hCIMP and lCIMP samples

The MSigDB hallmark database was used and only the pathways with FDR < 10% are shown. Pathways with NES > 0 are enriched in hCIMP compared to lCIMP and 

pathways with NES < 0 are enriched in lCIMP compared to hCIMP. Pathways related to immunity are highlighted in bold. ES Enrichment Score, NES Normalized 

Enrichment Score

Name Size ES NES NOM p-val FDR q-val

E2F_TARGETS 193 0.68 3.26 0 0

G2M_CHECKPOINT 194 0.67 3.18 0 0

MYC_TARGETS_V1 195 0.55 2.67 0 0

MYC_TARGETS_V2 58 0.54 2.1 0 0

MITOTIC_SPINDLE 199 0.42 2.03 0 0

CHOLESTEROL_HOMEOSTASIS 74 0.46 1.88 0 0.0004

DNA_REPAIR 149 0.41 1.84 0 0.0003

MTORC1_SIGNALING 198 0.35 1.69 0 0.003

PANCREAS_BETA_CELLS 40 0.45 1.63 0.008 0.005

UV_RESPONSE_UP 158 0.33 1.54 0.0038 0.011

UNFOLDED_PROTEIN_RESPONSE 113 0.3 1.34 0.039 0.072

SPERMATOGENESIS 135 0.29 1.31 0.044 0.083

PI3K_AKT_MTOR_SIGNALING 105 0.3 1.29 0.056 0.095

EPITHELIAL_MESENCHYMAL_TRANSITION 199 0.27 1.29 0.037 0.091

INFLAMMATORY_RESPONSE 200 − 0.28 − 1.35 0.015 0.069

COAGULATION 138 − 0.29 − 1.36 0.027 0.065

ESTROGEN_RESPONSE_EARLY 197 − 0.28 − 1.37 0.015 0.064

ADIPOGENESIS 200 − 0.29 − 1.39 0.011 0.062

KRAS_SIGNALING_UP 200 − 0.29 − 1.41 0.009 0.054

IL6_JAK_STAT3_SIGNALING 87 − 0.33 − 1.43 0.019 0.052

COMPLEMENT 200 − 0.31 − 1.54 0 0.021

PROTEIN_SECRETION 96 − 0.38 − 1.66 0.002 0.006

BILE_ACID_METABOLISM 112 − 0.37 − 1.66 0.002 0.008

FATTY_ACID_METABOLISM 156 − 0.37 − 1.73 0 0.004

OXIDATIVE_PHOSPHORYLATION 199 − 0.37 − 1.81 0 0.003

INTERFERON_ALPHA_RESPONSE 97 − 0.46 − 2.03 0 0

ALLOGRAFT_REJECTION 200 − 0.46 − 2.21 0 0

INTERFERON_GAMMA_RESPONSE 200 − 0.45 − 2.21 0 0
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pathways with false-discovery rate (FDR) < 10% and nega-

tive normalized enrichment score), in addition to metab-

olism, oxidative phosphorylation, and protein secretion 

(Additional file 1: Fig. S3 and Table 1).

To check whether indeed increased DNA methylation 

might be responsible for the immune escape, we screened 

for molecular processes downstream of CIMP. To iden-

tify genes repressed by DNA methylation in hCIMP, we 

selected genes whose expression levels significantly cor-

related with the CIMP status and whose promoters or 

gene bodies contained differentially methylated cytosines 

(See Methods). A total of 1302 genes were found to be 

potentially repressed by methylation in CIMP. A path-

way enrichment analysis was performed on all KEGG 

pathways and showed that almost all pathways negatively 

influenced by DNA methylation-dependent repression of 

transcription were related to immune response or com-

munication with the immune system (Fig. 3a). We there-

fore conclude that CIMP can directly cause inhibition of 

immunity-related genes.

hCIMP ACC tumors are characterized by low infiltration 

of immune cells

Given the differences uncovered in immune response 

gene expression between lCIMP and hCIMP tumors, we 

hypothesized that hCIMP tumors could be less infiltrated 

by immune cells than lCIMP tumors. To test this hypoth-

esis, abundance of tumor-infiltrating immune cells in 

ACC tumors was estimated in silico using MCPcounter 

software [24] for both TCGA and ENSAT cohorts. Abun-

dance of the eight assessed immune cell types was signifi-

cantly decreased in hCIMP compared to that in lCIMP 

tumors whereas fibroblast abundance was comparable 

among the tumor groups (Fig.  3b and Additional file  1: 

Fig. S4).

To validate the decrease in tumor infiltrating immune 

cells in ACC, we performed immunohistochemis-

try experiments using CD3 as a marker of T cells on 6 

hCIMP and 6 lCIMP tumors (Additional file 4: Table S3). 

We found that the lCIMP group of tumors contained a 

few highly infiltrated samples, while all hCIMP were all 

poorly infiltrated (Fig.  3c). In sum, we concluded that 

DNA methylation of immune response genes can affect 

the composition of tumor-infiltrating immune cells in the 

hCIMP ACCs.

Treatment of the hCIMP ACC cell line with a DNA 

demethylating agent re-activates genes related 

to the immune system

Our results led to the hypothesis that DNA methylation 

in hCIMP ACC could reduce antitumor immunity. Thus, 

reversing this effect of DNA methylation might be ben-

eficial for patients by reintroducing antitumor immunity 

and favoring the action of immunotherapy. To test this 

hypothesis, we inhibited DNA methylation in ACC cells 

by treating the hCIMP H295R and lCIMP MUC-1 cell 

lines with the demethylating agent 5-azacytidine (AZA) 

(5 µM) and assessed the resulting expression and meth-

ylation profiles using RNA-Seq and RRBS, respectively. 

The primary human umbilical vein endothelial cell line 

(HUVEC) was used as a non-ACC control. AZA treat-

ment resulted in decreased CpG methylation in all three 

cell lines associated with mainly positive changes in gene 

expression (Fig.  4a-c and Additional file  5: Table  S4). 

However, effects of treatment were less marked in 

MUC-1 cells in accordance with the global DNA hypo-

methylation of this cell line (Fig.  4b, c). Of note, the 

hCIMP H295R cell line was significantly more sensitive 

to the AZA treatment than the lCIMP MUC-1 and con-

trol HUVEC cell lines (Additional file 6: Fig. S5).

For each cell line, the ability of AZA to reverse the 

methylation-dependent repression of gene expression 

was assayed by extracting the genes for which AZA was 

able to decrease promoter methylation while inducing 

an increase in expression (see Methods). A total of 560, 

13, and 48 genes were identified for H295R, MUC-1, 

and HUVEC cell lines, respectively (Additional file 5–8: 

Tables S4–S7). As previously observed, AZA dependent 

decrease in CpG methylation had a larger effect in H295R 

cells than in the hypomethylated MUC-1 line. Notably, 

treatments of the non-ACC control HUVEC cells with 

AZA resulted in the re-expression of approximately four-

fold fewer genes than in H295R cells even though the 

former cell line exhibited higher initial DNA methylation 

levels.

Interestingly, the 560 genes demethylated and reac-

tivated by AZA in the hCIMP model H295R included 

Fig. 3 hCIMP ACC tumors are characterized by lower abundance of tumor‑infiltrating immune cells. a Pathway enrichment analysis on genes 

repressed by DNA methylation in hCIMP tumors from TCGA dataset. The complete KEGG pathways database was used for the analysis and only the 

significantly enriched pathways are depicted on the figure. b Relative abundance of tumor‑infiltrating immune and non‑immune stromal cell 

populations computed using MCP‑counter [19] in lCIMP (n = 32), iCIMP (n = 26), and hCIMP (n = 21) samples from TCGA dataset. Comparison 

of the relative abundances of each population using the Kruskal–Wallis test followed by Dunn’s test with Benjamini–Hochberg corrections. 

***p < 0.001. c Left: quantification of the percentage of tumor‑infiltrating CD3 + T cells. Data represent the means from at least six independent 

experiments ± SEM. p value of the Mann–Whitney U Test: p = 0.12. Right: representative screenshot of a highly infiltrated lCIMP sample and a lowly 

infiltrated hCIMP sample

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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several genes involved in the interaction of cancer 

cells with the tumor microenvironment such as HLA-

E, ICAM1 and RAPGEF3 (Additional file  6: Table  S5). 

Pathway enrichment analysis further revealed that 27 

pathways were enriched in H295R cells upon DNA 

demethylation (FDR < 0.1) including several pathways 

related to immune response and cell death (Fig.  4d, e). 

In comparison, only 0 and 2 pathways were found to be 

enriched in the MUC-1 and HUVEC gene sets, respec-

tively, owing to the low number of differentially expressed 

genes in these sets (Additional file 9: Table S8).

As these observations suggested that AZA is able, in 

the hCIMP cellular model, to induce gene re-expression 

through the direct promoter demethylation of genes 

Fig. 4 Demethylating agent 5‑azacytidine (AZA) can partially revert DNA hypermethylation of CpG islands in the hCIMP ACC cell line H295R 

restoring activity of immune response genes. a Overlap between genes significantly up‑ or down‑regulated upon AZA treatment (FDR < 0.05) 

in H295R (5242 genes), MUC‑1 (125 genes), and HUVEC (254 genes) cell lines. b Unsupervised hierarchical clustering of 3 cell lines (H295R, MUC‑1 

and HUVEC) treated or not with AZA 5 μM was based on their promoter CpG islands methylation profile. The clustering was obtained using 

the CpG with the most variable methylation level (s.d. > 0.4). c Global percentage of methylated CpG among the CpG covered by RRBS reads. AZA 

induces a decrease in CpG methylation in all three cell lines, but this effect is less pronounced in the MUC‑1 cell line that has the lowest basal 

level of DNA methylation. d Pathway enrichment analysis on genes induced by AZA in H295R through promoter demethylation. Pathways related 

to the immune response are highlighted in red. e Examples of differentially methylated region (DMRs) upon AZA treatment in H295R located 

in promoters of two immune response genes
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involved in similar immune pathways as the genes 

repressed by methylation in hCIMP ACCs, we evalu-

ated the genes that were found in both analyses in further 

detail. Overall, 47, 6, and 11 genes were identified both 

as genes induced by AZA through promoter demethyla-

tion and those repressed in hCIMP tumors through pro-

moter methylation, respectively, in H295R, MUC-1, and 

HUVEC cell lines. A full listing and brief description of 

the functions of these genes is provided in Additional 

file  10: Table  S9. Notably, the list for H295R cells con-

tained not only several genes related to immune system 

but also some known or putative tumor suppressor genes 

such as ARHGAP10, HCG11, LOXL4, and LRIG1.

Using the same approach, we determined the genes 

repressed by promoter hypermethylation in H295R com-

pared to MUC-1 cells in the absence of treatment. Nota-

bly, several pathways enriched for this gene set were also 

related to the immune system-associated genes, con-

firming that these two cell lines recapitulate at least par-

tially the molecular phenotypes observed in hCIMP and 

lCIMP tumors (Additional file 1: Fig. S6 and Additional 

file 11: Table S10). In addition, this observation also sup-

ported the results of our analysis of public datasets dem-

onstrating that in ACC, DNA methylation-dependent 

gene repression targets the immune system in hCIMP 

compared to lCIMP tumors.

Discussion
In this study, we investigated the role of augmented CpG 

island DNA methylation (CIMP) and its driving mecha-

nisms in ACC. It has been known that unlike other cancer 

types with CIMP [25, 26], ACCs do not harbor mutations 

in DNA methylation-related genes [6, 7]. Our re-analysis 

of ENSAT exome sequencing data using a more permis-

sive threshold of mutation confidence (to identify sub-

clonal mutations) has not been able to discover any such 

mutations either (data not shown). Here, we proposed 

that augmented CpG island DNA methylation in this 

cancer type is associated with the increased expression of 

DNMT1 and DNMT3A, as previously reported in some 

other cancer types such as gastric cancer and gliomas [27, 

28]. We revealed that increased DNMT1 and DNMT3A 

expression was associated with gains of copy number of 

these genes in hCIMP compared to lCIMP tumors along 

with higher cell proliferation in hCIMP tumors.

Analysis of TCGA and ENSAT datasets also revealed 

a link between DNA methylation and tumor immu-

nity in ACC. Pathway analysis showed that activities 

of many pathways linked to immunity were decreased 

in hCIMP as compared to lCIMP, in particular, those 

linked to inflammation (e.g., inflammatory response, 

JAK STAT signaling pathway, and interferon alpha/

gamma) (Table 1). Indeed, it has been well described that 

activation of the JAK STAT pathway leads to the activa-

tion of the expression of the interferons [29]. Interferons 

then make the tumor an easier target for the immune 

system by activating NK cells and cytotoxic lymphocytes 

and enhancing the presentation of tumor-associated anti-

gens [30, 31]. Besides the pathways linked to immune 

system, some pathways that had been suspected to be 

associated with DNA hypermethylation or DNMT activ-

ity, such as DNA repair, proliferation/cell cycle pathways 

and AKT pathways [32], were also enriched in hCIMP as 

compared to lCIMP (Table 1). However, in ACC, they do 

not seem to be directly regulated by DNA methylation 

(Fig. 3a).

Indeed, strikingly, most of the pathways enriched 

among genes directly silenced by DNA methylation 

were also associated with immunity (Fig.  3a). This list 

included “antigen presentation and processing” path-

way on account of methylation-related silencing of many 

HLA genes, a mechanism of immune escape shared by 

several cancer types [33, 34]. Several pathways involved 

in immune cells activation and recruitment were also 

detected by GSEA as directly affected by DNA meth-

ylation in hCIMP (e.g., chemokine signaling, cytokine-

cytokine receptor interaction,  and natural killer cell 

mediated cytotoxicity). These results were further con-

firmed by a deconvolution of immune cell abundance 

analysis using expression signatures. And although it 

could be interesting in future to perform single cell 

RNA-seq to get a more accurate estimation of the tumor 

infiltrating immune cells, our immunohistochemistry 

experiments have also confirmed the low immune sta-

tus of hCIMP samples. Tumor-infiltrating immune cells 

can limit tumor progression, and deficiency of immune 

cells has been often observed in aggressive and/or meta-

static tumors [35, 36]. Interestingly, a link between DNA 

methylation and tumor infiltration by immune cells has 

already been described in several other cancer types, 

such as gliomas, colorectal cancers and ependymomas 

[14, 37, 38].

Our treatment of ACC cells with AZA resulted in a 

partial reversion of the methylation-dependent silencing 

of immune gene expression in the hCIMP H295R cells. In 

particular, HLA-E, which was repressed by methylation 

in hCIMP tumors, was significantly induced by AZA. 

HLA-E was found to contain a differentially methylated 

region (DMR) hypomethylated under AZA treatment. 

Our observations fit into the context of several other 

cancer studies. For example, it has been shown that the 

expression of HLA genes is lost in several cancer types 

and this loss contributes to the aggressiveness and the 

immune evasion of these tumors [13, 39]. Moreover, loss 

of HLA gene expression has been associated with pro-

moter hypermethylation and has been shown in some 
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cases to be reversible by AZA or decitabine treatment 

[39, 40].

Overall, many genes and pathways involved in immune 

cell mobility and chemokine/cytokine production were 

re-expressed after treatment upon decreased in promoter 

methylation (Additional file  6 and 9: Tables S5 and S8). 

Thus, in our suggested model, methylation-dependent 

silencing of immune genes, including previously men-

tioned genes involved activation and recruitment of 

immune cells, would impair anti-tumor immunity lead-

ing to the observed reduction in tumor-infiltrating 

immune cells and this would contribute to the lower 

prognosis in high CIMP ACC patients. Even though 

further study needs to be conducted, our result on cell 

lines strongly suggests that treatment with the demeth-

ylating agent azacytidine could at least partially reverse 

this mechanism as it has been shown to induce the re-

expression of genes involved in immune pathways. For 

example, are found among these re-expressed genes, 

HLA-E mentioned in the previous paragraph but also 

RAPGEF3, whose expression has been correlated with 

neutrophil infiltration in uveal melanoma [41], ICAM1, 

whose down-regulation is a known mechanism of 

immune escape during tumorigenesis [42], and RIPK1, 

whose methylation dependent silencing increases tumo-

rigenic properties and migration abilities of cancer cells 

in head and neck squamous cell carcinoma [43]. Of 

note, gene expression changes following the AZA treat-

ment were also observed in the healthy control cell line 

HUVEC and in the lCIMP ACC cell line MUC-1, albeit at 

a significantly lower scale compared to the hCIMP ACC 

cell line H295R (254, 125 and 5242 significantly deregu-

lated genes, respectively) (Fig.  4a). We also observed a 

much higher sensitivity of the hCIMP H295R cell line to 

the AZA treatment than the lCIMP MUC-1 and the non-

cancerous HUVEC cell lines. However, given the fact that 

MUC-1 is generally much more resistant to most types of 

treatment than H295R, one should not extrapolate these 

findings on AZA sensitivity in cell lines to ACC tumors 

broadly [44–46].

Several clinical trials have been carried out to assess the 

effectiveness of immunotherapies in treating ACC [47]. 

However, none of the trials combined immunotherapy 

with DNA demethylating agents, and all tested agents 

have shown modest clinical activity so far. Based on our 

findings, it would be interesting in future to design a 

clinical trial combining the two mechanisms to treat the 

aggressive hCIMP ACC tumors.

Strikingly, the expression of CD274 (encoding the 

major immune checkpoint protein PD-L1) was also 

enhanced under AZA treatment in ACC even though no 

DMRs were identified (fold change 1.77, FDR 0.0389); 

the latter may be due to the low number of RRBS reads 

mapping to the CD274 promoter. Several studies have 

suggested that DNMT inhibitors, such as AZA, could be 

used to enhance the clinical success of immunotherapy, 

e.g., the efficacy of PD-L1 inhibitors [48]. Notably, re-

expression of CD274 following AZA treatment has been 

shown to sensitize patients with non-small cell lung can-

cer to immune checkpoint inhibitors [49, 50]. The results 

of our study thus strongly support the use of DNMT 

inhibitors in combination with immunotherapy in the 

context of ACC, especially in the case of patients with 

hCIMP. Indeed, this combination of treatments could 

help overcome the limited results obtained by different 

studies and clinical trials that have evaluated the effect of 

immunotherapy in ACC [51–53].

In addition to DNA methylation, posttranslational his-

tone modifications are known to have a critical role in 

chromatin stability in cancer [54]. However, our recent 

study of histone modification landscape in ACC did not 

show any strong association between the locally pre-

sent histone modifications (H3K27ac, H3K27me3, and 

H3K4me3) and DNA methylation [55]. Our analysis of 

super-enhancer landscape did not identify any super-

enhancer elements in DNMT genes in ACC, which could 

explain DNMT over-expression in CIMP cases. Neither 

could we link the CIMP pattern and global variation in 

H3K27ac or H3K27me3 in ACC tumors. The only signifi-

cant association was observed between the ACC CIMP 

and broad H3K4me3 regions, suggesting avenues for fur-

ther studies.

In addition to the increased expression of DNMT1 

and DNMT3A in the hCIMP tumors, we reported sig-

nificantly higher expression of the TET1 gene, which 

codes for a protein involved in DNA demethylation. 

Although we do not have a clear explanation for this phe-

nomenon, we hypothesize an existence of a controlling 

feedback loop between the expression of genes linked 

to DNA methylation and demethylation. This hypoth-

esis is in line with the strong correlation values observed 

in the pan-cancer TCGA dataset (TET1 vs. DNMT1, 

R = 0.228, p = 4.76e−55; TET1 vs. DNMT3A, R = 0.443, 

p = 5.14e−218). We, however, argue that increased TET1 

expression in hCIMP cases is unlikely to compensate 

for the increased expression of DNMTs given expres-

sion levels of these genes (mean expression in hCIMP 

tumors of TCGA (RPKM values): DNMT1 = 1664; 

DNMT3A = 1345; TET1 = 93).

A limitation of our study is that we made use of only 

two cell lines as ACC cellular models: H295R and 

MUC1. However, only a very small number of ACC 

cell lines is currently available owing to the difficul-

ties of cell line establishment for this cancer. Never-

theless, the chosen cell lines, H295R and MUC1, well 

recapitulate lCIMP and hCIMP. Another limitation of 
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our study is linked to the scarcity of the tumor mate-

rial we could obtain to quantify immune cell infiltration 

in ACC. Indeed, we could only evaluate proportions of 

infiltrating T cells (expressing the CD3 marker) in 12 

ACC patients without distinguishing T cell subtypes. In 

future, it will be valuable to experimentally assess the 

immune infiltration levels for a larger number of ACC 

tumors using such markers as CD4, CD8, FOXP3 for 

subtypes of T cells and other markers for different pop-

ulations of immune cells.

To the best of our knowledge, this is the first study 

that attempts to decipher the causes and consequences 

of CIMP in ACC. Taken together, our results shed light 

on mechanisms involved in establishment of this pheno-

type; i.e., increased expression of DNMT1 and DNMT3A 

as a consequence of augmented gene copy number and 

hyperproliferation. Furthermore, we showed that CIMP 

has a direct effect on the aggressiveness of tumors 

through favoring the tumor immune escape (Fig. 5). We 

also showed that this effect could be at least partially 

Fig. 5 Suggested model of the establishment of the high CIMP in ACC. Augmented expression of DNA methyltransferases DNMT1 and DNMT3A, 

driven by genomic aberrations and hyperproliferation, results in an increase of promoter DNA methylation of hundreds of genes; consequently, 

methylation‑dependent silencing of genes related to immune response leads to lower infiltration of the tumor by immune cells
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reversed by treatment with the demethylating agent 

AZA. Together, our results strongly suggest that the 

co-treatment of patients with hCIMP ACC with DNA 

demethylating agents and immunotherapy drugs may 

positively affect patient survival.

Methods
Public data analysis

We used two independent cohorts of ACC tumors: 40 

ACC samples from ENSAT characterized by transcrip-

tomic microarrays (Gene Expression Omnibus (GEO) 

dataset GSE49278) and Illumina Infinium HumanMeth-

ylation27k assays (GEO dataset GSE49277); 79 ACC sam-

ples from TCGA (https:// portal. gdc. cancer. gov/) cohort 

including mRNA sequencing data and Illumina Infinium 

HumanMethylation450k assays. In both cohorts, the 

authors identified subgroups of patients with low, inter-

mediate, and high CIMP (lCIMP, iCIMP and hCIMP, 

respectively). Patients from the two cohorts assigned to 

similar DNA methylation groups shared other molecular 

characteristics such as patterns of copy number altera-

tions, point mutations and gene expression profiles. 

Clinical and demographics data of the tumors/patients 

included in this study are available in Additional file  12 

and 13: Tables S11 and S12 and more exhaustive informa-

tion can be found in the corresponding papers [6, 7].

GSEA [23] was performed on expression data using 

the signal-to-noise ratio ranking method and the hall-

mark gene sets from the Molecular Signatures Database 

(MsigDB v6.2) [56]. Pathway enrichment analysis using 

unranked gene lists was performed using ACSNmineR 

(v0.16.8.25) [57].

Computation of the “CIMP score”

For subsequent analysis, we obtained a quantitative value 

of “CIMPness,” the CIMP score, based on DNA meth-

ylation assays from TCGA. First, CpG probes located 

in promoters of genes were extracted (“TSS200” in the 

Illumina Infinium HumanMethylation annotation file). 

Probes that were found to differ significantly between 

lCIMP, iCIMP, and hCIMP (as defined in [6]) with a delta 

β-value > 0.2 between lCIMP and iCIMP samples and 

between iCIMP and hCIMP were selected as CIMP sig-

nature probes. The score was then calculated as the sum 

of the β-values of these probes.

Estimation of the abundance of immune cell populations

For TCGA dataset, RSEM normalized read counts were 

first log scaled (log2(x + 1)) and then processed to esti-

mate the population of ten immune cell populations 

using the R package MCP-counter [24]. These ten popu-

lations included T cells, CD8 + T cells, cytotoxic lympho-

cytes, NK cells, B lineage, monocytic lineage, myeloid 

dendritic cells, neutrophils, endothelial cells, and fibro-

blasts. The relative abundance of each population was 

compared between CIMP groups. Statistical significance 

values of the observed differences in abundance were 

evaluated using the Kruskal–Wallis test, followed by the 

Dunn tests with FDR corrections.

Stemness score calculation

We calculated the stemness score as a mean gene expres-

sion value for the previously reported stemness-related 

marker genes: OCT4/POU5F1, SOX2, KLF4, C-MYC, 

NANOG, SALL4 [58].

Modeling the link between DNA methylation, expression 

of DNMT1 and DNMT3A and cell proliferation

We observed strong positive correlation between the 

expression of DNMT1, DNMT3A, the CIMP status and 

cell proliferation (Fig.  2a-b). Analysis of partial correla-

tions was employed to decipher connections between 

these covariates. In this analysis, the CIMP score was 

corrected for tumor purity values; however, this qualita-

tively did not change the results.

Analysis of partial correlations can identify associations 

induced by the third factor. We applied this approach to 

prove the consistency of the model that in ACC cell pro-

liferation causes the increase in expression of DNMTs, 

which in turn results in augmented DNA methylation 

(i.e., increased CIMP score). First, significant partial 

correlation of the CIMP status with DNTM expression 

when controlling for cell proliferation excluded the pos-

sibility that cell proliferation is a common cause for both 

increased DNMT expression and CIMP (Additional 

file  3: Table  S2). Therefore, we assumed that DNMTs 

cause CIMP independently from cell proliferation.

Second, we tested the model that cell proliferation 

drives CIMP through augmenting expression of DNTMs 

by calculating partial correlation between cell prolifera-

tion and CIMP score when controlling for the DNMT1 

and DNMT3A expression. Observed partial correlation 

between cell proliferation and CIMP score was small and 

not significant (Additional file 3: Table S2), which showed 

the consistency of the proposed model. We concluded 

that the TCGA ACC data confirmed the model that 

increased cell proliferation causes augmented expres-

sion of DNMTs, which in turn cause an increase in DNA 

methylation at CpG islands (CIMP).

Tumor samples

Tumor samples for immunohistochemistry were col-

lected between 2008 and 2015 in the Cochin hospital 

(Paris, France), snap-frozen, and stored as previously 

reported [7]. Signed informed consent was obtained 

from all patients and the study was approved by the local 

https://portal.gdc.cancer.gov/
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institutional review board (Comité de protection des per-

sonnes Ile de France 1, application #13311).

Cell lines and treatments

Human H295R cells were cultured in Dulbecco’s modi-

fied Eagle medium (DMEM)/F12 with 15  mM HEPES 

and sodium bicarbonate, without L-glutamine (Sigma-

Aldrich, St. Louis, MO, USA), supplemented with 2% 

NU-serum (Corning, Chorges, France), 1% insulin, trans-

ferrin, and selenium (100 U/mL; Gibco, Gaithersburg, 

MD, USA), penicillin/streptomycin (100 U/mL; Gibco), 

and 1 mL plasmocin (2.5 mg/mL, Invivogen, San Diego, 

CA, USA). The cells were grown in humidified 5%  CO2 

at 37  °C. Human MUC-1 [44] cells were cultured in 

Advanced DMEM/F12 Medium (GIBCO) supplemented 

with 10% fetal bovine serum and 1% penicillin/strepto-

mycin and grown in humidified 5%  CO2 at 37 °C. Human 

HUVECs were cultured in DMEM with glutamax, 4.5 g 

D-glucose, and pyruvate (Gibco) supplemented with 10% 

fetal bovine serum and penicillin/streptomycin (100 U/

mL; Gibco) in a humidified incubator containing 5%  CO2 

at 37  °C. H295R and HUVEC cell lines were purchased 

from the ATCC. MUC-1 cells were obtained from Con-

stanze Hantel (UniversitätsSpital Zürich, Zurich, Switzer-

land). Whole genome sequencing revealed that H295R 

exhibits some driver genes mutations often seen in ACCs 

(CTNNB1, ZNRF3, RB1 and TERT) as well as some 

characteristic copy number variations including ampli-

fications in the 9q, 19q and 12p regions and loss in the 

22q region. The MUC-1 cell line did not carry any of the 

common mutations in ACC but exhibited a copy num-

ber profile typically described as chromosomal with gains 

and losses of large chromosomal regions, including full 

arms or chromosomes.

The proliferation inhibitor AZD-5438 (Cliniscience, 

Nanterre, France) and the demethylating agent AZA 

were used at different doses and times depending on the 

experiments. The solvent (DMSO) was used as a control.

Characterization of the methylation status of cell lines

The CpG methylation levels of all cell lines were assayed 

by RRBS (see below). Methylation levels were found to 

be relatively similar between H295R cells and HUVECs, 

whereas MUC-1 cells [44] were characterized by global 

DNA hypomethylation (Fig.  4b, c). In particular, CpGs 

within promoter CpG Islands were strongly hypomethyl-

ated in MUC-1 cells as compared to H295R cells, lead-

ing us to consider MUC-1 cells as an lCIMP model and 

H295R cells as hCIMPs (Fig. 4b, c).

RNA extraction

Total RNAs extractions were performed using TRIzol® 

Reagent (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer’s protocol. Extracted RNAs were then 

treated with DNAse (TURBO DNA-free™ kit, Invivogen) 

following provider’s instructions. MRNA were then used 

for RT-qPCR analysis or RNA-Seq.

Quantitative reverse transcription polymerase chain 

reaction (RT-qPCR)

Reverse transcription was carried out from 2.5  µg of 

total RNA, first mixed with dNTP (2 µL, 10 mM, Invitro-

gen) and random primers (1 µL, 50 µM, Invitrogen) and 

incubated at 65  °C for 5  min. After hybridization, sam-

ples were held on ice prior to the addition of 1 µL DEPC-

treated  H2O (Ambion, Austin, TX, USA), 1 µL 0.1  M 

dithiothreitol (Invitrogen), and 4 µL 5X buffer (Invitro-

gen). RNAse inhibitors (1 µL), RNAse out (40 U/µL, Inv-

itrogen), and reverse transcriptase (1 µL, SuperScript IV, 

Invitrogen) were added and the reaction was incubated 

at 25  °C for 10 min, followed by an incubation at 42  °C 

for 40 min. qPCR experiments were performed using the 

SensiFAST™ SYBR® No-ROX Kit (Bioline) with a Light-

Cycler480 apparatus (Roche, Roswell, GA, USA).

Choice of the normalizing genes for RT-qPCR analysis

Normfinder [59] was used to find the normalizing genes 

ACTG1 and GAPDH. The sequences of primers used 

are available upon request. Relative gene expression was 

determined by normalizing raw data for the control gene 

and the control sample using the DDCt method.

RNA Sequencing (RNA-seq)

For experiments on cell lines, approximately 3 ×  105 cells 

were used, treatments were performed in triplicate, and 

RNA-Seq experiments were performed at least in dupli-

cate. Total RNA was extracted and treated with DNAse 

as described in the RT-qPCR section. Quality controls 

were performed using a Bioanalyzer (Agilent, Santa 

Clara, CA, USA) before and after library preparation and 

only RNA samples with RNA Integrity Number > 6 were 

used for sequencing.

For sequencing library preparation, 1 µg of high-quality 

total RNA samples was used except for the AZA treat-

ment experiments, for which 1% ERCC spike-in RNA 

(Life Technologies, Carlsbad, CA, USA) was added to 

3  µg of high-quality total RNA samples. Notably, AZA 

treatment was expected to result in a global increase in 

gene expression, thus impairing usage of library size nor-

malization. Sequencing libraries were prepared using 

the TruSeq Stranded mRNA kit (Illumina) according to 

the manufacturer’s instructions. Briefly, after purifica-

tion of poly-A-containing mRNA molecules, mRNAs 

were fragmented and reverse-transcribed using ran-

dom primers. dTTP was replaced by dUTP during the 

second strand synthesis to achieve strand specificity. 
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Addition of a single A base to the cDNA (dA tailing) was 

followed by ligation of Illumina adapters. Libraries were 

quantified using the Qubit fluorometer (Life Technolo-

gies) and library profiles were assessed using the DNA 

high Sensitivity LabChip kit on an Agilent Bioanalyzer 

2100. Libraries were sequenced on an Illumina Nextseq 

500 instrument using 75 base-length-read chemistry in 

a paired-end mode. After sequencing, primary analysis 

based on AOZAN software [60] was applied to demulti-

plex and control the quality of the raw data.

Mapping of the reads to the human reference genome 

hg19/GRCh37 was performed using STAR v2.5.3a [61] with 

the following parameters: twopassMode, “Basic”; chim-

SegmentMin, 12; chimJunctionOverhangMin, 12; align-

SJDBoverhangMin, 10; alignMatesGapMax, 100,000,000; 

alignIntronMax, 200,000; alignSJstitchMismatchNmax, 

5 -1 5 5. FeatureCount [62] was used to retrieve the gene-

level raw read counts from aligned reads and DESeq2 

[63] was used to normalize the data and find differentially 

expressed genes. For spike-in data, raw read counts were 

normalized using the function RUVs from the R package 

“RUVSeq” (“remove unwanted variation”, v1.16.1) [64] and 

then processed with DESeq2 v1.22.2 without size factor 

normalization to identify differentially expressed genes.

RRBS experiments

Genomic DNA was extracted using the QIAamp® Fast 

DNA Tissue Kit (Qiagen) according to the manufac-

turer’s protocol. RRBS was performed by Integragen SA 

(Evry, France) using the Diagenode Premium RRBS kit. 

In brief, 100 ng of qualified genomic DNA was digested 

with MspI. After end-repair, A-tailing, and ligation to 

methylated and indexed adapters, the size-selected 

library fragments were subjected to bisulfite conver-

sion, amplified by PCR, and sequenced on an Illumina 

NovaSeq sequencer as Paired End 100 bp reads. Image 

analysis and base calling were performed using Illu-

mina Real Time Analysis (3.4.4) with default param-

eters. Base calling was performed using the Real-Time 

Analysis software sequence pipeline (3.4.4) with default 

parameters. RRBS data were mapped to the Human 

genome (hg19) using BS-Seeker2 v2.1.8 [65]. The fol-

lowing parameters were used: -r (map reads to the 

Reduced Representation genome), -c C-CGG (MspI: 

sites of restriction enzyme and specifying lengths of 

fragments ranging [40, 400  bp]. One mismatch was 

allowed in the adaptor sequence. Allowing local/

gapped alignment with Bowtie2 [66] increased the 

mappability.

The BS-Seeker2 module bs_seeker2-call_methylation.

py was used to call methylation levels from the mapping 

results with these parameters: –rm-SX (removed reads 

that would be considered as not fully converted by 

bisulfite) and –rm-overlap (removed one mate if two 

mates overlapped). The methylation callings were saved 

in the ATCGmap/CGmap format. Cgmaptool v0.1.2 [67] 

was used to call DMRs.

Genes for which AZA was able to decrease promoter 

methylation while inducing an increase in expression 

were retrieved. These were defined as genes (1) hav-

ing at least one DMR within their promoters (defined as 

the region including 1000 bp before the TSS and 200 bp 

after the TSS) with significant p value (< 0.05) and a delta 

between control and AZA > 0.2 and (2) being signifi-

cantly upregulated by AZA with p value < 0.05 and fold 

change > 2.

Immunohistochemistry

Immunohistochemistry for CD3 was performed on 

paraffin-embedded tissues (6 hCIMP and 6 lCIMP 

tumors) in paraffin using a Leica Bond III automat. 

Samples were deparaffinized and unmasked at pH 6 

and then immunostained using the Bond Polymere 

Refine kit (Leica, Wetzlar, Germany). The anti-

body used was anti-CD3 ab16669 (rabbit polyclonal, 

Abcam). Slides were scanned with a Lamina slide 

scanner (PerkinElmer, Waltham, MA, USA) and Case-

Viewer (3DHISTECH) was used to obtain images. 

Number of stained cells and total number of nuclei 

in at least 10 different fields per sample were counted 

using the GNU Image Manipulation Program (GIMP; 

https:// www. gimp. org/).

Statistical analysis

All statistical analyses were performed using R (22). Pear-

son and Spearman correlation tests, in addition to Wil-

coxon and Kruskal–Wallis tests, do not need the data to 

follow normal distribution nor require homoscedasticity. 

When not stated otherwise, p values < 0.05 were consid-

ered significant.

Abbreviations

ACC    Adrenocortical carcinoma

AZA   5‑Azacytidine

CIMP   CpG island methylator phenotype

lCIMP, iCIMP, hCIMP  Low, intermediate, or high CIMP

FDR   False discovery rate

GSEA   Gene Set Enrichment Analysis

HUVEC   The primary human umbilical vein endothelial cell 

line

ENSAT   The European Network for the Study of Adrenal 

Tumors

RRBS   Reduced representation bisulfite sequencing

TCGA    The Cancer Genome Atlas

https://www.gimp.org/
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Additional file 1: Fig. S1. related to content in Fig. 1: DNMT1 and 

DNMT3A expression levels are upregulated in high CIMP ACC and are 

associated with poor clinical outcome. (a) Expression levels of DNMT1, 

DNMT3A, DNMT3B, TET1, TET2 and TET3 in the ENSAT patients exhibit‑

ing lCIMP (n = 20), iCIMP (n = 14) and hCIMP (n = 6) (two‑sided t test, 

***p < 0.005). (b) Kaplan–Meier estimates of overall survival for ACC 

patients, as a function of DNMT1 or DNMT3A. Fig. S2 related to content of 

Fig. 2: DNMT1 and DNMT3A expression is associated with high prolifera‑

tion. Correlation between DNMT1 and DNMT3A expression and cell pro‑

liferation in the ENSAT patients. hCIMP (n = 6) samples are represented in 

red, iCIMP (n = 14) in orange and lCIMP (n = 20) in blue. Patients for whom 

the CIMP status was not defined are represented in gray. Fig. S3 related 

to content of Table 1: Gene Set Enrichment Analysis on TCGA datasets 

comparing hCIMP and lCIMP samples. (a) Representative example of gene 

sets enriched in hCIMP. (b) Representative example of gene sets enriched 

in lCIMP. Fig. S4, related to content of Fig. 3: CIMP in ACC is character‑

ized by lower abundance of tumor‑infiltrating immune cells Relative 

abundance of tumor‑infiltrating immune and non‑immune stromal 

cell populations, computed using MCP‑counter, in lCIMP (n = 20), iCIMP 

(n = 14) and hCIMP (n = 6) samples from the ENSAT dataset. Comparison of 

relative abundances of each population using Kruskal–Wallis test followed 

by Dunn’s test with Benjamini–Hochberg corrections. Fig. S5 related to 

content of Fig. 4: Impact of demethylating agent on cell proliferation 

in ACC cell lines. Effect of a 6‑day treatment with the DNA methylation 

inhibitor 5‑azacytidine (AZA) at 1, 5, or 10 µM in the H295R (n = 4), MUC1 

(n = 5) cell lines and the non‑tumor HUVEC cell line (n = 5). Cell growth 

was estimated by neutral red proliferation assay. p values of the Kruskal–

Wallis test and Dunn’s test for stochastic dominance are reported: *p 

value < 0.05; **p value < 0.01; ***p value < 0.005. Fig. S6 related to content 

of Fig. 4: Gene pathways differentially active in H295R compared to MUC‑1 

cells due to DNA hypermethylation. Pathway enrichment analysis on 

genes that exhibit a significantly hypermethylated DMR in their promoter 

and significantly lower expression in H295R than in MUC‑1 cells. Pathways 

related to the immune response are highlighted in red.

Additional file 2: Table S1 related to content in Fig. 1: Genes coding for 

factors known to be involved in DNA methylation or demethylation.

Additional file 3: Table S2 related to content in Methods: Partial 

correlation analysis for modeling interactions between increased cell 

proliferation, expression of DNMTs and CIMP status (TCGA data set). DNMT 

expression is measured in log2(RPKM + 1).

Additional file 4: Table S3 related to content in Fig. 3: Characteristics 

of the ACC cohort used to perform immunohistochemistry experiments 

using CD3 as a marker of T cells including 6 hCIMP and 6 lCIMP tumors.

Additional file 5: Table S4 related to content in Fig. 4: Differential expres‑

sion analysis using DESeq2 as a result of sample treatment with AZA 

(5‑azacytidine).

Additional file 6: Table S5 related to content in Fig. 4: Differential expres‑

sion and methylation analysis as a result of sample treatment with AZA 

(5‑azacytidine) in H295R.

Additional file 7: Table S6 related to content in Fig. 4: Differential expres‑

sion and methylation analysis as a result of sample treatment with AZA 

(5‑azacytidine) in MUC1.

Additional file 8: Table S7 related to content in Fig. 4: Differential expres‑

sion and methylation analysis as a result of sample treatment with AZA 

(5‑azacytidine) in HUVEC.

Additional file 9: Table S8 related to content in Fig. 4: Pathways 

enrichment analysis on genes exhibiting significantly lower promoter 

methylation and significantly higher expression upon 5 µM 5‑azacytidine 

treatment.

Additional file 10: Table S9 related to content in Fig. 4: Short description 

of genes common between those induced by AZA through promoter 

demethylation and those repressed in hCIMP tumors through promoter 

methylation.

Additional file 11: Table S10 related to content in Fig. 4: Pathways 

enrichment analysis on genes exhibiting significantly higher promoter 

methylation and significantly lower expression in the H295R than in the 

MUC1 cells.

Additional file 12: Table S11 related to content in Methods: Demo‑

graphic and clinical data of the ACC TCGA cohort.
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